JP2007178080A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2007178080A
JP2007178080A JP2005377976A JP2005377976A JP2007178080A JP 2007178080 A JP2007178080 A JP 2007178080A JP 2005377976 A JP2005377976 A JP 2005377976A JP 2005377976 A JP2005377976 A JP 2005377976A JP 2007178080 A JP2007178080 A JP 2007178080A
Authority
JP
Japan
Prior art keywords
heat insulating
box
refrigerator
urethane
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005377976A
Other languages
Japanese (ja)
Other versions
JP4696906B2 (en
Inventor
Shuhei Sugimoto
修平 杉本
Kazuyuki Hamada
和幸 濱田
Kazuya Nakanishi
和也 中西
Hideki Sakai
秀樹 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005377976A priority Critical patent/JP4696906B2/en
Publication of JP2007178080A publication Critical patent/JP2007178080A/en
Application granted granted Critical
Publication of JP4696906B2 publication Critical patent/JP4696906B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refrigerator Housings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator-freezer capable of reducing flow resistance in foaming urethane, thinning walls of a heat insulating housing, enlarging a volume, and further reducing a refrigerant filling quantity. <P>SOLUTION: A condensing means is disposed in a state that a condensation pipe 130 is closely kept into contact with an outer casing 102, and a part or the whole of the condensing means is composed of a plurality of passages 231 arranged in parallel with each other, thus the condensation pipe 130 can be thinned, flowing resistance in filling and foaming urethane is reduced, and an uniform density of urethane heat insulating material 204 can be kept. Further the generation of voids can be reduced, and the deformation in appearance of the refrigerant outer casing 102 can be prevented. Further a thickness of the heat insulating housing 106 can be reduced and the internal volume can be increased. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、外箱と内箱の間隙に断熱材を発泡充填して成る断熱箱体から構成された冷蔵庫に関するものである。   The present invention relates to a refrigerator composed of a heat insulating box formed by foaming and filling a heat insulating material in a gap between an outer box and an inner box.

近年、冷蔵庫の大容量化および設置スペース縮小の需要が高まるにつれて、冷蔵庫断熱壁を薄肉化する、さらには、真空断熱材を配置挿入させ、断熱性能の向上を図っている(例えば、特許文献1参照)。   In recent years, as the demand for large-capacity refrigerators and installation space reductions increases, the refrigerator heat insulation walls are made thinner, and further, vacuum insulation materials are arranged and inserted to improve heat insulation performance (for example, Patent Document 1). reference).

以下、図面を参照しながら上記従来の冷蔵庫を説明する。   Hereinafter, the conventional refrigerator will be described with reference to the drawings.

図11は、従来の冷蔵庫の外観斜視図を示す。図12は、従来の冷蔵庫の断熱箱体の部分平面断面図を示す。図11,12に示すように、従来の冷蔵庫1の壁厚構造は、冷蔵庫1の外壁を形成する外箱2と、冷蔵庫の庫内壁を形成する内箱3と、外箱2と内箱3の間に発泡充填させたウレタン断熱材4、ウレタン断熱材4内に配置した真空断熱材5からなる断熱箱体6と、断熱箱体6のウレタン断熱材4内に配置した冷蔵庫冷却装置の凝縮パイプ(図示せず)により構成される。   FIG. 11 shows an external perspective view of a conventional refrigerator. FIG. 12: shows the fragmentary top sectional view of the heat insulation box of the conventional refrigerator. As shown in FIGS. 11 and 12, the wall thickness structure of the conventional refrigerator 1 includes an outer box 2 that forms the outer wall of the refrigerator 1, an inner box 3 that forms the inner wall of the refrigerator, an outer box 2, and an inner box 3. Condensation of the urethane heat insulating material 4 foamed and filled between the heat insulating box 6 composed of the vacuum heat insulating material 5 disposed in the urethane heat insulating material 4, and the refrigerator cooling device disposed in the urethane heat insulating material 4 of the heat insulating box 6 It is constituted by a pipe (not shown).

真空断熱材5は、ガスの透過を阻止する多層ラミネート構造のフィルムから成る外被袋、シリカ・パーライト等の微粉末もしくは無機繊維等からなる芯材により構成され、芯材を外被に封入した後、外被袋内のガス(空気)を排気し、真空状態にしてヒートシールにより密封している。この真空断熱材5の熱伝導率は、0.008から0.0005W/m・Kと断熱性能が非常に優れているため、断熱箱体6の壁厚を薄くしても、庫内に侵入してくる熱量を有効的に削減することが可能となる。また一般的に真空断熱材5の固定場所は曲面が多い内箱3よりも比較的平面部が多い外箱2の内面側に取り付けられるが、従来例においては、外箱2と真空断熱材5の間隙に板状部材40を配設して安定して保持できる隙間を確保している。   The vacuum heat insulating material 5 is composed of a jacket bag made of a film having a multilayer laminate structure that prevents gas permeation, and a core material made of fine powder such as silica and pearlite or inorganic fibers, and the core material is enclosed in the jacket. After that, the gas (air) in the jacket bag is exhausted, vacuumed and sealed by heat sealing. The thermal conductivity of the vacuum heat insulating material 5 is 0.008 to 0.0005 W / m · K, which is very excellent in heat insulating performance. Therefore, even if the wall thickness of the heat insulating box 6 is reduced, the heat insulating box 6 penetrates into the cabinet. It is possible to effectively reduce the amount of heat generated. In general, the vacuum heat insulating material 5 is fixed on the inner surface side of the outer box 2 having a relatively larger number of flat surfaces than the inner box 3 having many curved surfaces. In the conventional example, the outer case 2 and the vacuum heat insulating material 5 are fixed. A plate-like member 40 is disposed in the gap to secure a gap that can be stably held.

ウレタン断熱材4内に配置された凝縮パイプは一般に銅管または鉄管からなり、外箱2の内面側に当接するようアルミテープ(図示せず)等によって取り付けられている。この理由として、圧縮機(図示せず)から搬送される高温高圧ガスを凝縮させるべく、外箱2と凝縮パイプを接地させ放熱面積を確保する必要があり、また高温になった凝縮パイプから庫内へ侵入する熱量を削減するべく、冷蔵庫1内から凝縮パイプ(銅管や鉄管)を極力隔離させる必要がある。さらに冷蔵庫1表面の露着き防止のため、外箱2表面温度は庫外の雰囲気温度に対して極力低下させないように、凝縮パイプの熱を外箱2へ効果的に伝達させなければならない等が挙げられる。   The condensation pipe disposed in the urethane heat insulating material 4 is generally made of a copper tube or an iron tube, and is attached by an aluminum tape (not shown) or the like so as to contact the inner surface side of the outer box 2. This is because it is necessary to ground the outer box 2 and the condensation pipe to secure a heat radiation area in order to condense the high-temperature and high-pressure gas conveyed from the compressor (not shown). In order to reduce the amount of heat entering the inside, it is necessary to isolate the condensation pipe (copper pipe or iron pipe) from the refrigerator 1 as much as possible. Furthermore, in order to prevent the surface of the refrigerator 1 from being deposited, the heat of the condensing pipe must be effectively transmitted to the outer box 2 so that the surface temperature of the outer box 2 does not decrease as much as the ambient temperature outside the refrigerator. Can be mentioned.

以上より、従来構成において、外箱2から真空断熱材5への伝熱量を抑制して、断熱効率に優れた断熱箱体6を得ることができる。
特開2000−304428号公報
As described above, in the conventional configuration, the heat transfer amount from the outer box 2 to the vacuum heat insulating material 5 can be suppressed, and the heat insulating box 6 excellent in heat insulating efficiency can be obtained.
JP 2000-304428 A

近年、冷蔵庫の省エネルギー化のため、庫外から庫内への侵入熱量を低減させるべく、真空断熱材5を採用するケースが拡大している。しかしながら、その結果、庫内容積を維持するため、断熱箱体の壁厚は同一にしたうえで、ウレタン断熱材の壁厚を薄くしなければならない。また、従来例では、真空断熱材5を外箱2内面に設置した板状部材40により庫内側へ所定の間隔にて配設していることから、外箱2と内箱3の間隙に充填されるウレタン断熱材4は2層に分離配置され、それぞれの厚さは単一層に比べて薄くなる。さらに凝縮パイプは、外箱1の内表面側に当接している。以上より、ウレタン発泡時にこれらが流動抵抗となり、所定のウレタン発泡空間に対してウレタン流動阻害を引き起こし、ウレタン密度の低下、及びボイドが冷蔵庫背面部や凝縮パイプのウレタン流動下流側等に発生するという課題があった。   In recent years, in order to save energy in refrigerators, cases in which the vacuum heat insulating material 5 is employed have been expanded in order to reduce the amount of heat entering from the outside to the inside. However, as a result, in order to maintain the internal volume, the wall thickness of the heat insulating box must be the same, and the wall thickness of the urethane heat insulating material must be reduced. In the conventional example, the vacuum heat insulating material 5 is disposed at a predetermined interval on the inner side by the plate-like member 40 installed on the inner surface of the outer box 2, so that the gap between the outer box 2 and the inner box 3 is filled. The urethane heat insulating material 4 is separated and arranged in two layers, and each thickness is thinner than a single layer. Further, the condensing pipe is in contact with the inner surface side of the outer box 1. From the above, these become flow resistance at the time of urethane foaming, causing urethane flow inhibition to a predetermined urethane foam space, reducing the urethane density, and generating voids on the back side of the refrigerator, the urethane flow downstream of the condensation pipe, etc. There was a problem.

また、これらボイド発生にともない生じる空気層が、外気温度および庫内温度変化により膨張、圧縮を引き起こし、外箱2の表面に圧力がかかり、この部分における変形を生じさせるという課題が発生した。   In addition, the air layer generated by the generation of these voids causes expansion and compression due to changes in the outside air temperature and the inside temperature, and pressure is applied to the surface of the outer box 2 to cause deformation in this portion.

さらに、冷蔵庫の庫内容積効率、すなわち冷蔵庫の外郭容積に対する庫内容積比率を向上させることにより、食品等の収納量を拡大しようとした場合、外箱から内箱の間隔、すなわち断熱箱体の壁厚を薄くする手段が考えられる。このとき、壁厚を薄くすることによる庫内負荷性能の低下を極力抑制するため、真空断熱材の厚さを保持あるいは厚くし、その代替としてウレタン厚さを同等以下に薄肉化しなければならない。このとき、ウレタン発泡時の流動性が悪化してウレタン密度が低下するという課題があった。   Furthermore, when trying to expand the storage capacity of food etc. by improving the internal volume efficiency of the refrigerator, that is, the internal volume ratio with respect to the external volume of the refrigerator, the interval between the external box and the insulated box, A means for reducing the wall thickness is conceivable. At this time, the thickness of the vacuum heat insulating material must be maintained or increased, and the thickness of the urethane must be reduced to an equivalent or lower thickness as an alternative in order to suppress the deterioration of the load performance in the warehouse caused by reducing the wall thickness as much as possible. At this time, there was a problem that the fluidity at the time of urethane foam deteriorated and the urethane density decreased.

本発明は、従来の技術的課題を克服するものであり、冷蔵庫の外箱に凝縮パイプを密着させた凝縮手段を備え、前記凝縮手段の一部或いは全てが並列に配置された複数の経路で構成されていることで、経路に応じて凝縮パイプの直径を細径化してウレタン発泡時の流動抵抗を低減することを目的とする。   The present invention overcomes the conventional technical problem, and includes a condensing unit in which a condensing pipe is brought into close contact with an outer box of a refrigerator, and a part or all of the condensing unit is arranged in a plurality of paths arranged in parallel. By being comprised, it aims at reducing the flow resistance at the time of urethane foaming by reducing the diameter of a condensation pipe according to a path | route.

上記従来の課題を解決するために、本発明の冷蔵庫は、内箱と外箱と前記内箱と前記外箱との間に備えられた断熱材とを有する断熱箱体と、前記断熱箱体に備えられ少なくとも凝縮手段を備えるとともに内部に冷媒が充填された冷凍サイクルとを有し、前記凝縮手段は前記断熱箱体の外箱の前記断熱材側に凝縮パイプを密着させた部分を備え、前記冷凍サイクル中の冷媒の流れにおいて前記凝縮手段の少なくとも一部は複数の並列経路を有し、前記並列経路の冷媒パイプの直径と前記並列経路以外の冷媒パイプとの直径が異なるものである。   In order to solve the above-described conventional problems, the refrigerator of the present invention includes an inner box, an outer box, a heat insulating box having a heat insulating material provided between the inner box and the outer box, and the heat insulating box. And a refrigeration cycle having at least a condensing unit and a refrigerant filled therein, and the condensing unit includes a portion in which a condensing pipe is closely attached to the heat insulating material side of the outer box of the heat insulating box body, In the refrigerant flow in the refrigeration cycle, at least a part of the condensing means has a plurality of parallel paths, and the diameters of the refrigerant pipes in the parallel paths and the refrigerant pipes other than the parallel paths are different.

これによって、冷蔵庫の大容量化にともなうウレタン厚さを薄くするケースや凝縮パイプを多数配設したケースにおいて、凝縮パイプの直径を経路に応じて細径化することが可能となり、ウレタン発泡時の流動抵抗を低減させることができるという作用を有する。   This makes it possible to reduce the diameter of the condensing pipe according to the path in cases where the urethane thickness is reduced due to the increased capacity of the refrigerator and cases where a large number of condensing pipes are provided. It has the effect | action that a flow resistance can be reduced.

本発明の冷蔵庫は、外箱に凝縮パイプが当接する一部或いは全てが並列に配置された複数の経路で構成されることにより、ウレタンの流動抵抗を減少させ、ウレタン密度を均一に保持でき、庫外の高温空気から庫内への熱侵入を抑制することができる。さらにボイド発生を抑制でき、冷蔵庫外箱の外観変形を防止できる。   The refrigerator of the present invention is configured by a plurality of paths in which a part or all of the condensing pipe contacts the outer box in parallel, thereby reducing the flow resistance of urethane and maintaining a uniform urethane density. It is possible to suppress heat intrusion from the high-temperature air outside the chamber into the chamber. Furthermore, generation | occurrence | production of a void can be suppressed and the external appearance deformation | transformation of a refrigerator outer box can be prevented.

請求項1に記載の発明は、内箱と外箱と前記内箱と前記外箱との間に備えられた断熱材とを有する断熱箱体と、前記断熱箱体に備えられ少なくとも凝縮手段を備えるとともに内部に冷媒が充填された冷凍サイクルとを有し、前記凝縮手段は前記断熱箱体の外箱の前記断熱材側に凝縮パイプを密着させた部分を備え、前記冷凍サイクル中の冷媒の流れにおいて前記凝縮手段の少なくとも一部は複数の並列経路を有し、前記並列経路の冷媒パイプの直径と前記並列経路以外の冷媒パイプとの直径が異なるため、凝縮パイプが細径化でき、ウレタン充填発泡時の流動抵抗が減少し、ウレタン密度を均一に保持できる。さらにボイド発生を抑制でき、冷蔵庫外箱の外観変形も防止できる。   The invention according to claim 1 is a heat insulating box having an inner box, an outer box, a heat insulating material provided between the inner box and the outer box, and at least a condensing means provided in the heat insulating box. And a refrigeration cycle filled with a refrigerant inside, wherein the condensing means comprises a portion in which a condensation pipe is brought into close contact with the heat insulating material side of the outer box of the heat insulation box, and the refrigerant in the refrigeration cycle In the flow, at least a part of the condensing means has a plurality of parallel paths, and the diameter of the refrigerant pipe in the parallel path is different from the diameter of the refrigerant pipes other than the parallel path. The flow resistance during filling and foaming decreases, and the urethane density can be kept uniform. Furthermore, generation | occurrence | production of a void can be suppressed and the external appearance deformation | transformation of a refrigerator outer box can also be prevented.

請求項2に記載の発明は、請求項1に記載の冷蔵庫に加えて、凝縮手段の並列経路内に備えられた第一凝縮パイプは、前記並列経路以外に備えられた凝縮手段である第二凝縮パイプよりパイプの直径が細いことにより、ウレタン充填発泡時の流動抵抗が減少し、ウレタン密度を均一に保持できる。さらにボイド発生を抑制でき、冷蔵庫外箱の外観変形も防止できる。   According to a second aspect of the present invention, in addition to the refrigerator according to the first aspect, the first condensing pipe provided in the parallel path of the condensing means is a second condensing means provided other than the parallel path. Since the diameter of the pipe is smaller than that of the condensing pipe, the flow resistance during foaming with urethane is reduced, and the urethane density can be kept uniform. Furthermore, generation | occurrence | production of a void can be suppressed and the external appearance deformation | transformation of a refrigerator outer box can also be prevented.

請求項3に記載の発明は、請求項1または2に記載の冷蔵庫に加えて、外箱と内箱の間に充填される断熱部材は、ウレタン断熱材からなる第一断熱部と、真空断熱材からなる第二断熱部とを有することにより、ウレタン断熱材4の分布域が2層に分離充填され、ウレタン厚さが1層に比べて薄くなるものに対して、凝縮パイプの細径化により、ウレタンの流動抵抗を低減し、ウレタン密度を均一に保持でき、さらにボイド発生を抑制でき、冷蔵庫外箱の外観変形を防止できる。   In addition to the refrigerator according to claim 1 or 2, the heat insulating member filled between the outer box and the inner box includes a first heat insulating portion made of urethane heat insulating material, and a vacuum heat insulating material. By having a second heat insulating part made of a material, the distribution area of the urethane heat insulating material 4 is separated and filled in two layers, and the thickness of the urethane pipe is thinner than that in the first layer, whereas the diameter of the condensation pipe is reduced. Thus, the flow resistance of urethane can be reduced, the urethane density can be kept uniform, the generation of voids can be suppressed, and the external appearance deformation of the refrigerator outer box can be prevented.

請求項4に記載の発明は、請求項3に記載の冷蔵庫に加えて、さらに前記第二断熱部が前記凝縮パイプと所定の間隙を維持するよう支持部材を配設したことにより、第二断熱部の変形を防止し、ウレタン発泡時のウレタン流動性を向上でき、ウレタン密度の均一化とボイド発生の抑制が可能となり、冷蔵庫外箱の外観変形も防止できる。   According to a fourth aspect of the present invention, in addition to the refrigerator according to the third aspect, the second heat insulating portion is further provided with a support member so as to maintain a predetermined gap with the condensation pipe. The deformation of the part can be prevented, the urethane fluidity during urethane foaming can be improved, the urethane density can be made uniform and the generation of voids can be suppressed, and the external appearance deformation of the refrigerator outer box can also be prevented.

また、請求項5に記載の発明は、請求項1から4のいずれか一項に記載の冷蔵庫に加えて、前記凝縮パイプの断面が扁平形状となることにより、請求項1から4に記載の効果に加えて、さらに凝縮パイプの扁平化によるウレタンの流動抵抗を低減し、ウレタン密度を均一に保持でき、さらにボイド発生を抑制でき、冷蔵庫外箱の外観変形を防止できる。また、凝縮能力向上による省エネ効果が得られる。   Moreover, in addition to the refrigerator as described in any one of Claims 1 to 4, the invention as described in Claim 5 is described in Claims 1 to 4 because the cross section of the said condensation pipe becomes flat shape. In addition to the effects, the flow resistance of urethane due to the flattening of the condensation pipe can be reduced, the urethane density can be kept uniform, the generation of voids can be further suppressed, and the external appearance deformation of the refrigerator outer box can be prevented. Moreover, the energy-saving effect by a condensation capacity improvement is acquired.

(実施の形態1)
図1は本発明の実施の形態1による冷蔵庫の外観斜視図、図2は同実施の形態による冷蔵庫の図1におけるA−A’線要部断面図、図3は同実施の形態による冷蔵庫の外箱の展開図、図4は同実施の形態による冷蔵庫の図1におけるB−B’線要部断面図、図5は同実施の形態による冷蔵庫のサイクル概略図である。以下、本発明による冷蔵庫の実施の形態について、図面を参照しながら説明する。なお、従来と同一構成については、同一符号を付して詳細な説明を省略する。
(Embodiment 1)
1 is an external perspective view of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view of the main part of the refrigerator according to Embodiment 1 taken along line AA ′ in FIG. 1, and FIG. FIG. 4 is a developed view of the outer box, FIG. 4 is a cross-sectional view of the main part BB ′ in FIG. 1 of the refrigerator according to the embodiment, and FIG. Hereinafter, embodiments of a refrigerator according to the present invention will be described with reference to the drawings. In addition, about the same structure as the past, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図1および図2より、前方に開口する鋼板製の外箱102、硬質樹脂製の内箱103、外箱102と内箱103間に発泡充填されたウレタン断熱材104からなる断熱箱体106は、庫内仕切り壁107により区分けされた冷蔵室110、冷凍室111、野菜室112、切替室113、そして製氷室114を構成している。   From FIG. 1 and FIG. 2, a heat insulating box body 106 made of a steel heat insulating outer box 102, a hard resin inner box 103, and a urethane heat insulating material 104 filled between the outer box 102 and the inner box 103 by foaming is obtained. The refrigerator compartment 110, the freezer compartment 111, the vegetable compartment 112, the switching compartment 113, and the ice making compartment 114, which are separated by the internal partition wall 107, are configured.

また、冷蔵室110の温度を検知する冷蔵室センサ115と、冷凍室111の温度を検知する冷凍室センサ116と、冷蔵室110への冷気を調整する冷蔵室ダンパ117(図示せず)と、冷蔵庫101の冷凍サイクルを構成する野菜室112背面を中心に配置された蒸発器118と、蒸発器を通風させるファン119と、冷蔵庫101外部の背面上部に設置された圧縮機120を配設する機械室121からなる。   Further, a refrigerator compartment sensor 115 for detecting the temperature of the refrigerator compartment 110, a freezer compartment sensor 116 for detecting the temperature of the freezer compartment 111, a refrigerator compartment damper 117 (not shown) for adjusting the cold air to the refrigerator compartment 110, Machine which arrange | positions the evaporator 118 arrange | positioned focusing on the back of the vegetable compartment 112 which comprises the refrigerating cycle of the refrigerator 101, the fan 119 which ventilates an evaporator, and the compressor 120 installed in the back upper part of the refrigerator 101 exterior. It consists of chamber 121.

冷蔵室110は冷蔵保存のために凍らない温度を下限に通常1〜5℃で設定されている。野菜室112は冷蔵室110と同等もしくは若干高い温度設定の2℃〜7℃とすることが多い。低温にすれば葉野菜の鮮度を長期間維持することが可能である。   The refrigerator compartment 110 is normally set at 1 to 5 ° C. with the lower limit of the temperature at which it is not frozen for refrigerated storage. The vegetable room 112 is often set to a temperature setting of 2 ° C. to 7 ° C. that is the same as or slightly higher than that of the refrigerator room 110. If the temperature is lowered, the freshness of leafy vegetables can be maintained for a long time.

冷凍室111は冷凍保存のために通常−22から−18℃で設定されているが、冷凍保存状態の向上のために、たとえば−30から−25℃の低温で設定されることもある。   The freezer compartment 111 is usually set at −22 to −18 ° C. for frozen storage, but may be set at a low temperature of −30 to −25 ° C., for example, to improve the frozen storage state.

図3より、外箱102は背面板102a、側面板102b、102c、天面板102d、底面板102eから構成され、通常、側面板102b、102cの2面と天面板102dは一枚の鋼板にて折り曲げ成形される。   3, the outer box 102 is composed of a back plate 102a, side plates 102b and 102c, a top plate 102d, and a bottom plate 102e. Usually, the two surfaces of the side plates 102b and 102c and the top plate 102d are a single steel plate. It is bent and formed.

ここで凝縮パイプ130の配置を冷媒の流れに沿って説明すると、冷蔵庫101背面上部にある機械室121内空間において、圧縮機120から吐出された単経路の凝縮パイプ(第二の凝縮パイプ)130は、並列経路(第一の凝縮パイプ)131a,131bに分岐され、側面板102b上部へ向い、入ってすぐに下方に向かって平行移動し、下方にてUターンして再び上方へ向い、天面板102dに入る。そして反対側の側面板102cに入り、下方へ平行移動し、再び凝縮パイプ130は合流して単経路となる。その後、蒸発皿122にある浸積パイプ123や外箱102の正面端部(図示せず)に向い、再び側面板102cに入り、上方へ向い、最終的に機械室121に配置されたドライヤ124と結合する。   Here, the arrangement of the condensation pipe 130 will be described along the flow of the refrigerant. A single-pass condensation pipe (second condensation pipe) 130 discharged from the compressor 120 in the inner space of the machine room 121 at the upper rear surface of the refrigerator 101. Is branched into parallel paths (first condensing pipes) 131a and 131b, heads upward to the side plate 102b, immediately moves in parallel and then moves downward, makes a U-turn in the lower part, and heads upward again. The face plate 102d is entered. And it enters into the side plate 102c on the opposite side, translates downward, and the condensation pipe 130 joins again to form a single path. After that, it faces the immersion pipe 123 in the evaporating dish 122 and the front end (not shown) of the outer box 102, enters the side plate 102 c again, faces upward, and is finally disposed in the machine room 121. Combine with.

本実施の形態において、並列経路131a、131bの配管径はφ2mmとした。これは、単経路の凝縮パイプ130(外径4mm)の配管断面積と、分岐後の並列回路131a,131bの配管断面積の総和をほぼ等しくして、配管内の冷媒流速を維持することで、冷凍機油の搬送に悪影響を与えないように配慮したものである。   In the present embodiment, the pipe diameter of the parallel paths 131a and 131b is 2 mm. This is because the sum of the pipe cross-sectional area of the single-pass condensing pipe 130 (outer diameter 4 mm) and the pipe cross-sectional areas of the parallel circuits 131a and 131b after branching is made substantially equal to maintain the refrigerant flow rate in the pipe. Consideration is given so as not to adversely affect the transport of the refrigerating machine oil.

以上のように構成された本実施の形態の冷蔵庫について、以下その動作を図2、図3、図4、図5にて説明する。   The operation of the refrigerator of the present embodiment configured as described above will be described below with reference to FIGS. 2, 3, 4, and 5.

冷蔵庫101の運転が開始される条件は、冷蔵室センサ115もしくは冷凍室センサ116温度が起動温度以上の場合であり、また運転が停止する条件は、冷蔵室センサ115および冷凍室センサ116の両方が停止温度以下の場合である。   The condition for starting the operation of the refrigerator 101 is when the temperature of the refrigerator compartment sensor 115 or the freezer compartment sensor 116 is equal to or higher than the starting temperature, and the condition for stopping the operation is that both the refrigerator compartment sensor 115 and the freezer compartment sensor 116 are operated. This is the case of the stop temperature or lower.

まず冷凍室111の冷却について説明する。冷凍室111が外気からの侵入熱およびドア開閉などにより、庫内温度が上昇して冷凍室センサ116が起動温度以上になった場合に、圧縮機120が起動し冷却が開始される。圧縮機120から吐出された高温高圧の冷媒は、前述した配管経路を通過し、最終的に機械室121に配置されたドライヤ(図示せず)まで到達する間、特に外箱102に設置される凝縮パイプ130において、側面板102b、c、天面板102dの庫外側の空気や庫内のウレタン断熱材104との熱交換により、冷却されて液化する。   First, cooling of the freezer compartment 111 will be described. When the freezer compartment 111 rises in temperature due to intrusion heat from outside air, door opening and closing, etc., and the freezer compartment sensor 116 reaches the start temperature or higher, the compressor 120 is started and cooling is started. The high-temperature and high-pressure refrigerant discharged from the compressor 120 passes through the above-described piping path, and is finally installed in the outer box 102 while finally reaching a dryer (not shown) disposed in the machine room 121. The condensation pipe 130 is cooled and liquefied by heat exchange with the outside air of the side plates 102b and 102c and the top plate 102d and the urethane heat insulating material 104 in the cabinet.

次に液化した冷媒はキャピラリチューブ135で減圧されて、蒸発器118に流入し蒸発器118周辺の庫内空気との熱交換により庫内を冷却する。この後、冷媒は加熱されガス化して圧縮器120に戻る。庫内が冷却されて冷凍室センサ116の温度が停止温度以下になり、かつ冷蔵室センサ115の温度が停止温度以下になった場合に圧縮機120の運転が停止する。   Next, the liquefied refrigerant is decompressed by the capillary tube 135, flows into the evaporator 118, and cools the interior by heat exchange with the interior air around the evaporator 118. Thereafter, the refrigerant is heated and gasified, and returns to the compressor 120. When the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor 116 is equal to or lower than the stop temperature, and the temperature of the refrigerator compartment sensor 115 is equal to or lower than the stop temperature, the operation of the compressor 120 is stopped.

つぎに冷蔵室110の冷却について説明する。冷凍室111と同様に、庫内温度が上昇して冷蔵室センサ115温度が起動温度以上になった場合に、冷蔵室ダンパ(図示せず)が開き、圧縮機120の運転が開始される。蒸発器118の冷気が送風ファン119により冷蔵室110内に流入して庫内空気温度が冷却されて、冷蔵室センサ115温度が停止温度以下になり、かつ冷凍室センサ116温度が停止温度以下の場合に圧縮機120の運転が停止する。また冷蔵室110と蒸発器118間の風路にある冷蔵室ダンパは、冷蔵室110温度が停止温度以下で全閉し、仮に冷凍室111の温度が停止温度以上で圧縮機120の運転が継続しても、冷蔵室110温度がこの時点の温度よりも低下しないようにして、凍結を防止している。   Next, cooling of the refrigerator compartment 110 will be described. Similar to the freezer compartment 111, when the internal temperature rises and the temperature of the refrigerator compartment sensor 115 becomes equal to or higher than the starting temperature, the refrigerator compartment damper (not shown) is opened and the compressor 120 is started to operate. The cool air from the evaporator 118 flows into the refrigerating chamber 110 by the blower fan 119 to cool the internal air temperature, the refrigerating chamber sensor 115 temperature becomes lower than the stop temperature, and the freezer compartment sensor 116 temperature falls below the stop temperature. In this case, the operation of the compressor 120 is stopped. Further, the refrigerator compartment damper in the air passage between the refrigerator compartment 110 and the evaporator 118 is fully closed when the temperature of the refrigerator compartment 110 is not higher than the stop temperature, and the operation of the compressor 120 continues if the temperature of the freezer compartment 111 is not less than the stop temperature. Even so, freezing is prevented by preventing the temperature of the refrigerator compartment 110 from dropping below the temperature at this point.

次に、断熱箱体106内部のウレタン発泡工程を説明すると、この断熱箱体106の前面を下、背面を上にした状態で、発泡変形防止用の固定冶具を外箱102の外郭および内箱103の内郭に当接させる。つぎに背面の任意の注入口125からウレタン断熱材104の原液を注入し、前面側へ滴下させる。ウレタンは数秒後に発泡を開始し、上方すなわち背面側に向かって発泡が促進され、気泡上のウレタンが流動して所定の空間を充填し、ウレタンの硬化が完了した時点で断熱箱体106が完成する。   Next, the urethane foaming process inside the heat insulation box 106 will be described. With the front surface of the heat insulation box 106 facing down and the back surface facing up, the fixing jig for preventing foam deformation is attached to the outer shell and the inner box of the outer box 102. It is made to contact | abut to the outline of 103. Next, the stock solution of the urethane heat insulating material 104 is injected from an arbitrary inlet 125 on the back surface, and dropped onto the front surface side. The urethane begins to foam after a few seconds, and the foaming is promoted upward, that is, toward the back side. The urethane on the bubbles flows to fill a predetermined space, and when the urethane is cured, the heat insulation box 106 is completed. To do.

このとき、本実施の形態のように、凝縮パイプ130を並列経路131a、131bにすることにより、パイプ径を細径化できる。その結果、凝縮パイプ130を流れるウレタン断熱材104の流動スペースが拡大し、流動抵抗を低減することができる。したがって、ウレタンの充填密度の低下を防止し、ボイドの発生を防止することができる。その結果、外箱102の外観変形も抑制され、断熱箱体106の強度も高くなる。   At this time, the pipe diameter can be reduced by using the condensing pipe 130 in parallel paths 131a and 131b as in the present embodiment. As a result, the flow space of the urethane heat insulating material 104 flowing through the condensation pipe 130 is expanded, and the flow resistance can be reduced. Accordingly, it is possible to prevent a decrease in the filling density of urethane and to prevent generation of voids. As a result, external deformation of the outer box 102 is also suppressed, and the strength of the heat insulating box 106 is increased.

さらに、外箱102内面に密着設置される凝縮パイプ130を、分岐、結合させようとすると、配管ボリュームが増加し、外箱102表面の変形に繋がる、これに対して、凝縮パイプ130の分岐、結合を機械室121内並びに蒸発皿122設置空間に配置させることにより、配管ボリュームの増加による、外表面の変形を最小限に抑えることができる。   Furthermore, if the condensation pipe 130 installed in close contact with the inner surface of the outer box 102 is branched and joined, the pipe volume increases, which leads to deformation of the outer box 102 surface. By arranging the coupling in the machine chamber 121 and the evaporating dish 122 installation space, it is possible to minimize deformation of the outer surface due to an increase in the piping volume.

さらに、分岐、結合に伴う配管連結時に行うロウ付け作業を機械室121内もしくは蒸発皿122設置空間内で行えるので、作業性を向上することができる。   Furthermore, since the brazing operation performed when the pipes are connected due to branching and coupling can be performed in the machine room 121 or the evaporating dish 122 installation space, workability can be improved.

尚、本実施の形態において、機械室121を背面上部に配設したが、背面下部に配設し、凝縮パイプ130を断熱箱体106に対して上下反対に配置することにより、同様の配管構成が可能となり、ウレタンの流動抵抗を抑制する効果が得られる。   In the present embodiment, the machine room 121 is disposed at the upper part of the back surface, but the same piping configuration is provided by disposing the condensing pipe 130 upside down with respect to the heat insulating box body 106 by disposing the machine room 121 at the lower surface of the back surface. And the effect of suppressing the flow resistance of urethane is obtained.

尚、将来的に、断熱箱体106の薄壁構造を採用する場合においても、上記の並列経路131a,131bの構成を採用することにより、断熱箱体106の薄壁化、冷蔵庫の容積効率の向上すなわち大容量化を実現できる。   In the future, even when the thin wall structure of the heat insulation box 106 is adopted, by adopting the configuration of the parallel paths 131a and 131b, it is possible to reduce the wall thickness of the heat insulation box 106 and improve the volume efficiency of the refrigerator. Improvement, that is, increase in capacity can be realized.

(実施の形態2)
図6は本発明の実施の形態2による冷蔵庫の要部縦断面図、図7は同実施の形態による冷蔵庫の外箱の分解斜視図、図8は同実施の形態による冷蔵庫の要部平面断面図である。
(Embodiment 2)
6 is a longitudinal sectional view of the main part of the refrigerator according to the second embodiment of the present invention, FIG. 7 is an exploded perspective view of the outer box of the refrigerator according to the same embodiment, and FIG. 8 is a plan sectional view of the main part of the refrigerator according to the same embodiment. FIG.

以下、本発明による冷蔵庫の実施の形態について、図面を参照しながら説明する。なお、本実施の形態における冷凍冷蔵庫の構成は、断熱箱体を除いて実施の形態1と同一構成であり、説明を省略する。   Hereinafter, embodiments of a refrigerator according to the present invention will be described with reference to the drawings. In addition, the structure of the refrigerator-freezer in this Embodiment is the same structure as Embodiment 1 except a heat insulation box, and abbreviate | omits description.

図6、図7、図8より、真空断熱材250は、スペーサ251により外箱202と内箱203の間隙に充填されるウレタン断熱材204に配置される。スペーサ251は、例えば、断面が複数のコノ字形状を結合した一体の板状樹脂部材からなり、それぞれは、外箱202内面側において一定の間隔にて接着剤等により固定され、本実施の形態において、側面板一面あたり4本設置される。   6, 7, and 8, the vacuum heat insulating material 250 is disposed on the urethane heat insulating material 204 that is filled in the gap between the outer box 202 and the inner box 203 by the spacer 251. The spacers 251 are made of, for example, an integral plate-like resin member having a cross section coupled with a plurality of conical shapes, and each is fixed by an adhesive or the like at a constant interval on the inner surface side of the outer box 202. 4 are installed per side plate.

これにより、ウレタン断熱材204は、発泡充填された結果、外側スペース252a、内側スペース252bの2層空間に分離される。例えば、本実施の形態において断熱箱体206の平均壁厚32mmの場合、真空断熱材250の壁厚10mm、外側スペース252aの壁厚10mm、内側スペース252bの壁厚10mm、外壁厚さ1mm、内壁厚さ1mmとなる。   As a result, the urethane heat insulating material 204 is separated into the two-layer space of the outer space 252a and the inner space 252b as a result of foam filling. For example, in this embodiment, when the average wall thickness of the heat insulation box 206 is 32 mm, the wall thickness of the vacuum heat insulating material 250 is 10 mm, the wall thickness of the outer space 252a is 10 mm, the wall thickness of the inner space 252b is 10 mm, the outer wall thickness is 1 mm, and the inner wall The thickness is 1 mm.

また、図7より、凝縮パイプ230は、スペーサ251のコノ字形状の間隙に外箱202内面に密着配設され、かつ断面は、扁平形状を形成して。外箱内面に密着した場合、外箱202内面からの全高は、1.5mmとなる。   Further, as shown in FIG. 7, the condensing pipe 230 is disposed in close contact with the inner surface of the outer box 202 in the cono-shaped gap of the spacer 251 and has a flat cross section. When closely contacting the inner surface of the outer box, the total height from the inner surface of the outer box 202 is 1.5 mm.

次に、本発明における真空断熱材250を用いた断熱箱体206の製造方法を説明すると、まず、図6のように、外箱202内面に凝縮パイプ230を配設、アルミテープ11にて固定する。別工程において、真空断熱材250の外箱201側面にスペーサ251を接着剤により固定する。さらに真空断熱材250と一体となったスペーサ251を側面板202b、202cに接着剤等により固定する。さらに次工程にて外箱202と内箱203を嵌合させてウレタン断熱材204の充填スペースを確保する。また同時に冷凍サイクル部品等も同時装着させて、ウレタン充填発泡前の箱体を完成させる。   Next, the manufacturing method of the heat insulation box 206 using the vacuum heat insulating material 250 in the present invention will be described. First, as shown in FIG. 6, the condensation pipe 230 is arranged on the inner surface of the outer box 202 and fixed with the aluminum tape 11. To do. In another process, the spacer 251 is fixed to the side surface of the outer case 201 of the vacuum heat insulating material 250 with an adhesive. Further, the spacer 251 integrated with the vacuum heat insulating material 250 is fixed to the side plates 202b and 202c with an adhesive or the like. Further, the outer box 202 and the inner box 203 are fitted in the next process to secure a space for filling the urethane heat insulating material 204. At the same time, refrigeration cycle parts and the like are also mounted at the same time to complete the box before foaming with urethane.

ウレタン発泡時の詳細を説明すると、箱体前面から発泡が開始するが、真空断熱材250の領域において、ウレタンが充填される空間は、真空断熱材250の外側スペース252aおよび内側スペース252bに分離される。このとき、これらの間隙の壁厚がそれぞれ10mm程度と狭く、ウレタン発泡の流動抵抗が著しく高くなり、特に従来の凝縮パイプは、通常4mmの直径であり、この部分でのウレタンの通過隙間は6mmと最小となり、流動抵抗が著しく高くなる。   The details when foaming urethane will be described. Foaming starts from the front of the box, but in the region of the vacuum heat insulating material 250, the space filled with urethane is separated into an outer space 252a and an inner space 252b of the vacuum heat insulating material 250. The At this time, the wall thickness of these gaps is as narrow as about 10 mm, respectively, and the flow resistance of urethane foam becomes remarkably high. In particular, a conventional condensing pipe is usually 4 mm in diameter, and the urethane passage gap in this portion is 6 mm. And the flow resistance becomes extremely high.

そこで、本実施の形態のように、凝縮パイプ230を流れる冷媒流速を同一とするため、並列経路においてパイプ径を細径化した(例えば2mm)。さらにパイプの形状を扁平形状242とした結果、外箱からの高さは1.5mmとなり、パイプ部における隙間は、従来比+42%増加し、凝縮パイプ230を流れるウレタン断熱材204の流動スペースが著しく拡大し、流動抵抗を大幅に低減することができる。したがって、ウレタンの充填密度の低下を防止し、ボイドの発生を防止することができる。その結果、外箱202の外観変形も抑制され、断熱箱体206の強度も高くなる。   Therefore, as in this embodiment, the pipe diameter is reduced in the parallel path (for example, 2 mm) in order to make the flow velocity of the refrigerant flowing through the condensing pipe 230 the same. Furthermore, as a result of making the shape of the pipe flat 242, the height from the outer box is 1.5 mm, the gap in the pipe portion is increased by + 42% compared to the conventional case, and the flow space of the urethane heat insulating material 204 flowing through the condensation pipe 230 is increased. It can be significantly enlarged and the flow resistance can be greatly reduced. Accordingly, it is possible to prevent a decrease in the filling density of urethane and to prevent generation of voids. As a result, external deformation of the outer box 202 is also suppressed, and the strength of the heat insulating box 206 is increased.

さらに、凝縮パイプ230の断面形状を扁平形状242としたことにより、ウレタンの流動抵抗は低下し、ウレタンの充填密度をさらに均一化できる。また、並列経路から外箱202への熱伝導が促進され、放熱能力が向上し、省エネに貢献することができる。また、放熱能力同等とした場合、凝縮パイプ230の全長を短縮できることから、ウレタンの流動抵抗をさらに低減でき、かつ冷媒封入量の少冷媒化が可能になり、可燃性冷媒を使用する場合に安全性が著しく向上することができる。   Furthermore, by setting the cross-sectional shape of the condensing pipe 230 to a flat shape 242, the flow resistance of urethane is lowered, and the filling density of urethane can be made more uniform. Further, heat conduction from the parallel path to the outer box 202 is promoted, heat dissipation capability is improved, and energy saving can be achieved. Also, if the heat dissipation capacity is equivalent, the overall length of the condensing pipe 230 can be shortened, so that the flow resistance of urethane can be further reduced, and the amount of refrigerant enclosed can be reduced, which is safe when using a flammable refrigerant. The property can be remarkably improved.

(実施の形態3)
図9は本発明の実施の形態3による冷蔵庫の要部平面断面図である。なお、本実施の形態における冷凍冷蔵庫の構成は、真空断熱材の配置を除いて実施の形態2と同一構成であり、説明を省略する。
(Embodiment 3)
FIG. 9 is a plan sectional view of a main part of a refrigerator according to Embodiment 3 of the present invention. In addition, the structure of the refrigerator-freezer in this Embodiment is the same structure as Embodiment 2 except arrangement | positioning of a vacuum heat insulating material, and abbreviate | omits description.

図9より、真空断熱材350は、スペーサ351により外箱302と内箱303の間隙に充填されるウレタン断熱材305に配置される。スペーサ351は、例えば、断面が複数のコノ字形状を結合した一体の板状樹脂部材からなり、それぞれは、内箱303内面側において一定の間隔にて接着剤等により固定され、本実施の形態において、内箱303側面一面あたり4本設置される。   From FIG. 9, the vacuum heat insulating material 350 is disposed on the urethane heat insulating material 305 filled in the gap between the outer box 302 and the inner box 303 by the spacer 351. The spacer 351 is made of, for example, an integral plate-like resin member having a plurality of cono-shaped cross sections, and each is fixed with an adhesive or the like at a constant interval on the inner surface side of the inner box 303. 4 are installed per side surface of the inner box 303.

その結果、細径化された並列経路を流れるウレタン断熱材304の外側スペース252aはスペーサ351もないことから、著しく拡大し、流動抵抗を大幅に低減することができる。よって、ウレタンの充填密度低下を防止し、ボイドの発生を防止することができる。   As a result, the outer space 252a of the urethane heat insulating material 304 that flows through the reduced parallel path has no spacer 351, so that it can be remarkably enlarged and the flow resistance can be greatly reduced. Therefore, it is possible to prevent a decrease in the filling density of urethane and to prevent generation of voids.

また、外箱302に真空断熱材350を支持固定するスペーサ351が当接せず、ウレタン断熱材304が充填配置されていることから、外箱302の外観変形も抑制され、断熱箱体306の強度も高くなる。   Further, since the spacer 351 for supporting and fixing the vacuum heat insulating material 350 is not in contact with the outer box 302 and the urethane heat insulating material 304 is filled and disposed, the outer case 302 is also prevented from being deformed, and the heat insulating box 306 Strength also increases.

(実施の形態4)
図10は本発明の実施の形態4による冷蔵庫の外箱の展開図である。なお、本実施の形態における冷凍冷蔵庫の構成は、凝縮パイプ430の配置を除いて実施の形態2と同一構成であり、説明を省略する。
(Embodiment 4)
FIG. 10 is a developed view of the outer box of the refrigerator according to the fourth embodiment of the present invention. In addition, the structure of the refrigerator-freezer in this Embodiment is the same structure as Embodiment 2 except arrangement | positioning of the condensation pipe 430, and abbreviate | omits description.

図10より、凝縮パイプ430の配置を冷媒の流れに沿って説明すると、機械室1421内空間において、圧縮機120から吐出された単経路の凝縮パイプ430は、並列経路431a,431bに分岐される。次に、天面板402cに入り、側面板402bおよび402c上部へ向い、入ってすぐに下方に向かい、Uターンして再び上方へ向かうを繰り返し、最終、蒸発皿122設置空間において合流し、単経路となる。その後、蒸発皿122にある浸積パイプ123や外箱402の正面端部(図示せず)に向い、再び側面板102cに入り、上方へ向い、最終的に機械室121に配置されたドライヤ(図示せず)と結合する。   Referring to FIG. 10, the arrangement of the condensing pipe 430 will be described along the flow of the refrigerant. In the inner space of the machine room 1421, the single-pass condensing pipe 430 discharged from the compressor 120 is branched into parallel paths 431a and 431b. . Next, entering the top plate 402c, facing the top of the side plates 402b and 402c, entering and immediately going downward, making a U-turn and going upward again, finally joining the evaporating dish 122 installation space, single path It becomes. Then, it faces the front end (not shown) of the immersion pipe 123 and the outer box 402 in the evaporating dish 122, enters the side plate 102 c again, faces upward, and is finally placed in the machine room 121. (Not shown).

上記凝縮器パイプ430配置においても、実施の形態1と同様に、パイプ径を細径化できる。その結果、凝縮パイプ430を流れるウレタン断熱材404の流動スペースが拡大し、流動抵抗を低減することができる。したがって、ウレタンの充填密度の低下を防止し、ボイドの発生を防止することができる。その結果、外箱402の外観変形も抑制され、断熱箱体の強度も高くなる。   Also in the condenser pipe 430 arrangement, the pipe diameter can be reduced as in the first embodiment. As a result, the flow space of the urethane heat insulating material 404 flowing through the condensation pipe 430 is expanded, and the flow resistance can be reduced. Accordingly, it is possible to prevent a decrease in the filling density of urethane and to prevent generation of voids. As a result, external deformation of the outer box 402 is also suppressed, and the strength of the heat insulating box is increased.

さらに、配管ボリュームの増加による、外表面の変形を最小限に抑えることができる。   Furthermore, the deformation of the outer surface due to an increase in the pipe volume can be minimized.

さらに、分岐、結合に伴う配管連結時に行うロウ付け作業を機械室121内もしくは蒸発皿122設置空間内で行えるので、作業性を向上することができる。   Furthermore, since the brazing operation performed when the pipes are connected due to branching and coupling can be performed in the machine room 121 or the evaporating dish 122 installation space, workability can be improved.

以上のように、本発明にかかる冷蔵庫は、ウレタンの流動抵抗を低減することにより、冷蔵庫の断熱箱体の薄壁、大容量化を実現できる。さらに冷媒封入量を削減できるので、冷凍機器全般の薄壁、大容量化の用途にも適用できる。   As described above, the refrigerator according to the present invention can realize a thin wall and a large capacity of the heat insulating box of the refrigerator by reducing the flow resistance of urethane. Furthermore, since the amount of refrigerant enclosed can be reduced, it can be applied to thin walls and large capacity applications in general refrigeration equipment.

本発明の実施の形態1による冷蔵庫の外観斜視図1 is an external perspective view of a refrigerator according to Embodiment 1 of the present invention. 同実施の形態の冷蔵庫の図1におけるA−A’線要部断面図Sectional view along line A-A 'in FIG. 1 of the refrigerator of the same embodiment 同実施の形態の冷蔵庫の外箱の展開図Exploded view of the outer box of the refrigerator of the same embodiment 同実施の形態の冷蔵庫の図1におけるB−B’線要部断面図B-B 'line principal part sectional drawing in FIG. 1 of the refrigerator of the embodiment 同実施の形態の冷蔵庫のサイクル概略図Cycle schematic diagram of refrigerator of same embodiment 本発明の実施の形態2による冷蔵庫の要部縦断面図The principal part longitudinal cross-sectional view of the refrigerator by Embodiment 2 of this invention 同実施の形態の冷蔵庫の外箱の分解斜視図The exploded perspective view of the outer box of the refrigerator of the embodiment 同実施の形態の冷蔵庫の要部平面断面図Main part plane sectional drawing of the refrigerator of the embodiment 本発明の実施の形態3による冷蔵庫の要部平面断面図Main part plane sectional drawing of the refrigerator by Embodiment 3 of this invention 本発明の実施の形態4による冷蔵庫の外箱の展開図Exploded view of the outer box of the refrigerator according to the fourth embodiment of the present invention 従来の冷蔵庫の断熱箱体の外観斜視図External perspective view of heat insulation box of conventional refrigerator 従来の冷蔵庫の断熱箱体の部分平面断面図Partial plan sectional view of a conventional heat insulation box of a refrigerator

符号の説明Explanation of symbols

101 冷蔵庫
102 外箱
103 内箱
104,204 ウレタン断熱材
106,206,306 断熱箱体
118 蒸発器
120 圧縮機
130,230,430 凝縮パイプ
131a,131b,431a,431b 並列経路
135 キャピラリチューブ
242 扁平形状
250,350 真空断熱材
251,351 スペーサ(支持部材)
DESCRIPTION OF SYMBOLS 101 Refrigerator 102 Outer box 103 Inner box 104,204 Urethane heat insulating material 106,206,306 Heat insulation box 118 Evaporator 120 Compressor 130,230,430 Condensation pipe 131a, 131b, 431a, 431b Parallel path 135 Capillary tube 242 Flat shape 250, 350 Vacuum heat insulating material 251, 351 Spacer (support member)

Claims (5)

内箱と外箱と前記内箱と前記外箱との間に備えられた断熱材とを有する断熱箱体と、前記断熱箱体に備えられ少なくとも凝縮手段を備えるとともに内部に冷媒が充填された冷凍サイクルとを有し、前記凝縮手段は前記断熱箱体の外箱の前記断熱材側に凝縮パイプを密着させた部分を備え、前記冷凍サイクル中の冷媒の流れにおいて前記凝縮手段の少なくとも一部は複数の並列経路を有し、前記並列経路の冷媒パイプの直径と前記並列経路以外の冷媒パイプとの直径が異なる冷蔵庫。   A heat insulating box having an inner box, an outer box, and a heat insulating material provided between the inner box and the outer box; and at least a condensing means provided in the heat insulating box and filled with a refrigerant. A refrigerating cycle, and the condensing means includes a portion in which a condensing pipe is in close contact with the heat insulating material side of the outer box of the heat insulating box, and at least a part of the condensing means in the flow of the refrigerant in the refrigerating cycle Has a plurality of parallel paths, and the diameters of the refrigerant pipes of the parallel paths differ from those of the refrigerant pipes other than the parallel paths. 凝縮手段の並列経路内に備えられた第一凝縮パイプは、前記並列経路以外に備えられた凝縮手段である第二凝縮パイプよりパイプの直径が細い請求項1に記載の冷蔵庫。   2. The refrigerator according to claim 1, wherein the first condensing pipe provided in the parallel path of the condensing means has a smaller pipe diameter than the second condensing pipe which is the condensing means other than the parallel path. 外箱と内箱の間に充填される断熱部材は、ウレタン断熱材からなる第一断熱部と、真空断熱材からなる第二断熱部とを有する請求項1または2に記載の冷蔵庫。   The refrigerator according to claim 1 or 2, wherein the heat insulating member filled between the outer box and the inner box has a first heat insulating part made of urethane heat insulating material and a second heat insulating part made of vacuum heat insulating material. 第二断熱部が凝縮パイプと所定の間隙を維持するよう支持部材を設けた請求項3に記載の冷蔵庫。   The refrigerator of Claim 3 which provided the supporting member so that a 2nd heat insulation part may maintain a predetermined | prescribed clearance gap with a condensation pipe. 凝縮器パイプの断面は扁平形状となる請求項1から4のいずれか一項に記載の冷蔵庫。   The refrigerator according to any one of claims 1 to 4, wherein the condenser pipe has a flat cross section.
JP2005377976A 2005-12-28 2005-12-28 refrigerator Expired - Fee Related JP4696906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377976A JP4696906B2 (en) 2005-12-28 2005-12-28 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377976A JP4696906B2 (en) 2005-12-28 2005-12-28 refrigerator

Publications (2)

Publication Number Publication Date
JP2007178080A true JP2007178080A (en) 2007-07-12
JP4696906B2 JP4696906B2 (en) 2011-06-08

Family

ID=38303445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377976A Expired - Fee Related JP4696906B2 (en) 2005-12-28 2005-12-28 refrigerator

Country Status (1)

Country Link
JP (1) JP4696906B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137081A1 (en) * 2009-05-29 2010-12-02 日立アプライアンス株式会社 Refrigerator equipped with vacuum insulation material
JP2011038713A (en) * 2009-08-12 2011-02-24 Hitachi Appliances Inc Refrigerator
JP2011153719A (en) * 2010-01-26 2011-08-11 Hitachi Appliances Inc Refrigerator-freezer
JP2012083068A (en) * 2010-10-14 2012-04-26 Mitsubishi Electric Corp Refrigerator
JP2012087992A (en) * 2010-10-20 2012-05-10 Mitsubishi Electric Corp Refrigerator-freezer
JP2015017801A (en) * 2011-08-31 2015-01-29 パナソニックIpマネジメント株式会社 Refrigerator
JP2015042915A (en) * 2013-08-26 2015-03-05 パナソニックIpマネジメント株式会社 Refrigerator
CN105793656A (en) * 2013-12-05 2016-07-20 Bsh家用电器有限公司 Domestic refrigeration appliance comprising a skin condenser on a sidewall of an outer housing and a defined pattern in this region
JPWO2014196609A1 (en) * 2013-06-07 2017-02-23 三菱電機株式会社 Insulated box and refrigerator
CN106907895A (en) * 2017-04-18 2017-06-30 上海海洋大学 A kind of New-style refrigeration house pressure balance window
JP2018004248A (en) * 2017-10-11 2018-01-11 日立アプライアンス株式会社 Refrigerator
WO2019176514A1 (en) * 2018-03-14 2019-09-19 Phcホールディングス株式会社 Thermal insulation body
WO2021014743A1 (en) * 2019-07-25 2021-01-28 中西金属工業株式会社 Refuse bin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04186079A (en) * 1990-11-16 1992-07-02 Hitachi Ltd Refrigerator
JP2005055086A (en) * 2003-08-05 2005-03-03 Mitsubishi Electric Corp Refrigerator, and its manufacturing method
JP2005201529A (en) * 2004-01-15 2005-07-28 Matsushita Electric Ind Co Ltd Refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04186079A (en) * 1990-11-16 1992-07-02 Hitachi Ltd Refrigerator
JP2005055086A (en) * 2003-08-05 2005-03-03 Mitsubishi Electric Corp Refrigerator, and its manufacturing method
JP2005201529A (en) * 2004-01-15 2005-07-28 Matsushita Electric Ind Co Ltd Refrigerator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137081A1 (en) * 2009-05-29 2010-12-02 日立アプライアンス株式会社 Refrigerator equipped with vacuum insulation material
JP2010276310A (en) * 2009-05-29 2010-12-09 Hitachi Appliances Inc Refrigerator having vacuum heat insulating material
CN102449417A (en) * 2009-05-29 2012-05-09 日立空调·家用电器株式会社 Refrigerator equipped with vacuum insulation material
JP2011038713A (en) * 2009-08-12 2011-02-24 Hitachi Appliances Inc Refrigerator
JP2011153719A (en) * 2010-01-26 2011-08-11 Hitachi Appliances Inc Refrigerator-freezer
JP2012083068A (en) * 2010-10-14 2012-04-26 Mitsubishi Electric Corp Refrigerator
JP2012087992A (en) * 2010-10-20 2012-05-10 Mitsubishi Electric Corp Refrigerator-freezer
US9791202B2 (en) 2011-08-31 2017-10-17 Panasonic Intellectual Property Management Co., Ltd. Refrigerator and vacuum heat insulating material for use in refrigerator
JP2015017801A (en) * 2011-08-31 2015-01-29 パナソニックIpマネジメント株式会社 Refrigerator
JPWO2014196609A1 (en) * 2013-06-07 2017-02-23 三菱電機株式会社 Insulated box and refrigerator
JP2015042915A (en) * 2013-08-26 2015-03-05 パナソニックIpマネジメント株式会社 Refrigerator
CN105793656A (en) * 2013-12-05 2016-07-20 Bsh家用电器有限公司 Domestic refrigeration appliance comprising a skin condenser on a sidewall of an outer housing and a defined pattern in this region
CN106907895A (en) * 2017-04-18 2017-06-30 上海海洋大学 A kind of New-style refrigeration house pressure balance window
JP2018004248A (en) * 2017-10-11 2018-01-11 日立アプライアンス株式会社 Refrigerator
WO2019176514A1 (en) * 2018-03-14 2019-09-19 Phcホールディングス株式会社 Thermal insulation body
JPWO2019176514A1 (en) * 2018-03-14 2020-12-03 Phcホールディングス株式会社 Insulation
WO2021014743A1 (en) * 2019-07-25 2021-01-28 中西金属工業株式会社 Refuse bin
JP2021020753A (en) * 2019-07-25 2021-02-18 中西金属工業株式会社 Dust box

Also Published As

Publication number Publication date
JP4696906B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4696906B2 (en) refrigerator
JP5677737B2 (en) refrigerator
JP5578265B1 (en) refrigerator
JP2008116126A (en) Refrigerator
JP2007198622A (en) Refrigerator
JP2008298360A (en) Heat insulation case body for cooling storage
JP2014048030A (en) Cooling warehouse
JP2015052401A (en) Refrigerator
JP4218514B2 (en) refrigerator
JP5964702B2 (en) Refrigerator
TWI555956B (en) Refrigerator
JP2018004248A (en) Refrigerator
JP2015052400A (en) Refrigerator and method of manufacturing the same
JPH09269177A (en) Refrigerator
JP5985942B2 (en) Refrigerator
JP5068340B2 (en) Freezer refrigerator
JP2007198621A (en) Refrigerator and manufacturing method of heat insulating housing for refrigerator
JP4552623B2 (en) refrigerator
JP2005172307A (en) Refrigerator
JP2005009825A (en) Refrigerator
JP4238731B2 (en) refrigerator
JP5922541B2 (en) Refrigerator
JP2006090650A (en) Cooling storage
JP2013185734A (en) Refrigerator
JP6314311B2 (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

LAPS Cancellation because of no payment of annual fees