JP2007051306A - Method for charging raw material into blast furnace - Google Patents

Method for charging raw material into blast furnace Download PDF

Info

Publication number
JP2007051306A
JP2007051306A JP2005235099A JP2005235099A JP2007051306A JP 2007051306 A JP2007051306 A JP 2007051306A JP 2005235099 A JP2005235099 A JP 2005235099A JP 2005235099 A JP2005235099 A JP 2005235099A JP 2007051306 A JP2007051306 A JP 2007051306A
Authority
JP
Japan
Prior art keywords
coke
ore
blast furnace
furnace
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005235099A
Other languages
Japanese (ja)
Other versions
JP5034189B2 (en
Inventor
Shiro Watakabe
史朗 渡壁
Akinori Murao
明紀 村尾
Ikumatsu Misono
育松 御園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005235099A priority Critical patent/JP5034189B2/en
Publication of JP2007051306A publication Critical patent/JP2007051306A/en
Application granted granted Critical
Publication of JP5034189B2 publication Critical patent/JP5034189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for charging a raw material into a blast furnace in an operation of controlling a coke ratio to a low value, which can keep a stable operation by securing the adequate reducibility of the whole ore layer, in particular, a fusion zone, while maintaining a high ratio of O/C. <P>SOLUTION: The method for charging the raw material into the blast furnace is a method of mixing at least one part of coke into an ore layer when alternately charging the coke and ore into the blast furnace so that they can form layers; and comprises predicting a distribution of the O/C which is a mass ratio of the ore to the coke charged into the blast furnace, in a radial direction of the furnace, and determining a mixing ratio of the coke into the ore at each radial position on the basis of the predicted ratio O/C. It is preferable to determine the mixing ratio M (mass%) of the coke to the ore at each radial position in the furnace, by using the predicted O/C and the following expression (a): M=X×(O/C-3.2)+M<SB>0</SB>, to mix the coke with the ore at the determined mixing ratio M (mass%) or higher, and to charge the mixture into the blast furnace. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ベルレス式高炉において、鉱石とコークスとの少なくとも一部を混合して高炉炉頂部から装入する際の、高炉への原料装入方法に関する。   The present invention relates to a raw material charging method in a bell-less blast furnace when mixing at least a part of ore and coke and charging them from the top of the blast furnace.

現在、地球環境問題や鉄鉱石、原料炭の需給問題を背景に、我が国の高炉操業は大きな変化が求められている。2005年に発効する京都議定書などによるCO2削減の必要からの低還元材比操業や、また高生産量指向に伴う高出銑比操業が主流となっていくと考えられる。低還元材比操業においては、微粉炭吹き込みを維持しながらコークス比を可能な限り低減していく低コークス比操業が求められる。 Currently, the blast furnace operation in Japan is required to undergo major changes against the background of global environmental problems and iron ore and coking coal supply and demand problems. Low-reducing material ratio operation due to the need for CO 2 reduction by the Kyoto Protocol, etc. that will come into force in 2005, and high-outcome ratio operation due to high production volume orientation will become mainstream. In the operation with a low reducible material ratio, a low coke ratio operation is required in which the coke ratio is reduced as much as possible while maintaining the pulverized coal blowing.

しかしながら、低コークス比操業を行なう場合には、コークス単位質量当たりのカーボンソルーションロス反応量(ソルロス量)の増加、コークス滞留時間の増加によるコークスの劣化、融着帯低下による炉下部圧損の上昇などが引き起こされることが知られている。コークス粉の蓄積が増加すると、炉芯の粉率が増加して特に中間、中心付近の粉率増が顕著になり、ガス流の不安定化を招いて、風圧変動、荷下がり不調を引き起こす。また、ガス原単位減によってガス浸透力が減少するために周辺流傾向になってヒートロスが増加し、シャフト効率が悪化する傾向になりやすい。さらに、熱流比上昇によって炉上部では装入原料の昇温が遅れ、還元停滞、還元粉化を助長しやすい。   However, when operating at a low coke ratio, the amount of carbon solution loss per unit mass of coke (sol loss) increases, the coke deteriorates due to an increase in coke residence time, and the pressure loss at the bottom of the furnace increases due to a decrease in the cohesive zone. Is known to be caused. When the accumulation of coke powder increases, the powder ratio of the furnace core increases, and the powder ratio increases particularly in the middle and near the center, leading to destabilization of the gas flow, causing fluctuations in wind pressure and unloading. Moreover, since the gas permeation force decreases due to a reduction in the gas unit consumption, it tends to have a peripheral flow tendency, heat loss increases, and shaft efficiency tends to deteriorate. Furthermore, the temperature rise of the charged raw material is delayed in the upper part of the furnace due to the increase in heat flow ratio, and it is easy to promote reduction stagnation and reduced powdering.

これらの現象に装入物性状の面から対処するためには、コークス強度や反応性の上昇によってコークスの劣化、粉化を抑制するとともに、還元性の優れた原料を使用することが有効である。焼結鉱、ペレツト、塊鉱石、通常冶金用コ−クス及びJIS反応性が30%以上で平均粒径が25mm以下の高反応性コ−クスを装入する高炉操業法において、焼結鉱の被還元性に応じて高反応性コ−クスの使用比率、粒径、JIS反応性の1つ以上を調整することにより、熱保存帯温度を最適値に制御し、還元反応を促進させて、高い反応効率下、低還元材比で、安定操業できる技術が知られている(例えば、特許文献1参照。)。   In order to deal with these phenomena from the viewpoint of charging properties, it is effective to suppress coke deterioration and pulverization by increasing coke strength and reactivity, and to use raw materials with excellent reducibility. . In the blast furnace operation method in which sintered ore, pellets, lump ore, ordinary metallurgical coke and high reactivity coke having a JIS reactivity of 30% or more and an average particle size of 25 mm or less are charged, By adjusting one or more of the use ratio, particle size, and JIS reactivity of the highly reactive coke according to the reducibility, the thermal storage zone temperature is controlled to the optimum value, and the reduction reaction is promoted. There is known a technique capable of stable operation under a high reaction efficiency and a low reducing material ratio (see, for example, Patent Document 1).

一方、低コークス比操業では鉱石とコークスとの質量比が大きくなり、高炉への1回当たりのコークス装入量(以下、「コークスベース」と記載する。)が相対的に減少してコークス層厚が減少する。また、高炉シャフト部は下に行くほど口径が大きくなっており、炉内を降下するに従ってさらにコークス層厚は減少する。下記に述べる融着帯と呼ばれる領域でコークス層厚が一定値を下回ると、ガス流れが阻害されて操業に悪影響を及ぼす。   On the other hand, in the low coke ratio operation, the mass ratio of ore and coke increases, and the amount of coke charged to the blast furnace (hereinafter referred to as “coke base”) decreases relatively, resulting in a coke layer. The thickness decreases. Moreover, the diameter of the blast furnace shaft portion increases as it goes down, and the thickness of the coke layer further decreases as it descends in the furnace. When the coke layer thickness is below a certain value in a region called a cohesive zone described below, the gas flow is hindered and the operation is adversely affected.

そのため、コークスベースを大きくすればコークス層厚が一定値以下に減少することを回避可能であるが、その場合には高炉への1回当たりの鉱石装入量(以下、「オアベース」と記載する。)も大きくなるため、特に融着層での昇温、還元が遅れる懸念がある。これは、次のような理由による。すなわち、高炉に層状に装入された鉱石は、炉内を降下するに従って還元を受けながら温度が上昇する。また上方からの荷重も降下にともなって増大する。そのため、鉱石間の空隙を埋めながら徐々に変形していき、高炉のシャフト部の下方では非常に通気抵抗が大きい融着層となる。融着層内は通気抵抗が大きいためガスはほとんど流れず、この融着層を挟むコークス層を主にガスが流れるようになる。融着層への伝熱はこのコークス層を流れるガスからの伝導伝熱が支配的であると考えられ、鉱石層(融着層)の厚みが大きくなるほど鉱石層中心の伝熱、還元が阻害される。以上の理由によって、コークスベースの増大によるコークス層厚の維持は必ずしも解決策とならない場合も多い。   Therefore, if the coke base is increased, it is possible to avoid the coke layer thickness from decreasing below a certain value. In this case, the amount of ore charged into the blast furnace (hereinafter referred to as “or base”) is described. )) Also increases, and there is a concern that the temperature rise and reduction in the fused layer may be delayed. This is due to the following reason. That is, the ore charged in layers in the blast furnace rises in temperature while undergoing reduction as it descends in the furnace. Also, the load from above increases with the descent. Therefore, it is gradually deformed while filling the gaps between the ores, and becomes a fusion layer having a very high ventilation resistance below the shaft portion of the blast furnace. Since the gas flow resistance is large in the fusion layer, the gas hardly flows, and the gas mainly flows through the coke layer sandwiching the fusion layer. It is considered that the heat transfer to the fusion layer is dominated by the conduction heat from the gas flowing in this coke layer, and as the thickness of the ore layer (fusion layer) increases, the heat transfer and reduction at the center of the ore layer are inhibited. Is done. For the above reasons, maintaining the coke layer thickness by increasing the coke base is not always a solution.

低コークス比操業における上記の課題を解決するため、鉱石とコークスとの質量比(以下、「O/C」と記載する。)が4.5以上の操業において、炉内無次元半径が0.5〜1.0の範囲の鉱石層に5〜40mmの小中塊コークスを混合し、かつその混合比率を1〜10mass%とする技術が知られている(例えば、特許文献2参照。)。これは高O/C操業において炉中心にシャープなガス流れを形成し、かつ中間から周辺にかけての局所的な融着帯の垂れ下がりを抑制することを狙った技術である。   In order to solve the above-mentioned problems in low coke ratio operation, in an operation where the mass ratio of ore to coke (hereinafter referred to as “O / C”) is 4.5 or more, the in-furnace dimensionless radius is 0. A technique is known in which 5-40 mm small coke coke is mixed with an ore layer in the range of 5-1.0 and the mixing ratio is 1-10 mass% (see, for example, Patent Document 2). This is a technique aimed at forming a sharp gas flow at the center of the furnace in high O / C operation and suppressing local drooping of the cohesive zone from the middle to the periphery.

また、先に装入されたコ−クス層の上へ塊鉄鉱石を混入した焼結鉱を下部層として装入し、その上部に焼結鉱のみを上部層として装入するか、先に装入されたコ−クス層の上へ焼結鉱のみを下部層として装入し、その上部に還元鉄を混入した焼結鉱を上部層として装入し、高炉内鉱石層において焼結鉱が2層の異なる層を形成するように堆積せしめる技術が知られている(例えば、特許文献3参照。)。これは、被還元性の劣る鉱石原料を下層に装入することにより、鉱石層全体の良好な被還元性を確保して高いO/Cを維持させ、還元材比の低減、生産性の向上を安定的に行おうとする技術である。
特開平6−145730号公報 特開2002−003910号公報 特開2002−327205号公報
In addition, the sintered ore mixed with massive iron ore is charged as the lower layer on the previously charged coke layer, and only the sintered ore is charged as the upper layer on the upper part, On top of the charged coke layer, only the sintered ore is charged as the lower layer, and the sintered ore mixed with reduced iron is charged as the upper layer, and the sintered ore in the blast furnace ore layer is charged. Has been known to deposit so as to form two different layers (see, for example, Patent Document 3). This is because ore raw material with poor reducibility is charged into the lower layer, ensuring good reducibility of the entire ore layer and maintaining high O / C, reducing the reducing material ratio, and improving productivity. It is a technology that tries to perform stably.
JP-A-6-145730 JP 2002-003910 A JP 2002-327205 A

しかし、上記の特許文献2、特許文献3に記載の技術はいずれも低コークス比操業時の融着帯をマクロに制御するものである。しかし、実際の低コークス比操業においては、局所的にコークス層厚が薄くなることに起因して、融着帯でのガス流れを阻害し、通気抵抗の上昇や荷下がりの悪化を招いている場合がほとんどであり、従来技術だけでは融着帯でのガス流れが阻害される問題に対処し得るものではない。   However, the techniques described in Patent Document 2 and Patent Document 3 described above both control the cohesive zone at the time of low coke ratio operation in a macro manner. However, in the actual low coke ratio operation, the coke layer thickness is locally reduced, which inhibits the gas flow in the cohesive zone, leading to an increase in ventilation resistance and deterioration of unloading. In most cases, the prior art alone cannot address the problem of obstructing gas flow in the cohesive zone.

したがって本発明の目的は、このような従来技術の課題を解決し、高炉において低コークス比操業を行なう際に、高いO/Cを維持しつつ、鉱石層全体の、特に融着帯の良好な被還元性を確保して、これにより安定した操業を継続することができる、高炉への原料装入方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art and maintain a high O / C in the operation of a low coke ratio in a blast furnace, while maintaining a good cohesion zone in the entire ore layer. An object of the present invention is to provide a raw material charging method to a blast furnace that can ensure reducibility and thereby continue stable operation.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)コークスと鉱石とを交互に層状に高炉内に装入する際にコークスの少なくとも一部を鉱石層に混合して装入する方法であって、高炉に装入される鉱石とコークスとの質量比であるO/Cの炉半径方向での分布を予測し、該予測されたO/Cに基づいて、各半径位置でのコークスの鉱石への混合率を決定することを特徴とする高炉への原料装入方法。
(2)予測されたO/Cを用いて下記(a)式により炉内各半径方向位置でのコークスの鉱石への混合率M(mass%)を決定し、該混合率M(mass%)を下限値としてコークスを鉱石に混合して高炉に装入することを特徴とする(1)に記載の高炉への原料装入方法。
M=X×(O/C−3.2)+M0・・・(a)
但し、X、M0は操業条件で変動する定数であり、X=0.2〜3.0である。
(3)複数の炉頂バンカーと回転シュートとを有する原料装入装置を備えたベルレス式高炉において、コークスと鉱石とを異なる炉頂バンカーに装入し、各炉頂バンカーの排出ゲートの開度を調整することで所定の混合率となるようにコークスを鉱石に混合して高炉に装入することを特徴とする(1)または(2)に記載の高炉への原料装入方法。
The features of the present invention for solving such problems are as follows.
(1) When charging coke and ore into layers in a blast furnace alternately, a method of charging at least a part of coke into the ore layer and charging the ore and coke charged into the blast furnace. The distribution in the furnace radial direction of O / C, which is the mass ratio, is predicted, and the mixing ratio of coke to ore at each radial position is determined based on the predicted O / C. Raw material charging method to blast furnace.
(2) Using the predicted O / C, the mixing ratio M (mass%) of coke to ore at each radial position in the furnace is determined by the following equation (a), and the mixing ratio M (mass%) The raw material charging method to the blast furnace as described in (1), wherein the coke is mixed with ore and the blast furnace is charged with the lower limit as the lower limit.
M = X × (O / C-3.2) + M 0 (a)
However, X and M 0 are constants that vary depending on the operating conditions, and X = 0.2 to 3.0.
(3) In a bell-less blast furnace equipped with a raw material charging device having a plurality of furnace top bunker and rotating chute, coke and ore are charged into different furnace top bunkers, and the opening degree of the discharge gate of each furnace top bunker The raw material charging method to the blast furnace according to (1) or (2), wherein the coke is mixed with the ore so as to obtain a predetermined mixing ratio by adjusting the blast furnace and charged into the blast furnace.

本発明によれば、低コークス比操業においても良好な高炉通気性を維持することが可能となり、操業も安定する。このためCO2の発生量を削減することが可能であり、地球環境に貢献できる。 According to the present invention, it becomes possible to maintain good blast furnace air permeability even at low coke ratio operation, and the operation is also stabilized. For this reason, it is possible to reduce the amount of CO 2 generated and contribute to the global environment.

高炉に装入する原料鉱石中にコークスを混合すること(以下、「コークス混合装入」と記載する。)によって、この混合したコークスがスペーサーの役割を担って鉱石層の軟化変形を抑制し、また空隙を確保して融着層の通気性を改善する効果があることが知られている。本発明者らは、このコークス混合装入を用いて低コークス比操業時のコークス層厚の低下による通気性悪化を補償可能であるかどうかを詳細に検討した。   By mixing coke in the raw ore charged into the blast furnace (hereinafter referred to as “coke mixing charge”), the mixed coke plays the role of a spacer and suppresses softening deformation of the ore layer, Further, it is known that there is an effect of improving the air permeability of the fusion layer by securing the voids. The present inventors have examined in detail whether or not it is possible to compensate for the deterioration in air permeability due to the reduction in the thickness of the coke layer at the time of operation at a low coke ratio by using this coke mixed charging.

図1に示す装置を用いて、高炉内での原料の還元、昇温過程を模擬してその通気抵抗の変化を調べた。図1において、黒鉛製るつぼ1に装入された原料2は、高炉下部の融着層と同程度の状態となるように荷重負荷装置3によりパンチ棒4を介して上部から荷重を負荷しながらヒーター5により加熱する。6は炉芯管、7は加熱温度制御用の熱電対である。るつぼ1の下部からはガス混合装置8により調整したガスを送り、るつぼ1内の原料2を通過したガスは分析装置9で分析する。るつぼ1の下部には滴下物サンプリング装置10が設置されている。原料の鉱石として50〜100質量%の焼結鉱と0〜50質量%の塊鉄鉱石を混合したものを用いた。図2は実験結果の1例であり、鉱石に対するコークスの混合量を変化させた場合の、通気抵抗と加熱温度との関係を示すグラフである。コークスを混合しない場合には1450℃以上の高温域で通気抵抗が急激に上昇するのに対し、コークスを混合した場合には通気抵抗が顕著に低下し、またその混合量を増やした場合にはその効果が大きくなることが分かる。これは、コークスを混合することによって鉱石の変形が抑制され、また混合コークス近傍の空隙が維持されるため、鉱石の変形によって粒子間の空隙が減少するために通気抵抗値が上昇する現象が防止されたためである。   Using the apparatus shown in FIG. 1, the change in the ventilation resistance was investigated by simulating the reduction of the raw material in the blast furnace and the temperature raising process. In FIG. 1, the raw material 2 charged in the graphite crucible 1 is loaded with a load from the upper part via a punch bar 4 by a load loading device 3 so as to be in the same level as the fusion layer at the lower part of the blast furnace. Heat with heater 5. 6 is a furnace core tube, and 7 is a thermocouple for controlling the heating temperature. The gas adjusted by the gas mixing device 8 is sent from the lower part of the crucible 1, and the gas that has passed through the raw material 2 in the crucible 1 is analyzed by the analyzer 9. A drop sampling apparatus 10 is installed at the lower part of the crucible 1. As the raw ore, a mixture of 50 to 100% by mass of sintered ore and 0 to 50% by mass of lump iron ore was used. FIG. 2 is an example of the experimental results, and is a graph showing the relationship between the ventilation resistance and the heating temperature when the amount of coke mixed with the ore is changed. When coke is not mixed, the ventilation resistance increases rapidly at a high temperature range of 1450 ° C. or higher, whereas when coke is mixed, the ventilation resistance decreases remarkably, and when the mixing amount is increased. It turns out that the effect becomes large. This is because the mixing of coke suppresses the deformation of the ore and maintains the voids in the vicinity of the mixed coke, preventing the phenomenon of increased airflow resistance due to the decrease of voids between particles due to the deformation of the ore. It was because it was done.

この実験結果を用いて、鉱石とコークスとの比率を一定に維持した上で、コークスの一部を鉱石原料に混合させた場合の融着層の通気抵抗の変化を計算式によって推定した。コークス層の通気抵抗をエルガン(Ergun)の式で与え、また融着層の通気抵抗は杉山らの式を用いて、融着層でのガス流の分配による通気抵抗の変化を予測した。鉱石の収縮率として、上記の図1の装置を用いて測定した実験結果を用いた。   Using this experimental result, the ratio of the ore and coke was kept constant, and the change in the airflow resistance of the fused layer when a part of the coke was mixed with the ore raw material was estimated by the calculation formula. The airflow resistance of the coke layer was given by Ergun's equation, and the airflow resistance of the fusion layer was predicted by Sugiyama et al. The experimental result measured using the apparatus of FIG. 1 was used as the contraction rate of the ore.

一般にコークスを混合せずにコークス比を低下させた場合、コークス層厚の低下によって通気抵抗が増大する。一方、コークス比を一定値として、そのうちの所定量を鉱石層に混合した場合の融着帯通気抵抗の計算結果を図3に示す。コークスの鉱石層への混合によりコークス比一定でコークス層厚を低下させた場合は、図3に示すように、コークスを混合することによって軟化層の通気抵抗が低下し、融着帯を通過するガスの一部が鉱石軟化層を通過するため、全体の通気抵抗が減少する。この融着帯全体の通気抵抗は混合量とともに低下する。   In general, when the coke ratio is lowered without mixing coke, the airflow resistance increases due to the reduction of the coke layer thickness. On the other hand, FIG. 3 shows the calculation result of the cohesive zone ventilation resistance when the coke ratio is a constant value and a predetermined amount thereof is mixed with the ore layer. When the coke layer thickness is reduced at a constant coke ratio by mixing the coke with the ore layer, the air flow resistance of the softened layer is decreased by mixing the coke and passes through the cohesive zone as shown in FIG. Since part of the gas passes through the ore softening layer, the overall ventilation resistance is reduced. The ventilation resistance of the entire cohesive zone decreases with the mixing amount.

本発明者らは本検討をさらに進め、鉱石とコークスとの質量比率(O/C)が1上昇した場合、原料の質量に対して0.2〜3.0%のコークスを混合すれば融着帯の通気抵抗の上昇を防ぐことが可能であることを見出した。これは、O/Cの上昇にともなう圧力損失値を実験から求めた結果と、上述のコークスの鉱石への混合率を変化させたときの荷重軟化実験で得られた融着層の空隙率の変化に基づいて計算した、融着帯の圧力損失値との比較から得られたものである。このコークスの鉱石への混合率が範囲を有するのは、使用する原料やコークスの性状(強度、粒径など)、あるいは操業条件による変動によるものである。   The present inventors further proceeded with this study, and when the mass ratio (O / C) of ore and coke increases by 1, if 0.2 to 3.0% of coke is mixed with the mass of the raw material, It has been found that it is possible to prevent an increase in the ventilation resistance of the dressing. This is the result of the pressure loss value accompanying the increase in O / C from the experiment and the porosity of the fusion layer obtained in the load softening experiment when the mixing ratio of the coke to the ore is changed. It was obtained from a comparison with the pressure loss value of the cohesive zone calculated based on the change. The reason why the mixing ratio of coke to ore has a range is due to fluctuations depending on raw materials used, properties of coke (strength, particle size, etc.) or operating conditions.

したがって、高炉に装入された鉱石とコークスとの質量比率(O/C)の炉内での半径方向での分布を予測して、高炉内の各位置のO/Cに基づいて鉱石に対するコークスの混合量を制御した原料の装入を行なえば、融着帯の通気性を確保して、高炉内の局所的な範囲での通気抵抗の低下を防止して、低コークス比操業においても良好な高炉通気性を維持することが可能となる。   Accordingly, the distribution of the mass ratio (O / C) of ore and coke charged in the blast furnace in the radial direction in the furnace is predicted, and the coke for the ore is calculated based on the O / C at each position in the blast furnace. If the raw material is charged with a controlled mixing amount, the air permeability of the cohesive zone is ensured, and the reduction of the air resistance in the local area in the blast furnace is prevented, and it is good even in low coke ratio operation. It is possible to maintain a high blast furnace air permeability.

すなわち、高炉へ装入後のO/Cの半径方向分布を予測し、この結果に基づいて各半径位置でのコークスの鉱石への混合率を決定する。O/Cの大きい位置でのコークスの混合率を高めることで、通気抵抗の低下を防止する。コークスの鉱石への混合率をM(mass%)として、下記(a)式で与えられるM(mass%)以上のコークスを当該半径位置の鉱石に混合することにより、融着帯の通気性を確保することが好ましい。(a)式においてX、M0は、操業条件で変動する定数である。M0は通常0(ゼロ)に設定するが、ベースとなる高炉寸法や操業条件に依存して経験的に決定することも可能であり、その場合は3〜5mass%程度迄の値を設定する。Xは上記のように0.2〜3.0mass%とすることが適当である。なお、M(mass%)以上のコークスを鉱石に混合すれば通気性確保の効果があるが、コークスの混合量が多いほど通気性は改善されるため、部分的にコークスの全量を鉱石へ混合することも可能である。
M=X×(O/C−3.2)+M0・・・(a)
装入後のO/Cの半径方向分布を予測するためには、例えば文献(澤田ら、鉄と鋼、No.78、1992年、1337ページ)に記載の数学モデルを用いて計算により求める方法や、冷間模型を用いた実験により求める方法などがある。
That is, the radial distribution of O / C after charging into the blast furnace is predicted, and the mixing ratio of coke to ore at each radial position is determined based on this result. By increasing the mixing ratio of coke at a position where O / C is large, a decrease in ventilation resistance is prevented. The mixing ratio of coke to ore is defined as M (mass%), and coke of M (mass%) or more given by the following formula (a) is mixed with the ore at the radial position to increase the permeability of the cohesive zone. It is preferable to ensure. In the formula (a), X and M 0 are constants that vary depending on the operating conditions. Although M 0 is normally set to 0 (zero), it can be determined empirically depending on the base blast furnace dimensions and operating conditions. In that case, a value of about 3 to 5 mass% is set. . X is suitably 0.2 to 3.0 mass% as described above. Mixing coke with M (mass%) or more into ore is effective in ensuring air permeability. However, the greater the amount of coke mixed, the better the air permeability, so the entire amount of coke is partially mixed into the ore. It is also possible to do.
M = X × (O / C-3.2) + M 0 (a)
In order to predict the radial distribution of O / C after charging, for example, a calculation method using a mathematical model described in the literature (Sawada et al., Iron and Steel, No. 78, 1992, page 1337) There are also methods such as obtaining by an experiment using a cold model.

このようにして予め定めたある半径方向位置のコークス混合量を制御するためには、複数の炉頂バンカーを有するベルレス式の原料装入装置において、異なる炉頂バンカーに鉱石とコークスとを別々に貯留しておき、鉱石を高炉に装入する際に、適宜コークスを同時にバンカーから排出する方法などを用いることができる。複数の炉頂バンカーを有する原料装入装置を用いる際には、それぞれの炉頂バンカーの排出ゲートの開度を調節することにより、排出原料中のコークス混合率の経時変化を制御することが可能である。図4に複数の炉頂バンカーを有する原料装入装置を設置したベルレス高炉の炉頂部の断面概略図を示す。図4を用いて、半径方向位置のコークス混合量を制御する方法の一実施形態を説明する。図4は3つの炉頂バンカーを有する場合であり、バンカー11に鉱石を、バンカー12にコークスを貯留し、排出ゲート13の開度を調整して鉱石とコークスとを混合し、回転シュート14により高炉内に装入して、鉱石とコークスの混合層15を高炉内に形成する。原料の装入位置に対応する回転シュートの傾動角度に応じて排出ゲート13の開度を調整することで、半径方向位置のコークス混合量を制御する。図4は、バンカー12から排出したコークスのみでコークス層16を形成した上に、鉱石とコークスの混合層15を2層形成した場合である。使用していないバンカーに、次の装入原料を準備することで、効率的に原料の装入を行なうことができる。   In order to control the coke mixing amount at a predetermined radial position in this way, in a bellless type raw material charging apparatus having a plurality of furnace top bunkers, ore and coke are separately supplied to different furnace top bunkers. When storing ore and charging the ore into the blast furnace, a method of discharging coke from the bunker at the same time can be used. When using a raw material charging device with multiple furnace top bunkers, it is possible to control changes over time in the coke mixing ratio in the discharged raw materials by adjusting the opening of the discharge gate of each furnace top bunker It is. FIG. 4 shows a schematic cross-sectional view of the top of a bell-less blast furnace provided with a raw material charging apparatus having a plurality of top bunker. An embodiment of a method for controlling the coke mixing amount in the radial position will be described with reference to FIG. FIG. 4 shows a case where three furnace top bunker are provided. Ore is stored in the bunker 11, coke is stored in the bunker 12, the opening of the discharge gate 13 is adjusted, and the ore and coke are mixed. Charged into the blast furnace, a mixed layer 15 of ore and coke is formed in the blast furnace. The amount of coke mixed in the radial direction is controlled by adjusting the opening of the discharge gate 13 according to the tilt angle of the rotary chute corresponding to the raw material charging position. FIG. 4 shows a case where the coke layer 16 is formed only from the coke discharged from the bunker 12 and two ore and coke mixed layers 15 are formed. By preparing the next charging raw material in a bunker that is not in use, the raw material can be charged efficiently.

例えば、ベルレスシュートの傾動角度のパターンを、コークス層:54、54、53.5、53.5、53、53、52.5、52.5、52、52、51、51、50.5、50.5、50、49.5、49、48、45.5、42.5、38.5、26、15(°)、鉱石層(1):50、49、48、48、46.5、46.5、45.5、44.5、43.5、42.5、41.5(°)、鉱石層(2):51、50.5、50、50、49、49、48(°)として、図4に示すようにコークス層16、鉱石層(1)15a、鉱石層(2)15bとして装入する場合について、上述したモデル計算を用いて炉内半径方向のO/C分布を予測した結果を図5に示す。図5に示す結果を基に、図6に示すように半径方向のコークスの混合率分布を設定して、炉頂バンカーの切り出し制御を行うことで、予測したO/C分布に基づいてコークスを混合した鉱石を高炉内に装入する本発明を実施することができる。   For example, if the pattern of the tilt angle of the bellless chute is set to coke layer: 54, 54, 53.5, 53.5, 53, 53, 52.5, 52.5, 52, 52, 51, 51, 50.5, 50.5, 50, 49.5, 49, 48, 45.5, 42.5, 38.5, 26, 15 (°), ore layer (1): 50, 49, 48, 48, 46.5, 46.5, 45.5, 44.5, 43.5, 42.5, 41.5 (°), ore layer (2): 51, 50.5, 50, 50, 49, 49, 48 (°), the case where the coke layer 16, the ore layer (1) 15a, and the ore layer (2) 15b are charged as shown in FIG. FIG. 5 shows the result of predicting the O / C distribution in the radial direction of the furnace using model calculation. Based on the results shown in FIG. 5, the coke mixing ratio distribution in the radial direction is set as shown in FIG. 6, and the cut-out control of the furnace top bunker is performed, so that the coke is calculated based on the predicted O / C distribution. The present invention can be implemented by charging the mixed ore into the blast furnace.

上記の例では、回転シュートの傾動方向を高炉炉壁側から中心方向へとしたが、中心から炉壁方向とすることによって、より原料の装入位置の制御性を高めることができるので、炉内のコークス混合率分布の制御性を向上させるために、回転シュートの傾動方向を中心から炉壁方向とすることも好ましい。   In the above example, the tilting direction of the rotary chute is changed from the blast furnace wall side to the center direction, but by controlling the rotation chute from the center to the furnace wall direction, the controllability of the raw material charging position can be further improved. In order to improve the controllability of the inner coke mixing ratio distribution, it is also preferable to set the rotation direction of the rotating chute from the center to the furnace wall direction.

本発明の効果を明らかにするため、図4に示す原料装入装置を有するベルレス高炉においてNo.1〜7の操業試験を実施した。高炉は内容積が5153m3、炉口直径11.4m、炉床直径15.0mで、40本の羽口を備えている。ベースとなる操業条件は、コークス比400kg/t−pig、出銑量11850〜12300t/dである(No.1)。まず、ベース条件からコークス比を低減した。その際に、オアベースを一定とし、コークスベースを低下させた(No.2、No.3)。これに対して、オアベースを一定としてコークスベースを低下させたが、同時に装入するコークスの一部を鉱石の装入時に別個の炉頂バンカーから切出して混合した装入を行なった。この際にあらかじめ炉内に装入される原料のO/C分布を計算して予測し、予測したO/C分布に基づいて上記(a)式でコークスの混合量を計算し、計算された混合量となるように炉頂バンカーの切り出し制御を行って、コークスを混合した鉱石を高炉内に装入した(No.4〜No.7)。操業試験の結果を表1に示す。 In order to clarify the effect of the present invention, in the bell-less blast furnace having the raw material charging apparatus shown in FIG. The operation test of 1-7 was implemented. The blast furnace has an inner volume of 5153 m 3 , a furnace port diameter of 11.4 m, a hearth diameter of 15.0 m, and has 40 tuyere. The base operating conditions are a coke ratio of 400 kg / t-pig and a tapping amount of 11850-12300 t / d (No. 1). First, the coke ratio was reduced from the base conditions. At that time, the or base was kept constant and the coke base was lowered (No. 2, No. 3). On the other hand, the coke base was lowered while keeping the ore base constant, but at the same time, a part of the coke to be charged was cut out from a separate furnace top bunker at the time of ore charging and mixed. At this time, the O / C distribution of the raw material charged in the furnace was calculated and predicted in advance, and the coke mixing amount was calculated by the above equation (a) based on the predicted O / C distribution. The cut-out control of the furnace top bunker was performed so as to obtain a mixed amount, and the ore mixed with coke was charged into the blast furnace (No. 4 to No. 7). Table 1 shows the results of the operation test.

Figure 2007051306
Figure 2007051306

比較例であるNo.2、No.3ではコークス比の低下に従って通気抵抗が増大し、荷下がりが不安定になるなどの悪影響が出て、低コークス比操業を継続できなかったのに対し、本発明例であるNo.4〜No.7の操業実験では安定な低コークス比操業が可能であり、コークス比を240kg/tまで低下させることができた。   No. which is a comparative example. 2, no. In No. 3, the airflow resistance increased as the coke ratio decreased, and adverse effects such as unstable load drop occurred, and the low coke ratio operation could not be continued. 4-No. In the operation experiment of No. 7, stable low coke ratio operation was possible, and the coke ratio could be reduced to 240 kg / t.

鉱石の高温性状を測定する装置の構成を示す概略図である。It is the schematic which shows the structure of the apparatus which measures the high temperature property of an ore. 鉱石層、コークス混合層の高温での通気抵抗の変化を示すグラフである。It is a graph which shows the change of the ventilation resistance in the high temperature of an ore layer and a coke mixed layer. コークス混合による鉱石融着帯の通気性の変化を示すグラフである。It is a graph which shows the change of the air permeability of an ore fusion zone by coke mixing. 複数の炉頂バンカーを有する原料装入装置を設置したベルレス高炉の炉頂部の断面概略図。The cross-sectional schematic of the furnace top part of the bell-less blast furnace which installed the raw material charging device which has a some furnace top bunker. 高炉への装入物O/C半径方向分布を示すグラフである。It is a graph which shows the charge O / C radial direction distribution to a blast furnace. 図5のO/C分布に対して目標とされるコークス混合率半径方向分布を示すグラフである。It is a graph which shows the coke mixing ratio radial direction distribution targeted with respect to O / C distribution of FIG.

符号の説明Explanation of symbols

1 るつぼ
2 原料
3 荷重負荷装置
4 パンチ棒
5 ヒーター
6 炉芯管
7 熱電対
8 ガス混合装置
9 分析装置
10 滴下物サンプリング装置
11 バンカー
12 バンカー
13 排出ゲート
14 回転シュート
15 鉱石とコークスの混合層
15a 鉱石層(1)
15b 鉱石層(2)
16 コークス層
DESCRIPTION OF SYMBOLS 1 Crucible 2 Raw material 3 Load loading apparatus 4 Punch rod 5 Heater 6 Furnace core tube 7 Thermocouple 8 Gas mixing apparatus 9 Analyzer 10 Droplet sampling apparatus 11 Bunker 12 Bunker 13 Discharge gate 14 Rotating chute 15 Mixed layer of ore and coke 15a Ore layer (1)
15b Ore layer (2)
16 Coke layer

Claims (3)

コークスと鉱石とを交互に層状に高炉内に装入する際にコークスの少なくとも一部を鉱石層に混合して装入する方法であって、高炉に装入される鉱石とコークスとの質量比であるO/Cの炉半径方向での分布を予測し、該予測されたO/Cに基づいて、各半径位置でのコークスの鉱石への混合率を決定することを特徴とする高炉への原料装入方法。   When charging coke and ore into layers in a blast furnace alternately, a method in which at least a part of coke is mixed and charged in the ore layer, the mass ratio of ore and coke charged in the blast furnace. The distribution of O / C in the furnace radial direction is predicted, and the mixing ratio of coke to ore at each radial position is determined based on the predicted O / C. Raw material charging method. 予測されたO/Cを用いて下記(a)式により炉内各半径方向位置でのコークスの鉱石への混合率M(mass%)を決定し、該混合率M(mass%)を下限値としてコークスを鉱石に混合して高炉に装入することを特徴とする請求項1に記載の高炉への原料装入方法。
M=X×(O/C−3.2)+M0・・・(a)
但し、X、M0は操業条件で変動する定数であり、X=0.2〜3.0である。
Using the predicted O / C, the mixing ratio M (mass%) of coke to ore at each radial position in the furnace is determined by the following equation (a), and the mixing ratio M (mass%) is a lower limit value. The method for charging raw material into a blast furnace according to claim 1, wherein coke is mixed with ore and charged into the blast furnace.
M = X × (O / C-3.2) + M 0 (a)
However, X and M 0 are constants that vary depending on the operating conditions, and X = 0.2 to 3.0.
複数の炉頂バンカーと回転シュートとを有する原料装入装置を備えたベルレス式高炉において、コークスと鉱石とを異なる炉頂バンカーに装入し、各炉頂バンカーの排出ゲートの開度を調整することで所定の混合率となるようにコークスを鉱石に混合して高炉に装入することを特徴とする請求項1または請求項2に記載の高炉への原料装入方法。   In a bell-less blast furnace equipped with a raw material charging device having multiple furnace top bunker and rotating chute, coke and ore are charged into different furnace top bunkers, and the opening of the discharge gate of each furnace top bunker is adjusted. The method for charging raw materials into a blast furnace according to claim 1 or 2, wherein coke is mixed with ore so as to obtain a predetermined mixing ratio.
JP2005235099A 2005-08-15 2005-08-15 Raw material charging method to blast furnace Active JP5034189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235099A JP5034189B2 (en) 2005-08-15 2005-08-15 Raw material charging method to blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235099A JP5034189B2 (en) 2005-08-15 2005-08-15 Raw material charging method to blast furnace

Publications (2)

Publication Number Publication Date
JP2007051306A true JP2007051306A (en) 2007-03-01
JP5034189B2 JP5034189B2 (en) 2012-09-26

Family

ID=37915950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235099A Active JP5034189B2 (en) 2005-08-15 2005-08-15 Raw material charging method to blast furnace

Country Status (1)

Country Link
JP (1) JP5034189B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062576A (en) * 2007-09-06 2009-03-26 Jfe Steel Kk Method and apparatus for charging raw material into blast furnace
JP2011137217A (en) * 2009-12-02 2011-07-14 Jfe Steel Corp Method for operating blast furnace
WO2013172035A1 (en) * 2012-05-17 2013-11-21 Jfeスチール株式会社 Method for loading raw material into blast furnace
JP2013241641A (en) * 2012-05-18 2013-12-05 Jfe Steel Corp Method for charging raw material into blast furnace
CN104302784A (en) * 2012-05-18 2015-01-21 杰富意钢铁株式会社 Method for charging starting material into blast furnace
CN104694680A (en) * 2015-03-18 2015-06-10 江苏省沙钢钢铁研究院有限公司 Control method of blast furnace charge layer structural radial distribution
CN105002320A (en) * 2015-08-19 2015-10-28 中冶赛迪工程技术股份有限公司 Ore and coke tank feeding system and technology capable of realizing classification below tank
JP2018070954A (en) * 2016-10-29 2018-05-10 Jfeスチール株式会社 Method for loading raw materials into blast furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225507A (en) * 1988-07-14 1990-01-29 Kawasaki Steel Corp Method and apparatus for charging raw material in bell-less type blast furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225507A (en) * 1988-07-14 1990-01-29 Kawasaki Steel Corp Method and apparatus for charging raw material in bell-less type blast furnace

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062576A (en) * 2007-09-06 2009-03-26 Jfe Steel Kk Method and apparatus for charging raw material into blast furnace
JP2011137217A (en) * 2009-12-02 2011-07-14 Jfe Steel Corp Method for operating blast furnace
WO2013172035A1 (en) * 2012-05-17 2013-11-21 Jfeスチール株式会社 Method for loading raw material into blast furnace
JP5522331B2 (en) * 2012-05-17 2014-06-18 Jfeスチール株式会社 Raw material charging method to blast furnace
CN104302785A (en) * 2012-05-17 2015-01-21 杰富意钢铁株式会社 Method for loading raw material into blast furnace
KR101564295B1 (en) 2012-05-17 2015-10-29 제이에프이 스틸 가부시키가이샤 Method for loading raw material into blast furnace
JP2013241641A (en) * 2012-05-18 2013-12-05 Jfe Steel Corp Method for charging raw material into blast furnace
CN104302784A (en) * 2012-05-18 2015-01-21 杰富意钢铁株式会社 Method for charging starting material into blast furnace
EP2851435B1 (en) * 2012-05-18 2019-07-31 JFE Steel Corporation Method for charging starting material into blast furnace
CN104694680A (en) * 2015-03-18 2015-06-10 江苏省沙钢钢铁研究院有限公司 Control method of blast furnace charge layer structural radial distribution
CN105002320A (en) * 2015-08-19 2015-10-28 中冶赛迪工程技术股份有限公司 Ore and coke tank feeding system and technology capable of realizing classification below tank
JP2018070954A (en) * 2016-10-29 2018-05-10 Jfeスチール株式会社 Method for loading raw materials into blast furnace

Also Published As

Publication number Publication date
JP5034189B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5034189B2 (en) Raw material charging method to blast furnace
JP4807103B2 (en) Blast furnace operation method
JP4697340B2 (en) Blast furnace operation method
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
WO2015045369A1 (en) Method for charging raw materials into blast furnace
JP5910735B2 (en) Raw material charging method to blast furnace
JP4971812B2 (en) Blast furnace operation method
JP4998692B2 (en) Blast furnace operation method when using ferro-coke
JP5768563B2 (en) Blast furnace operation method
JP4894949B2 (en) Blast furnace operation method
JP2008240028A (en) Method for operating blast furnace
JP2002003910A (en) Method for operating blast furnace
JP4765723B2 (en) Method of charging ore into blast furnace
JP6354810B2 (en) Raw material charging method to blast furnace
JP5966608B2 (en) Raw material charging method to blast furnace
JP2725595B2 (en) Blast furnace charging method
EP4289977A1 (en) Pig iron production method
JP3171066B2 (en) Blast furnace operation method
TOYOTA et al. Decreasing Coke Rate under All-Pellet Operation in Kobe No. 3 Blast Furnace
JP4093198B2 (en) Blast furnace operation method
JP2921392B2 (en) Blast furnace operation method
JP6219266B2 (en) Blast furnace metallic raw material charging method
JPH08134517A (en) Operation of blast furnace
JP2024020713A (en) How to operate a blast furnace
JP2921374B2 (en) Blast furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5034189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250