JPWO2013146286A1 - Insulated box, refrigerator and hot water storage device provided with the insulated box - Google Patents

Insulated box, refrigerator and hot water storage device provided with the insulated box Download PDF

Info

Publication number
JPWO2013146286A1
JPWO2013146286A1 JP2014507659A JP2014507659A JPWO2013146286A1 JP WO2013146286 A1 JPWO2013146286 A1 JP WO2013146286A1 JP 2014507659 A JP2014507659 A JP 2014507659A JP 2014507659 A JP2014507659 A JP 2014507659A JP WO2013146286 A1 JPWO2013146286 A1 JP WO2013146286A1
Authority
JP
Japan
Prior art keywords
heat insulating
box
insulating material
heat insulation
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014507659A
Other languages
Japanese (ja)
Other versions
JP6192634B2 (en
Inventor
章弘 難波
章弘 難波
祥 花岡
祥 花岡
川上 俊史
俊史 川上
横山 淳一
淳一 横山
児嶋 喜彦
喜彦 児嶋
中津 哲史
哲史 中津
雅法 辻原
雅法 辻原
永 松井
永 松井
博司 今野
博司 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2013146286A1 publication Critical patent/JPWO2013146286A1/en
Application granted granted Critical
Publication of JP6192634B2 publication Critical patent/JP6192634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/18Filling preformed cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0063Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0082Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/762Household appliances
    • B29L2031/7622Refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/181Construction of the tank
    • F24H1/182Insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Abstract

断熱箱体1は、外箱2及び内箱3と、外箱2と内箱3との間に形成された空間4に充填された真空断熱材6及び硬質ウレタンフォーム5と、を備え、空間4における真空断熱材6の充填率が40%〜80%となっており、外箱表面積に対する真空断熱材6の面積比率が60%以上であって、硬質ウレタンフォーム5の曲げ弾性率が15.0MPa以上となっているものである。The heat insulating box 1 includes an outer box 2 and an inner box 3, and a vacuum heat insulating material 6 and a hard urethane foam 5 filled in a space 4 formed between the outer box 2 and the inner box 3. 4, the filling rate of the vacuum heat insulating material 6 is 40% to 80%, the area ratio of the vacuum heat insulating material 6 to the outer box surface area is 60% or more, and the flexural modulus of the rigid urethane foam 5 is 15. It is 0 MPa or more.

Description

本発明は、硬質ウレタンフォーム及び真空断熱材が充填された断熱箱体、及びこの断熱箱体を備えた冷蔵庫及び貯湯装置に関するものである。  The present invention relates to a heat insulating box filled with a hard urethane foam and a vacuum heat insulating material, and a refrigerator and a hot water storage device including the heat insulating box.

近年、地球環境保護、原子力発電所の安全性の観点から、省資源、省エネルギー、特に省電力化に対して様々な取り組みがなされている。  In recent years, various efforts have been made for resource saving, energy saving, and particularly power saving from the viewpoint of global environmental protection and safety of nuclear power plants.

省エネルギー、省電力化の観点では、外箱及び内箱で外郭が形成された断熱箱体内に、硬質ウレタンフォームに加えて真空断熱材も配設する技術が提案されており、例えば「曲げ弾性率が8.0MPa以上で、かつ密度が60kg/m以下として剛性強度と断熱性能を確保した硬質ウレタンフォームと真空断熱材とからなり、前記真空断熱材の被覆率が外箱表面積の50%を超えてなる断熱箱体。」というものが提案されている(特許文献1参照)。From the viewpoint of energy saving and power saving, a technique for arranging a vacuum heat insulating material in addition to a hard urethane foam in a heat insulating box formed with an outer box and an inner box is proposed. Is made of hard urethane foam and vacuum heat insulating material, which has a rigidity of not less than 8.0 MPa and a density of 60 kg / m 3 or less, and a heat insulating performance, and the vacuum heat insulating material has a covering rate of 50% of the outer box surface area. An overlying heat insulation box ”has been proposed (see Patent Document 1).

特許第3478810号公報Japanese Patent No. 3478810

真空断熱材は、従来の硬質ウレタンフォームの断熱性能に対し、例えば6倍以上の断熱性能を有している。このため、省エネルギー化の観点等から、外箱と内箱との間に形成された空間には、硬質ウレタンフォームに加えて、真空断熱材も配設されるようになってきた。そして、近年、省エネルギー化の要請が高まるにつれて、例えば特許文献1に記載の断熱箱体のように、断熱箱体に配設される真空断熱材の使用量も増大してきている。  The vacuum heat insulating material has, for example, six times or more heat insulating performance as compared with the heat insulating performance of the conventional rigid urethane foam. For this reason, from the viewpoint of energy saving and the like, in addition to the hard urethane foam, a vacuum heat insulating material has also been disposed in the space formed between the outer box and the inner box. In recent years, as the demand for energy saving increases, the amount of vacuum heat insulating material disposed in the heat insulating box, such as the heat insulating box described in Patent Document 1, has also increased.

一方、近年、断熱箱体には、省スペース化や内容積の大容量化の観点から、外箱と内箱との間に形成される空間、つまり断熱箱体の壁厚の低減も求められている。しかしながら、従来の断熱箱体は、硬質ウレタンフォームが主に断熱機能を担い、真空断熱材は硬質ウレタンフォームの断熱機能を補助するという技術思想によって製作されていた。換言すると、従来の断熱箱体は、硬質ウレタンフォームによって、壁面の強度が確保されるものとなっていた。このため、断熱箱体の壁厚を低減しようとすると、壁厚の低減分に伴って硬質ウレタンフォームの充填量も減少してしまうため、断熱箱体の断熱性能不足や強度不足が生じてしまう。したがって、従来の断熱箱体においては、壁厚の低減を図ることが困難であるという問題点があった。  On the other hand, in recent years, heat insulation boxes are also required to reduce the space formed between the outer box and the inner box, that is, the wall thickness of the heat insulation box, from the viewpoint of saving space and increasing the internal volume. ing. However, the conventional heat insulation box has been manufactured based on the technical idea that the hard urethane foam mainly has a heat insulation function, and the vacuum heat insulation material assists the heat insulation function of the hard urethane foam. In other words, in the conventional heat insulation box, the strength of the wall surface is secured by the hard urethane foam. For this reason, if it is going to reduce the wall thickness of a heat insulation box, since the filling amount of a hard urethane foam will also reduce with the reduction | decrease of wall thickness, the heat insulation performance shortage and intensity | strength lack of a heat insulation box will arise. . Therefore, the conventional heat insulation box has a problem that it is difficult to reduce the wall thickness.

ここで、特許文献1に記載の断熱箱体においては、真空断熱材の使用量(被覆率)を増大し、硬質ウレタンフォームの曲げ弾性率(換言すると、硬質ウレタンフォームの剛性)を増大させているため、壁厚をある程度低減することが可能とも思われる。しかしながら、特許文献1に記載の断熱箱体も、従来の技術思想によって製作されたものであり、硬質ウレタンフォームが主に断熱機能を担い、真空断熱材は硬質ウレタンフォームの断熱機能を補助するものである。換言すると、特許文献1に記載の断熱箱体も、硬質ウレタンフォームによって、壁面の強度が確保されるものである。このため、硬質ウレタンフォームの断熱性能が低下することを抑制するため、硬質ウレタンフォームの曲げ弾性率を10.0MPa以上にすることができない。したがって、特許文献1に記載の断熱箱体においても、壁面の強度を確保するためには外箱と内箱との間の空間に充填する硬質ウレタンフォームの量をある程度確保する必要があり、壁厚の低減を図ることが依然として困難であるという問題点があった。  Here, in the heat insulation box of patent document 1, the usage-amount (coverage rate) of a vacuum heat insulating material is increased, and the bending elastic modulus (in other words, rigidity of a hard urethane foam) of hard urethane foam is increased. Therefore, it seems that the wall thickness can be reduced to some extent. However, the heat insulation box described in Patent Document 1 is also manufactured by the conventional technical idea, and the hard urethane foam mainly bears the heat insulation function, and the vacuum heat insulation material assists the heat insulation function of the hard urethane foam. It is. In other words, the strength of the wall surface of the heat insulating box described in Patent Document 1 is secured by the rigid urethane foam. For this reason, in order to suppress that the heat insulation performance of a rigid urethane foam falls, the bending elastic modulus of a rigid urethane foam cannot be made 10.0 MPa or more. Therefore, even in the heat insulating box described in Patent Document 1, in order to ensure the strength of the wall surface, it is necessary to secure a certain amount of the rigid urethane foam to be filled in the space between the outer box and the inner box. There was a problem that it was still difficult to reduce the thickness.

つまり、従来の断熱箱体は、断熱性能を確保しつつ、断熱箱体の内容積のさらなる拡大を図ることが困難であるという問題点があった。  That is, the conventional heat insulation box has a problem that it is difficult to further increase the internal volume of the heat insulation box while ensuring heat insulation performance.

本発明は上述のような課題を解決するためになされたものであり、断熱性能を確保しつつ、断熱箱体の内容積を従来よりも拡大することが可能な断熱箱体、及びこの断熱箱体を備えた冷蔵庫及び貯湯装置を得ることを目的とする。  The present invention has been made in order to solve the above-described problems, and a heat insulating box capable of enlarging the inner volume of the heat insulating box while securing heat insulating performance, and the heat insulating box. It aims at obtaining the refrigerator and hot water storage apparatus which were equipped with the body.

本発明に係る断熱箱体は、外箱及び内箱と、前記外箱と前記内箱との間に形成された第1空間に充填された真空断熱材及び硬質ウレタンフォームと、を備え、少なくとも左右側面部と背面部に前記真空断熱材を搭載し、前記第1空間における前記真空断熱材の充填率が40%〜80%となっており、外箱表面積に対する前記真空断熱材の面積比率が60%以上であって、前記硬質ウレタンフォームの曲げ弾性率が15.0MPa以上となっているものである。  The heat insulation box according to the present invention includes an outer box and an inner box, and a vacuum heat insulating material and a rigid urethane foam filled in a first space formed between the outer box and the inner box, and at least The vacuum heat insulating material is mounted on the left and right side surfaces and the back surface, the filling rate of the vacuum heat insulating material in the first space is 40% to 80%, and the area ratio of the vacuum heat insulating material to the outer box surface area is The bending elastic modulus of the rigid urethane foam is 15.0 MPa or more.

また、本発明に係る冷蔵庫は、本発明に係る断熱箱体と、前記断熱箱体に形成された貯蔵室に供給する空気を冷却する冷却装置と、を備えたものである。  Moreover, the refrigerator which concerns on this invention is equipped with the heat insulation box which concerns on this invention, and the cooling device which cools the air supplied to the storage chamber formed in the said heat insulation box.

また、本発明に係る貯湯装置は、本発明に係る断熱箱体と、水を加熱する加熱装置と、前記断熱箱体内に設けられ、前記加熱装置によって加熱された水を貯留するタンクと、を備えたものである。  Further, the hot water storage device according to the present invention includes a heat insulating box according to the present invention, a heating device that heats water, and a tank that is provided in the heat insulating box and stores water heated by the heating device. It is provided.

本発明に係る断熱箱体は、真空断熱材が主に断熱機能を担うという、従来の技術的思想とは全く異なる新たな技術思想によってもたらされたものである。このため、本発明に係る断熱箱体は、外箱と内箱との間に形成された第1空間における真空断熱材の充填率が40%〜80%で外箱表面積に対する真空断熱材の面積比率が60%以上となっており、従来よりも真空断熱材の充填率と面積率が増大している。つまり、上述のように、真空断熱材は、従来の断熱箱体の硬質ウレタンフォームの断熱性能に対し、例えば6倍以上の断熱性能を有している。このため、本発明に係る断熱箱体は、壁厚を低減しても十分な断熱機能を発揮することができる。  The heat insulation box according to the present invention is brought about by a new technical idea that is completely different from the conventional technical idea that the vacuum heat insulating material mainly has a heat insulating function. For this reason, the heat insulation box according to the present invention has an area of the vacuum heat insulating material with respect to the outer box surface area when the filling rate of the vacuum heat insulating material in the first space formed between the outer box and the inner box is 40% to 80%. The ratio is 60% or more, and the filling rate and the area rate of the vacuum heat insulating material are increased as compared with the conventional case. That is, as described above, the vacuum heat insulating material has, for example, a heat insulating performance that is six times or more the heat insulating performance of the hard urethane foam of the conventional heat insulating box. For this reason, the heat insulation box which concerns on this invention can exhibit sufficient heat insulation function, even if it reduces wall thickness.

また、従来の断熱箱体に用いられている硬質ウレタンフォームの曲げ弾性率が例えば6MPa〜12MPa程度に対し、真空断熱材の曲げ弾性率は20MPa〜40MPa程度となっている。つまり、真空断熱材は従来の断熱箱体に用いられている硬質ウレタンフォームよりも曲げ弾性率が高い。したがって、従来よりも真空断熱材の充填率が増大した本発明に係る断熱箱体は、強度も十分に確保することができる。なお、硬質ウレタンフォームで断熱箱体の壁面強度を確保するという従来の技術思想においては、断熱箱体における真空断熱材の被覆率を増大させただけでは、第1空間における真空断熱材の充填率は40%に満たず、断熱箱体の壁厚を薄くすることができないことを付言しておく。つまり、硬質ウレタンフォームよりも曲げ弾性率が高い真空断熱材の充填量を40%以上とし、真空断熱材によって断熱箱体の強度を担うことが、断熱箱体の壁厚を低減する際に重要である。  Moreover, the bending elastic modulus of the vacuum heat insulating material is about 20 MPa to 40 MPa, while the bending elastic modulus of the hard urethane foam used in the conventional heat insulating box is about 6 MPa to 12 MPa, for example. That is, the vacuum heat insulating material has a higher bending elastic modulus than the hard urethane foam used in the conventional heat insulating box. Therefore, the heat insulation box according to the present invention in which the filling rate of the vacuum heat insulating material is increased as compared with the prior art can sufficiently ensure the strength. In addition, in the conventional technical idea of securing the wall strength of the heat insulation box with the hard urethane foam, the filling rate of the vacuum heat insulation in the first space is increased only by increasing the coverage of the vacuum heat insulation in the heat insulation box. Note that is less than 40% and the wall thickness of the heat insulation box cannot be reduced. In other words, it is important to reduce the wall thickness of the heat insulation box by making the filling amount of the vacuum heat insulation higher than that of rigid urethane foam 40% or more and taking the strength of the heat insulation box by the vacuum heat insulation. It is.

ここで、真空断熱材の充填率を増大させることによって硬質ウレタンフォームの充填率が低下してしまうため、外箱と内箱との接着力が不足し、結果として断熱箱体の強度が低下してしまうことが懸念されるようにも思われる。しかしながら、本発明に係る断熱箱体は、上述のように、真空断熱材が主に断熱機能を担うという技術思想によってもたらされたものである。このため、本発明に係る断熱箱体においては、硬質ウレタンフォームの曲げ弾性率(換言すると、硬質ウレタンフォームの剛性)の増大によって生じる、硬質ウレタンフォームの断熱性能の低下の影響は少ない。このため、本発明に係る断熱箱体においては、硬質ウレタンフォームの曲げ弾性率を、従来の断熱箱体に用いられていた硬質ウレタンフォームよりも大きな15.0MPa以上とすることができる。したがって、本願発明に係る断熱箱体は、硬質ウレタンフォームの充填率の低下に起因する強度低下も防止することができる。  Here, since the filling rate of the rigid urethane foam is reduced by increasing the filling rate of the vacuum heat insulating material, the adhesive force between the outer box and the inner box is insufficient, and as a result, the strength of the heat insulating box is reduced. It seems that there is a concern about it. However, the heat insulating box according to the present invention is brought about by the technical idea that the vacuum heat insulating material mainly has a heat insulating function as described above. For this reason, in the heat insulation box which concerns on this invention, there is little influence of the fall of the heat insulation performance of a hard urethane foam produced by the increase in the bending elastic modulus (in other words, rigidity of a hard urethane foam) of a hard urethane foam. For this reason, in the heat insulation box which concerns on this invention, the bending elastic modulus of a hard urethane foam can be 15.0 Mpa or more larger than the hard urethane foam used for the conventional heat insulation box. Therefore, the heat insulation box which concerns on this invention can also prevent the strength fall resulting from the fall of the filling rate of a rigid urethane foam.

したがって、本発明は、断熱性能を確保しつつ、断熱箱体の内容積を従来よりも拡大することが可能な断熱箱体、及びこの断熱箱体を備えた冷蔵庫及び貯湯装置を提供することができる。  Therefore, this invention provides the heat insulation box which can expand the internal volume of a heat insulation box compared with the past, ensuring the heat insulation performance, and the refrigerator and hot water storage apparatus provided with this heat insulation box. it can.

本発明の実施の形態1に係る断熱箱体の正面断面図である。It is front sectional drawing of the heat insulation box which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る断熱箱体の背面図である。It is a rear view of the heat insulation box which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る断熱箱体の斜視図である。It is a perspective view of the heat insulation box which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る断熱箱体の製造工程を説明するための説明図(斜視図)である。It is explanatory drawing (perspective view) for demonstrating the manufacturing process of the heat insulation box which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る断熱箱体の別の一例を示す斜視図である。It is a perspective view which shows another example of the heat insulation box which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る断熱箱体のさらに別の一例を示す斜視図である。It is a perspective view which shows another example of the heat insulation box which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る断熱箱体の正面断面図である。It is front sectional drawing of the heat insulation box which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る断熱箱体を示す正面断面図である。It is front sectional drawing which shows the heat insulation box which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る断熱箱体の側面断面図である。It is side surface sectional drawing of the heat insulation box which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る断熱箱体の別の一例を示す側面断面図である。It is side surface sectional drawing which shows another example of the heat insulation box which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る断熱箱体におけるドアの取り付け構成の一例を示す、ドア開放時の斜視図である。It is a perspective view at the time of door opening which shows an example of the attachment structure of the door in the heat insulation box which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る冷蔵庫を示す側面断面図である。It is side surface sectional drawing which shows the refrigerator which concerns on Embodiment 5 of this invention. 本発明の実施の形態1に係るウレタン密度と曲げ弾性率の関係を実測したグラフである。It is the graph which measured the relationship between the urethane density and bending elastic modulus which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る真空断熱材充填率と箱体変形量の計算結果を示したグラフである。It is the graph which showed the calculation result of the vacuum heat insulating material filling factor which concerns on Embodiment 1 of this invention, and a box deformation. 本発明の実施の形態5に係る側背面の真空断熱材面積比率と箱体変形量の計算結果を示したグラフである。It is the graph which showed the calculation result of the vacuum heat insulating material area ratio and box deformation amount of the side back surface which concerns on Embodiment 5 of this invention.

以下、本発明に係る断熱箱体、及びこの断熱箱体を備えた冷蔵庫の実施の形態について
、図を参照しながら説明する。
Hereinafter, an embodiment of a heat insulating box according to the present invention and a refrigerator provided with the heat insulating box will be described with reference to the drawings.

実施の形態1.
図1は、本発明の実施の形態1に係る断熱箱体の正面断面図である。図2は、この断熱箱体の背面図である。また、図3は、この断熱箱体の斜視図である。なお、真空断熱材6は、後述のように、実際には外箱2と内箱3との間に形成される空間4(本発明の第1空間に相当)に配置されるものである。しかしながら、図2では、断熱箱体1の背面側に配置された真空断熱材6の形状の理解を容易とするため、外箱2の背面を透過して真空断熱材6を示している(つまり、真空断熱材6を実線で示している)。また、図3では、レール16の図示を省略している。
以下、これらの図面を用いて、本実施の形態1に係る断熱箱体1について説明する。
Embodiment 1 FIG.
FIG. 1 is a front sectional view of a heat insulating box according to Embodiment 1 of the present invention. FIG. 2 is a rear view of the heat insulation box. FIG. 3 is a perspective view of the heat insulation box. In addition, the vacuum heat insulating material 6 is actually arrange | positioned in the space 4 (equivalent to the 1st space of this invention) formed between the outer box 2 and the inner box 3 so that it may mention later. However, in FIG. 2, in order to facilitate understanding of the shape of the vacuum heat insulating material 6 arranged on the back side of the heat insulating box 1, the vacuum heat insulating material 6 is shown through the back surface of the outer box 2 (that is, The vacuum heat insulating material 6 is indicated by a solid line). Further, in FIG. 3, illustration of the rail 16 is omitted.
Hereinafter, the heat insulation box 1 which concerns on this Embodiment 1 is demonstrated using these drawings.

断熱箱体1は、例えば金属からなる外箱2と、例えば樹脂からなる内箱3と、を備えている。そして、外箱2と内箱3との間に形成される空間4に、つまり、断熱箱体1の天面、左右側面、背面及び底面部に、硬質ウレタンフォーム5と真空断熱材6が配設(充填)されている。  The heat insulating box 1 includes an outer box 2 made of, for example, metal and an inner box 3 made of, for example, resin. The hard urethane foam 5 and the vacuum heat insulating material 6 are arranged in the space 4 formed between the outer box 2 and the inner box 3, that is, on the top surface, the left and right side surfaces, the back surface, and the bottom surface portion of the heat insulating box 1. It is installed (filled).

本実施の形態1に係る断熱箱体1は、冷蔵庫に用いられる断熱箱体を想定している。このため、本実施の形態1に係る断熱箱体1は、天面及び底面が閉塞された有底角筒形状(略直方体形状)に形成され、前面部が開口した形状となっている。そして、断熱箱体1の内部空間は、例えば2枚の仕切り板24によって、3つの貯蔵室7に区画されている。なお、図3では、これらの貯蔵室を区別して記載するため、7,7’,7”と示している。これら仕切り板24には、前面側に板金カバー34(例えば、厚さ1mm以上)がネジ等によって取り付けられている。この板金カバー34をネジ等で断熱箱体1に締結することにより、仕切り板24が断熱箱体1に取り付けられる構成となっている。このように、板金カバー34を用いて仕切り板24を断熱箱体1に取り付けることにより、断熱箱体1の強度を向上させることができる。
また、本実施の形態1に係る断熱箱体1には、断熱箱体1の内部(つまり内箱3)に、貯蔵室7の中に設置される棚を支えるためのレール16が形成されている。
The heat insulation box 1 which concerns on this Embodiment 1 assumes the heat insulation box used for a refrigerator. For this reason, the heat insulation box 1 which concerns on this Embodiment 1 is formed in the bottomed square cylinder shape (substantially rectangular parallelepiped shape) with which the top | upper surface and the bottom face were obstruct | occluded, and becomes a shape where the front part opened. And the internal space of the heat insulation box 1 is divided into the three store rooms 7 by the two partition plates 24, for example. 3, in order to distinguish and describe these storage chambers, they are indicated as 7, 7 ′, 7 ″. These partition plates 24 have a sheet metal cover 34 (for example, a thickness of 1 mm or more) on the front side. Are attached to the heat insulating box 1 by fastening the sheet metal cover 34 to the heat insulating box 1. Thus, the sheet metal cover 34 is attached to the heat insulating box 1. By attaching the partition plate 24 to the heat insulation box 1 using 34, the strength of the heat insulation box 1 can be improved.
Moreover, the rail 16 for supporting the shelf installed in the storage chamber 7 is formed in the heat insulation box 1 which concerns on this Embodiment 1 inside the heat insulation box 1 (namely, inner box 3). Yes.

このような構成の断熱箱体1は、例えば次のように製造される。まず、真空断熱材6をあらかじめ外箱2に接着固定する。そして、外箱2と内箱3とを例えば接着固定する。その後、図4に示すように、断熱箱体1の背面側を上にした状態で、背面側に形成された注入口32より液体状の硬質ウレタンフォーム5の原料を注入して一体発泡を行うことにより、空間4内を硬質ウレタンフォーム5で充填する。  The heat insulation box 1 having such a configuration is manufactured, for example, as follows. First, the vacuum heat insulating material 6 is bonded and fixed to the outer box 2 in advance. Then, the outer box 2 and the inner box 3 are bonded and fixed, for example. Thereafter, as shown in FIG. 4, with the back side of the heat insulation box 1 facing upward, the raw material of the liquid rigid urethane foam 5 is injected from the injection port 32 formed on the back side to perform integral foaming. Thus, the space 4 is filled with the rigid urethane foam 5.

このため、断熱箱体1の背面側においては、注入口32と対向する位置に、真空断熱材6を配置することができない。そこで、本実施の形態1では、断熱箱体1の背面側においては、図2に示すように真空断熱材6を配設している。つまり、断熱箱体1の背面側に配設される真空断熱材6は、一体物ではなく、複数(例えば2個〜3個)に分割して並設している。そして、これらの真空断熱材6の角部に注入口32が対向するようにしている。注入口32と対向する角部に切り欠き33を形成することにより、真空断熱材6の面積を大きくし、かつ注入口32を避けて、真空断熱材6を配置することができる(つまり、硬質ウレタンフォーム5の原液を注入することができる)。このような構成で真空断熱材6を配設することにより、より断熱性能に優れた断熱箱体1を提供できる。
なお、注入口32の形成位置はあくまでも一例である。断熱箱体1の形状、つまり外箱2と内箱3との間に形成される空間4の形状に応じて、適宜形成すればよい。したがって、注入口32の形成位置は、断熱箱体1の形状に応じて、任意の一側面(左側側面、右側側面、正面、背面、天面、底面等)に形成すればよい。
For this reason, the vacuum heat insulating material 6 cannot be disposed at a position facing the inlet 32 on the back side of the heat insulating box 1. Therefore, in the first embodiment, the vacuum heat insulating material 6 is disposed on the back side of the heat insulating box 1 as shown in FIG. That is, the vacuum heat insulating material 6 arrange | positioned at the back side of the heat insulation box 1 is divided into several (for example, 2-3 pieces), and is arranged in parallel rather than an integrated object. The injection port 32 faces the corners of the vacuum heat insulating material 6. By forming the notch 33 at the corner facing the inlet 32, the area of the vacuum heat insulating material 6 can be increased, and the vacuum heat insulating material 6 can be disposed avoiding the inlet 32 (that is, hard). A stock solution of urethane foam 5 can be injected). By disposing the vacuum heat insulating material 6 with such a configuration, it is possible to provide the heat insulating box body 1 having more excellent heat insulating performance.
The formation position of the injection port 32 is merely an example. What is necessary is just to form suitably according to the shape of the heat insulation box 1, ie, the shape of the space 4 formed between the outer box 2 and the inner box 3. FIG. Therefore, what is necessary is just to form the formation position of the injection port 32 in arbitrary one side surfaces (a left side surface, a right side surface, a front surface, a back surface, a top surface, a bottom surface, etc.) according to the shape of the heat insulation box 1.

ここで、本実施の形態1に係る断熱箱体1は、断熱箱体内の硬質ウレタンフォームが主に断熱機能を担うという従来の技術思想とは全く異なる新たな技術思想に基づいて考え出されたものであり、真空断熱材6が主に断熱機能を担う構成となっている。このため、本実施の形態1に係る断熱箱体1は、空間4内の真空断熱材6の充填率を40%以上としている。このように、空間4内における真空断熱材6の充填率を従来よりも増大させることにより、断熱性能が従来よりも向上するので、従来よりも断熱箱体1の壁厚を薄くしても、断熱性能を従来と同程度以上に確保することができる。また、図14に空間4に占める真空断熱材6の充填率と、断熱箱体1に負荷を与えた時の変形量を示す。真空断熱材6は硬質ウレタンフォーム5よりも曲げ弾性率が大きいため、真空断熱材6の比率を大きくすることで断熱箱体1の変形量を小さく、言い換えれば断熱箱体1の強度を大幅に上げることができる。この際、厚みを増しても効果はあるが、面積を大きくすることで断熱箱体1の壁厚を薄くすることが容易となる。このため、本実施の形態1に係る断熱箱体1は、少なくとも外箱2の側面部と背面部とに真空断熱材6を備え、空間4内の真空断熱材6の充填率を40%以上とし、外箱2の表面積に対する真空断熱材6の面積比率を60%以上とすることで、従来の断熱箱体に用いられていた硬質ウレタンフォームよりも曲げ弾性率の高い真空断熱材6が主に断熱箱体1の壁面強度を担う構成としている。このため、本実施の形態1に係る断熱箱体1は、断熱箱体1の壁厚を薄くすることができるので、外形サイズを変更せずに貯蔵室7を拡大でき、断熱箱体1の内部に貯蔵できる収納物を増やすことが可能となる。なお、壁面強度が低下すると断熱箱体1が歪み、例えば内部に備えられている棚が落下したり、引き出し式のケースや扉の摺動性が悪くなるといった不具合が発生する。  Here, the heat insulation box 1 which concerns on this Embodiment 1 was conceived based on the new technical idea completely different from the conventional technical idea that the hard urethane foam in a heat insulation box mainly bears a heat insulation function. The vacuum heat insulating material 6 is mainly configured to perform a heat insulating function. For this reason, the heat insulation box 1 which concerns on this Embodiment 1 makes the filling rate of the vacuum heat insulating material 6 in the space 4 40% or more. Thus, by increasing the filling rate of the vacuum heat insulating material 6 in the space 4 than before, the heat insulating performance is improved than before, so even if the wall thickness of the heat insulating box 1 is made thinner than before, The heat insulation performance can be ensured at the same level or higher. FIG. 14 shows the filling rate of the vacuum heat insulating material 6 occupying the space 4 and the deformation amount when a load is applied to the heat insulating box 1. Since the vacuum heat insulating material 6 has a higher flexural modulus than the rigid urethane foam 5, the amount of deformation of the heat insulating box 1 is reduced by increasing the ratio of the vacuum heat insulating material 6, in other words, the strength of the heat insulating box 1 is greatly increased. Can be raised. At this time, although increasing the thickness is effective, it is easy to reduce the wall thickness of the heat insulating box 1 by increasing the area. For this reason, the heat insulation box 1 which concerns on this Embodiment 1 is equipped with the vacuum heat insulating material 6 at least in the side part and back surface part of the outer box 2, and the filling rate of the vacuum heat insulating material 6 in the space 4 is 40% or more. The vacuum heat insulating material 6 having a higher bending elastic modulus than the hard urethane foam used in the conventional heat insulating box is mainly used by setting the area ratio of the vacuum heat insulating material 6 to the surface area of the outer box 2 to 60% or more. It is set as the structure which bears the wall surface strength of the heat insulation box 1. For this reason, since the heat insulation box 1 which concerns on this Embodiment 1 can make the wall thickness of the heat insulation box 1 thin, the storage chamber 7 can be expanded without changing an external size, and the heat insulation box 1 of It is possible to increase the amount of storage that can be stored inside. In addition, when wall surface strength falls, the heat insulation box 1 will be distorted, for example, the shelf provided inside will fall, or the malfunction that the slidability of a drawer-type case and a door will worsen will generate | occur | produce.

また、下記の理由等から、本実施の形態1に係る断熱箱体1は、空間4内の真空断熱材6の充填率を80%以下としている。上述したような本実施の形態1に係る技術思想によれば、空間4内を全て真空断熱材6とするのが理想的である。しかしながら、図1でも示したように、内箱3に形成されたレール16が空間4内に突出している。また、断熱箱体1を例えば冷蔵庫に用いる場合、空間4内には、断熱箱体1に搭載される圧縮機や制御盤(圧縮機の回転数等を制御するもの)等を接続するハーネスも配設されることとなる。また、断熱箱体1を例えば冷蔵庫に用いる場合、空間4内には、冷媒配管等も配設されることとなる。このため、空間4内を全て真空断熱材6で充填しようとすると、真空断熱材6の形状が複雑となり、真空断熱材6の形成が困難となる。また、断熱箱体1の強度が低下して歪みが発生するのを抑えるためには外箱2と内箱3が接着させる必要があるが、内箱3には貯蔵室7の中に設置された棚を支えるためのレール16やその他部品が取り付けられていることが多く、そのため真空断熱材6を外箱2に接着させることは容易でも、真空断熱材6と内箱3とを接着させることは困難である。しかしながら、硬質ウレタンフォーム5を発泡させ充填させることにより、空間4内にレール16やその他の部品が存在する場合でも問題なく外箱2と内箱3を接着させることができる。このとき、断熱箱体1内に硬質ウレタンフォーム5が充填されない範囲(つまり、空隙)が生じると、断熱箱体1の断熱性能が低下してしまう。したがって、本実施の形態1に係る断熱箱体1においては、硬質ウレタンフォームを充填するために必要なある程度の隙間(例えば6mm程度)を確保するため、空間4内の真空断熱材6の充填率を80%以下としている。  In addition, for the following reasons, the heat insulating box 1 according to the first embodiment sets the filling rate of the vacuum heat insulating material 6 in the space 4 to 80% or less. According to the technical idea according to the first embodiment as described above, it is ideal that the space 4 is entirely the vacuum heat insulating material 6. However, as shown in FIG. 1, the rail 16 formed in the inner box 3 protrudes into the space 4. Moreover, when using the heat insulation box 1 for a refrigerator, for example, a harness for connecting a compressor or a control panel (which controls the rotation speed of the compressor, etc.) mounted on the heat insulation box 1 in the space 4 is also provided. It will be arranged. Moreover, when using the heat insulation box 1 for a refrigerator, for example, refrigerant piping etc. will be arrange | positioned in the space 4. FIG. For this reason, if it is going to fill the space 4 with the vacuum heat insulating material 6, the shape of the vacuum heat insulating material 6 will become complicated and formation of the vacuum heat insulating material 6 will become difficult. Moreover, in order to suppress the distortion | strain generate | occur | producing by the intensity | strength of the heat insulation box 1 reducing, it is necessary to adhere the outer box 2 and the inner box 3, but the inner box 3 is installed in the storage chamber 7. The rail 16 and other parts for supporting the shelf are often attached, so that it is easy to bond the vacuum heat insulating material 6 to the outer box 2, but the vacuum heat insulating material 6 and the inner box 3 are bonded. It is difficult. However, by foaming and filling the hard urethane foam 5, the outer box 2 and the inner box 3 can be bonded without any problem even when the rail 16 and other parts are present in the space 4. At this time, if a range (that is, a void) in which the hard urethane foam 5 is not filled in the heat insulating box 1 is generated, the heat insulating performance of the heat insulating box 1 is deteriorated. Therefore, in the heat insulation box 1 according to the first embodiment, the filling rate of the vacuum heat insulating material 6 in the space 4 in order to secure a certain gap (for example, about 6 mm) necessary for filling the hard urethane foam. Is 80% or less.

ところで、空間4内における真空断熱材6の充填率を増大させることにより、空間4内における硬質ウレタンフォーム5の充填率が低下する。このため、外箱2と内箱3との接着力が不足し、結果として断熱箱体1の強度が低下してしまうことが懸念されるようにも思われる。しかしながら、本実施の形態1に係る断熱箱体1は、上述のように、真空断熱材6が主に断熱機能を担うという技術思想によってもたらされたものである。このため、硬質ウレタンフォーム5の曲げ弾性率(換言すると、硬質ウレタンフォーム5の剛性)の増大によって生じる、硬質ウレタンフォーム5の断熱性能の低下の影響は少ない。このため、本実施の形態1に係る断熱箱体1においては、硬質ウレタンフォーム5の密度を従来よりも高くし(例えば60kg/m以上)、図13に示すように硬質ウレタンフォーム5の曲げ弾性率を、従来の断熱箱体に用いられていた硬質ウレタンフォームよりも大きな15.0MPa以上とすることができる。したがって、本実施の形態1に係る断熱箱体1は、硬質ウレタンフォーム5の充填率の低下に起因する強度低下も防止することができ、収納物の重量による歪みに耐え切れず断熱箱体1が変形するなどの問題はない。つまり、真空断熱材6を多量に使用しても断熱箱体1の品質として問題なく、優れた断熱性能によって省エネルギー化が実現できるのである。By the way, by increasing the filling rate of the vacuum heat insulating material 6 in the space 4, the filling rate of the rigid urethane foam 5 in the space 4 is lowered. For this reason, it seems to be concerned that the adhesive force between the outer box 2 and the inner box 3 is insufficient, and as a result, the strength of the heat insulating box 1 is lowered. However, as described above, the heat insulating box 1 according to the first embodiment is brought about by the technical idea that the vacuum heat insulating material 6 mainly has a heat insulating function. For this reason, there is little influence of the fall of the heat insulation performance of the hard urethane foam 5 which arises by the increase in the bending elastic modulus (in other words, rigidity of the hard urethane foam 5) of the hard urethane foam 5. For this reason, in the heat insulation box 1 which concerns on this Embodiment 1, the density of the rigid urethane foam 5 is made higher than before (for example, 60 kg / m 3 or more), and the bending of the rigid urethane foam 5 is performed as shown in FIG. The elastic modulus can be set to 15.0 MPa or more, which is larger than the hard urethane foam used in the conventional heat insulation box. Therefore, the heat insulation box 1 which concerns on this Embodiment 1 can also prevent the strength fall resulting from the fall of the filling rate of the hard urethane foam 5, cannot endure the distortion by the weight of a stored item, and the heat insulation box 1 There is no problem such as deformation. That is, even if a large amount of the vacuum heat insulating material 6 is used, there is no problem as the quality of the heat insulating box 1, and energy saving can be realized by excellent heat insulating performance.

なお、硬質ウレタンフォーム5の密度は、例えば空間4内に注入する硬質ウレタンフォーム5の原液の量を従来よりも多くすることにより、その値を大きくすることができる。
また、本実施の形態1では、硬質ウレタンフォーム5の曲げ弾性率の上限値を150.0MPa以下としている。硬質ウレタンフォーム5の曲げ弾性率を150.0MPaよりも大きくすると、硬質ウレタンフォーム5の密度が上がりすぎてスポンジ状にならずに固まり、硬質ウレタンフォーム5の断熱性能が急激に低下するためである。
Note that the density of the rigid urethane foam 5 can be increased by increasing the amount of the stock solution of the rigid urethane foam 5 to be injected into the space 4 as compared with the conventional one.
Moreover, in this Embodiment 1, the upper limit of the bending elastic modulus of the rigid urethane foam 5 is 150.0 MPa or less. This is because if the flexural modulus of the rigid urethane foam 5 is larger than 150.0 MPa, the density of the rigid urethane foam 5 is excessively increased and solidified without being spongy, and the heat insulation performance of the rigid urethane foam 5 is rapidly reduced. .

また、本実施の形態1に係る断熱箱体1に使用する真空断熱材6は公知のものを使用できるが、本実施の形態1では、例えば次のような真空断熱材6を用いている。つまり、本実施の形態1に係る断熱箱体1は、次のような仕様の冷蔵庫に用いることを想定している。
(1)外箱2及び内箱3の合計板厚が2mmで、断熱箱体1の平均壁厚が30mm、つまり、空間4の壁厚方向の平均距離が28mmの断熱箱体1を使用。
(2)そして、真空断熱材6の厚みが20mmであり、空間4における硬質ウレタンフォーム5の壁厚方向の平均流路が8mm。
(3)硬質ウレタンフォーム5の熱伝導率が0.018W/mK〜0.025W/mK。(4)内容積が500Lクラスで、消費電力が40W以下。
このような条件の場合、真空断熱材6の熱伝導率が0.0030W/mKを超えると、壁厚低減による断熱性能への影響が大きくなり、断熱性能が仕様よりも悪くなった(つまり、消費電力が40Wよりも大きくなった)。このため、本実施の形態1では、真空断熱材6の熱伝導率を0.0030W/mK以下とすることにより、壁厚を薄くすることへの断熱性能への影響を防止している。また、真空断熱材6の熱伝導率を下げると、0.001W/mK低減当たりにかかるコストが飛躍的に増大する点に加え、0.0012W/mKであれば十分な断熱性能を確保できる点より、真空断熱材6は熱伝導率が0.0030〜0.0012W/mKのものを使用している。さらに、本発明の実施の形態1に係る壁面厚さと真空断熱材充填率、ウレタンフォーム曲げ弾性率、箱体変形量を記載した表1に示す。表1の項1、項4を比較すると、例えば壁厚を従来の40mmから30mmにした際に真空断熱材6の充填率を40%以上とし、かつウレタンの曲げ弾性率を15Mpa以上とすることで、断熱箱体1を従来品と同等以上の箱体強度を確保することが可能となっている。

Figure 2013146286
Moreover, although the well-known thing can be used for the vacuum heat insulating material 6 used for the heat insulation box 1 which concerns on this Embodiment 1, in this Embodiment 1, the following vacuum heat insulating materials 6 are used, for example. That is, it is assumed that the heat insulating box 1 according to the first embodiment is used for a refrigerator having the following specifications.
(1) The heat insulating box 1 is used in which the total thickness of the outer box 2 and the inner box 3 is 2 mm, the average wall thickness of the heat insulating box 1 is 30 mm, that is, the average distance in the wall thickness direction of the space 4 is 28 mm.
(2) And the thickness of the vacuum heat insulating material 6 is 20 mm, and the average flow path in the wall thickness direction of the rigid urethane foam 5 in the space 4 is 8 mm.
(3) The thermal conductivity of the rigid urethane foam 5 is 0.018 W / mK to 0.025 W / mK. (4) The internal volume is 500 L class and the power consumption is 40 W or less.
In the case of such conditions, when the thermal conductivity of the vacuum heat insulating material 6 exceeds 0.0030 W / mK, the influence on the heat insulating performance due to the wall thickness reduction becomes large, and the heat insulating performance is worse than the specification (that is, The power consumption is greater than 40W). For this reason, in this Embodiment 1, the thermal conductivity of the vacuum heat insulating material 6 is set to 0.0030 W / mK or less, thereby preventing the influence on the heat insulating performance to reduce the wall thickness. Moreover, if the thermal conductivity of the vacuum heat insulating material 6 is lowered, in addition to the point that the cost per 0.001 W / mK reduction is drastically increased, sufficient heat insulation performance can be ensured with 0.0012 W / mK. Therefore, the vacuum heat insulating material 6 having a thermal conductivity of 0.0030 to 0.0012 W / mK is used. Furthermore, it shows in Table 1 which described the wall surface thickness which concerns on Embodiment 1 of this invention, a vacuum heat insulating material filling factor, a urethane foam bending elastic modulus, and a box deformation. Comparing items 1 and 4 in Table 1, for example, when the wall thickness is changed from the conventional 40 mm to 30 mm, the filling rate of the vacuum heat insulating material 6 is set to 40% or more, and the bending elastic modulus of urethane is set to 15 Mpa or more. Thus, it is possible to ensure the box strength of the heat insulating box 1 equal to or higher than that of the conventional product.
Figure 2013146286

また、本実施の形態1に係る断熱箱体1においては、次の理由により、真空断熱材6として、アルミ蒸着フィルムを外装フィルムに用いた真空断熱材を用いることが好ましい。なぜならば、真空断熱材6が主な断熱を担う本実施の形態1に係る断熱箱体1においては、従来よりも所謂ヒートブリッジの発生(真空断熱材の外装フィルムを介して、真空断熱材の表面から裏面へ熱が伝導してしまうこと)が懸念される。このため、本実施の形態1に係る断熱箱体1においては、真空断熱材6として、アルミ箔フィルムを外装フィルムに用いた真空断熱材よりもヒートブリッジが生じにくい、アルミ蒸着フィルムを外装フィルムに用いた真空断熱材を用いることが好ましい。  Moreover, in the heat insulation box 1 which concerns on this Embodiment 1, it is preferable to use the vacuum heat insulating material which used the aluminum vapor deposition film for the exterior film as the vacuum heat insulating material 6 for the following reason. This is because, in the heat insulation box 1 according to the first embodiment, in which the vacuum heat insulating material 6 is mainly responsible for heat insulation, the generation of so-called heat bridges (via the vacuum insulating material outer film) There is a concern that heat is conducted from the front surface to the back surface. For this reason, in the heat insulation box 1 which concerns on this Embodiment 1, as a vacuum heat insulating material 6, it is hard to produce a heat bridge rather than the vacuum heat insulating material which used the aluminum foil film for the exterior film, and uses an aluminum vapor deposition film for an exterior film It is preferable to use the vacuum heat insulating material used.

なお、本実施の形態1における硬質ウレタンフォーム5の曲げ弾性率、密度の測定方法としては、100×100×5mm以上の大きさの硬質ウレタンフォーム5を、左右側面、背面、天面及び底面の5つの面のそれぞれの中心位置より切り出し、その平均より算出するものとする。なお、中心位置に冷媒配管やリード線などの部品があり硬質ウレタンフォーム5のみを切り出せない場合は、中心位置より最も近い位置で100×100×5mm以上の大きさの硬質ウレタンフォーム5を切り出せる位置とする。  In addition, as a measuring method of the bending elastic modulus and density of the rigid urethane foam 5 in the first embodiment, the rigid urethane foam 5 having a size of 100 × 100 × 5 mm or more is used for the left and right side surfaces, the back surface, the top surface, and the bottom surface. Cut out from the center position of each of the five surfaces, and calculate from the average. In addition, when there are parts such as refrigerant pipes and lead wires in the center position and only the hard urethane foam 5 cannot be cut out, the hard urethane foam 5 having a size of 100 × 100 × 5 mm or more can be cut out at a position closest to the center position. Position.

以上、本実施の形態1に係る断熱箱体1においては、断熱箱体1の壁厚を従来よりも薄くすることができるため、省エネルギーで、かつ従来よりも内容積効率の優れた断熱箱体1を提供することができる。つまり、外形サイズを変更せずに貯蔵室7を従来よりも拡大でき、断熱箱体1の内部に貯蔵できる収納物を従来よりも増やすことができる。  As mentioned above, in the heat insulation box 1 which concerns on this Embodiment 1, since the wall thickness of the heat insulation box 1 can be made thinner than before, the heat insulation box body which was energy-saving and was excellent in internal volume efficiency compared with the past. 1 can be provided. That is, the storage chamber 7 can be expanded more than before without changing the outer size, and the amount of storage that can be stored inside the heat insulating box 1 can be increased more than before.

なお、本実施の形態1で示した断熱箱体1の形状はあくまでも一例である。例えば、図5に示すように、断熱箱体1の内部空間を3枚の仕切り板24で区画し、4つの貯蔵室7を形成してもよい。また例えば、図6に示すように、断熱箱体1の内部空間を4枚の仕切り板24で区画し、5つの貯蔵室7を形成してもよい。仕切り板24や板金カバー34を増やすことにより、断熱箱体1の強度をより向上させることができる。つまり、貯蔵室7の数が多くなるほど、板金カバー34による箱体強度向上の効果により、真空断熱材6で覆っている部分の硬質ウレタンフォーム5の平均厚さを薄くしても(例えば5mm以下)、十分な箱体強度を確保することができる。このため、断熱箱体1の外形サイズを変更せずに貯蔵室7をさらに拡大でき、断熱箱体1の内部に貯蔵できる収納物をさらに増やすことが可能となる。  In addition, the shape of the heat insulation box 1 shown in this Embodiment 1 is an example to the last. For example, as shown in FIG. 5, the interior space of the heat insulating box 1 may be partitioned by three partition plates 24 to form four storage chambers 7. For example, as shown in FIG. 6, the interior space of the heat insulating box 1 may be partitioned by four partition plates 24 to form five storage chambers 7. By increasing the partition plate 24 and the sheet metal cover 34, the strength of the heat insulating box 1 can be further improved. In other words, as the number of storage chambers 7 increases, the average thickness of the hard urethane foam 5 covered by the vacuum heat insulating material 6 is reduced due to the effect of improving the box strength by the sheet metal cover 34 (for example, 5 mm or less). ), Sufficient box strength can be secured. For this reason, it is possible to further expand the storage chamber 7 without changing the external size of the heat insulation box 1, and it is possible to further increase the storage items that can be stored inside the heat insulation box 1.

また、本実施の形態1においては、仕切り板24の内部構造については特に言及しなかったが、断熱箱体1と同様の構成にしても勿論よい。つまり、仕切り板24の内部空間に硬質ウレタンフォーム5と真空断熱材6を充填し、そのときの真空断熱材6の充填率を40%〜80%とし、硬質ウレタンフォーム5の曲げ弾性率を15.0MPa以上としてもよい。このように仕切り板24を構成することにより、断熱箱体1の断熱性能をより向上させることができる。  In the first embodiment, the internal structure of the partition plate 24 is not particularly mentioned. However, the same configuration as that of the heat insulating box 1 may be used. That is, the internal space of the partition plate 24 is filled with the hard urethane foam 5 and the vacuum heat insulating material 6, the filling rate of the vacuum heat insulating material 6 at that time is 40% to 80%, and the bending elastic modulus of the hard urethane foam 5 is 15%. It may be 0.0 MPa or more. Thus, by comprising the partition plate 24, the heat insulation performance of the heat insulation box 1 can be improved more.

実施の形態2.
実施の形態1では、真空断熱材6を外箱2に貼り付けることにより、真空断熱材6を外箱2と内箱3との間に形成される空間4に配置した。これに限らず、真空断熱材6を例えば以下のように空間4へ配置してもよい。なお、本実施の形態2で特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 2. FIG.
In the first embodiment, the vacuum heat insulating material 6 is disposed in the space 4 formed between the outer box 2 and the inner box 3 by attaching the vacuum heat insulating material 6 to the outer box 2. For example, the vacuum heat insulating material 6 may be disposed in the space 4 as follows. Note that items not particularly described in the second embodiment are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.

図7は、本発明の実施の形態2に係る断熱箱体の正面断面図である。
図7に示すように、本実施の形態2に係る断熱箱体1は、外箱2の内面側に凝縮配管9が設けられている。この凝縮配管9は、圧縮機から吐出された高温高圧の冷媒が流れる冷媒配管であり、凝縮配管9の管壁及び外箱2を介して、当該配管内を流れる冷媒を外気によって冷却(凝縮)するものである。また、本実施の形態2に係る断熱箱体1は、凝縮配管9と重ならない位置となる外箱2の内壁に、凝縮配管9の直径以上の厚みを有するスペーサ8が取り付けられている。そして、真空断熱材6は、このスペーサ8に貼り付けられている。つまり、本実施の形態2に係る断熱箱体1は、真空断熱材6を外箱2及び内箱3から所定の間隔を介して配置し、真空断熱材6を硬質ウレタンフォーム5に埋設した構成となっている。
FIG. 7 is a front cross-sectional view of the heat insulation box according to Embodiment 2 of the present invention.
As shown in FIG. 7, the heat insulating box 1 according to the second embodiment is provided with a condensation pipe 9 on the inner surface side of the outer box 2. The condensing pipe 9 is a refrigerant pipe through which high-temperature and high-pressure refrigerant discharged from the compressor flows, and the refrigerant flowing in the pipe is cooled (condensed) by the outside air through the wall of the condensing pipe 9 and the outer box 2. To do. In the heat insulation box 1 according to the second embodiment, a spacer 8 having a thickness equal to or larger than the diameter of the condensation pipe 9 is attached to the inner wall of the outer box 2 that does not overlap the condensation pipe 9. The vacuum heat insulating material 6 is affixed to the spacer 8. That is, the heat insulation box 1 according to the second embodiment has a configuration in which the vacuum heat insulating material 6 is disposed at a predetermined interval from the outer box 2 and the inner box 3 and the vacuum heat insulating material 6 is embedded in the rigid urethane foam 5. It has become.

以上、本実施の形態2のように構成された断熱箱体1においては、このように硬質ウレタンフォーム5内に真空断熱材6を埋設させることで、外箱2に凝縮配管9が存在している場合でも真空断熱材6を配設することができる。  As mentioned above, in the heat insulation box 1 comprised like this Embodiment 2, the condensing piping 9 exists in the outer case 2 by burying the vacuum heat insulating material 6 in the hard urethane foam 5 in this way. Even if it exists, the vacuum heat insulating material 6 can be arrange | positioned.

また、真空断熱材6は、高温になるほど周囲のガスを吸収しやすく内部の真空度が下がり熱伝導率が悪化する特徴があるが、温度が高い外箱2や凝縮配管9から真空断熱材6を遠ざけることにより、真空断熱材6の温度を下げて劣化を抑えることができるので、長期的に信頼性の高い断熱箱体1を提供することが可能となる。  Further, the vacuum heat insulating material 6 has a characteristic that the higher the temperature is, the easier it is to absorb the surrounding gas and the lower the internal vacuum degree and the lower the thermal conductivity. However, the vacuum heat insulating material 6 from the outer box 2 and the condensation pipe 9 whose temperature is high. By keeping the distance away, the temperature of the vacuum heat insulating material 6 can be lowered to suppress deterioration, so that it is possible to provide a highly reliable heat insulating box 1 in the long term.

また、真空断熱材6は周囲のガスを吸収することで内部の真空度が下がり、熱伝導率が悪化する特徴があるが、硬質ウレタンフォーム5内に真空断熱材6を埋設させることで、真空断熱材6の周囲のガスの存在量を減らすことができるので、真空断熱材6の劣化を抑制でき、長期的に信頼性の高い断熱箱体1を提供することが可能となる。特に、本実施の形態2に係る断熱箱体1は、硬質ウレタンフォーム5の密度が従来の断熱箱体に用いられていた硬質ウレタンフォームよりも密度の高いものとなっている。このため、真空断熱材6の周囲のガスの存在量をより減らすことができるので、真空断熱材6の劣化をより抑制でき、より長期的に信頼性の高い断熱箱体1を提供することが可能となる。  Further, the vacuum heat insulating material 6 has a feature that the internal vacuum is lowered by absorbing the surrounding gas and the thermal conductivity is deteriorated, but the vacuum heat insulating material 6 is embedded in the hard urethane foam 5 to obtain a vacuum. Since the amount of gas around the heat insulating material 6 can be reduced, the deterioration of the vacuum heat insulating material 6 can be suppressed, and it becomes possible to provide the heat insulating box 1 having high reliability in the long term. In particular, in the heat insulation box 1 according to the second embodiment, the density of the hard urethane foam 5 is higher than that of the hard urethane foam used in the conventional heat insulation box. For this reason, since the abundance of the gas around the vacuum heat insulating material 6 can be further reduced, the deterioration of the vacuum heat insulating material 6 can be further suppressed, and the highly reliable heat insulating box 1 can be provided in the long term. It becomes possible.

なお、本実施の形態2では凝縮配管9を空間4内に配置した断熱箱体1を例に説明したが、凝縮配管9が空間4内に設けられていない断熱箱体1において、硬質ウレタンフォーム5内に真空断熱材6を埋設させても勿論よい。真空断熱材6の周囲のガスの存在量を減らすことができるので、真空断熱材6の劣化を抑制でき、長期的に信頼性の高い断熱箱体1を提供することが可能となる。  In the second embodiment, the heat insulation box 1 in which the condensation pipe 9 is disposed in the space 4 has been described as an example. However, in the heat insulation box 1 in which the condensation pipe 9 is not provided in the space 4, the rigid urethane foam is used. Of course, the vacuum heat insulating material 6 may be embedded in the inside 5. Since the abundance of the gas around the vacuum heat insulating material 6 can be reduced, the deterioration of the vacuum heat insulating material 6 can be suppressed, and it becomes possible to provide the heat insulating box 1 with high reliability in the long term.

実施の形態3.
内箱3の形状等によっては、実施の形態1や実施の形態2で示した構成に限らず、例えば以下のように空間4内に真空断熱材6を配置してもよい。なお、本実施の形態3で特に記述しない項目については実施の形態1又は実施の形態2と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 3 FIG.
Depending on the shape of the inner box 3 and the like, the configuration is not limited to that shown in the first embodiment or the second embodiment, and for example, the vacuum heat insulating material 6 may be arranged in the space 4 as follows. Note that items not specifically described in the third embodiment are the same as those in the first or second embodiment, and the same functions and configurations are described using the same reference numerals.

図8は、本発明の実施の形態3に係る断熱箱体を示す正面断面図である。
図8に示すように、本実施の形態3に係る断熱箱体1は、内箱3にレール16(図1,図7参照)が形成されていない構成となっている。このように内箱3が真空断熱材6を貼り付けやすい形状となっている場合、真空断熱材6の全てまたは一部を内箱3に配設してもよい。
FIG. 8 is a front sectional view showing a heat insulating box according to Embodiment 3 of the present invention.
As shown in FIG. 8, the heat insulation box 1 according to the third embodiment has a configuration in which the rail 16 (see FIGS. 1 and 7) is not formed on the inner box 3. Thus, when the inner box 3 has a shape in which the vacuum heat insulating material 6 can be easily attached, all or part of the vacuum heat insulating material 6 may be disposed in the inner box 3.

以上、本実施の形態3のように構成された断熱箱体1においては、より少ない量の真空断熱材6で、省エネルギーで、かつ従来よりも内容積効率の優れた断熱箱体1を提供することができる。つまり、本実施の形態3と同じ大きさの真空断熱材6を、例えば外箱2に貼り付けたとする。この場合、内箱3の表面積よりも外箱2の表面積の方が大きいため、例えば角部等において、真空断熱材6同士の間に形成される隙間が、真空断熱材6を内箱3に配設した場合と比較して大きくなってしまう。換言すると、真空断熱材6を内箱3に配設することにより、同じ大きさの真空断熱材6を外箱2に配設した場合と比べ、真空断熱材6同士の間に形成される隙間が無くなる分だけロスが小さくなり、より効率良い断熱箱体1を提供することができる。  As described above, in the heat insulation box 1 configured as in the third embodiment, the heat insulation box 1 having a smaller amount of the vacuum heat insulating material 6, energy saving, and superior in internal volume efficiency than the conventional one is provided. be able to. That is, it is assumed that the vacuum heat insulating material 6 having the same size as that of the third embodiment is attached to the outer box 2, for example. In this case, since the surface area of the outer box 2 is larger than the surface area of the inner box 3, for example, a gap formed between the vacuum heat insulating materials 6 at the corners or the like causes the vacuum heat insulating material 6 to be connected to the inner box 3. It becomes larger than the case where it arrange | positions. In other words, by disposing the vacuum heat insulating material 6 in the inner box 3, the gap formed between the vacuum heat insulating materials 6 compared to the case where the vacuum heat insulating material 6 of the same size is disposed in the outer box 2. Therefore, the loss is reduced by the amount of loss, and a more efficient heat insulating box 1 can be provided.

実施の形態4.
実施の形態1〜実施の形態3で示した断熱箱体1がドアを備える場合、例えば以下のような構成にしてもよい。なお、本実施の形態4で特に記述しない項目については実施の形態1〜実施の形態3と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 4 FIG.
When the heat insulation box 1 shown in the first to third embodiments includes a door, for example, the following configuration may be used. Items that are not particularly described in the fourth embodiment are the same as those in the first to third embodiments, and the same functions and configurations are described using the same reference numerals.

図9は、本発明の実施の形態4に係る断熱箱体の側面断面図である。
図9に示すように、本実施の形態4に係る断熱箱体1は、内部に区画形成された各貯蔵室7の開口部を開閉するためのドア10を備えている。このドア10は、例えば金属からなる面材12(本発明の外板に相当)と、例えば樹脂からなる内板13と、を備えている。そして、面材12と内板13との間に形成される空間10a(本発明の第2空間に相当)に、硬質ウレタンフォーム5と真空断熱材6が配設(充填)されている。ドア10も実施の形態1〜実施の形態3で示した技術思想(真空断熱材6主に断熱機能を担うという技術思想)に基づいて構成されたものであり、空間10a内の真空断熱材6の充填率を40%〜80%としている。
FIG. 9 is a side cross-sectional view of the heat insulating box according to Embodiment 4 of the present invention.
As shown in FIG. 9, the heat insulation box 1 which concerns on this Embodiment 4 is provided with the door 10 for opening and closing the opening part of each store room 7 dividedly formed in the inside. The door 10 includes a face material 12 made of, for example, metal (corresponding to the outer plate of the present invention) and an inner plate 13 made of, for example, resin. The hard urethane foam 5 and the vacuum heat insulating material 6 are disposed (filled) in a space 10a (corresponding to the second space of the present invention) formed between the face material 12 and the inner plate 13. The door 10 is also configured based on the technical idea shown in the first to third embodiments (the technical idea that the vacuum heat insulating material 6 mainly serves a heat insulating function), and the vacuum heat insulating material 6 in the space 10a. The filling rate is 40% to 80%.

このようなドア10の製造にあたっては、真空断熱材6をあらかじめ面材12に接着固定し、液体状の硬質ウレタンフォーム5の原料を注入して一体発泡を行うことにより、空間10a内を硬質ウレタンフォーム5で充填することができる。  In manufacturing such a door 10, the vacuum heat insulating material 6 is bonded and fixed in advance to the face material 12, and the raw material of the liquid hard urethane foam 5 is injected to perform integral foaming. Can be filled with foam 5.

なお、図9で示したドア10の構成は、あくまでも一例である。例えば、ドア10の貯蔵室7側(内板13側)には、貯蔵室7に収納される収納箱を支持するためのフレーム等が取り付けられる場合がある。このような場合、フレームをドア10にネジ締結するために(ドア10にナット部を形成するために)、図9で示したように、空間10aの貯蔵室7側(内板13側)に硬質ウレタンフォーム5が配設されている方が好ましい。しかしながら、ドア10の貯蔵室7側(内板13側)に取り付ける部品が特にない場合等、例えば図10のようにドア10を構成してもよい。  The configuration of the door 10 shown in FIG. 9 is merely an example. For example, a frame or the like for supporting a storage box stored in the storage chamber 7 may be attached to the door 10 on the storage chamber 7 side (inner plate 13 side). In such a case, in order to screw the frame to the door 10 (to form a nut portion on the door 10), as shown in FIG. 9, on the storage chamber 7 side (inner plate 13 side) of the space 10a. It is preferable that the rigid urethane foam 5 is disposed. However, the door 10 may be configured as shown in FIG. 10, for example, when there is no part to be attached to the storage chamber 7 side (inner plate 13 side) of the door 10.

図10は、本発明の実施の形態4に係る断熱箱体の別の一例を示す側面断面図である。
つまり、図10に示すように、真空断熱材6の全てまたは一部を内板13に配設してもよい。この際、ドア10の上下に作られる真空断熱材6で覆われていない範囲(図9のA部を参照)が、面材12に真空断熱材6を配設した場合と比べ、同じ大きさの真空断熱材6を用いた場合でも小さくなり、より効率の良い断熱箱体1となる。
FIG. 10: is side surface sectional drawing which shows another example of the heat insulation box which concerns on Embodiment 4 of this invention.
That is, as shown in FIG. 10, all or part of the vacuum heat insulating material 6 may be disposed on the inner plate 13. At this time, the range not covered with the vacuum heat insulating material 6 formed above and below the door 10 (refer to part A in FIG. 9) is the same size as the case where the vacuum heat insulating material 6 is disposed on the face material 12. Even when the vacuum heat insulating material 6 is used, the heat insulating box 1 becomes smaller and more efficient.

また、全てのドア10に真空断熱材6を配設する必要はない。例えば、外気と断熱箱体1内(つまり、貯蔵室7)の温度差が小さい場合、真空断熱材6をドア10に配設しても断熱性能改善の効果が小さい。このような場合、真空断熱材6をドア10に配設しなくても十分な断熱性能を確保できる。  Moreover, it is not necessary to arrange the vacuum heat insulating material 6 on all the doors 10. For example, when the temperature difference between the outside air and the inside of the heat insulating box 1 (that is, the storage chamber 7) is small, the effect of improving the heat insulating performance is small even if the vacuum heat insulating material 6 is disposed on the door 10. In such a case, even if the vacuum heat insulating material 6 is not disposed on the door 10, sufficient heat insulating performance can be ensured.

また、本実施の形態4に係るドア10は、断熱箱体1の本体部(外箱2及び内箱3で形成された筐体部分)への取り付け構成を特に限定するものでもない。例えば、レールを用いた引き出し式の取り付け構成により、ドア10を断熱箱体1の本体部に取り付けてもよい。また例えば、図11に示すように、回転式の取り付け構成により、ドア10を断熱箱体1の本体部に取り付けてもよい。  Further, the door 10 according to the fourth embodiment does not particularly limit the mounting configuration of the heat insulation box 1 to the main body (the housing portion formed by the outer box 2 and the inner box 3). For example, you may attach the door 10 to the main-body part of the heat insulation box 1 with the drawer-type attachment structure using a rail. Further, for example, as shown in FIG. 11, the door 10 may be attached to the main body of the heat insulating box 1 by a rotary attachment configuration.

図11は、本発明の実施の形態4に係る断熱箱体におけるドアの取り付け構成の一例を示す、ドア開放時の斜視図である。
回転式の取り付け構成によりドア10を断熱箱体1の本体部に取り付ける場合、断熱箱体1の本体部の左右の片側に、ヒンジ14を固定する。そして、ヒンジ14の軸をドア10に挿し込むことで、ヒンジ14を軸としてドア10を回転させて開閉することができる。
FIG. 11: is a perspective view at the time of door opening which shows an example of the attachment structure of the door in the heat insulation box which concerns on Embodiment 4 of this invention.
When the door 10 is attached to the main body of the heat insulating box 1 by a rotary attachment structure, the hinges 14 are fixed to the left and right sides of the main body of the heat insulating box 1. Then, by inserting the axis of the hinge 14 into the door 10, the door 10 can be rotated and opened with the hinge 14 as an axis.

また、上記のドア10には、図11で示すように、ドア10の貯蔵室7側にガスケット11を取り付けることが好ましい。このガスケット11は、例えば塩化ビニール製である。ドア10を閉めたときに、ガスケット11と断熱箱体1の本体部の前側フランジ面15を密着させることで、貯蔵室7内の空気が箱体外へ流出するのを防止することができる。  Moreover, as shown in FIG. 11, it is preferable to attach the gasket 11 to the door 10 at the storage chamber 7 side. The gasket 11 is made of, for example, vinyl chloride. When the door 10 is closed, the gasket 11 and the front flange surface 15 of the main body of the heat insulating box 1 are brought into close contact with each other, so that the air in the storage chamber 7 can be prevented from flowing out of the box.

以上、本実施の形態4のように構成された断熱箱体1においては、外箱2及び内箱3の間に形成された空間4とドア10の内部空間である空間10aとの総和において、真空断熱材の充填率が40%〜80%となっている。このため、断熱箱体1の壁厚(つまり、外箱2と内箱3との間の距離、及び、ドア10の厚み)を従来よりも薄くすることができるため、省エネルギーで、かつ従来よりも内容積効率の優れた断熱箱体1を提供することができる。このため、外形サイズを変更せずに貯蔵室7を従来よりも拡大でき、断熱箱体1の内部に貯蔵できる収納物を従来よりも増やすことができる。したがって、従来よりも商品価値の高い断熱箱体1を提供することができる。  As described above, in the heat insulating box 1 configured as in the fourth embodiment, in the sum of the space 4 formed between the outer box 2 and the inner box 3 and the space 10a that is the internal space of the door 10, The filling rate of the vacuum heat insulating material is 40% to 80%. For this reason, since the wall thickness of the heat insulation box 1 (that is, the distance between the outer box 2 and the inner box 3 and the thickness of the door 10) can be made thinner than before, it is energy saving and more conventional. It is also possible to provide a heat insulating box 1 having an excellent internal volume efficiency. For this reason, the storage chamber 7 can be expanded more than before without changing the external size, and the stored items that can be stored inside the heat insulating box 1 can be increased more than before. Therefore, the heat insulation box 1 with higher commercial value than before can be provided.

なお、空間4内における真空断熱材6の充填率を増大させることにより、空間4内における硬質ウレタンフォーム5の充填率が低下する。しかしながら、本実施の形態4に係る断熱箱体1においては、硬質ウレタンフォーム5の密度を従来よりも高くし(例えば60kg/m以上)、硬質ウレタンフォーム5の曲げ弾性率を、従来の断熱箱体に用いられていた硬質ウレタンフォームよりも大きな15.0MPa以上とすることができる。したがって、本実施の形態4に係る断熱箱体1は、硬質ウレタンフォーム5の充填率の低下に起因する強度低下も防止することができ、収納物やドア10の重量による歪みに耐え切れず断熱箱体1が変形するなどの問題はない。In addition, the filling rate of the hard urethane foam 5 in the space 4 falls by increasing the filling rate of the vacuum heat insulating material 6 in the space 4. However, in the insulation box 1 according to the fourth embodiment, the density of the rigid urethane foam 5 and higher than the conventional (e.g. 60 kg / m 3 or higher), the flexural modulus of the rigid urethane foam 5, conventional insulation It can be set to 15.0 MPa or more, which is larger than the rigid urethane foam used in the box. Therefore, the heat insulation box 1 according to the fourth embodiment can also prevent a decrease in strength due to a decrease in the filling rate of the rigid urethane foam 5 and can not withstand the distortion due to the weight of the stored item or the door 10 so as to be insulated. There is no problem that the box 1 is deformed.

これにより、断熱箱体1が歪んでドア10が傾いてしまうことを抑制でき、外観の悪化を防ぐことができる。また、ガスケット11と前側フランジ面15の位置関係がずれて隙間が発生し、貯蔵室7内の空気が箱体外へ流出することも防止できる。よって、真空断熱材6を多量に使用しても断熱箱体1の品質として問題なく、優れた断熱性能によって省エネルギー化が実現できるのである。  Thereby, it can suppress that the heat insulation box 1 is distorted, and the door 10 inclines, and the deterioration of an external appearance can be prevented. Further, the positional relationship between the gasket 11 and the front flange surface 15 is shifted and a gap is generated, so that the air in the storage chamber 7 can be prevented from flowing out of the box. Therefore, even if a large amount of the vacuum heat insulating material 6 is used, there is no problem as the quality of the heat insulating box 1, and energy saving can be realized by excellent heat insulating performance.

実施の形態5.
実施の形態1〜実施の形態4で示した断熱箱体1において、強度低下による断熱箱体1の変形は、重力に対して水平な底面部や天井部よりも、垂直な側面部や背面部の強度の方がより影響度が大きい。そのため、下記のように真空断熱材6を搭載することで、より断熱箱体1の強度を向上させることができる。なお、本実施の形態5で特に記述しない項目については実施の形態1〜実施の形態4と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 5 FIG.
In the heat insulation box 1 shown in the first to fourth embodiments, the deformation of the heat insulation box 1 due to the strength reduction is more vertical than the bottom surface and the ceiling that are horizontal with respect to gravity. The strength of is more influential. Therefore, the intensity | strength of the heat insulation box 1 can be improved more by mounting the vacuum heat insulating material 6 as follows. Items that are not particularly described in the fifth embodiment are the same as those in the first to fourth embodiments, and the same functions and configurations are described using the same reference numerals.

図1に示すような断熱箱体1について、側面部や背面部において面ごとの面積に対する真空断熱材6の占める面積率と箱体変形量を計算した結果が図15となる。なお、真空断熱材6の充填率は40%とし、面積比率が50%の時の変形量を1としている。真空断熱材6の曲げ弾性率が20MPa〜40MPaと硬質ウレタンフォーム5の曲げ弾性率よりも大きいため、側面部と背面部の真空断熱材6の面積が大きくなるほど断熱箱体1の変形量が小さくなり、すなわち断熱箱体1の強度を大きく上げることができる。About the heat insulation box 1 as shown in FIG. 1, the area ratio which the vacuum heat insulating material 6 occupies with respect to the area for every surface in a side part and a back part, and the result of calculating box deformation become FIG. The filling rate of the vacuum heat insulating material 6 is 40%, and the deformation amount when the area ratio is 50% is 1. Since the bending elastic modulus of the vacuum heat insulating material 6 is 20 MPa to 40 MPa, which is larger than the bending elastic modulus of the rigid urethane foam 5, the amount of deformation of the heat insulating box 1 decreases as the area of the vacuum heat insulating material 6 on the side surface and the back surface increases. That is, the strength of the heat insulating box 1 can be greatly increased.

また、図15によると、真空断熱材6の面積比率が70%を超えると断熱箱体1の強度に与える影響が小さくなっている。これは充填率を40%として計算しているため、面積を広げた分、真空断熱材6の厚みを薄くした影響が強まったためである。厚みを一定とし真空断熱材6の面積を広げ充填率を大きくすれば、もちろんこのようなことは起こらないが、真空断熱材6の充填率を上げるとコストが増大するため、充填率を変えずに断熱箱体1の強度を上げるためには前述のように面積比率を上げれば効率がよく、70%以上とすれば強度の確保を見込むことができ、より断熱箱体1の壁厚を薄くして貯蔵室7の容積を拡大できる。Moreover, according to FIG. 15, when the area ratio of the vacuum heat insulating material 6 exceeds 70%, the influence which it has on the intensity | strength of the heat insulation box 1 will become small. This is because the calculation is performed with a filling rate of 40%, and the effect of reducing the thickness of the vacuum heat insulating material 6 is increased as the area is increased. If the thickness is kept constant and the area of the vacuum heat insulating material 6 is increased and the filling rate is increased, of course, this does not occur. However, if the filling rate of the vacuum heat insulating material 6 is increased, the cost increases, so the filling rate is not changed. In order to increase the strength of the heat insulation box 1, it is efficient if the area ratio is increased as described above, and if it is 70% or more, the strength can be ensured, and the wall thickness of the heat insulation box 1 is made thinner. Thus, the volume of the storage chamber 7 can be expanded.

以上、本実施の形態5に係る断熱箱体1においては、断熱箱体1の壁厚を従来よりも薄くすることができるため、省エネルギーで、かつ従来よりも内容積効率の優れた断熱箱体1を提供することができる。つまり、外形サイズを変更せずに貯蔵室7を従来よりも拡大でき、断熱箱体1の内部に貯蔵できる収納物を従来よりも増やすことができる。  As mentioned above, in the heat insulation box 1 which concerns on this Embodiment 5, since the wall thickness of the heat insulation box 1 can be made thinner than before, the heat insulation box body which was energy-saving and was excellent in internal volume efficiency compared with the past. 1 can be provided. That is, the storage chamber 7 can be expanded more than before without changing the outer size, and the amount of storage that can be stored inside the heat insulating box 1 can be increased more than before.

実施の形態6.
実施の形態1〜実施の形態5で示した断熱箱体1において、硬質ウレタンフォーム5のフリーフォーム密度を上げることで、より強度が安定して外観の優れた、品質の高い断熱箱体1を提供できる。なお、本実施の形態6で特に記述しない項目については実施の形態1〜実施の形態5と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 6 FIG.
In the heat insulation box 1 shown in Embodiment 1 to Embodiment 5, by increasing the free foam density of the rigid urethane foam 5, the heat insulation box 1 with high quality and excellent strength and excellent appearance can be obtained. Can be provided. Note that items not particularly described in the sixth embodiment are the same as those in the first to fifth embodiments, and the same functions and configurations are described using the same reference numerals.

硬質ウレタンフォーム5の密度を上げることによって曲げ弾性率を増大させ、断熱箱体1の強度を上げることは前述の通りであるが、ウレタン原液をそのまま多く流し込んで密度を上げようとすると、従来の発泡倍率の高いウレタンでは注入口32付近と末端部とでウレタン密度にムラができやすく、安定した強度を得ることが困難である。  As described above, the bending elastic modulus is increased by increasing the density of the rigid urethane foam 5 and the strength of the heat insulating box 1 is increased. However, if a large amount of urethane stock solution is poured as it is to increase the density, With urethane having a high expansion ratio, the urethane density tends to be uneven near the inlet 32 and at the end portion, and it is difficult to obtain a stable strength.

そのため、フリーフォーム密度を大きくすることで硬質ウレタンフォーム5の密度を均一にすることが容易となる。ここでフリーフォーム密度とは、箱体など密閉された空間内でウレタンを発泡させず、開放させた状態でウレタンを発泡させた時の硬質ウレタンフォーム5の密度の事を指す。一般に、狭い空間内でウレタンが発泡、膨張するとフリーフォーム密度よりも密度が高くなる。  Therefore, it becomes easy to make the density of the rigid urethane foam 5 uniform by increasing the free foam density. Here, the free foam density refers to the density of the rigid urethane foam 5 when urethane is foamed in an open state without foaming urethane in a sealed space such as a box. Generally, when urethane foams and expands in a narrow space, the density becomes higher than the free foam density.

硬質ウレタンフォーム5のような発泡体は、一般的に内部の気泡が多い、すなわち密度が小さい方が断熱の効果が高い。そのため断熱箱体1に通常使用される硬質ウレタンフォーム5の密度は25〜30kg/m程度の密度の小さい物が多く使用される。このウレタンフォームを使用し曲げ弾性率を15MPa以上にして断熱箱体1の強度を確保しようとすると、例えば前述したウレタン厚さが8mmの断熱箱体では、ジャストパック量(対象となる箱体内に硬質ウレタンフォーム5が丁度充填される時のウレタン量)をオーバーさせる必要があり、密度にムラができやすい。さらに、ジャストパック量よりもウレタンを多く詰めているため、断熱箱体1やドア10の隙間(例えば外箱2と内箱3の接合部)からウレタンが溢れだし、狙っている硬質ウレタンフォーム密度を確保できない、また、溢れだしたウレタンを取り除く作業が必要となるといった不具合が生じやすい。A foamed body such as the rigid urethane foam 5 generally has a higher heat insulating effect when it has more internal bubbles, that is, a smaller density. Therefore, as for the density of the rigid urethane foam 5 normally used for the heat insulation box 1, the thing with a small density of about 25-30 kg / m < 3 > is used abundantly. If it is attempted to secure the strength of the heat insulating box 1 by using this urethane foam and setting the flexural modulus to 15 MPa or more, for example, in the heat insulating box having the urethane thickness of 8 mm, the just pack amount (in the target box) It is necessary to exceed the urethane amount when the rigid urethane foam 5 is just filled, and the density tends to be uneven. Furthermore, since urethane is packed more than the amount of the just pack, urethane overflows from the gap between the heat insulating box 1 and the door 10 (for example, the joint between the outer box 2 and the inner box 3), and the targeted rigid urethane foam density Cannot be secured, and troubles such as the need to remove overflowing urethane are likely to occur.

ここで、ウレタン原液に含まれる発泡材の量を減らすことで、フリーフォーム密度を上げることができる。例えば前述したウレタン厚さが8mmの断熱箱体1では、フリーフォーム密度を35kg/mにすることでジャストパック量での密度が60kg/m以上となり、硬質ウレタンフォーム5の曲げ弾性率15MPaを確保し、かつ密度のムラやウレタンの漏れといった不具合を解消できる。ここでウレタンのフリーフォーム密度を上げたことによる断熱性能への影響が懸念されるが、前述のように真空断熱材6の充填率が40%〜80%であるため硬質ウレタンフォーム5の断熱性能悪化が断熱箱体1やドア10の断熱性能へ与える影響は微小なものである。なお、前述したウレタン厚さを8mm未満にする場合は、フリーフォーム密度を、35kg/m以上にすることでジャストパック量を調整することができる。Here, the free foam density can be increased by reducing the amount of the foam material contained in the urethane stock solution. For example, in the heat insulation box 1 having a urethane thickness of 8 mm, the density of the just pack amount is 60 kg / m 3 or more by setting the free foam density to 35 kg / m 3 , and the flexural modulus of the rigid urethane foam 5 is 15 MPa. In addition, it is possible to solve problems such as uneven density and urethane leakage. Here, there is a concern about the influence on the heat insulation performance by increasing the density of the free foam of urethane, but the heat insulation performance of the rigid urethane foam 5 because the filling rate of the vacuum heat insulating material 6 is 40% to 80% as described above. The influence of deterioration on the heat insulation performance of the heat insulation box 1 and the door 10 is minute. In addition, when making urethane thickness mentioned above less than 8 mm, the amount of just packs can be adjusted by making a free form density into 35 kg / m < 3 > or more.

以上、本実施の形態6に係る断熱箱体1においては、断熱箱体1の壁厚を従来よりも薄くすることができ、かつ安定した強度を確保してウレタンの漏れにくい、安定した品質を確保しつつ省エネルギーで、かつ従来よりも内容積効率の優れた断熱箱体1を提供することができる。つまり、外形サイズを変更せずに貯蔵室7を従来よりも拡大でき、断熱箱体1の内部に貯蔵できる収納物を従来よりも増やすことができる。  As mentioned above, in the heat insulation box 1 which concerns on this Embodiment 6, the wall thickness of the heat insulation box 1 can be made thinner than before, and the stable quality is ensured and the stable quality which is hard to leak urethane. It is possible to provide a heat-insulating box 1 that is energy-saving while ensuring and excellent in internal volume efficiency as compared with the prior art. That is, the storage chamber 7 can be expanded more than before without changing the outer size, and the amount of storage that can be stored inside the heat insulating box 1 can be increased more than before.

実施の形態7.
本実施の形態7では、上記の実施の形態で示した断熱箱体1を用いた冷蔵庫の一例について説明する。なお、本実施の形態7で特に記述しない項目については実施の形態1〜実施の形態6と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 7 FIG.
In this Embodiment 7, an example of the refrigerator using the heat insulation box 1 shown in said embodiment is demonstrated. Note that items not particularly described in the seventh embodiment are the same as those in the first to sixth embodiments, and the same functions and configurations are described using the same reference numerals.

図12は、本発明の実施の形態5に係る冷蔵庫を示す側面断面図である。なお、図12は、実施の形態4の図9で示した断熱箱体1を用いた冷蔵庫100を示している。
本実施の形態7に係る冷蔵庫100においては、断熱箱体1の内部に区画形成された貯蔵室7が、上部より冷蔵室21、冷凍室22及び野菜室23として用いられている。
FIG. 12 is a side sectional view showing a refrigerator according to Embodiment 5 of the present invention. In addition, FIG. 12 has shown the refrigerator 100 using the heat insulation box 1 shown in FIG. 9 of Embodiment 4. FIG.
In the refrigerator 100 according to the seventh embodiment, the storage chamber 7 partitioned and formed inside the heat insulating box 1 is used as the refrigerator compartment 21, the freezer compartment 22, and the vegetable compartment 23 from above.

また、本実施の形態7に係る冷蔵庫100は、断熱箱体1に、冷蔵室21、冷凍室22及び野菜室23へ供給する空気を冷却するための冷却装置を備えている。この冷却装置は、圧縮機30、凝縮配管9(図7参照)、図示しない減圧装置(膨張弁やキャピラリーチューブ等)、及び、冷却器27等で構成されている。つまり、本実施の形態5に係る冷蔵庫100は、冷却装置となる冷凍サイクル回路を備えている。これら冷却装置の構成要素のうち、圧縮機30及び減圧装置は、断熱箱体1の後部下側に形成された機械室29に設けられている。凝縮配管9は、断熱箱体1の例えば側面部に設けられている。冷却器27は、内箱3とファングリル26に囲われて形成された冷却室25に設けられている。また、この冷却室25には、冷却器27で冷却された空気を冷蔵室21、冷凍室22及び野菜室23に送るための冷却器ファン28も設けられている。また、断熱箱体1の後部上側には制御基板室31が形成されており、当該制御基板室31には、圧縮機30や冷却器ファン28の回転数等を制御する制御基板が配設されている。  The refrigerator 100 according to the seventh embodiment includes a cooling device for cooling the air supplied to the refrigerator compartment 21, the freezer compartment 22, and the vegetable compartment 23 in the heat insulating box 1. This cooling device includes a compressor 30, a condensation pipe 9 (see FIG. 7), a decompression device (such as an expansion valve and a capillary tube) (not shown), a cooler 27, and the like. That is, the refrigerator 100 according to the fifth embodiment includes a refrigeration cycle circuit serving as a cooling device. Among these components of the cooling device, the compressor 30 and the pressure reducing device are provided in a machine room 29 formed on the lower rear side of the heat insulating box 1. The condensation pipe 9 is provided on, for example, a side surface portion of the heat insulating box 1. The cooler 27 is provided in a cooling chamber 25 formed by being surrounded by the inner box 3 and the fan grille 26. The cooling chamber 25 is also provided with a cooler fan 28 for sending the air cooled by the cooler 27 to the refrigerator compartment 21, the freezer compartment 22 and the vegetable compartment 23. Further, a control board chamber 31 is formed on the rear upper side of the heat insulating box 1, and a control board for controlling the rotational speed of the compressor 30 and the cooler fan 28 is disposed in the control board chamber 31. ing.

このように構成された冷蔵庫100においては、機械室29内にある圧縮機30によって送り出された高温高圧のガス冷媒は、凝縮配管9(図7参照)を通る間に凝縮される。この低温高圧の液冷媒は、減圧装置によって低温低圧の気液二相冷媒に減圧され、冷却器27に流れ着くときには、例えば−20℃以下となっている。この低温低圧の気液二相冷媒が冷却室25内の空気を冷却し、この冷却された空気を冷却器ファン28によって冷蔵室21、冷凍室22及び野菜室23へ供給することにより、冷蔵室21、冷凍室22及び野菜室23(より詳しくは、これら貯蔵室に収納された収納物)は冷却される。一方、冷却室25内の空気を冷却した低温低圧の気液二相冷媒は、冷却室25内の空気によって加熱されて蒸発し、低圧のガス状冷媒となって再び圧縮機30に吸入され、圧縮される。  In the refrigerator 100 configured as described above, the high-temperature and high-pressure gas refrigerant sent out by the compressor 30 in the machine room 29 is condensed while passing through the condensation pipe 9 (see FIG. 7). This low-temperature and high-pressure liquid refrigerant is decompressed to a low-temperature and low-pressure gas-liquid two-phase refrigerant by the decompression device, and when it reaches the cooler 27, for example, it is −20 ° C. or lower. The low-temperature and low-pressure gas-liquid two-phase refrigerant cools the air in the cooling chamber 25, and the cooled air is supplied to the refrigerating chamber 21, the freezing chamber 22, and the vegetable chamber 23 by the cooler fan 28. 21, the freezer compartment 22 and the vegetable compartment 23 (more specifically, the items stored in these storage rooms) are cooled. On the other hand, the low-temperature and low-pressure gas-liquid two-phase refrigerant that has cooled the air in the cooling chamber 25 is heated and evaporated by the air in the cooling chamber 25, becomes a low-pressure gaseous refrigerant, and is sucked into the compressor 30 again. Compressed.

以上、本実施の形態7のように構成された冷蔵庫100においては、外箱2及び内箱3の間に形成された空間4とドア10の内部空間である空間10aとの総和において、真空断熱材の充填率が40%〜80%となっている。このため、断熱箱体1の壁厚(つまり、外箱2と内箱3との間の距離、及び、ドア10の厚み)を従来よりも薄くしても断熱性能を確保できる。したがって、各貯蔵室を暖まりにくくできるので、冷却に必要な風量を抑えることができ、圧縮機30の回転数を下げたり運転OFF時間を延したりできる。このため、冷蔵庫100を省エネルギー化することができる。また、本実施の形態7のように構成された冷蔵庫100は、外形サイズを変更せずに各貯蔵室を従来よりも拡大でき、各貯蔵室に貯蔵できる収納物を従来よりも増やすことができる。  As described above, in the refrigerator 100 configured as in the seventh embodiment, in the sum of the space 4 formed between the outer box 2 and the inner box 3 and the space 10a that is the internal space of the door 10, vacuum insulation is provided. The filling rate of the material is 40% to 80%. For this reason, even if the wall thickness of the heat insulation box 1 (that is, the distance between the outer box 2 and the inner box 3 and the thickness of the door 10) is made thinner than before, heat insulation performance can be secured. Therefore, since each store room can be made difficult to warm, the amount of air necessary for cooling can be suppressed, and the number of rotations of the compressor 30 can be reduced or the operation OFF time can be extended. For this reason, the refrigerator 100 can save energy. Moreover, the refrigerator 100 comprised like this Embodiment 7 can expand each storage room rather than before, without changing an external size, and can increase the storage thing which can be stored in each storage room than before. .

また、最も外気との温度差の大きい冷凍室22を中央に配置することにより、外気から冷凍室22に熱が侵入する面を4面(前面となるドア10、左右側面、及び背面)にすることができる。このため、冷蔵庫100をより省エネルギー化できる。  In addition, by placing the freezer compartment 22 having the largest temperature difference from the outside air in the center, the surfaces through which heat enters the freezer compartment 22 from the outside air are changed to four surfaces (the front door 10, the left and right side surfaces, and the rear surface). be able to. For this reason, the refrigerator 100 can be made more energy-saving.

また、本実施の形態7においても、空間4及び空間10aに充填される硬質ウレタンフォーム5の曲げ弾性率を15.0MPa以上としているので、断熱箱体1の強度を確保し、収納物の重量による歪みに耐え切れず断熱箱体1が変形することを抑制できる。このため、断熱箱体1が歪んでドア10が傾いてしまうことを抑制でき、外観の悪化を防ぐことができる。また、ガスケット11と前側フランジ面15の位置関係がずれて隙間が発生し、冷蔵室21、冷凍室22及び野菜室23内の空気が断熱箱体1外へ流出することを防止できるので、冷蔵庫100をより省エネルギー化できる。  Moreover, also in this Embodiment 7, since the bending elastic modulus of the hard urethane foam 5 with which the space 4 and the space 10a are filled is set to 15.0 MPa or more, the strength of the heat insulating box 1 is ensured, and the weight of the stored items. It is possible to suppress the heat insulation box 1 from being deformed without being able to withstand the distortion caused by the above. For this reason, it can suppress that the heat insulation box 1 is distorted, and the door 10 inclines, and the deterioration of an external appearance can be prevented. Further, since the positional relationship between the gasket 11 and the front flange surface 15 is shifted and a gap is generated, it is possible to prevent the air in the refrigerator compartment 21, the freezer compartment 22, and the vegetable compartment 23 from flowing out of the heat insulating box 1, so that the refrigerator 100 can save more energy.

なお、本実施の形態7では、空間4及び空間10a内における真空断熱材6の充填率の分布について特に言及しなかったが、外気と各貯蔵室との温度差に応じて、空間4及び空間10a内において、所定の位置毎に真空断熱材6の充填率を変更してもよい。  In addition, in this Embodiment 7, although it did not mention in particular about distribution of the filling rate of the vacuum heat insulating material 6 in the space 4 and the space 10a, according to the temperature difference of external air and each store room, the space 4 and space In 10a, you may change the filling rate of the vacuum heat insulating material 6 for every predetermined position.

例えば、冷凍室22は、内部温度と外気との温度差が最も大きくなる。このため、冷凍室22と対向する範囲における断熱箱体1の左右側面、背面及び前面(ドア10)の真空断熱材6の充填率を他の範囲よりも大きくしてもよい(例えば60%以上)。このように構成することにより、最も温度の低い冷凍室22への熱侵入を抑制でき、冷蔵庫100をより省エネルギー化できる。  For example, the freezer compartment 22 has the largest temperature difference between the internal temperature and the outside air. For this reason, the filling rate of the vacuum heat insulating material 6 on the left and right side surfaces, the back surface, and the front surface (door 10) of the heat insulating box 1 in the range facing the freezer compartment 22 may be larger than the other ranges (for example, 60% or more). ). By comprising in this way, the heat | fever penetration | invasion to the freezer compartment 22 with the lowest temperature can be suppressed, and the refrigerator 100 can be energy-saving more.

また例えば、外気温度が例えば30℃の時、機械室29は例えば35℃以上となり、制御基板室31は例えば40℃以上まで温度が上昇する。つまり、機械室29及び制御基板室31は、他の部分と比べて貯蔵室内との温度差が大きくなる。このため、機械室29及び制御基板室31の近傍に配置された貯蔵室には熱が侵入しやすくなる。このため、機械室29及び制御基板室31と貯蔵室との間となる位置の真空断熱材6の充填率を他の範囲よりも大きくしてもよい(例えば60%以上)。このように構成することにより、温度の高い機械室29や制御基板室31から近傍の貯蔵室へ熱が侵入することを抑制でき、冷蔵庫100をより省エネルギー化できる。  Further, for example, when the outside air temperature is, for example, 30 ° C., the machine chamber 29 is, for example, 35 ° C. or higher, and the temperature of the control board chamber 31 is increased, for example, to 40 ° C. or higher. That is, the temperature difference between the machine room 29 and the control board room 31 and the storage room is larger than other parts. For this reason, heat easily enters the storage chamber arranged in the vicinity of the machine chamber 29 and the control substrate chamber 31. For this reason, you may make the filling rate of the vacuum heat insulating material 6 in the position between the machine room 29 and the control board room 31 and the storage room larger than other ranges (for example, 60% or more). By comprising in this way, it can suppress that a heat | fever penetrate | invades from the high temperature machine room 29 and the control board room 31 to the nearby storage room, and can save energy of the refrigerator 100 more.

また、本実施の形態7では、3つの貯蔵室(冷蔵室21、冷凍室22、野菜室23)が形成された冷蔵庫100について説明したが、例えば図5や図6で示したように断熱箱体1内を区画し、冷蔵庫100の貯蔵室の数を4つ以上としても勿論よい。このように冷蔵庫100を構成しても、上記と同様の効果を得ることができる。  In the seventh embodiment, the refrigerator 100 in which the three storage rooms (the refrigerator compartment 21, the freezer compartment 22, and the vegetable compartment 23) are formed has been described. For example, as shown in FIG. 5 and FIG. Of course, the body 1 may be partitioned and the number of storage rooms of the refrigerator 100 may be four or more. Even if the refrigerator 100 is configured in this manner, the same effects as described above can be obtained.

本発明に係る断熱箱体1は、例えば、水を加熱する加熱装置、及び該加熱装置で加熱された水を貯留するタンクを備えた貯湯装置に用いることもできる。断熱箱体1の内部にタンクを配設することにより、従来よりも外形サイズの小さな断熱箱体1によってタンクを断熱することができ、貯湯装置を省スペース化することができる。  The heat insulation box 1 which concerns on this invention can also be used for the hot water storage apparatus provided with the heating apparatus which heats water, and the tank which stores the water heated with this heating apparatus, for example. By disposing the tank inside the heat insulation box 1, the tank can be insulated by the heat insulation box 1 having a smaller outer size than before, and the hot water storage device can be saved.

1 断熱箱体、2 外箱、3 内箱、4 空間、5 硬質ウレタンフォーム、6 真空断熱材、7 貯蔵室、8 スペーサ、9 凝縮配管、10 ドア、10a 空間、11 ガスケット、12 面材、13 内板、14 ヒンジ、15 前側フランジ面、16 レール、21 冷蔵室、22 冷凍室、23 野菜室、24 仕切り板、25 冷却室、26 ファングリル、27 冷却器、28 冷却器ファン、29 機械室、30 圧縮機、31 制御基板室、32 注入口、33 切り欠き、34 板金カバー、100 冷蔵庫。  DESCRIPTION OF SYMBOLS 1 Heat insulation box body, 2 outer box, 3 inner box, 4 space, 5 rigid urethane foam, 6 vacuum heat insulating material, 7 storage chamber, 8 spacer, 9 condensation piping, 10 door, 10a space, 11 gasket, 12 face material, 13 inner plate, 14 hinge, 15 front flange surface, 16 rail, 21 refrigerator compartment, 22 freezer compartment, 23 vegetable compartment, 24 partition plate, 25 cooling compartment, 26 fan grill, 27 cooler, 28 cooler fan, 29 machine Chamber, 30 Compressor, 31 Control board chamber, 32 Inlet, 33 Notch, 34 Sheet metal cover, 100 Refrigerator.

Claims (9)

外箱及び内箱と、
前記外箱と前記内箱との間に形成された第1空間に充填された真空断熱材及び硬質ウレタンフォームとを備え、少なくとも左右側面部と背面部に前記真空断熱材を搭載し、前記第1空間における前記真空断熱材の充填率が40%〜80%となっており、外箱表面積に対する前記真空断熱材の面積比率が60%以上であって、前記硬質ウレタンフォームの曲げ弾性率が15.0MPa以上となっていることを特徴とする断熱箱体。
With outer box and inner box,
A vacuum heat insulating material and a rigid urethane foam filled in a first space formed between the outer box and the inner box are provided, and the vacuum heat insulating material is mounted on at least the left and right side surfaces and the back surface, The filling rate of the vacuum heat insulating material in one space is 40% to 80%, the area ratio of the vacuum heat insulating material to the outer box surface area is 60% or more, and the flexural modulus of the rigid urethane foam is 15 A heat insulating box characterized by a pressure of 0.0 MPa or more.
外板及び内板と、
前記外板と前記内箱との間に形成された第2空間に充填された前記真空断熱材及び前記硬質ウレタンフォームと、
を有するドアを備え、
前記第1空間及び前記第2空間の総和において、前記真空断熱材の充填率が40%〜80%となっていることを特徴とする請求項1に記載の断熱箱体。
An outer plate and an inner plate,
The vacuum heat insulating material and the rigid urethane foam filled in a second space formed between the outer plate and the inner box;
Comprising a door having
2. The heat insulating box according to claim 1, wherein a filling rate of the vacuum heat insulating material is 40% to 80% in a sum of the first space and the second space.
前記硬質ウレタンフォームの平均熱伝導率が0.018W/mK〜0.025W/mKであり、
前記真空断熱材の熱伝導率が0.0030W/mK〜0.0012W/mKであることを特徴とする請求項1又は請求項2に記載の断熱箱体。
The average thermal conductivity of the rigid urethane foam is 0.018 W / mK to 0.025 W / mK,
The thermal conductivity of the vacuum heat insulating material is 0.0030 W / mK to 0.0012 W / mK, The heat insulating box according to claim 1 or 2.
前記真空断熱材を、前記外箱及び前記内箱から所定の間隔を介して配置し、
前記真空断熱材を前記硬質ウレタンフォームに埋設したことを特徴とする請求項1〜請求項3のいずれか一項に記載の断熱箱体。
The vacuum heat insulating material is disposed at a predetermined interval from the outer box and the inner box,
The heat insulation box according to any one of claims 1 to 3, wherein the vacuum heat insulating material is embedded in the rigid urethane foam.
前記外箱の一側面には、前記硬質ウレタンフォームの原液を前記第1空間に注入するための注入口が少なくとも1つ形成され、
該注入口が形成された前記外箱の一側面には、複数の前記真空断熱材が対向して並設され、
これら真空断熱材のうちの少なくとも1つには、少なくとも1つの角部に切り欠きが形成され、
前記注入口は、前記切り欠きに対向して形成されていることを特徴とする請求項1〜請求項4のいずれか一項に記載の断熱箱体。
On one side of the outer box, at least one injection port for injecting the stock solution of the rigid urethane foam into the first space is formed,
On one side surface of the outer box in which the inlet is formed, a plurality of the vacuum heat insulating materials are arranged opposite to each other,
At least one of these vacuum insulations has a notch formed in at least one corner,
The said injection hole is formed facing the said notch, The heat insulation box as described in any one of Claims 1-4 characterized by the above-mentioned.
前記外箱の左右側面部と背面部において、各面における前記真空断熱材の占める面積の割合が全て70%を超えることを特徴とする請求項1〜請求項5のいずれか一項に記載の断熱箱体。  The ratio of the area which the said vacuum heat insulating material occupies in each surface exceeds 70% in the right-and-left side surface part and back surface part of the said outer box, It is any one of Claims 1-5 characterized by the above-mentioned. Insulated box. フリーフォーム密度を35kg/m以上とし、前記断熱箱体に対するジャストパック量を60kg/m以上とした硬質ウレタンフォームを使用したことを特徴とする請求項1〜請求項6のいずれか一項に記載の断熱箱体。7. The rigid urethane foam having a free foam density of 35 kg / m 3 or more and a just pack amount of 60 kg / m 3 or more with respect to the heat insulating box is used. The heat insulation box as described in. 請求項1〜請求項7のいずれか一項に記載の断熱箱体と、
前記断熱箱体に形成された貯蔵室に供給する空気を冷却する冷却装置と、
を備えたことを特徴とする冷蔵庫。
The heat insulation box as described in any one of Claims 1-7,
A cooling device for cooling the air supplied to the storage chamber formed in the heat insulating box;
A refrigerator characterized by comprising.
請求項1〜請求項7のいずれか一項に記載の断熱箱体と、
水を加熱する加熱装置と、
前記断熱箱体内に設けられ、前記加熱装置によって加熱された水を貯留するタンクと、
を備えたことを特徴とする貯湯装置。
The heat insulation box as described in any one of Claims 1-7,
A heating device for heating water;
A tank that is provided in the heat insulation box and stores water heated by the heating device;
A hot water storage device characterized by comprising:
JP2014507659A 2012-03-26 2013-03-14 Insulated box, refrigerator and hot water storage device provided with the insulated box Active JP6192634B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012069129 2012-03-26
JP2012069129 2012-03-26
PCT/JP2013/057138 WO2013146286A1 (en) 2012-03-26 2013-03-14 Heat insulating box, and refrigerator and hot-water storage device each comprising heat insulating box

Publications (2)

Publication Number Publication Date
JPWO2013146286A1 true JPWO2013146286A1 (en) 2015-12-10
JP6192634B2 JP6192634B2 (en) 2017-09-06

Family

ID=49259550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014507659A Active JP6192634B2 (en) 2012-03-26 2013-03-14 Insulated box, refrigerator and hot water storage device provided with the insulated box

Country Status (7)

Country Link
JP (1) JP6192634B2 (en)
CN (2) CN203249460U (en)
AU (1) AU2013238222B2 (en)
HK (1) HK1187977A1 (en)
SG (1) SG11201405375UA (en)
TW (1) TWI524041B (en)
WO (1) WO2013146286A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146286A1 (en) * 2012-03-26 2013-10-03 三菱電機株式会社 Heat insulating box, and refrigerator and hot-water storage device each comprising heat insulating box
JP6314045B2 (en) * 2014-07-04 2018-04-18 日立アプライアンス株式会社 Hot water storage tank unit
JP6324826B2 (en) * 2014-07-04 2018-05-16 日立アプライアンス株式会社 Hot water storage tank unit
JP6310365B2 (en) * 2014-08-22 2018-04-11 日立アプライアンス株式会社 Hot water storage tank unit
JP6435223B2 (en) * 2015-03-31 2018-12-05 日立アプライアンス株式会社 Hot water storage tank unit
JP6557528B2 (en) * 2015-06-29 2019-08-07 日立グローバルライフソリューションズ株式会社 Hot water storage tank unit
KR102502160B1 (en) 2015-08-03 2023-02-21 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102529852B1 (en) * 2015-08-03 2023-05-08 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102498210B1 (en) 2015-08-03 2023-02-09 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR20170016188A (en) 2015-08-03 2017-02-13 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102442973B1 (en) 2015-08-03 2022-09-14 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102497139B1 (en) 2015-08-03 2023-02-07 엘지전자 주식회사 Vacuum adiabatic body
KR102466469B1 (en) 2015-08-03 2022-11-11 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102529853B1 (en) 2015-08-03 2023-05-08 엘지전자 주식회사 Vacuum adiabatic body, fabricating method for the Vacuum adiabatic body, porous substance package, and refrigerator
EP3954956A1 (en) 2015-08-03 2022-02-16 LG Electronics Inc. Vacuum adiabatic body and refrigerator
KR102525550B1 (en) 2015-08-03 2023-04-25 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102525551B1 (en) 2015-08-03 2023-04-25 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102466470B1 (en) 2015-08-04 2022-11-11 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
RU2691890C1 (en) * 2015-08-26 2019-06-18 Мицубиси Электрик Корпорейшн Refrigerator (versions)
JP6556564B2 (en) * 2015-09-01 2019-08-07 日立グローバルライフソリューションズ株式会社 Hot water storage tank unit
CN105927823A (en) * 2016-04-28 2016-09-07 合肥华凌股份有限公司 Heat preservation structure using vacuum insulated panels, and refrigerator
CN106440619B (en) * 2016-09-28 2018-12-14 青岛海尔股份有限公司 Refrigerator and its control method
JP6948165B2 (en) * 2017-06-12 2021-10-13 東芝ライフスタイル株式会社 refrigerator
JP6910975B2 (en) * 2018-02-08 2021-07-28 日立グローバルライフソリューションズ株式会社 refrigerator
JP6524301B2 (en) * 2018-04-11 2019-06-05 日立グローバルライフソリューションズ株式会社 Hot water storage tank unit
CN111503892B (en) * 2020-04-15 2021-05-18 山东齐昊新能源科技有限公司 Special water storage tank for low heat energy dissipation of air source heat pump water heater

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028562A (en) * 2001-07-12 2003-01-29 Matsushita Refrig Co Ltd Refrigerator and method of manufacturing the same
JP2003042652A (en) * 2001-07-26 2003-02-13 Matsushita Refrig Co Ltd Heat insulation box, and refrigerator equipped therewith
JP3478810B2 (en) * 2001-01-15 2003-12-15 松下冷機株式会社 Insulated box, raw material manufacturing method, and refrigerator
US20040174106A1 (en) * 2001-06-04 2004-09-09 Kazutaka Uekado Insulated box body, refrigerator having the box body, and method of recycling materials for insulated box body
JP2006183896A (en) * 2004-12-27 2006-07-13 Hitachi Home & Life Solutions Inc Refrigerator and vacuum heat insulating material
JP2009121697A (en) * 2007-11-12 2009-06-04 Sharp Corp Refrigerator
JP2012026583A (en) * 2010-07-20 2012-02-09 Hitachi Appliances Inc Refrigerator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285672A (en) * 2006-04-20 2007-11-01 Hitachi Appliances Inc Heat insulation box and its manufacturing method
CN101473159A (en) * 2006-06-22 2009-07-01 巴斯夫欧洲公司 Thermal insulation elements
WO2013146286A1 (en) * 2012-03-26 2013-10-03 三菱電機株式会社 Heat insulating box, and refrigerator and hot-water storage device each comprising heat insulating box

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3478810B2 (en) * 2001-01-15 2003-12-15 松下冷機株式会社 Insulated box, raw material manufacturing method, and refrigerator
US20040174106A1 (en) * 2001-06-04 2004-09-09 Kazutaka Uekado Insulated box body, refrigerator having the box body, and method of recycling materials for insulated box body
JP2003028562A (en) * 2001-07-12 2003-01-29 Matsushita Refrig Co Ltd Refrigerator and method of manufacturing the same
JP2003042652A (en) * 2001-07-26 2003-02-13 Matsushita Refrig Co Ltd Heat insulation box, and refrigerator equipped therewith
JP2006183896A (en) * 2004-12-27 2006-07-13 Hitachi Home & Life Solutions Inc Refrigerator and vacuum heat insulating material
JP2009121697A (en) * 2007-11-12 2009-06-04 Sharp Corp Refrigerator
JP2012026583A (en) * 2010-07-20 2012-02-09 Hitachi Appliances Inc Refrigerator

Also Published As

Publication number Publication date
CN103363764A (en) 2013-10-23
HK1187977A1 (en) 2014-04-17
AU2013238222A1 (en) 2014-11-06
CN103363764B (en) 2016-07-06
TWI524041B (en) 2016-03-01
TW201411074A (en) 2014-03-16
JP6192634B2 (en) 2017-09-06
CN203249460U (en) 2013-10-23
AU2013238222B2 (en) 2016-10-06
SG11201405375UA (en) 2014-11-27
WO2013146286A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP6192634B2 (en) Insulated box, refrigerator and hot water storage device provided with the insulated box
JP6854789B2 (en) refrigerator
JP4111096B2 (en) refrigerator
JP6779196B2 (en) refrigerator
JP2010169302A (en) Refrigerator
JP2015052398A (en) Refrigerator
CN106482437B (en) Refrigerator
WO2015025477A1 (en) Refrigerator
JP5343351B2 (en) refrigerator
JP2007327715A (en) Heat insulating box and its manufacturing method
JP2013185730A (en) Refrigerator
JP5861052B2 (en) refrigerator
JP2010038483A (en) Refrigerator
JP2013185734A (en) Refrigerator
JP6314311B2 (en) refrigerator
JP2015042915A (en) Refrigerator
JP6379348B2 (en) refrigerator
JP2006105507A (en) Refrigerator
JP6113612B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2015021690A (en) Freezer refrigerator
US7401474B2 (en) Thermal food storage cabinet
JP6402352B2 (en) refrigerator
JP2005201524A (en) Refrigerator
JP2013185732A (en) Refrigerator
JP2005214485A (en) Refrigerator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170808

R150 Certificate of patent or registration of utility model

Ref document number: 6192634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250