JP2015042915A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2015042915A
JP2015042915A JP2013174251A JP2013174251A JP2015042915A JP 2015042915 A JP2015042915 A JP 2015042915A JP 2013174251 A JP2013174251 A JP 2013174251A JP 2013174251 A JP2013174251 A JP 2013174251A JP 2015042915 A JP2015042915 A JP 2015042915A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
groove
radiating pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013174251A
Other languages
Japanese (ja)
Other versions
JP6504379B2 (en
Inventor
美桃子 井下
Mitoko Ishita
美桃子 井下
濱田 和幸
Kazuyuki Hamada
和幸 濱田
愼一 堀井
Shinichi Horii
愼一 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013174251A priority Critical patent/JP6504379B2/en
Priority to PCT/JP2014/003988 priority patent/WO2015025477A1/en
Priority to DE212014000174.9U priority patent/DE212014000174U1/en
Priority to CN201490000983.2U priority patent/CN205536838U/en
Publication of JP2015042915A publication Critical patent/JP2015042915A/en
Application granted granted Critical
Publication of JP6504379B2 publication Critical patent/JP6504379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refrigerator Housings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator for improving a heat insulation effect by increasing coverage of a vacuum heat insulation material, and optimally providing a heat radiation pipe and improving workability at the same time.SOLUTION: The refrigerator comprises a heat radiation pipe side 18S arranged inside an outer case of a heat insulation box, and a vacuum heat insulation material 21 arranged on an interior side of the heat radiation pipe side. The vacuum heat insulation material 21 has plural recess lateral grooves 22b in forward and backward directions, and is constituted so that width dimension of the lowermost lateral groove 22b has maximum width dimension. Thereby, the vacuum heat insulation material is sized to cover a bending part 18S-1 of a heat radiation pipe, so that coverage of the vacuum heat insulation material can be significantly increased to provide a refrigerator with a high heat insulation property. Also, by maximizing the width dimension of the lowermost lateral groove, pipes can be collectively arranged at a lower part at which it is easy to weld or connect the pipes. The heat radiation pipe can be optimally installed, so as to improve workability for connecting the pipes and the like.

Description

本発明は、真空断熱材を用いた冷蔵庫に関するものである。   The present invention relates to a refrigerator using a vacuum heat insulating material.

近年、地球環境問題である温暖化の対策として、省エネルギーを推進する動きが活発になっており、温冷熱利用機器に関しては、熱を有効活用するという観点から、優れた断熱性能を有する真空断熱材が普及しつつある。   In recent years, there has been an active movement to promote energy conservation as a countermeasure against global warming, which is a global environmental problem. With regard to equipment that uses heat and cold energy, a vacuum insulation material with excellent heat insulation performance from the viewpoint of effective use of heat. Is spreading.

真空断熱材とは、袋状に加工したガスバリア性を有するフィルム内へ、グラスウールのように気相容積比率が高く微細な空隙を構成する芯材を収納し、芯材収納空間を減圧して密封したものである。   Vacuum insulation is a bag-like gas barrier film that contains a core material with a high gas phase volume ratio and a fine gap, such as glass wool, and the core material storage space is decompressed and sealed. It is a thing.

真空断熱材はその熱伝導率が低く冷蔵庫の壁面に適用され、近年特にその効果を増大させるため厚みを増加させる傾向にある。また、冷蔵庫の冷凍サイクルで発生する熱を効率良く放熱するため、冷蔵庫の外面を形成する外箱の内側に放熱パイプを貼り付け、真空断熱材でこの放熱パイプを覆い、さらに発泡ウレタンなどの発泡断熱材を冷蔵庫の庫内空間を形成する内箱と前記外箱との間に充填し、冷蔵庫外部の熱を庫内側に伝わり難くしている。   The vacuum heat insulating material has a low thermal conductivity and is applied to the wall surface of the refrigerator. In recent years, it tends to increase the thickness particularly in order to increase the effect. In addition, in order to efficiently dissipate the heat generated in the refrigerator's refrigeration cycle, a heat-dissipating pipe is attached to the inside of the outer box that forms the outer surface of the refrigerator, and this heat-dissipating pipe is covered with a vacuum heat insulating material. A heat insulating material is filled between the inner box forming the interior space of the refrigerator and the outer box so that the heat outside the refrigerator is hardly transmitted to the inside of the refrigerator.

しかしながら、ただ平板の真空断熱材を放熱パイプの上に配置しただけでは、冷蔵庫の外箱と放熱パイプと真空断熱材とで囲まれた空間が出来てしまい、発泡ウレタンが充填できなくなるばかりか、放熱パイプと真空断熱材を重ねることにより冷蔵庫の内箱と外箱の空間、つまり冷蔵庫にとっては壁厚みが増大し、庫内容積を減少させねばならないことになる。   However, simply placing a flat vacuum heat insulating material on the heat radiating pipe creates a space surrounded by the outer box of the refrigerator, the heat radiating pipe and the vacuum heat insulating material, which makes it impossible to fill urethane foam. By overlapping the heat radiating pipe and the vacuum heat insulating material, the space between the inner box and the outer box of the refrigerator, that is, for the refrigerator, the wall thickness increases, and the internal volume must be reduced.

そこで、上記課題を解決するために、真空断熱材に放熱パイプをはめ込む溝を設けることが提案されている(例えば、特許文献1参照)。   Therefore, in order to solve the above-described problem, it has been proposed to provide a groove for fitting a heat radiating pipe in the vacuum heat insulating material (see, for example, Patent Document 1).

図12は、特許文献1に開示された従来の冷蔵庫の断熱箱体の側壁水平断面図、図13は同側壁部分の分解斜視図である。図12、図13において、101は断熱箱体102の外箱、103は同内箱、104は外箱101と内箱103の間に充填発泡させた発泡断熱材、105は外箱101の内側に配設した放熱パイプ、106はこの放熱パイプ105を覆う真空断熱材で、放熱パイプ105側にはこの放熱パイプ105がはまり込む凹形状の溝107が設けてある。   12 is a horizontal sectional view of a side wall of a heat-insulating box of a conventional refrigerator disclosed in Patent Document 1, and FIG. 13 is an exploded perspective view of the side wall portion. 12 and 13, 101 is an outer box of the heat insulating box 102, 103 is the inner box, 104 is a foam heat insulating material filled and foamed between the outer box 101 and the inner box 103, and 105 is an inner side of the outer box 101. A heat radiating pipe 106 is a vacuum heat insulating material covering the heat radiating pipe 105, and a concave groove 107 into which the heat radiating pipe 105 is fitted is provided on the heat radiating pipe 105 side.

特開2005−90810号公報JP 2005-90810 A

上記特許文献1に記載された従来の構成によると、真空断熱材106の溝107内に放熱パイプ105が位置することになるので、放熱パイプ105と真空断熱材106を重ねたことによる壁厚増を解消し、庫内容積を確保可能になると同時に、断熱箱体102の断熱性が向上する利点がある。   According to the conventional configuration described in Patent Document 1, since the heat radiating pipe 105 is located in the groove 107 of the vacuum heat insulating material 106, the wall thickness is increased by overlapping the heat radiating pipe 105 and the vacuum heat insulating material 106. This eliminates the problem and makes it possible to secure the internal volume, and at the same time, there is an advantage that the heat insulating property of the heat insulating box 102 is improved.

しかしながら上記従来の真空断熱材106を用いた冷蔵庫においては、その真空断熱材
106の用い方、特に真空断熱材の被覆率向上には改善の余地が残っていた。
However, in the refrigerator using the conventional vacuum heat insulating material 106, there is still room for improvement in how to use the vacuum heat insulating material 106, particularly in improving the coverage of the vacuum heat insulating material.

本発明はこのような点に鑑みてなしたもので、真空断熱材の被覆率を高めて断熱効果を向上させると同時に放熱パイプの最適設置化及び作業性向上を図った冷蔵庫の提供を目的としたものである。   The present invention has been made in view of such points, and aims to provide a refrigerator that improves the heat insulation effect by increasing the coverage of the vacuum heat insulating material and at the same time optimizes the installation of the heat radiating pipe and improves the workability. It is a thing.

上記従来の課題を解決するために、本発明の冷蔵庫は、外箱と内箱との間に発泡断熱材を充填した断熱箱体と、前記外箱の内側に配設された放熱パイプと、前記放熱パイプの庫内側に設けられた真空断熱材とを備え、前記真空断熱材は前後方向に凹形状の横溝を複数有し、最下段の横溝の幅寸法を最大とした構成としてある。   In order to solve the above-described conventional problems, the refrigerator of the present invention includes a heat insulating box body filled with a foam heat insulating material between an outer box and an inner box, a heat radiating pipe disposed inside the outer box, A vacuum heat insulating material provided on the inner side of the heat radiating pipe, and the vacuum heat insulating material has a plurality of concave horizontal grooves in the front-rear direction, and the width dimension of the lowermost horizontal groove is maximized.

これにより、放熱パイプの折り返し部を真空断熱材の横溝にはめ込んで冷蔵庫壁厚が厚くなるのを抑制でき、しかも、真空断熱材は放熱パイプの折り返し部を覆うだけの大きさにすることができて、放熱パイプから庫内側への放熱を真空断熱材で確実に断熱しつつ、真空断熱材の被覆率も飛躍的に増大させることができ、断熱性の高い冷蔵庫とすることができる。また、最下段の横溝の幅寸法を最大としたことによりパイプ接続等の作業がしやすい下部にパイプを集中させて配置することができ、放熱パイプを最適設置できるとともにパイプ接続等の作業性も向上させることができる。   As a result, the folded portion of the heat radiating pipe can be fitted into the lateral groove of the vacuum heat insulating material to prevent the refrigerator wall thickness from becoming thick, and the vacuum heat insulating material can be made large enough to cover the folded portion of the heat radiating pipe. Thus, while the heat radiation from the heat radiating pipe to the inside of the cabinet is reliably insulated with the vacuum heat insulating material, the coverage of the vacuum heat insulating material can be dramatically increased, and a refrigerator with high heat insulating properties can be obtained. In addition, by maximizing the width dimension of the horizontal groove at the bottom, the pipes can be concentrated and placed in the lower part where work such as pipe connection is easy, so that heat radiation pipes can be optimally installed and workability such as pipe connection is also possible Can be improved.

本発明は、上記構成により、庫内容積を確保しつつ真空断熱材の被覆率を高めて断熱性を高めることができ、しかも放熱パイプを最適設置できるとともにパイプ接続等の作業性も高い冷蔵庫を提供することができる。   With the above configuration, the present invention can improve the heat insulating property by increasing the coverage of the vacuum heat insulating material while securing the internal volume, and can also optimally install the heat radiating pipe and have a high workability such as pipe connection. Can be provided.

本発明の実施の形態1による冷蔵庫の正面図Front view of the refrigerator according to Embodiment 1 of the present invention 同実施の形態1による冷蔵庫を説明する概略側断面図Schematic side sectional view explaining the refrigerator according to the first embodiment 同実施の形態1による冷蔵庫の放熱パイプは位置を説明する透視図The perspective view explaining the position of the heat radiating pipe of the refrigerator according to the first embodiment 同実施の形態1による冷蔵庫の外箱側面と放熱パイプとの関係を示す説明図Explanatory drawing which shows the relationship between the outer case side surface of the refrigerator by the same Embodiment 1, and a heat radiating pipe 同図4のD部の簡易拡大断面図Simplified enlarged cross-sectional view of part D in FIG. 同実施の形態1による冷蔵庫に用いる真空断熱材の正面図Front view of the vacuum heat insulating material used for the refrigerator according to the first embodiment 同実施の形態1による冷蔵庫を説明する概略側断面図Schematic side sectional view explaining the refrigerator according to the first embodiment 同図6のA−A断面図AA sectional view of FIG. 同図6のB−B断面図BB sectional view of FIG. 6 本発明の実施の形態2による冷蔵庫に用いる真空断熱材の正面図The front view of the vacuum heat insulating material used for the refrigerator by Embodiment 2 of this invention 本発明の実施の形態3による冷蔵庫に用いる真空断熱材の正面図The front view of the vacuum heat insulating material used for the refrigerator by Embodiment 3 of this invention 従来の冷蔵庫の断熱箱体の側壁水平断面図Side wall horizontal sectional view of a conventional heat insulation box of a refrigerator 同従来の冷蔵庫の断熱箱体の分解斜視図The exploded perspective view of the heat insulation box of the conventional refrigerator

第1の発明は、外箱と内箱との間に発泡断熱材を充填した断熱箱体と、前記外箱の内側に配設された放熱パイプと、前記放熱パイプの庫内側に設けられた真空断熱材とを備え、前記真空断熱材は前後方向に凹形状の横溝を複数有し、最下段の横溝の幅寸法を最大とした構成としてある。   1st invention was provided in the heat insulation box body which filled the foam heat insulating material between the outer box and the inner box, the heat radiating pipe arrange | positioned inside the said outer box, and the warehouse inner side of the said heat radiating pipe A vacuum heat insulating material, wherein the vacuum heat insulating material has a plurality of concave lateral grooves in the front-rear direction, and the width dimension of the lowermost horizontal groove is maximized.

これにより、放熱パイプの折り返し部を横溝にはめ込んで真空断熱材で覆うことにより冷蔵庫壁厚が厚くなるのを抑制でき、しかも、真空断熱材は放熱パイプの折り返し部を覆うだけの大きさにすることができて、放熱パイプから庫内側への放熱を真空断熱材で確実に断熱しつつ、真空断熱材の被覆率も飛躍的に増大させることができ、断熱性の高い冷蔵
庫とすることができる。また、最下段の横溝の幅寸法を最大としたことによりパイプ接続等の作業がしやすい下部にパイプを集中させて配置することができ、放熱パイプを最適設置できるとともにパイプ接続等の作業性も向上させることができる。
Thereby, it can suppress that the refrigerator wall thickness becomes thick by fitting the folding | returning part of a heat radiating pipe in a horizontal groove, and covering with a vacuum heat insulating material, and also make a vacuum heat insulating material the size which only covers the folding | turning part of a heat radiating pipe. The heat insulation from the heat radiating pipe to the inside of the cabinet can be reliably insulated with the vacuum heat insulating material, and the coverage of the vacuum heat insulating material can be dramatically increased, so that a refrigerator with high heat insulating property can be obtained. . In addition, by maximizing the width dimension of the horizontal groove at the bottom, the pipes can be concentrated and placed in the lower part where work such as pipe connection is easy, so that heat radiation pipes can be optimally installed and workability such as pipe connection is also possible Can be improved.

第2の発明は、第1の発明において、前記最下段の横溝に複数の放熱パイプを配置した構成としてあり、これにより放熱パイプの最適設置が可能となる。   According to a second invention, in the first invention, a plurality of heat radiating pipes are arranged in the lowermost lateral groove, whereby the heat radiating pipes can be optimally installed.

以下、本発明による真空断熱材を用いた冷蔵庫の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of a refrigerator using a vacuum heat insulating material according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1による冷蔵庫の正面図、図2は同実施の形態1による冷蔵庫を説明する概略側断面図、図3は同実施の形態1による冷蔵庫の放熱パイプ位置を説明する透視図、図4は同実施の形態1による冷蔵庫の外箱側面と放熱パイプとの関係を示す説明図、図5は同図4のD部の簡易拡大断面図、図6は同実施の形態1による冷蔵庫に用いる真空断熱材の正面図、図7は同実施の形態1による冷蔵庫を説明する概略側断面図、図8は同図6のA−A断面図、図9は同図6のB−B断面図である。
(Embodiment 1)
FIG. 1 is a front view of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a schematic side sectional view illustrating the refrigerator according to Embodiment 1, and FIG. FIG. 4 is an explanatory view showing the relationship between the side surface of the outer box of the refrigerator and the heat radiating pipe according to the first embodiment, FIG. 5 is a simplified enlarged sectional view of a portion D in FIG. 4, and FIG. FIG. 7 is a schematic side cross-sectional view for explaining the refrigerator according to the first embodiment, FIG. 8 is a cross-sectional view taken along the line AA of FIG. 6, and FIG. It is BB sectional drawing of.

図1から図5において、この冷蔵庫は、前方に開口した断熱箱体1と、断熱箱体1内の貯蔵室を開閉する扉2とからなる。断熱箱体1は、金属製の外箱3と、硬質樹脂製の内箱4と、外箱3および内箱4の間に発泡充填された発泡断熱材5とから構成されており、外箱3の側面下部稜線部には図5に示すように強度向上の為の補強部材6を有している。補強部材6は外箱3の底面から背面に立ち上がって形成され、補強部材6と外箱3との間には外気と連通する空間7を備えている。   1 to 5, the refrigerator includes a heat insulating box 1 that opens forward and a door 2 that opens and closes a storage chamber in the heat insulating box 1. The heat insulation box 1 is composed of a metal outer box 3, a hard resin inner box 4, and a foam heat insulating material 5 that is foam-filled between the outer box 3 and the inner box 4. 3 has a reinforcing member 6 for improving the strength as shown in FIG. The reinforcing member 6 is formed to rise from the bottom surface of the outer box 3 to the back surface, and a space 7 communicating with the outside air is provided between the reinforcing member 6 and the outer box 3.

断熱箱体1内に形成された貯蔵室は、上部に設けられた冷蔵室8と、冷蔵室8の下に設けられた温度帯切り替え可能な切替室9と、切替室9の横に設けられた製氷室10と、切替室9および製氷室10と野菜室11の間に設けられた冷凍室12で構成されている。   The storage room formed in the heat insulation box 1 is provided beside the refrigerating room 8 provided in the upper part, the switching room 9 provided under the refrigerating room 8 and capable of switching the temperature zone, and the switching room 9. The ice making room 10, the switching room 9, and the freezing room 12 provided between the ice making room 10 and the vegetable room 11.

冷凍室12の背面には冷却室14があり、冷気を生成する冷却器15と、冷気を各室に供給する冷気送風ファン16とを有し、庫内の温度検知センサー(図示せず)とダンパ等(図示せず)により庫内温度が制御されている。また、冷却器15下方には除霜手段が設置されている。   There is a cooling chamber 14 on the back of the freezer compartment 12, which has a cooler 15 that generates cool air and a cool air blower fan 16 that supplies the cool air to each chamber, and a temperature detection sensor (not shown) in the refrigerator The internal temperature is controlled by a damper or the like (not shown). A defrosting unit is installed below the cooler 15.

冷却器15は、圧縮機17と、コンデンサ(図示せず)と、放熱用の放熱パイプ18と、キャピラリーチューブ19とを環状に接続してなる冷凍サイクルを構成しており、圧縮機17によって圧縮された冷媒の循環によって冷却を行う。   The cooler 15 constitutes a refrigeration cycle in which a compressor 17, a condenser (not shown), a heat radiating pipe 18, and a capillary tube 19 are connected in an annular shape, and are compressed by the compressor 17. Cooling is performed by circulation of the cooled refrigerant.

断熱箱体1には図3に示すように前記した放熱パイプ18が配設してあり、側面及び背面に配設した放熱パイプサイド18Sは、一本のパイプを例えばU字に折り曲げることで放熱長さを確保し、外箱3にアルミテープ等を用いて貼り付けられている。また、断熱箱体1の各貯蔵室を仕切る仕切り板20前面にも同様に放熱パイプフロント18FがU字に折り曲げられて敷設されている。放熱パイプフロント18Fは各貯蔵室の仕切り板20を経て機械室13へ接続される。   As shown in FIG. 3, the heat radiating pipe 18 is disposed in the heat insulating box 1, and the heat radiating pipe side 18S disposed on the side surface and the back surface radiates heat by bending one pipe into, for example, a U shape. The length is secured and the outer box 3 is affixed using aluminum tape or the like. Similarly, a heat radiating pipe front 18F is also bent and laid on the front surface of the partition plate 20 that partitions the storage chambers of the heat insulating box 1 in a U shape. The heat radiating pipe front 18F is connected to the machine room 13 through the partition plate 20 of each storage room.

断熱箱体1にはさらにまた断熱性を向上させるために前記放熱パイプ18を覆う如く外箱3に真空断熱材21が貼り付けてある。この真空断熱材21は、芯材をガスバリア性フィルムで覆いその内部を減圧し密封して形成してあり、例えば特開2011−89740号公報に記載されているような構成の真空断熱材を用いている。   A vacuum heat insulating material 21 is attached to the outer box 3 so as to cover the heat radiating pipe 18 in order to further improve the heat insulating property of the heat insulating box 1. This vacuum heat insulating material 21 is formed by covering a core material with a gas barrier film and reducing the pressure inside to seal it. For example, a vacuum heat insulating material having a structure as described in JP 2011-89740 A is used. ing.

真空断熱材21には図6に示すように凹溝22が形成してあり、この凹溝22に放熱パイプ18が設置してある。   A groove 22 is formed in the vacuum heat insulating material 21 as shown in FIG. 6, and a heat radiating pipe 18 is installed in the groove 22.

側面の真空断熱材21に設けた凹溝22は縦溝22aと横溝22bと出口溝22cとからなり、放熱パイプサイド18Sが蛇行状に配置してある。   The concave groove 22 provided in the side vacuum heat insulating material 21 is composed of a vertical groove 22a, a horizontal groove 22b, and an outlet groove 22c, and the heat radiating pipe side 18S is arranged in a meandering manner.

上記縦溝22aは真空断熱材21の長手方向(つまり冷蔵庫の上下方向)に沿って真空断熱材21の上下の端面部23まで形成された溝であり、複数の縦溝22aが互いに平行に配設されている。   The vertical groove 22a is a groove formed up to the upper and lower end surfaces 23 of the vacuum heat insulating material 21 along the longitudinal direction of the vacuum heat insulating material 21 (that is, the vertical direction of the refrigerator), and the plurality of vertical grooves 22a are arranged in parallel to each other. It is installed.

横溝22bは真空断熱材21の短手方向(つまり冷蔵庫の前後方向)に沿って延びる凹溝であり、縦溝22aの上下方向に1本ずつ形成されており、互いに交差するように形成されている。また、下側の横溝22bは上側の横溝22bより幅広に形成してあり、少なくとも冷蔵庫の底面仕切壁(図示せず)の上端より下部に配置されている。   The horizontal grooves 22b are concave grooves extending along the short direction of the vacuum heat insulating material 21 (that is, the front-rear direction of the refrigerator), and are formed one by one in the vertical direction of the vertical grooves 22a and are formed so as to intersect each other. Yes. The lower lateral groove 22b is formed wider than the upper lateral groove 22b, and is disposed at least below the upper end of the bottom partition wall (not shown) of the refrigerator.

出口溝22cは真空断熱材21の上側の端面部23から横溝22bまで形成した溝であり、この実施の形態では前記縦溝22aと一直線状に複数形成されている。   The outlet groove 22c is a groove formed from the upper end surface portion 23 of the vacuum heat insulating material 21 to the horizontal groove 22b, and in this embodiment, a plurality of outlet grooves 22c are formed in a straight line with the vertical groove 22a.

上下の横溝22bには、放熱パイプサイド18Sの上下端で屈曲形成された折り返し部18S−1が配置されている。   In the upper and lower lateral grooves 22b, there are disposed folded portions 18S-1 bent at the upper and lower ends of the heat radiating pipe side 18S.

また、横溝22bの上下のいずれか一方の溝部(本実施の形態では、下側の横溝22b)では放熱パイプサイド18Sまたは放熱パイプフロント18Fの少なくとも一方が凝縮器からの冷媒パイプ(図示せず)に連結されている。   In either one of the upper and lower groove portions of the horizontal groove 22b (in this embodiment, the lower horizontal groove 22b), at least one of the heat radiating pipe side 18S or the heat radiating pipe front 18F is a refrigerant pipe (not shown) from the condenser. It is connected to.

そして、放熱パイプサイド18Sは、真空断熱材21の下側の横溝22bを通って、縦溝22aにその直線部が配置され、横溝22bに折り返し部18S−1が配置され、蛇行状態に配置されたのち、横溝22bの上部に形成される出口溝22cに向けて屈曲させ、その出口溝22cを通って外箱3の他の面、この実施の形態では外箱3の天井面へと配置されることで、上下に蛇行する放熱パイプサイド18Sのほぼ全体が、真空断熱材21の上下の端面部23より飛び出ることなく真空断熱材21と外箱側板との間に配置されている。換言すると、真空断熱材21は横溝22bを設けたことによってその上下両端部が放熱パイプサイド18Sの上下の屈曲部を越えて外箱3上下の各端部近傍まで位置して図2の点線で示すように外箱3の側面上下ほぼ全域を覆っている。   The heat radiating pipe side 18S passes through the lateral groove 22b on the lower side of the vacuum heat insulating material 21, the straight line portion is disposed in the longitudinal groove 22a, the folded portion 18S-1 is disposed in the lateral groove 22b, and is disposed in a meandering state. After that, it is bent toward the outlet groove 22c formed in the upper part of the lateral groove 22b, and is arranged on the other surface of the outer box 3 through the outlet groove 22c, that is, the ceiling surface of the outer box 3 in this embodiment. Thus, almost the entire heat radiating pipe side 18 </ b> S meandering up and down is disposed between the vacuum heat insulating material 21 and the outer box side plate without jumping out from the upper and lower end surface portions 23 of the vacuum heat insulating material 21. In other words, since the vacuum heat insulating material 21 is provided with the lateral groove 22b, the upper and lower end portions thereof are positioned beyond the upper and lower bent portions of the heat radiating pipe side 18S to the vicinity of the upper and lower ends of the outer casing 3, and are indicated by dotted lines in FIG. As shown, the outer box 3 covers almost the entire upper and lower sides.

なお、上記真空断熱材に形成する溝は、ローラ方式あるいはプレス方式のいずれかによって形成する。プレス方式の場合は型が必要となり、コストアップ、溝形成の自由度が低い。一方、ローラ方式は一直線上に溝を形成することは可能であるが、複雑な溝形成は難しい。よって、溝形状によってローラ方式あるいはプレス方式のいずれかを選択して形成すればよい。   In addition, the groove | channel formed in the said vacuum heat insulating material is formed by either a roller system or a press system. In the case of the press method, a die is required, which increases costs and reduces the degree of freedom in forming grooves. On the other hand, the roller method can form grooves on a straight line, but it is difficult to form complicated grooves. Therefore, the roller method or the press method may be selected depending on the groove shape.

また、前記外箱3の左右に貼り付けた真空断熱材21は、その下部前後に図5、図7に示すように、外箱3の底面から背面に立ち上がって形成された補強部材6を避ける面取部25が設けられていて、その横幅は外箱側面の短手方向(つまり冷蔵庫の前後方向)の幅いっぱいの寸法に形成してある。   Moreover, the vacuum heat insulating material 21 affixed to the left and right of the outer box 3 avoids the reinforcing member 6 formed so as to rise from the bottom surface of the outer box 3 to the back as shown in FIGS. A chamfered portion 25 is provided, and the width of the chamfered portion 25 is formed to the full width of the lateral direction of the outer box side surface (that is, the front-rear direction of the refrigerator).

加えて、上記補強部材6もその上部に真空断熱材21側の面取部25に対応させて補強部材面取部26が形成されており、真空断熱材21とオーバーラップせず、かつ、前記真空断熱材21の面取部25の面積を縮小、すなわち、面取部25によって減少する真空断熱材面積の減少を少なくするようにしてある。   In addition, the reinforcing member 6 is also formed with a reinforcing member chamfered portion 26 corresponding to the chamfered portion 25 on the vacuum heat insulating material 21 side, and does not overlap the vacuum heat insulating material 21. The area of the chamfered portion 25 of the vacuum heat insulating material 21 is reduced, that is, the reduction of the vacuum heat insulating material area which is reduced by the chamfered portion 25 is reduced.

また、外箱3の左右少なくともいずれか一方に配設された真空断熱材21の上下の横溝22bの一方、この実施の形態では下方の横溝22bには、図5に示すように連通部材27の一端が配置されている。連通部材27の他端は外箱3の底面から背面に立ち上がって形成された補強部材6の孔28へ嵌挿され、補強部材6と外箱3との間に構成された空間7に連通し、横溝内の空気を外気へ放出させている。   Further, in this embodiment, one of the upper and lower horizontal grooves 22b of the vacuum heat insulating material 21 disposed on the left and right sides of the outer box 3, or the lower horizontal groove 22b in this embodiment has a communication member 27 as shown in FIG. One end is arranged. The other end of the communication member 27 is inserted into a hole 28 of the reinforcing member 6 formed so as to rise from the bottom surface of the outer box 3 to the back surface, and communicates with the space 7 formed between the reinforcing member 6 and the outer box 3. The air in the lateral groove is released to the outside air.

併せて、上記下方の横溝22bより放熱パイプサイド18Sの端部が引き出されているが、この実施の形態では前記放熱パイプサイド18Sのパイプ端部18Tは図6、図7に示すように真空断熱材21の面取部25部分において少なくとも2度以上屈曲させ、ターン部18T−1、18T−2が2ヶ所以上になるようにして引き出してある。   In addition, the end portion of the heat radiating pipe side 18S is drawn out from the lower lateral groove 22b. In this embodiment, the pipe end portion 18T of the heat radiating pipe side 18S is vacuum insulated as shown in FIGS. The chamfered portion 25 portion of the material 21 is bent at least twice or more, and the turn portions 18T-1 and 18T-2 are drawn out at two or more locations.

なお、真空断熱材21の下部前後の面取部25は、前面より背面(パイプ端部18T収納側)の面取を大きく設定している。それに対応して、補強部材6の底面から背面の立ち上がり部の高さを前面の立ち上がり部の高さより高く設定している。   In addition, the chamfered portions 25 before and after the lower portion of the vacuum heat insulating material 21 are set to have a larger chamfer on the back surface (pipe end portion 18T storage side) than the front surface. Correspondingly, the height of the rising portion on the back surface from the bottom surface of the reinforcing member 6 is set higher than the height of the rising portion on the front surface.

また、前記補強部材6は外箱側面の前部から底部および後部に沿ってコの字状に配置されていて、かつ外箱側面に位置する前記補強部材6の前部および後部の上端は補強部材面取部26を形成した構成としている。   The reinforcing member 6 is arranged in a U-shape from the front part of the outer box side surface along the bottom part and the rear part, and the upper ends of the front part and the rear part of the reinforcing member 6 located on the outer box side surface are reinforced. The member chamfered portion 26 is formed.

また、真空断熱材21に設けた下部の横溝22bは前記面取部25を含んで形成している。   Further, the lower lateral groove 22 b provided in the vacuum heat insulating material 21 is formed including the chamfered portion 25.

また、前記真空断熱材21に設けた下部の横溝22bは前記補強部材6の前部および後部の上端より下方に形成している。   Further, the lower lateral groove 22 b provided in the vacuum heat insulating material 21 is formed below the upper ends of the front and rear portions of the reinforcing member 6.

また、前記横溝22bの溝幅は縦溝22aの溝幅より広く設定している。   The groove width of the horizontal groove 22b is set wider than the groove width of the vertical groove 22a.

また、上下に設けた横溝22bのうち下部の横溝22bはその幅寸法を上部の横溝22bよりも大きく設定している。   Of the horizontal grooves 22b provided above and below, the width of the lower horizontal groove 22b is set larger than that of the upper horizontal groove 22b.

以上のように構成された冷蔵庫について、以下のその動作、作用を説明する。   About the refrigerator comprised as mentioned above, the following operation | movement and an effect | action are demonstrated.

まず冷蔵庫の冷却動作について説明する。庫内温度が上昇して冷凍室センサ(図示せず)が起動温度以上になった場合に、圧縮機17が起動し冷却が開始される。圧縮機17から吐出された高温高圧の冷媒は、最終的に機械室13に配置されたドライヤ(図示せず)まで到達する間、特に外箱3に設置された放熱パイプサイド18Sにおいて、外箱3の外側の空気や庫内の発泡断熱材5との熱交換により、冷却されて液化する。   First, the cooling operation of the refrigerator will be described. When the internal temperature rises and a freezer sensor (not shown) reaches or exceeds the starting temperature, the compressor 17 is started and cooling is started. While the high-temperature and high-pressure refrigerant discharged from the compressor 17 finally reaches the dryer (not shown) disposed in the machine room 13, the outer casing particularly in the heat radiating pipe side 18S installed in the outer casing 3. 3 is cooled and liquefied by heat exchange with the air outside 3 and the foamed heat insulating material 5 in the cabinet.

次に液化した冷媒はキャピラリーチューブ19で減圧されて、冷却器15に流入し冷却器15周辺の庫内空気と熱交換する。熱交換された冷気は、近傍の冷気送風ファン16により庫内に冷気が送風され庫内を冷却する。この後、冷媒は加熱されガス化して圧縮機17に戻る。庫内が冷却されて冷凍室センサ(図示せず)の温度が停止温度以下になった場合に圧縮機17の運転が停止する。   Next, the liquefied refrigerant is decompressed by the capillary tube 19, flows into the cooler 15, and exchanges heat with the internal air around the cooler 15. The cold air that has undergone heat exchange is blown into the cabinet by the nearby cool air blower fan 16 to cool the inside of the cabinet. Thereafter, the refrigerant is heated and gasified, and returns to the compressor 17. When the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor (not shown) falls below the stop temperature, the operation of the compressor 17 is stopped.

次にこの冷蔵庫及び冷蔵庫に取り付けた真空断熱材21の断熱作用について説明する。   Next, the heat insulation effect of the refrigerator and the vacuum heat insulating material 21 attached to the refrigerator will be described.

本実施の形態の冷蔵庫においては、板状の真空断熱材21に長手方向の縦溝22aとともに短手方向の横溝22bを設け、縦溝22aに放熱パイプサイド18Sの直線部を、そして前記横溝22bに放熱パイプサイド18Sの上下の折り返し部18s−1を位置させ
て放熱パイプサイド18S全域を覆っているので、冷蔵庫壁を厚くして庫内容積を低下させることなく真空断熱材21の被覆率を増大させるとともに、放熱パイプサイド18Sから庫内側への放熱を真空断熱材21によって断熱することが可能となる。
In the refrigerator of the present embodiment, the plate-like vacuum heat insulating material 21 is provided with the longitudinal grooves 22a and the transverse grooves 22b in the short direction, the straight grooves of the heat radiating pipe side 18S are disposed in the longitudinal grooves 22a, and the transverse grooves 22b. Since the upper and lower folded portions 18s-1 of the heat radiating pipe side 18S are positioned to cover the entire area of the heat radiating pipe side 18S, the coverage of the vacuum heat insulating material 21 can be increased without increasing the refrigerator wall and reducing the internal volume. While increasing, it becomes possible to insulate the heat radiating from the heat radiating pipe side 18S to the inside of the warehouse by the vacuum heat insulating material 21.

すなわち、横溝22bのない縦溝22aだけの状態の真空断熱材21で放熱パイプサイド18Sの折り返し部18S−1を覆うと、放熱パイプサイド18Sの折り返し部18S−1部分の外箱3と真空断熱材21との間に放熱パイプ径分の空間ができて冷蔵庫壁厚が厚くなりその分庫内容積の低下を招くが、本実施の形態によれば横溝22b内に放熱パイプサイド18Sの折り返し部18S−1が位置するので、真空断熱材21と外箱3との間に放熱パイプ径分の空間ができて冷蔵庫壁厚が厚くなることがなく、庫内容積を低下させることがないのである。   That is, when the folded portion 18S-1 of the heat radiating pipe side 18S is covered with the vacuum heat insulating material 21 having only the vertical groove 22a without the lateral groove 22b, the outer casing 3 and the vacuum insulation of the folded portion 18S-1 portion of the radiating pipe side 18S are covered. Although a space corresponding to the diameter of the heat radiating pipe is formed between the material 21 and the refrigerator wall thickness is increased, the internal volume of the refrigerator is reduced. According to the present embodiment, the folded portion of the heat radiating pipe side 18S is placed in the horizontal groove 22b. Since 18S-1 is located, there is no space for the heat radiating pipe diameter between the vacuum heat insulating material 21 and the outer box 3, the refrigerator wall thickness is not increased, and the internal volume is not reduced. .

また、背景技術に記載したような真空断熱材に縦溝を設けただけの従来のものは真空断熱材で放熱パイプの折り返し部を覆わない構成となっている(図13参照)ため、放熱パイプの上下の折り返し部は縦溝から露出した状態となっており、放熱パイプの折り返し部から庫内側への放熱を真空断熱材で断熱できないとともに、真空断熱材の上下寸法も短いものとなって、真空断熱材の被覆率が低いものとなる。   Moreover, since the conventional thing which only provided the vertical groove in the vacuum heat insulating material as described in the background art has a configuration in which the folded portion of the heat radiating pipe is not covered with the vacuum heat insulating material (see FIG. 13), the heat radiating pipe The upper and lower folded parts are exposed from the vertical groove, and heat radiation from the folded part of the heat radiating pipe to the inside of the warehouse cannot be insulated with the vacuum heat insulating material, and the vertical dimension of the vacuum heat insulating material becomes short, The coverage of the vacuum heat insulating material is low.

しかしながら、図6に示す本実施の形態のように縦溝22aとともに横溝22bを設けてこの横溝22bに放熱パイプサイド18Sの折り返し部18S−1を位置させるようにしたことによって、冷蔵庫壁厚を厚くすることなく放熱パイプサイド18Sの折り返し部18S−1も真空断熱材21で覆うことができ、しかも、真空断熱材21はその上下の端面部23を図2の破線で示すように外箱3側面の上下端縁付近、具体的には断熱箱体1の天井面壁厚とオーバーラップする程度まで大きくすることができる。したがって、放熱パイプサイド18Sからの庫内側への放熱を真空断熱材21で確実に断熱することができるとともに、真空断熱材21の被覆率も飛躍的に増大させることができ、これらの相乗作用によって断熱箱体1の断熱性が大きく向上するのである。   However, by providing the horizontal groove 22b together with the vertical groove 22a and positioning the folded portion 18S-1 of the heat radiating pipe side 18S in the horizontal groove 22b as in the present embodiment shown in FIG. 6, the refrigerator wall thickness is increased. The folded portion 18S-1 of the heat radiating pipe side 18S can also be covered with the vacuum heat insulating material 21, and the vacuum heat insulating material 21 has a side surface of the outer box 3 as shown by broken lines in FIG. It can be enlarged to the extent that it overlaps with the upper and lower edge edges, specifically, the ceiling wall thickness of the heat insulation box 1. Therefore, the heat radiation from the heat radiating pipe side 18S to the inside of the warehouse can be surely insulated by the vacuum heat insulating material 21, and the coverage of the vacuum heat insulating material 21 can be dramatically increased. The heat insulation property of the heat insulation box 1 is greatly improved.

加えてこの実施の形態の真空断熱材21は、断熱箱体1の側面に配置する真空断熱材21の前後下部に面取部25を形成しているから、図7に示す如く断熱箱体1の外箱側面下部に補強部材6等が存在していても、その横幅を広くしつつ下方向の寸法の最大化を図ることができ、側面の被覆率を大幅に高めることができる。特に上記真空断熱材21は前記補強部材6と重ならないように前記外箱3に配置してあるから、真空断熱材21はその面取部25で断熱箱体1の側面下部に存在している補強部材6等を確実に避けることができ、その結果、真空断熱材21はその横幅を断熱箱体側面の横幅ほぼ一杯の寸法まで広くしつつ下方向の寸法の最大化を図ることができる。よって、補強部材6による箱体強度アップ効果を損なわずに側面の被覆率を大幅に高めることができる。しかも真空断熱材21の下部が断熱箱体側面下部の補強部材6等と重なることがないので、補強部材6との重なりにより真空断熱材21のガスバリア性フィルムが損傷してその断熱性能を損なう等の懸念も払拭でき、長期間にわたって良好な断熱性能を確保できる。   In addition, since the vacuum heat insulating material 21 of this embodiment forms chamfered portions 25 at the front and rear lower portions of the vacuum heat insulating material 21 arranged on the side surface of the heat insulating box 1, the heat insulating box 1 as shown in FIG. Even if the reinforcing member 6 or the like is present at the lower part of the outer side of the outer box, the lateral dimension can be maximized while widening the width, and the side coverage can be greatly increased. In particular, since the vacuum heat insulating material 21 is arranged in the outer box 3 so as not to overlap the reinforcing member 6, the vacuum heat insulating material 21 exists at the lower side of the side surface of the heat insulating box 1 at the chamfered portion 25. The reinforcing member 6 and the like can be surely avoided. As a result, the vacuum heat insulating material 21 can be maximized in the downward direction while widening the width of the vacuum heat insulating material 21 to the full width of the side surface of the heat insulating box. Therefore, the coverage of the side surface can be significantly increased without impairing the effect of increasing the box strength by the reinforcing member 6. And since the lower part of the vacuum heat insulating material 21 does not overlap with the reinforcing member 6 etc. at the lower part of the side surface of the heat insulating box, the gas barrier film of the vacuum heat insulating material 21 is damaged by the overlapping with the reinforcing member 6 and the heat insulating performance is impaired. It is possible to wipe out the concerns and to secure good heat insulation performance over a long period of time.

また、前記補強部材6は外箱側面の前部から底部および後部に沿ってコの字状に配置されていて、かつ外箱側面に位置する前記補強部材6の前部および後部の上端は補強部材面取部26を形成した構成としてあるから、真空断熱材21の面取部25と補強部材6の補強部材面取部26の相乗効果によって真空断熱材21はその面取部25を縮小でき、その分真空断熱材面積が増大して被覆率が向上し、さらに高い断熱性を確保できる。   The reinforcing member 6 is arranged in a U-shape from the front part of the outer box side surface along the bottom part and the rear part, and the upper ends of the front part and the rear part of the reinforcing member 6 located on the outer box side surface are reinforced. Since the member chamfered portion 26 is formed, the vacuum heat insulating material 21 can reduce the chamfered portion 25 by the synergistic effect of the chamfered portion 25 of the vacuum heat insulating material 21 and the reinforcing member chamfered portion 26 of the reinforcing member 6. Therefore, the area of the vacuum heat insulating material is increased, the coverage is improved, and higher heat insulation can be secured.

さらに、前記真空断熱材21に設けた面取部25は横溝22bが設けてある部分に形成、換言すると真空断熱材21に設けた下部の横溝22bは前記面取部25を含んで形成してあるから、真空断熱材21の下方向寸法の最大化を図って側面下部の真空断熱材被覆率
を向上させつつ、放熱パイプサイド18Sの折り返し部18S−1を横溝22bに位置させて放熱パイプサイド18Sに対する真空断熱材被覆率向上も図ることができ、その断熱性をさらに高いものとすることができる。
Further, the chamfered portion 25 provided in the vacuum heat insulating material 21 is formed in a portion where the horizontal groove 22b is provided. In other words, the lower horizontal groove 22b provided in the vacuum heat insulating material 21 is formed including the chamfered portion 25. Therefore, while maximizing the downward dimension of the vacuum heat insulating material 21 to improve the vacuum heat insulating material coverage at the lower side, the folded portion 18S-1 of the heat radiating pipe side 18S is positioned in the horizontal groove 22b and the heat radiating pipe side The vacuum heat insulating material coverage ratio for 18S can also be improved, and the heat insulating property can be further enhanced.

また、前記真空断熱材21に設けた下部の横溝22bは前記補強部材6の前部および後部の上端より下方に形成してあり、これにより、補強部材6の前部および後部の上端より下方に位置する放熱パイプサイド18Sの折り返し部18S−1を横溝22bに位置させることができ、放熱パイプサイド18Sに対する真空断熱材21の被覆率向上を図って断熱性を向上させることができる。   Further, the lower lateral groove 22b provided in the vacuum heat insulating material 21 is formed below the upper ends of the front and rear portions of the reinforcing member 6, so that the lower lateral grooves 22 b are lower than the upper ends of the front and rear portions of the reinforcing member 6. The folding | returning part 18S-1 of the located heat radiating pipe side 18S can be located in the horizontal groove 22b, and the thermal insulation can be improved by aiming at the coverage improvement of the vacuum heat insulating material 21 with respect to the heat radiating pipe side 18S.

また、図6に示すように、上記真空断熱材21に設けた横溝22bは、真空断熱材21の上下の端面部23よりも中央寄り部分(上部の横溝22bは上部の端面部23よりも下方部分、下部の横溝22bは下部の端面部23より上方部分)に設けるとともに、縦溝22aはこの横溝22bと交差させて真空断熱材21の上下の端面部23まで形成しているので、真空断熱材21の上下端面部分には溝の無い厚肉部分22dが残存することになる。これにより、横溝22bが真空断熱材21の端面部23に臨むように形成されて当該端面部が溝によって薄肉になったままの場合に比べ真空断熱材21の上下の端面部23の強度が向上し、真空断熱材21の反り、変形等が最小となり、外箱3への貼り付けが容易となって工数削減、品質向上が可能となる。   Further, as shown in FIG. 6, the horizontal groove 22b provided in the vacuum heat insulating material 21 is a portion closer to the center than the upper and lower end surface portions 23 of the vacuum heat insulating material 21 (the upper horizontal groove 22b is lower than the upper end surface portion 23). Since the horizontal groove 22b is provided in the upper part of the lower end surface portion 23), the vertical groove 22a is formed up to the upper and lower end surface portions 23 of the vacuum heat insulating material 21 so as to intersect with the horizontal groove 22b. Thick portions 22d without grooves remain in the upper and lower end surface portions of the material 21. Thereby, the strength of the upper and lower end surface portions 23 of the vacuum heat insulating material 21 is improved as compared with the case where the lateral groove 22b is formed so as to face the end surface portion 23 of the vacuum heat insulating material 21 and the end surface portion remains thin due to the groove. In addition, warping, deformation, and the like of the vacuum heat insulating material 21 are minimized, and the attachment to the outer box 3 is facilitated, and man-hours can be reduced and quality can be improved.

また、上記真空断熱材21の上下の端面部23の厚肉部分22dを外箱3への貼り付け用糊面とすることにより、発泡断熱材5を充填する際の流入を防ぐことが可能となり、発泡圧力での外箱外観変形を防ぐことが可能となる。   In addition, by making the thick portions 22d of the upper and lower end face portions 23 of the vacuum heat insulating material 21 into paste surfaces for attaching to the outer box 3, it becomes possible to prevent inflow when filling the foam heat insulating material 5. Thus, it becomes possible to prevent the outer box from being deformed by foaming pressure.

さらにまた、前記横溝22bの溝幅は縦溝22aの溝幅より広くしているから、この横溝22bに通す放熱パイプサイド18Sの上下の折り返し部18S−1のターン曲げ径を大きく設計することが可能となる。これにより、折り返し部18S−1の折り曲げ時にパイプ壁に働く引き伸ばし力を小さくできるとともにこの折り返し部18−S1のパイプ径が細くなったりすることもなく、放熱パイプサイド18S若しくは放熱パイプフロント18Fの信頼性確保が可能となる。   Furthermore, since the groove width of the horizontal groove 22b is wider than the groove width of the vertical groove 22a, the turn bending diameter of the upper and lower folded portions 18S-1 of the heat radiating pipe side 18S passing through the horizontal groove 22b can be designed to be large. It becomes possible. As a result, the stretching force acting on the pipe wall when the folded portion 18S-1 is folded can be reduced, and the pipe diameter of the folded portion 18-S1 is not reduced, and the reliability of the heat radiating pipe side 18S or the heat radiating pipe front 18F is improved. It is possible to ensure the safety.

加えて、上記上下に設けた横溝22bのうち下部の横溝22bはその幅寸法を上部の横溝22bよりも大きくしてあるから、放熱パイプ等を最適設置できるとともにパイプ接続等の作業性も向上させることができる。すなわち、放熱パイプ18の放熱パイプサイド18Sあるいは放熱パイプフロント18Fは凝縮器からの冷媒パイプ(図示せず)と溶接接続する必要があり、しかも放熱パイプサイド18Sは上下部分に折り返し部18S−1が形成されるため、下部の横溝22bの幅を大きくしておけば、この下部の横溝22bで放熱パイプサイド18Sの折り返し部18S−1を多く配置できると同時に放熱パイプフロント18Fもこの横溝22bを通して仕切り板20前部へと配管するなど多くのパイプを配設でき、しかもこの横溝22bを出たところで放熱パイプサイド18Sあるいは放熱パイプフロント18Fと凝縮器からの冷媒パイプ(図示せず)とを溶接する接続作業が外箱3側面上部ではなく外箱3側面下部の低い位置で行うことができるようになり、放熱パイプ18の最適設置と同時に作業性の向上も図れるのである。   In addition, among the horizontal grooves 22b provided above and below, the width of the lower horizontal groove 22b is larger than that of the upper horizontal groove 22b, so that a heat radiating pipe can be optimally installed and the workability of pipe connection and the like is improved. be able to. That is, the heat radiating pipe side 18S or the heat radiating pipe front 18F of the heat radiating pipe 18 needs to be welded to a refrigerant pipe (not shown) from the condenser, and the heat radiating pipe side 18S has a folded portion 18S-1 at the upper and lower portions. Therefore, if the width of the lower horizontal groove 22b is increased, a large number of folded portions 18S-1 of the heat radiating pipe side 18S can be arranged in the lower horizontal groove 22b, and at the same time, the heat radiating pipe front 18F is also partitioned through the horizontal groove 22b. Many pipes such as piping to the front part of the plate 20 can be disposed, and the heat radiating pipe side 18S or the heat radiating pipe front 18F is welded to the refrigerant pipe (not shown) from the condenser when it exits the lateral groove 22b. The connection work can be done at a lower position on the lower side of the outer box 3 than on the upper side of the outer box 3 To be is the attained also improve the optimal installation and simultaneously workability radiating pipe 18.

なお、横溝22bは冷蔵庫の要求性能に応じて2列以上設けることが考えられるが、その場合は最下部に設けた横溝22bの幅寸法を最大とするのが好ましい。   In addition, although it is possible to provide two or more horizontal grooves 22b according to the required performance of the refrigerator, in that case, it is preferable to maximize the width dimension of the horizontal grooves 22b provided in the lowermost part.

また、この実施の形態では前記横溝22bに配置した放熱パイプサイド18S及び放熱パイプフロント18Fの接続部となるパイプ端部18Tは、図6、図7に示すようにターン部18T−1、18T−2を2ヶ所以上形成してあり、前記放熱パイプサイド18Sあ
るいは放熱パイプフロント18Fと凝縮器からの冷媒パイプ(図示せず)との溶接接続時に外箱3内面へ貼り付けた真空断熱材21を剥がしたり傷つけたりすることを防止して真空断熱材21の断熱性能を良好に維持し、かつ、外箱3の外観変形や放熱パイプサイド18Sからの放熱能力低下を防止することができる。
In this embodiment, the pipe end portion 18T, which is a connecting portion between the heat radiating pipe side 18S and the heat radiating pipe front 18F disposed in the lateral groove 22b, is turned to turn portions 18T-1, 18T- as shown in FIGS. 2 is formed at two or more locations, and a vacuum heat insulating material 21 attached to the inner surface of the outer box 3 at the time of welding connection between the heat radiating pipe side 18S or the heat radiating pipe front 18F and a refrigerant pipe (not shown) from the condenser. It can be prevented from being peeled off or damaged, so that the heat insulating performance of the vacuum heat insulating material 21 can be maintained satisfactorily, and the external appearance deformation of the outer box 3 and the reduction of the heat radiating ability from the heat radiating pipe side 18S can be prevented.

すなわち、前記放熱パイプサイド18Sあるいは放熱パイプフロント18Fのパイプ端部18Tは、組立時の邪魔にならないように、図7に示すように外箱3の内面に沿って収納してあり、パイプ端部18Tを溶接等で接続する際には前記パイプ端部18Tを外箱内から引っ張り出すが、この時パイプ端部18Tを介して真空断熱材21に剥がし方向の外力が加わり、真空断熱材21が外箱3内面から剥がれたり傷ついたりすることが懸念される。併せて外箱3の外観が変形したり放熱パイプサイド18Sの放熱能力が低下したりする懸念もある。   That is, the pipe end 18T of the heat radiating pipe side 18S or the heat radiating pipe front 18F is accommodated along the inner surface of the outer box 3 as shown in FIG. When connecting 18T by welding or the like, the pipe end 18T is pulled out from the outer box. At this time, an external force in the peeling direction is applied to the vacuum heat insulating material 21 via the pipe end 18T. There is concern that the inner case 3 may be peeled off or damaged. In addition, there is a concern that the outer appearance of the outer box 3 may be deformed or the heat radiation capability of the heat radiation pipe side 18S may be reduced.

しかしながら、本実施の形態では上記パイプ端部18Tに2ヶ所以上のターン部18T−1、18T−2を形成しているので、このターン部18T−1、18T−2がパイプ引っ張り時の外力の緩衝(変形吸収)となり、外箱3に貼り付けた真空断熱材21の剥がれや傷つきを防止すると同時に外箱の外観変形や放熱パイプからの放熱能力低下を防止することができるのである。   However, in the present embodiment, since two or more turn portions 18T-1 and 18T-2 are formed in the pipe end portion 18T, the turn portions 18T-1 and 18T-2 have an external force when the pipe is pulled. It becomes a buffer (deformation absorption), and it is possible to prevent the vacuum heat insulating material 21 affixed to the outer box 3 from being peeled off and being damaged, and at the same time, to prevent the outer case from being deformed and the heat radiation capacity from the heat radiating pipe from being lowered.

また、上記パイプ端部18Tが位置する部分の真空断熱材21は面取部25となっているので、この面取部25を利用してターン部18T−1、18T−2を無理なく設けることができ、しかも、パイプ端部18Tが横溝22bに入り込む部分X(図7参照)までの寸法も大きくとることができ、真空断熱材21の被覆率を向上させつつ真空断熱材21への外力印加による剥がれ傷つき予防効果をも向上させることができる。   Moreover, since the vacuum heat insulating material 21 in the portion where the pipe end portion 18T is located is a chamfered portion 25, the turn portions 18T-1 and 18T-2 should be provided without difficulty using the chamfered portion 25. In addition, the dimensions up to the portion X (see FIG. 7) where the pipe end portion 18T enters the lateral groove 22b can be increased, and external force can be applied to the vacuum heat insulating material 21 while improving the coverage of the vacuum heat insulating material 21. It is also possible to improve the effect of preventing damage due to peeling.

また、この実施の形態の冷蔵庫は、上記真空断熱材21の縦溝22a及び横溝22b内の空気が放熱パイプサイド18Sまたは放熱パイプフロント18Fの放熱によって膨張し圧力上昇して外箱3側面に放熱パイプサイド18S沿った変形を生じさせやすくなるが、横溝22bに連通部材27を設けているのでこれも防止できる。すなわち、この実施の形態では図5に示すように下部の横溝22bに連通部材27を設けて空間7に臨ませているので、この連通部材27を介して縦溝22a及び横溝22b内を外気と通気させることができ、放熱パイプの放熱に起因する温度変化等による圧力変化を抑制し、外箱3の外観変形を防止することが可能となる。   In the refrigerator of this embodiment, the air in the vertical groove 22a and the horizontal groove 22b of the vacuum heat insulating material 21 expands due to heat dissipation from the heat radiating pipe side 18S or the heat radiating pipe front 18F, and the pressure rises to radiate heat to the side of the outer box 3. Although deformation along the pipe side 18S is likely to occur, the communication member 27 is provided in the lateral groove 22b, which can be prevented. That is, in this embodiment, as shown in FIG. 5, since the communication member 27 is provided in the lower horizontal groove 22b and faces the space 7, the inside of the vertical groove 22a and the horizontal groove 22b is exposed to the outside air via the communication member 27. It is possible to ventilate, and it is possible to suppress a change in pressure due to a temperature change or the like caused by heat dissipation of the heat radiating pipe, and to prevent external deformation of the outer box 3.

また、上記連通部材27は縦溝22aより溝幅が大きく設定されている横溝22bに設けているので、複数の縦溝22aに滞留している空気が横溝22b側に短時間で流通することになる。しかも、この溝幅の大きい横溝22bは放熱パイプサイド18Sの折り返し部18S−1と放熱パイプフロント18Fが数本になって配設されているので、当該横溝22b内空気の温度自体も高くなって滞留している空気をより容易に流通させるようになり、スムーズな空気の排出が実現可能となる。   Further, since the communication member 27 is provided in the horizontal groove 22b whose groove width is set to be larger than the vertical groove 22a, the air staying in the plurality of vertical grooves 22a is circulated in the horizontal groove 22b side in a short time. Become. In addition, since the lateral groove 22b having a large groove width is provided with several folded portions 18S-1 of the heat radiating pipe side 18S and the heat radiating pipe front 18F, the temperature of the air in the horizontal groove 22b itself becomes high. The staying air can be circulated more easily, and smooth air discharge can be realized.

さらに、上記連通部材27は補強部材6の孔28へ挿入し、補強部材6に設けられた空間7を介して外気と連通させているだけであるから、部品点数も少なく、かつ、連通部材27の形状を簡素化することが可能となる。例えば、連通部材27は樹脂を用いて直線形状に押し出し成型することによって生産することができ、材料費や工数費を抑制できる。   Furthermore, since the communication member 27 is only inserted into the hole 28 of the reinforcing member 6 and communicated with the outside air through the space 7 provided in the reinforcing member 6, the number of parts is small, and the communication member 27. It becomes possible to simplify the shape. For example, the communication member 27 can be produced by extrusion molding into a linear shape using a resin, and material costs and man-hour costs can be suppressed.

また、断熱箱体1の外箱3と内箱4との間に充填する発泡断熱材5は、充填性を高めるために、断熱箱体1の前面開口部を底面に向けて断熱箱体1の背面に備えた開口部から下方に向けて発泡断熱材5の材料を注入し、下方(前面開口部側)から徐々に上方(断熱箱体1の背面側)に向けて発泡断熱材5が発泡充填される方法がとられるが、本実施の形態
では、真空断熱材21の横溝22bに沿って連通部材27の一端を配置し、他端を断熱箱体1の背面側の外気に連通しているので、発泡断熱材5が発泡充填される方向と同方向に連通部材27を介して空気が抜けることになり、発泡充填時の溝内の空気抜きの効率向上を図る事ができる。
Further, the foam heat insulating material 5 filled between the outer box 3 and the inner box 4 of the heat insulation box 1 has the front opening portion of the heat insulation box 1 facing the bottom surface in order to improve the filling property. The material of the foam heat insulating material 5 is injected downward from the opening provided on the back surface of the foam, and the foam heat insulating material 5 is gradually moved from the lower side (front opening side) toward the upper side (back side of the heat insulating box 1). In this embodiment, one end of the communication member 27 is disposed along the lateral groove 22b of the vacuum heat insulating material 21 and the other end communicates with the outside air on the back side of the heat insulating box 1 in this embodiment. Therefore, air escapes through the communication member 27 in the same direction as the foam insulation material 5 is foam-filled, and the efficiency of air venting in the groove at the time of foam-filling can be improved.

なお、上記連通部材27は直線状のもので説明したが、この連通部材27は横溝22bと平行な部分と折れ曲がって立ち上がった部分とからなる構成とすることも考えられる。これは、外箱3と内箱4との間に発泡断熱材5を充填する際に発泡圧力による変形を防止するために発泡冶具を用いるが、外箱3に固定された放熱パイプや連通部材27が発泡冶具の邪魔にならないような逃がし効果を発揮することになる。そしてこれにより、断熱箱体1に発泡断熱材5を充填した後に、放熱パイプや連通部材27を引っ張り出して所定の位置に配置するための自由度を持たせることができることになる。   In addition, although the said communication member 27 demonstrated in the linear form, this communication member 27 can also be set as the structure which consists of a part parallel to the horizontal groove 22b, and the part which bent and stood up. This uses a foaming jig to prevent deformation due to foaming pressure when the foam insulation 5 is filled between the outer box 3 and the inner box 4, but a heat radiating pipe or communication member fixed to the outer box 3. 27 will exert a relief effect that does not interfere with the foaming jig. And after this, after filling the heat insulation box 1 with the foam heat insulating material 5, the heat radiation pipe and the communication member 27 can be pulled out and given a degree of freedom for placing them at a predetermined position.

(実施の形態2)
図10は実施の形態2における冷蔵庫の真空断熱材を示す正面図である。
(Embodiment 2)
FIG. 10 is a front view showing the vacuum heat insulating material of the refrigerator in the second embodiment.

この実施の形態の真空断熱材21は上側の横溝の形状が実施の形態1と異なるものである。すなわち、この真空断熱材21の横溝22b‘は放熱パイプサイド18Sを通す部分のみの部分溝としてあり、必要がない部分は溝を無くして外箱3への貼り付け用糊面となる厚肉部分22dとしてある。その他の構成は実施の形態1と同様であり、同一番号を付記して説明は省略する。   The vacuum heat insulating material 21 of this embodiment is different from that of the first embodiment in the shape of the upper lateral groove. That is, the lateral groove 22b ′ of the vacuum heat insulating material 21 is a partial groove only for the portion through which the heat radiating pipe side 18S passes, and the unnecessary portion is a thick-walled portion that eliminates the groove and becomes a paste surface for attachment to the outer box 3. 22d. Other configurations are the same as those of the first embodiment, and the same numbers are added and description thereof is omitted.

この実施の形態によれば、真空断熱材21の端縁部分の強度を向上させて、反り、変形等をより最小なものとすることができ、かつ、外箱3への貼り付けが容易となって工数削減が可能となる上に、放熱パイプサイド18Sを収納する横溝22b‘の適正化による真空断熱材21の被覆率向上を図ることができる。   According to this embodiment, the strength of the edge portion of the vacuum heat insulating material 21 can be improved, warpage, deformation, etc. can be minimized, and the attachment to the outer box 3 is easy. Thus, the number of man-hours can be reduced, and the coverage of the vacuum heat insulating material 21 can be improved by optimizing the lateral groove 22b ′ for housing the heat radiating pipe side 18S.

また、上記部分溝22b’はその終端が縦溝22aに連通した状態となっているから、溝形成時の横溝22b’及び縦溝22a位置にばらつきがあってもこのばらつきを吸収でき、溝形成の生産性を向上させることができる。   Further, since the end of the partial groove 22b ′ is in communication with the vertical groove 22a, even if there is a variation in the position of the horizontal groove 22b ′ and the vertical groove 22a at the time of groove formation, this variation can be absorbed. Productivity can be improved.

(実施の形態3)
図11は実施の形態3における冷蔵庫の真空断熱材を示す正面図である。
(Embodiment 3)
FIG. 11 is a front view showing the vacuum heat insulating material of the refrigerator in the third embodiment.

この実施の形態の真空断熱材21は縦溝22aの間に真空断熱材21の上側の端面部23から上部の横溝22bまでつながる局所溝22eを追加して設けたものである。その他の構成は実施の形態1と同様であり、同一番号を付記して説明は省略する。   In the vacuum heat insulating material 21 of this embodiment, a local groove 22e connected from the upper end surface portion 23 of the vacuum heat insulating material 21 to the upper horizontal groove 22b is additionally provided between the vertical grooves 22a. Other configurations are the same as those of the first embodiment, and the same numbers are added and description thereof is omitted.

局所溝22eは、縦溝22a同士の間に真空断熱材21の上側の端面部23から上部の横溝22bまでつながるように形成されており、放熱パイプサイド18Sの他の面、この実施の形態では天井面への橋渡し部分の折り曲げ部18S−2が収納されている。   The local groove 22e is formed between the vertical grooves 22a so as to be connected from the upper end surface portion 23 of the vacuum heat insulating material 21 to the upper horizontal groove 22b, and the other surface of the heat radiating pipe side 18S, in this embodiment. A bent portion 18S-2 at the bridge portion to the ceiling surface is housed.

すなわち、放熱パイプサイド18Sは、外箱3の天井面からの橋渡し部となるL字状の折り曲げ部18S−2が局所溝22eに配置され、直線部を縦溝22aに、折り返し部18S−1を下部の横溝に配置され、さらにその端部はもう一つの局所溝22eを通って再び外箱3の天井面へと橋渡し配置されており、放熱パイプサイド18Sのほぼ全体が、真空断熱材21の上下の端面部23より飛び出ることなく真空断熱材21と外箱側板との間に配置されている。換言すると、真空断熱材21は横溝22b、局所溝22eを設けたことによってその上下両端部が放熱パイプサイド18Sの上下の屈曲部を越えて外箱3上下の各端部近傍まで位置して図2の点線で示すように外箱3の側面上下ほぼ全域を覆ってい
る。
That is, in the heat radiating pipe side 18S, an L-shaped bent portion 18S-2 serving as a bridging portion from the ceiling surface of the outer box 3 is disposed in the local groove 22e, the straight portion is set to the vertical groove 22a, and the turned portion 18S-1 is set. Is disposed in the lower horizontal groove, and the end portion thereof is bridged again to the ceiling surface of the outer box 3 through another local groove 22e, and almost the entire heat radiating pipe side 18S is disposed in the vacuum heat insulating material 21. It arrange | positions between the vacuum heat insulating material 21 and an outer case side board, without jumping out from the upper-and-lower end surface part 23. In other words, the vacuum heat insulating material 21 is provided with the lateral grooves 22b and the local grooves 22e so that the upper and lower ends thereof are located near the upper and lower ends of the outer casing 3 beyond the upper and lower bent portions of the heat radiating pipe side 18S. As indicated by the dotted line 2, the upper and lower sides of the outer box 3 are almost entirely covered.

この実施の形態によれば、断熱箱体1の側面から他の面、この実施の形態では天井面への放熱パイプサイド18Sの橋渡しの折り曲げ品質を維持しつつ真空断熱材21の被覆率を高めることができる。   According to this embodiment, the coverage of the vacuum heat insulating material 21 is increased while maintaining the bending quality of the bridge of the heat radiating pipe side 18S from the side surface of the heat insulating box 1 to the other surface, in this embodiment, the ceiling surface. be able to.

すなわち、断熱箱体1の外箱3は、平板をコの字状に折り曲げて天面と両側面を形成するが、予め平板に貼り付けた放熱パイプは、折り曲げ時に引き伸ばし力が働きくため、この折り曲げ部はパイプ径が細くなったりパイプ壁厚が薄くなるなどの変形を起こし品質低下が懸念される。これを防止するために、放熱パイプの橋渡しパイプ部分はL字状に折り曲げ部18S−2を形成して折り曲げ時に働く引き伸ばし力を吸収して品質の安定化を図るが、このようなL字状の折り曲げ部18S−2を形成するとこの部分の寸法分だけ真空断熱材を短くすることになって被覆率が低下する。   That is, the outer box 3 of the heat insulation box 1 is formed by bending a flat plate into a U-shape to form the top surface and both side surfaces, but since the heat radiation pipe previously attached to the flat plate has a stretching force when bent, This bent portion may be deformed such that the pipe diameter becomes thin or the pipe wall thickness becomes thin, and there is a concern about quality deterioration. In order to prevent this, the bridging pipe portion of the heat radiating pipe forms a bent portion 18S-2 in an L shape to absorb the stretching force that acts during bending and stabilizes the quality. When the bent portion 18S-2 is formed, the vacuum heat insulating material is shortened by the size of this portion, and the coverage is lowered.

しかしながら、この実施の形態によれば横溝22bとこの横溝22bにつながる局所溝22eに放熱パイプの橋渡しパイプ部分のL字状の折り曲げ部18S−2をはめ込むことができるので、このL字状の折り曲げ部18S−2も覆う部分まで真空断熱材21の寸法を長くすることができるとともに、L字状の折り曲げ部18S−2を設けたことによって橋渡しパイプ部分の折り曲げ品質も維持することができるのである。   However, according to this embodiment, the L-shaped bent portion 18S-2 of the bridging pipe portion of the heat radiating pipe can be fitted into the horizontal groove 22b and the local groove 22e connected to the horizontal groove 22b. The dimension of the vacuum heat insulating material 21 can be lengthened to a portion that also covers the portion 18S-2, and the bending quality of the bridging pipe portion can be maintained by providing the L-shaped bent portion 18S-2. .

以上、各実施の形態によって本発明の具体構成を説明してきたが、これは本発明を実施する一形態として示したもので、本発明の目的の範囲内で種々変更可能であることは言うまでもない。   The specific configuration of the present invention has been described above with reference to each embodiment. However, this is shown as an embodiment for carrying out the present invention, and it goes without saying that various modifications can be made within the scope of the object of the present invention. .

例えば、縦溝22a、横溝22bは例示した本数以外に増あるいは減してもよく、冷蔵庫の要求性能に応じて適宜選択すればよい。   For example, the vertical grooves 22a and the horizontal grooves 22b may be increased or decreased in addition to the number illustrated, and may be appropriately selected according to the required performance of the refrigerator.

また、断熱箱体1の側面に設けた真空断熱材21の縦溝22a及び横溝22bの構成は断熱箱体の背面に設ける真空断熱材21に採用して被覆率を向上させるようにしてもよく、同様の効果が得られるものである。   Moreover, the structure of the vertical groove 22a and the horizontal groove 22b of the vacuum heat insulating material 21 provided on the side surface of the heat insulating box 1 may be adopted in the vacuum heat insulating material 21 provided on the back surface of the heat insulating box to improve the coverage. The same effect can be obtained.

本発明は、庫内容積を確保しつつ真空断熱材の被覆率を高めて断熱性を高めることができ、しかも放熱パイプを最適設置できるとともにパイプ接続等の作業性も高い冷蔵庫を提供することができ、家庭用、業務用をはじめとする各種の冷蔵庫に適用することができる。   The present invention is to provide a refrigerator that can increase the coverage of the vacuum heat insulating material while ensuring the internal volume and can improve the heat insulating property, can optimally install the heat radiating pipe, and has high workability such as pipe connection. It can be applied to various refrigerators including home use and business use.

1 断熱箱体
2 扉
3 外箱
4 内箱
5 発泡断熱材
6 補強部材
7 空間
8 冷蔵室
9 切替室
10 製氷室
11 野菜室
12 冷凍室
13 機械室
14 冷却室
15 冷却器
16 冷気送風ファン
17 圧縮機
18 放熱パイプ
18S 放熱パイプサイド
18F 放熱パイプフロント
18T パイプ端部
18S−1 折り返し部
18S−2 L字状の折り曲げ部
18T−1、18T−2 ターン部
19 キャピラリーチューブ
20 仕切り板
21 真空断熱材
22a 縦溝
22b 横溝
22b‘ 部分溝
22c 出口溝
22d 厚肉部分
22e 局所溝
23 端面部
24 底面仕切壁
25 面取部
26 補強部材面取部
27 連通部材
28 孔
DESCRIPTION OF SYMBOLS 1 Heat insulation box 2 Door 3 Outer box 4 Inner box 5 Foam heat insulating material 6 Reinforcement member 7 Space 8 Refrigeration room 9 Switching room 10 Ice making room 11 Vegetable room 12 Freezing room 13 Machine room 14 Cooling room 15 Cooler 16 Cold air blower fan 17 Compressor 18 Heat radiating pipe 18S Heat radiating pipe side 18F Heat radiating pipe front 18T Pipe end 18S-1 Folded portion 18S-2 L-shaped bent portion 18T-1, 18T-2 Turn portion 19 Capillary tube 20 Partition plate 21 Vacuum heat insulating material 22a Vertical groove 22b Horizontal groove 22b 'Partial groove 22c Outlet groove 22d Thick part 22e Local groove 23 End face part 24 Bottom partition wall 25 Chamfer part 26 Reinforcement member chamfer part 27 Communication member 28 Hole

Claims (2)

外箱と内箱との間に発泡断熱材を充填した断熱箱体と、前記外箱の内側に配設された放熱パイプと、前記放熱パイプの庫内側に設けられた真空断熱材とを備え、前記真空断熱材は前後方向に凹形状の横溝を複数有し、最下段の横溝の幅寸法を最大としたことを特徴とする冷蔵庫。 A heat insulating box filled with a foam heat insulating material between the outer box and the inner box, a heat dissipating pipe disposed inside the outer box, and a vacuum heat insulating material provided inside the heat dissipating pipe. The refrigerator is characterized in that the vacuum heat insulating material has a plurality of concave lateral grooves in the front-rear direction, and the width dimension of the lowermost lateral groove is maximized. 最下段の横溝に複数の放熱パイプを配置したことを特徴とする請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein a plurality of heat radiating pipes are arranged in the bottom horizontal groove.
JP2013174251A 2013-08-23 2013-08-26 refrigerator Active JP6504379B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013174251A JP6504379B2 (en) 2013-08-26 2013-08-26 refrigerator
PCT/JP2014/003988 WO2015025477A1 (en) 2013-08-23 2014-07-30 Refrigerator
DE212014000174.9U DE212014000174U1 (en) 2013-08-23 2014-07-30 fridge
CN201490000983.2U CN205536838U (en) 2013-08-23 2014-07-30 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013174251A JP6504379B2 (en) 2013-08-26 2013-08-26 refrigerator

Publications (2)

Publication Number Publication Date
JP2015042915A true JP2015042915A (en) 2015-03-05
JP6504379B2 JP6504379B2 (en) 2019-04-24

Family

ID=52696503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013174251A Active JP6504379B2 (en) 2013-08-23 2013-08-26 refrigerator

Country Status (1)

Country Link
JP (1) JP6504379B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020106213A (en) * 2018-12-27 2020-07-09 アクア株式会社 refrigerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178080A (en) * 2005-12-28 2007-07-12 Matsushita Electric Ind Co Ltd Refrigerator
JP2011102599A (en) * 2009-11-10 2011-05-26 Toshiba Corp Vacuum insulation panel and refrigerator using the same
JP2012063038A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178080A (en) * 2005-12-28 2007-07-12 Matsushita Electric Ind Co Ltd Refrigerator
JP2011102599A (en) * 2009-11-10 2011-05-26 Toshiba Corp Vacuum insulation panel and refrigerator using the same
JP2012063038A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020106213A (en) * 2018-12-27 2020-07-09 アクア株式会社 refrigerator
JP7287642B2 (en) 2018-12-27 2023-06-06 アクア株式会社 refrigerator

Also Published As

Publication number Publication date
JP6504379B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP4111096B2 (en) refrigerator
AU2013238222B2 (en) Heat insulating box, and refrigerator and hot-water storage device each comprising heat insulating box
JP5677737B2 (en) refrigerator
JP5578266B1 (en) refrigerator
AU2013300887B2 (en) Heat-insulating cabinet and refrigerator including the heat-insulating cabinet
JP2006343078A (en) Refrigerator
JP2008116126A (en) Refrigerator
WO2015025477A1 (en) Refrigerator
JP2007093108A (en) Refrigerator
JP2015042915A (en) Refrigerator
JP6402352B2 (en) refrigerator
JP6314311B2 (en) refrigerator
JP6379348B2 (en) refrigerator
JP2013185735A (en) Refrigerator
JP2015040674A (en) Refrigerator
JP2013185730A (en) Refrigerator
JP2015064134A (en) Refrigerator
JP2014134282A (en) Vacuum heat insulation material and refrigerator using the same
JP2005172307A (en) Refrigerator
JP2005009825A (en) Refrigerator
JP2013185734A (en) Refrigerator
JP2010038483A (en) Refrigerator
JP6113612B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2005201529A (en) Refrigerator
JPH11211313A (en) Refrigerator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180418

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180425

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190313

R151 Written notification of patent or utility model registration

Ref document number: 6504379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151