JP2000336409A - Operation of blast furnace - Google Patents

Operation of blast furnace

Info

Publication number
JP2000336409A
JP2000336409A JP11145449A JP14544999A JP2000336409A JP 2000336409 A JP2000336409 A JP 2000336409A JP 11145449 A JP11145449 A JP 11145449A JP 14544999 A JP14544999 A JP 14544999A JP 2000336409 A JP2000336409 A JP 2000336409A
Authority
JP
Japan
Prior art keywords
raw material
blast furnace
iron
dri
sri
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11145449A
Other languages
Japanese (ja)
Inventor
Kaoru Nakano
薫 中野
Kohei Sunahara
公平 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11145449A priority Critical patent/JP2000336409A/en
Publication of JP2000336409A publication Critical patent/JP2000336409A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for providing the operational method of a blast furnace, with which the gas ventilating resistance can efficiently be reduced. SOLUTION: (1) When the gas ventilating resistance in the blast furnace is raised, the operational method of the blast furnace is executed by changing over raw material containing iron oxide into raw material containing metallic iron to lower the ventilating resistance. At this time, the raw material containing the metallic iron is charged into the blast furnace so that a ratio (Dri/Ds) of a grain diameter Dri (mm) in the raw material containing the metallic iron and a grain diameter Ds (mm) in the raw material containing the iron oxide satisfies the undermentioned formula I and a ratio (Lri/Dri) of a layer thickness Lri (mm) of the raw material containing the metallic iron in the blast furnace and the grain diameter Dri (mm) of the raw material containing metallic iron satisfies the undermentioned formula II. Formula I: (Dri/Ds) >=1.5 Formula II: (Lri/Pri)>=5. (2) The raw material containing the metallic iron is charged into the blast furnace so that a ratio (Sri/Sb) of a charging cross sectional area Sb (m2) in the blast furnace and the charging area Sri (m2) possessed with the raw material containing the metallic iron satisfies the undermentioned formula III. Formula III: (Sri/Sb)>=0.05.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉内の通気抵抗
を効率的に低下することができる高炉の操業方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a blast furnace, which can effectively reduce the ventilation resistance in the blast furnace.

【0002】[0002]

【従来の技術】高炉内部では、加熱昇温により酸化鉄含
有原料が軟化溶解する領域(以下、融着帯という)を境
にして、それより上部(以下、塊状帯という)と下部
(以下、滴下帯という)では、その状態が大きく異なっ
ている。
2. Description of the Related Art In a blast furnace, an upper portion (hereinafter, referred to as a cohesive zone) and a lower portion (hereinafter, referred to as a cohesive zone) are separated from a region (hereinafter, referred to as a cohesive zone) in which an iron oxide-containing raw material is softened and dissolved by heating. In this case, the state is greatly different.

【0003】塊状帯においては、酸化鉄含有原料はコー
クスと共に固体状態で存在し、下方に降下しつつその空
隙を通って上昇してくる還元ガスによって還元され昇温
される。
[0003] In the massive zone, the iron oxide-containing raw material exists in a solid state together with coke, and is reduced by a reducing gas that rises through the voids while descending downward, and is heated.

【0004】一方、滴下帯においては、還元・昇温され
た酸化鉄含有原料が溶解し、溶解時に生成した溶銑滓と
ともにコークス充填層内の空隙を通って下方に滴下す
る。
On the other hand, in the dropping zone, the reduced and heated iron oxide-containing raw material dissolves, and is dropped downward through the voids in the coke packed bed together with the molten iron slag generated during the melting.

【0005】羽口から吹き込まれたガスは、コークス充
填層内の空隙を通って、炉中心方向に上昇し、滴下帯に
存在するコークスは、その大部分が羽口部燃焼帯に向か
って移動し消失する。しかし、コークスの一部は、物質
流動のきわめて緩慢な炉中心部に滞留して、いわゆる
「炉芯」という死領域(デッドゾーン)という部分を形
成する。
[0005] The gas blown from the tuyere rises toward the center of the furnace through a gap in the coke packed bed, and most of the coke in the drip zone moves toward the tuyere combustion zone. And disappear. However, a part of the coke stays in the central portion of the furnace where the material flow is extremely slow, and forms a dead zone called a "core".

【0006】塊状帯では、通気抵抗の大小は酸化鉄含有
原料およびコークスの粒径に大きく依存する。
[0006] In the massive zone, the magnitude of the airflow resistance largely depends on the particle size of the iron oxide-containing raw material and the coke.

【0007】融着帯では、通気抵抗の大小は、酸化鉄含
有原料の高温性状(融着帯領域での溶け落ち性)に大き
く依存する。
[0007] In the cohesive zone, the magnitude of the airflow resistance largely depends on the high-temperature properties of the iron oxide-containing raw material (the burn-through property in the cohesive zone region).

【0008】滴下帯では、通気抵抗の大小は、コークス
充填層の空隙率(コークス充填層の粉率および溶銑滓滴
下量から求められる)および炉芯コークスの通気性に大
きく依存する。
In the dropping zone, the magnitude of the airflow resistance largely depends on the porosity of the coke packed layer (determined from the powder rate of the coke packed layer and the amount of molten iron slag) and the air permeability of the core coke.

【0009】特開平06−256819号公報に、鉄系
スクラップまたは還元鉄等(以下、金属鉄含有原料とい
う)を炉の中心に装入することにより、炉芯コークスの
通気性の悪化を防止する方法が開示されている。
In Japanese Patent Application Laid-Open No. 06-256819, iron-based scrap or reduced iron (hereinafter referred to as a metal-iron-containing raw material) is charged into the center of a furnace to prevent deterioration of the permeability of the core coke. A method is disclosed.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記発
明は、滴下帯における炉芯コークスの通気性の悪化を防
止することが可能であるが、前記塊状帯および融着帯で
の通気抵抗を低下させることができないという問題があ
る。また、金属鉄含有原料の粒径および層厚み等につい
て定量的な検討がされておらず、通気抵抗を効率的に低
下させることができないという問題もある。
However, the above-mentioned invention can prevent the deterioration of the permeability of the furnace core coke in the dropping zone, but lowers the ventilation resistance in the massive zone and the cohesive zone. There is a problem that you can not. In addition, there has been a problem that a quantitative study has not been made on the particle size, layer thickness, and the like of the metallic iron-containing raw material, so that the airflow resistance cannot be reduced efficiently.

【0011】本発明の目的は、通気抵抗を効率的に低下
することができる高炉の操業方法を提供することにあ
る。
An object of the present invention is to provide a method for operating a blast furnace, which can reduce the ventilation resistance efficiently.

【0012】[0012]

【課題を解決するための手段】本発明者は、下記の知見
を得た。 (A)塊状帯における通気性は、装入粒子の粒径に大き
く依存する。粒子径が大きいほど空隙率が大きくなり、
高炉内の装入層(以下、充填層ともいう)の通気抵抗が
小さくなる。装入粒子の粒径が単一でなく、複数種の粒
径を持つ粒子が混合した系では、それぞれの粒子が単独
に存在する系よりも空隙率が小さくなるため、通気性が
悪化する。(製銑ハンドブック、p183、地人書館、
昭和54年12月10日発行)塊状帯の通気性を改善す
るには、複数種の粒径を持つ粒子を混合せずに粒径が一
定な単独粒子を装入した方が通気性の改善に効果的であ
る。
The present inventors have obtained the following findings. (A) The air permeability in the massive band largely depends on the particle size of the charged particles. The porosity increases as the particle size increases,
The ventilation resistance of the charging layer (hereinafter also referred to as a packed layer) in the blast furnace is reduced. In a system in which the charged particles are not a single particle but a mixture of particles having a plurality of types of particle diameters, the porosity is smaller than in a system in which each particle is present alone, resulting in poor air permeability. (Ironmaking handbook, p183, Jinjinshokan,
(Issued December 10, 1979) In order to improve the air permeability of a lump belt, it is better to insert single particles of a uniform particle size without mixing particles having multiple particle sizes. It is effective for

【0013】(B)融着帯における通気性は、酸化鉄含
有原料および/または金属鉄含有原料(以下、鉄原料と
もいう)の高温性状(溶け落ち性)に大きく依存する。
(B) The permeability in the cohesive zone largely depends on the high-temperature properties (burn-through property) of the iron oxide-containing raw material and / or metallic iron-containing raw material (hereinafter also referred to as iron raw material).

【0014】文献(鉄と鋼(Vol.72(198
6),P1855)に示された方法に基づいて、酸化鉄
含有原料として焼結鉱を、金属鉄含有原料として還元鉄
を使用した混合物について、高温性状試験(融着帯での
鉄原料の溶け落ち性の評価試験)を行った。
References (iron and steel (Vol. 72 (198)
6), P1855), a mixture using sinter as an iron oxide-containing raw material and reduced iron as a metallic iron-containing raw material was subjected to a high-temperature property test (melting of the iron raw material in the cohesive zone). Drop test).

【0015】なお、以下の試験では、全て酸化鉄含有原
料として焼結鉱を、金属鉄含有原料として還元鉄を使用
して試験を行った。
In the following tests, all tests were performed using sintered ore as a raw material containing iron oxide and reduced iron as a raw material containing metallic iron.

【0016】図1は、焼結鉱中での還元鉄の混合率と高
温性状との関係を示すグラフである。なお、縦軸の高温
性状は、値が小さいほど鉄原料の溶け落ち性が良好であ
り通気抵抗が小さいことを示す指標である。
FIG. 1 is a graph showing the relationship between the mixing ratio of reduced iron in the sinter and the high-temperature properties. The high-temperature property on the vertical axis is an index indicating that the smaller the value, the better the burn-through property of the iron raw material and the smaller the airflow resistance.

【0017】同図に示すように、焼結鉱中での還元鉄の
混合率が大きいほど溶け落ち性が良好であり融着帯での
通気抵抗を低下させることができる。
As shown in FIG. 1, the higher the mixing ratio of reduced iron in the sintered ore, the better the burn-through property and the lower the airflow resistance in the cohesive zone.

【0018】一方、還元鉄は既に大部分が金属鉄に還元
されているため、還元時に発生するCO2 、H2 Oガス
等の発生量が少なくなる。この結果、発生CO2 、H2
Oガス等とコークス中のCとの反応が抑制されるのでコ
ークスの粉化を防止でき、滴下帯におけるコークスの通
気性も良好に維持できる。
On the other hand, most of the reduced iron has already been reduced to metallic iron, so that the amount of CO 2 , H 2 O gas and the like generated during the reduction is reduced. As a result, generated CO 2 , H 2
Since the reaction between the O gas or the like and C in the coke is suppressed, powdering of the coke can be prevented, and good permeability of the coke in the dropping zone can be maintained.

【0019】(C)各種粒径の還元鉄装入による通気抵
抗の低下効果を定量的に調査するため、試験高炉により
表1〜3に示す条件下で試験し評価した。
(C) In order to quantitatively examine the effect of reducing the ventilation resistance due to the charging of reduced iron having various particle diameters, the test was performed and evaluated under the conditions shown in Tables 1 to 3 using a test blast furnace.

【0020】表1に、試験高炉の仕様を示した。表2
に、試験高炉の操業条件を示した。表3に、各試験No.
の還元鉄の粒径Driおよび還元鉄の層厚みLri等の条件
を示した。なお、同表に示したSri/Sb は、炉内の装
入断面積Sb に占める還元鉄の装入面積Sriの割合を示
し、値が全て1.0となっているのは装入断面積の全域
に還元鉄が存在していることを示す。
Table 1 shows the specifications of the test blast furnace. Table 2
The operating conditions of the test blast furnace are shown below. Table 3 shows each test No.
And the conditions such as the reduced iron particle diameter Dri and the reduced iron layer thickness Lri. Sri / Sb shown in the table indicates the ratio of the charged area Sri of the reduced iron to the charged cross-sectional area Sb in the furnace. Indicates that reduced iron is present in the entire region.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】図2は、高炉炉内への各原料の装入方法を
層別で示した概念図である。コークス1の上層に、焼結
鉱3を装入するのが通常であるが、同図に示すように、
本試験では、一定粒径Driの還元鉄2を一定の層厚みL
riでコークス1の上層に装入し、次に焼結鉱3を装入し
その上に再度コークス1を装入し、同様に繰り返し各原
料を装入する。
FIG. 2 is a conceptual diagram showing a method of charging each raw material into the blast furnace by layer. Normally, the sintered ore 3 is charged into the upper layer of the coke 1, but as shown in FIG.
In this test, the reduced iron 2 having a constant particle diameter Dri was fixed to a certain layer thickness L
The coke 1 is charged into the upper layer with ri, then the sinter 3 is charged, and the coke 1 is charged thereon again, and each raw material is repeatedly charged.

【0025】図3は、上記条件下での試験結果を示し、
還元鉄の粒径Driと還元鉄の層厚Lriとの比(Lri/D
ri)をパラメーターとして、炉内の圧力損失と焼結鉱の
粒径Ds と還元鉄の粒径Driとの比(Dri/Ds )との
関係を示したグラフである。
FIG. 3 shows the test results under the above conditions.
The ratio (Lri / D) between the reduced iron particle diameter Dri and the reduced iron layer thickness Lri
6 is a graph showing the relationship between the pressure loss in the furnace and the ratio (Dri / Ds) of the particle diameter Ds of the sintered ore and the particle diameter Dri of the reduced iron, using ri) as a parameter.

【0026】なお、図中の点線は、全量焼結鉱(粒径:
15mm)を使用時の圧力損失の値であることを示す。
It should be noted that the dotted line in the figure indicates the total amount of sintered ore (particle size:
15 mm) indicates the value of the pressure loss during use.

【0027】同図に示すように、比(Dri/Ds )が
1.5以上であり、かつ比(Lri/Dri)が5以上の条
件下で、炉内圧力損失が低下した。
As shown in the figure, the pressure drop in the furnace was reduced under the condition that the ratio (Dri / Ds) was 1.5 or more and the ratio (Lri / Dri) was 5 or more.

【0028】(D)炉内の装入断面積Sb に占める還元
鉄の装入面積Sriの割合(Sri/Sb )の下限値を検討
した。
(D) The lower limit of the ratio (Sri / Sb) of the charged area Sri of reduced iron to the charged cross-sectional area Sb in the furnace was examined.

【0029】図4は、圧力損失を測定する試験用充填層
の概略図であり、直径2m、高さ2mの充填層である。
FIG. 4 is a schematic view of a packed bed for test for measuring pressure loss, which is a packed bed having a diameter of 2 m and a height of 2 m.

【0030】同図の充填層を使用して、装入断面積4
(Sb )に占める還元鉄の装入面積5(Sri)の割合
(Sri/Sb )を変えて一定圧力の空気6を下端から流
し、上端での圧力を測定し、その差圧から圧力損失(k
g/cm2 )を測定した。
Using the packed bed of FIG.
By changing the ratio (Sri / Sb) of the charged area 5 (Sri) of the reduced iron to (Sb), air 6 at a constant pressure is flowed from the lower end, the pressure at the upper end is measured, and the pressure loss ( k
g / cm 2 ).

【0031】表4に、装入断面積Sb に占める還元鉄の
装入面積Sriの割合(Sri/Sb )の影響を調査した時
の試験条件を示す。
Table 4 shows the test conditions when the influence of the ratio of the charged area Sri of the reduced iron to the charged cross-sectional area Sb (Sri / Sb) was investigated.

【0032】[0032]

【表4】 [Table 4]

【0033】図5は、上記条件下での充填層断面積Sb
に占める還元鉄の装入面積Sriの割合(Sri/Sb )と
ガスの圧力損失との関係を示すグラフである。
FIG. 5 shows the cross-sectional area Sb of the packed bed under the above conditions.
4 is a graph showing the relationship between the ratio of the charged area Sri of reduced iron (Sri / Sb) and the pressure loss of gas.

【0034】同図に示すように、還元鉄の面積の割合
(Sri/Sb )が0.05を超えるとガスの圧力損失
(kg/cm2 )が低下すること、すなわち、通気抵抗
が低下することがわかった。
As shown in the figure, when the area ratio of reduced iron (Sri / Sb) exceeds 0.05, the gas pressure loss (kg / cm 2 ) decreases, that is, the gas flow resistance decreases. I understand.

【0035】本発明は、以上の知見に基づいてなされた
もので、その要旨は、下記のとおりである。
The present invention has been made based on the above findings, and the gist is as follows.

【0036】(1)高炉内の通気抵抗が上昇した際に、
通気抵抗を低下するために酸化鉄含有原料を金属鉄含有
原料に切り替える高炉操業方法において、該金属鉄含有
原料の粒径Dri(mm)と酸化鉄含有原料の粒径Ds (m
m)との比(Dri/Ds )が、下記(1)式を満たし、
前記金属鉄含有原料の高炉内の層厚Lri(mm)と金属鉄
含有原料の粒径Dri(mm)との比(Lri/Dri)が下記
(2)式を満たすように金属鉄含有原料を高炉内に装入
することを特徴とする高炉の操業方法。
(1) When the ventilation resistance in the blast furnace increases,
In a blast furnace operating method in which an iron oxide-containing raw material is switched to a metal iron-containing raw material in order to reduce the ventilation resistance, the particle diameter Dri (mm) of the metal iron-containing raw material and the particle size Ds (m
m) and (Dri / Ds) satisfy the following expression (1),
The metal-iron-containing material is mixed such that the ratio (Lri / Dri) of the layer thickness Lri (mm) of the metal-iron-containing material in the blast furnace to the particle diameter Dri (mm) of the metal-iron-containing material satisfies the following formula (2). A method for operating a blast furnace, wherein the blast furnace is charged into the blast furnace.

【0037】(Dri/Ds )≧1.5 (1) (Lri/Dri)≧5 (2) (2)高炉内の装入断面積Sb (m2 )と金属鉄含有原
料の占める装入面積Sri(m2 )との比(Sri/Sb )
が下記(3)式を満たすように金属鉄含有原料を高炉内
に装入することを特徴とする上記(1)に記載の高炉の
操業方法。
(Dri / Ds) ≧ 1.5 (1) (Lri / Dri) ≧ 5 (2) (2) The charging cross-sectional area Sb (m 2 ) in the blast furnace and the charging area occupied by the material containing metallic iron Ratio to Sri (m 2 ) (Sri / Sb)
The method for operating a blast furnace according to the above (1), wherein the metal-iron-containing raw material is charged into the blast furnace so that the following formula (3) is satisfied.

【0038】(Sri/Sb )≧0.05 (3)(Sri / Sb) ≧ 0.05 (3)

【0039】[0039]

【発明の実施の形態】高炉内の通気抵抗が上昇した際
に、通気抵抗を低下するために高炉装入原料である酸化
鉄含有原料を金属鉄含有原料に切り替える。
BEST MODE FOR CARRYING OUT THE INVENTION When the ventilation resistance in a blast furnace increases, the iron oxide-containing raw material which is a blast furnace charging material is switched to a metal iron-containing raw material in order to reduce the ventilation resistance.

【0040】本発明で使用される酸化鉄含有原料は、例
えば焼結鉱、鉄鉱石または生ペレット等であり、金属鉄
含有原料は、鉄系スクラップまたは還元鉄である。
The iron oxide-containing raw material used in the present invention is, for example, sintered ore, iron ore or raw pellets, and the metallic iron-containing raw material is iron-based scrap or reduced iron.

【0041】なお、還元鉄とは、高炉以外のプロセスで
事前に還元処理された金属鉄含有原料である。
The reduced iron is a metal-iron-containing raw material that has been reduced in advance in a process other than the blast furnace.

【0042】鉄系スクラップまたは還元鉄粒径Dri(m
m)と酸化鉄含有原料の粒径Ds (mm)との比(Dri/
Ds )は、1.5以上であればよいが、2以上が好まし
い。
Iron-based scrap or reduced iron particle diameter Dri (m
m) and the particle diameter Ds (mm) of the iron oxide-containing raw material (Dri /
Ds) may be 1.5 or more, but is preferably 2 or more.

【0043】上記条件下で、高炉内での金属鉄含有原料
の層厚みLri(mm)と金属鉄含有原料の粒径Dri(mm)
との比(Lri/Dri)は、5以上であればよいが、7以
上が好ましい。
Under the above conditions, the layer thickness Lri (mm) of the metallic iron-containing raw material and the particle diameter Dri (mm) of the metallic iron-containing raw material in the blast furnace
The ratio (Lri / Dri) may be 5 or more, but is preferably 7 or more.

【0044】また、高炉内での装入断面積(Sb )と金
属鉄含有原料の装入面積(Sri)との比(Sri/Sb )
は、0.05以上であればよいが、0.08以上が好ま
しい。上記3つの指標の上限値は、製造コストの視点か
ら適宜選択すればよい。
The ratio (Sri / Sb) of the charging cross-sectional area (Sb) in the blast furnace to the charging area (Sri) of the metallic iron-containing raw material
Is 0.05 or more, but is preferably 0.08 or more. The upper limits of the above three indices may be appropriately selected from the viewpoint of manufacturing costs.

【0045】[0045]

【実施例】以下の実施例は、炉容:2700m3 、炉床
径:11mの高炉を用い、表5に示す操業条件で行っ
た。
EXAMPLES The following examples were carried out under the operating conditions shown in Table 5 using a blast furnace having a furnace volume of 2700 m 3 and a hearth diameter of 11 m.

【0046】[0046]

【表5】 [Table 5]

【0047】装入面積の制御は、ベルレス装入装置を用
いた。表6に、試験条件を示す。
A bell-less charging device was used for controlling the charging area. Table 6 shows the test conditions.

【0048】[0048]

【表6】 [Table 6]

【0049】図6は、その試験結果を示し、還元鉄の粒
径Driと還元鉄の層厚Lriとの比(Lri/Dri)および
装入断面積(Sb )と還元鉄の装入面積(Sri)との比
(Sri/Sb )をパラメーターとして、炉内の圧力損失
比と、焼結鉱の粒径Ds と還元鉄の粒径Driとの比(D
ri/Ds )との関係を示したグラフである。なお、圧力
損失比とは、全量焼結鉱(粒径:15mm)を使用したと
きの圧力損失の値で圧力損失の値を割った比を示し、図
中の点線で示した1.0の値は全量焼結鉱を使用したの
と同等の圧力損失の値であることを示し、1.0より小
さいほど圧力損失が小さいことを示す。
FIG. 6 shows the test results. The ratio (Lri / Dri) between the particle diameter Dri of reduced iron and the layer thickness Lri of reduced iron, the charging cross-sectional area (Sb), and the charging area of reduced iron ( With the ratio (Sri / Sb) to the pressure drop ratio in the furnace, the ratio (Dr) between the particle size Ds of the sintered ore and the particle size Dri of the reduced iron,
ri / Ds). The pressure loss ratio is a ratio obtained by dividing the value of the pressure loss by the value of the pressure loss when the total amount of sintered ore (particle diameter: 15 mm) is used, and is 1.0 as shown by the dotted line in the figure. The value indicates that the pressure loss is equivalent to the value obtained when the entire amount of sintered ore is used, and a value smaller than 1.0 indicates a smaller pressure loss.

【0050】同図に示すように、還元鉄の粒径Dri(m
m)と焼結鉱の粒径Ds (mm)との比(Dri/Ds )が
1.5以上であり、かつ還元鉄の層厚みLri(mm)と還
元鉄の粒径Dri(mm)との比(Lri/Ds )が5以上で
あれば、圧力損失を低下できた。
As shown in the figure, the particle diameter Dri (m
m) and the particle diameter Ds (mm) of the sintered ore (Dri / Ds) is 1.5 or more, and the layer thickness Lri (mm) of the reduced iron and the particle diameter Dri (mm) of the reduced iron If the ratio (Lri / Ds) is 5 or more, the pressure loss could be reduced.

【0051】また、還元鉄の装入面積Sri(m2 )と装
入断面積Sb (m2 )との比(Sri/Sb )が0.05
以上であれば圧力損失の低下効果が発揮できた。
Further, the ratio (Sri / Sb) of the charging area Sri (m 2 ) of the reduced iron to the charging cross-sectional area Sb (m 2 ) is 0.05.
If it was above, the effect of reducing the pressure loss could be exhibited.

【0052】[0052]

【発明の効果】本発明方法によれば、高炉内の通気抵抗
を効率的に低下することができる。これにより安定操業
の維持が容易になり、大きな経済効果が得られる。
According to the method of the present invention, the ventilation resistance in the blast furnace can be reduced efficiently. This makes it easy to maintain stable operation, and has a significant economic effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】焼結鉱中での還元鉄の混合率と高温性状との関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between the mixing ratio of reduced iron in sinter and high-temperature properties.

【図2】高炉炉内への各原料の装入方法を層別にに示し
た概念図である。
FIG. 2 is a conceptual diagram showing a method of charging each raw material into a blast furnace furnace for each layer.

【図3】還元鉄の粒径Driと還元鉄の層厚Lriとの比
(Lri/Dri)をパラメーターとして、炉内の圧力損失
と焼結鉱の粒径Ds と還元鉄の粒径Driとの比(Dri/
Ds )との関係を示したグラフである。
FIG. 3 shows the pressure loss in the furnace, the particle diameter Ds of the sintered ore, the particle diameter Dri of the reduced iron, and the ratio of the particle diameter Dri of the reduced iron to the layer thickness Lri of the reduced iron (Lri / Dri). Ratio (Dri /
Ds).

【図4】圧力損失を測定する試験用充填層の概略図であ
る。
FIG. 4 is a schematic view of a test packed bed for measuring pressure loss.

【図5】充填層断面積Sb に占める還元鉄の装入面積S
riの割合(Sri/Sb )とガスの圧力損失との関係を示
すグラフである。
FIG. 5 shows the area S charged with reduced iron in the cross-sectional area Sb of the packed bed.
5 is a graph showing the relationship between the ratio of ri (Sri / Sb) and the pressure loss of gas.

【図6】還元鉄の粒径Driと還元鉄の層厚Lriとの比
(Lri/Dri)および装入断面積(Sb )と還元鉄の装
入面積(Sri)との比(Sri/Sb )をパラメーターと
して、炉内の圧力損失と、焼結鉱の粒径Ds と還元鉄の
粒径Driとの比(Dri/Ds )との関係を示したグラフ
である。
FIG. 6 shows the ratio (Sri / Sb) between the reduced iron particle diameter Dri and the reduced iron layer thickness Lri (Lri / Dri) and the charged cross-sectional area (Sb) and the reduced iron charged area (Sri). ) Is a graph showing the relationship between the pressure loss in the furnace and the ratio (Dri / Ds) between the particle diameter Ds of the sintered ore and the particle diameter Dri of the reduced iron, using as parameters.

【符号の説明】[Explanation of symbols]

1:コークス、 2:還元鉄、 3:焼結鉱、 4:装入断面積、 5:還元鉄の面積、 6:空気。 1: coke, 2: reduced iron, 3: sinter, 4: charging cross section, 5: area of reduced iron, 6: air.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高炉内の通気抵抗が上昇した際に、通気
抵抗を低下するために酸化鉄含有原料を金属鉄含有原料
に切り替える高炉操業方法において、該金属鉄含有原料
の粒径Dri(mm)と酸化鉄含有原料の粒径Ds (mm)と
の比(Dri/Ds )が、下記(1)式を満たし、前記金
属鉄含有原料の高炉内の層厚Lri(mm)と金属鉄含有原
料の粒径Dri(mm)との比(Lri/Dri)が下記(2)
式を満たすように金属鉄含有原料を高炉内に装入するこ
とを特徴とする高炉の操業方法。 (Dri/Ds )≧1.5 (1) (Lri/Dri)≧5 (2)
1. A method for operating a blast furnace in which the iron oxide-containing raw material is switched to a metal iron-containing raw material in order to reduce the airflow resistance when the airflow resistance in the blast furnace is increased, the method comprising the steps of: ) And the particle diameter Ds (mm) of the iron oxide-containing material (Dri / Ds) satisfy the following formula (1), and the layer thickness Lri (mm) of the metal-iron-containing material in the blast furnace and the metal iron-containing material The ratio (Lri / Dri) to the particle diameter Dri (mm) of the raw material is as follows (2)
A method for operating a blast furnace, comprising charging a raw material containing metallic iron into a blast furnace so as to satisfy the formula. (Dri / Ds) ≧ 1.5 (1) (Lri / Dri) ≧ 5 (2)
【請求項2】 高炉内の装入断面積Sb (m2 )と金属
鉄含有原料の占める装入面積Sri(m2 )との比(Sri
/Sb )が下記(3)式を満たすように金属鉄含有原料
を高炉内に装入することを特徴とする請求項1に記載の
高炉の操業方法。 (Sri/Sb )≧0.05 (3)
2. The ratio (Sri) between the charging sectional area Sb (m 2 ) in the blast furnace and the charging area Sri (m 2 ) occupied by the metallic iron-containing raw material.
The method for operating a blast furnace according to claim 1, wherein the metallic iron-containing raw material is charged into the blast furnace so that / Sb) satisfies the following expression (3). (Sri / Sb) ≧ 0.05 (3)
JP11145449A 1999-05-25 1999-05-25 Operation of blast furnace Withdrawn JP2000336409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11145449A JP2000336409A (en) 1999-05-25 1999-05-25 Operation of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11145449A JP2000336409A (en) 1999-05-25 1999-05-25 Operation of blast furnace

Publications (1)

Publication Number Publication Date
JP2000336409A true JP2000336409A (en) 2000-12-05

Family

ID=15385492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11145449A Withdrawn JP2000336409A (en) 1999-05-25 1999-05-25 Operation of blast furnace

Country Status (1)

Country Link
JP (1) JP2000336409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057005A (en) * 2006-08-31 2008-03-13 Jfe Steel Kk Method for operating blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057005A (en) * 2006-08-31 2008-03-13 Jfe Steel Kk Method for operating blast furnace

Similar Documents

Publication Publication Date Title
EP2189547A1 (en) Process for producing reduced iron pellets, and process for producing pig iron
RU2613007C2 (en) Method of blast furnace operation and method of molten cast iron production
EP2851435B1 (en) Method for charging starting material into blast furnace
JP2007051306A (en) Method for charging raw material into blast furnace
JP5515288B2 (en) Raw material charging method to blast furnace
JP2000336409A (en) Operation of blast furnace
JP5768563B2 (en) Blast furnace operation method
JP3247276B2 (en) Blast furnace charging method
JP3729026B2 (en) Raw material charging method to blast furnace
JP6070131B2 (en) Method for producing reduced iron
JP3589016B2 (en) Blast furnace operation method
JP5338308B2 (en) Raw material charging method to blast furnace
JP5338310B2 (en) Raw material charging method to blast furnace
JP3829516B2 (en) Blast furnace operation method
JP3815234B2 (en) Operation method for mass injection of pulverized coal into blast furnace
JP6358231B2 (en) Raw material charging method to blast furnace
JP3838081B2 (en) Raw material charging method to blast furnace
JP2970460B2 (en) Blast furnace operation method
JP3522553B2 (en) Blast furnace raw material charging method
JPH08120311A (en) Method for charging raw material of blast furnace
JP2006028538A (en) Method for operating blast furnace using sintered ore excellent in high temperature reducibility
JP7180045B2 (en) Method for using raw material containing metallic iron containing Zn
JP4501656B2 (en) Method for producing sintered ore
JP4093198B2 (en) Blast furnace operation method
JP6219266B2 (en) Blast furnace metallic raw material charging method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801