JP2005055086A - Refrigerator, and its manufacturing method - Google Patents

Refrigerator, and its manufacturing method Download PDF

Info

Publication number
JP2005055086A
JP2005055086A JP2003286890A JP2003286890A JP2005055086A JP 2005055086 A JP2005055086 A JP 2005055086A JP 2003286890 A JP2003286890 A JP 2003286890A JP 2003286890 A JP2003286890 A JP 2003286890A JP 2005055086 A JP2005055086 A JP 2005055086A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
refrigerator
vacuum heat
outer box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003286890A
Other languages
Japanese (ja)
Other versions
JP4111096B2 (en
Inventor
Sho Hanaoka
祥 花岡
Mutsumi Kato
睦 加藤
Masanori Tsujihara
雅法 辻原
Tsukasa Takagi
司 高木
Shuichi Iwata
修一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003286890A priority Critical patent/JP4111096B2/en
Publication of JP2005055086A publication Critical patent/JP2005055086A/en
Application granted granted Critical
Publication of JP4111096B2 publication Critical patent/JP4111096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refrigerator Housings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator raising heat insulation capacity without an adverse affect of deteriorating condensation capacity of a radiating pipe, capable of maintaining heat insulation of a vacuum insulation material by interposing urethane foam between the radiating pipe and the vacuum insulation material, and capable of suppressing even aged deterioration of the vacuum insulation material with respect to a refrigerator provided with vacuum insulation material, and a manufacturing method capable of securing quality of the refrigerator. <P>SOLUTION: The hard urethane foam and the vacuum insulation material are provided between an outer casing and an inner casing, the vacuum insulation material is embedded in a state not contacting the outer casing and the inner casing, the vacuum insulation material is installed in an intermediate position between the radiating pipe and the inner casing, and an arrangement positional relationship between the vacuum insulation material, and the inner and outer casings is defined in response to change of viscosity at urethane foaming. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、真空断熱材を搭載した冷蔵庫の技術に関するものである。   The present invention relates to the technology of a refrigerator equipped with a vacuum heat insulating material.

近年の冷蔵庫では省エネルギー化のニーズが高まる一方、省スペース化のニーズも高まってきている。そこで、これらのニーズを実現する手段として硬質ウレタンフォームよりも大幅に断熱性能の良い真空断熱材を利用した製品が出てきている。   In recent years, the need for energy saving has increased in the refrigerator, and the need for space saving has also increased. Therefore, as a means for realizing these needs, products using a vacuum heat insulating material that has a much better heat insulating performance than rigid urethane foam have come out.

従来の真空断熱材搭載冷蔵庫は外箱に接着剤にて真空断熱材を直接貼り付けている。この方法では冷蔵庫製作過程において、貼り付け箇所が平坦なため取り付け作業性がよい。また、内箱の凹凸に干渉されることなく大きな面積の真空断熱材3を搭載することが可能となる。但しこの搭載方法では外箱に真空断熱材を貼り付けるため、放熱パイプを貼り付けるスペースが減少し、熱漏洩は改善される一方凝縮力低下によって省エネの改善が得られないことがあった。   Conventional refrigerators equipped with a vacuum insulation material have vacuum insulation materials directly attached to the outer box with an adhesive. In this method, the attachment workability is good in the refrigerator manufacturing process because the pasting place is flat. Moreover, it becomes possible to mount the vacuum heat insulating material 3 of a large area, without interfering with the unevenness | corrugation of an inner box. However, in this mounting method, since the vacuum heat insulating material is attached to the outer box, the space for attaching the heat radiating pipe is reduced, and the heat leakage is improved.

又従来の技術として、真空断熱材を両側面、天面、背面、底面及び前面の各面に配置し、外箱の表面積に対し真空断熱材の被覆率が50%を超え80%以下として省エネルギー効果を高め、外箱表面温度が外気温度よりも高くなる面において真空断熱材を外箱と内箱の中間で高質ウレタンフォーム内に埋設して真空断熱材の経年的な劣化を押さえようとするものが提案されている。(特許文献1参照)   In addition, as a conventional technology, vacuum heat insulating material is arranged on both sides, top surface, back surface, bottom surface and front surface, and the vacuum insulating material coverage exceeds 50% and less than 80% with respect to the surface area of the outer box to save energy In order to increase the effect and to embed vacuum insulation in high-quality urethane foam between the outer box and the inner box on the surface where the outer box surface temperature becomes higher than the outside temperature, to suppress the deterioration of the vacuum insulation over time. What to do has been proposed. (See Patent Document 1)

特開2003−14368号公報(図3他)Japanese Patent Laid-Open No. 2003-14368 (FIG. 3 and others)

真空断熱材は低温中で使用した場合に比較し、高温中で使用した場合、断熱能力が低下する性質があるために、放熱パイプなどの高温部品に接して設置した場合には冷蔵庫の寿命前に断熱能力が著しく低下する可能性がある。また真空断熱材は湿度に弱いため高湿中においては劣化が著しく加速され、外気に触れる部位に設置した場合には冷蔵庫の寿命前に断熱能力が著しく低下する可能性がある。   Compared to when used at low temperatures, vacuum insulation has the property of reducing heat insulation when used at high temperatures. In addition, the heat insulation capacity may be significantly reduced. In addition, since the vacuum heat insulating material is weak in humidity, the deterioration is remarkably accelerated in high humidity, and when it is installed in a place where it is exposed to the outside air, the heat insulating ability may be significantly lowered before the life of the refrigerator.

更に従来の冷蔵庫の構造では、スペーサにより外箱、内箱の中間に真空断熱材を埋設し、外箱前端面部よりウレタンフォーム充填可能とされる最低厚さ以上とするとなっているが、冷蔵庫背面側を上向きに設置し発泡する方法をとる場合、外箱前端面部より真空断熱材の距離が大きくなるとウレタンフォームの粘性度が上昇し、真空断熱材と外箱、あるいは内箱の間でウレタン発泡不良が発生する可能性が高くなる。また真空断熱材を設置するスペーサが大きくなるとウレタンフォーム発泡時にウレタン流動の阻害原因となり、ウレタン発泡不良の原因となる。一方スペーサを小さくすると発泡圧に耐える強度が得られずスペーサの数量を増加させる必要があり、組み立て工数の増加が起こり、製品のコストアップにつながる。   Furthermore, in the conventional refrigerator structure, a vacuum heat insulating material is embedded in the middle of the outer box and the inner box with a spacer, and the thickness of the refrigerator is filled with urethane foam from the front end surface of the outer box. When the foam is installed with the side facing upward, the viscosity of the urethane foam increases as the distance of the vacuum insulation increases from the front end face of the outer box, and the urethane foam rises between the vacuum insulation and the outer or inner box. There is a high possibility that defects will occur. Moreover, when the spacer which installs a vacuum heat insulating material becomes large, it will become the cause of obstruction | occlusion of urethane flow at the time of urethane foam foaming, and will cause the urethane foam defect. On the other hand, if the spacer is made small, the strength to withstand the foaming pressure cannot be obtained, and the number of spacers needs to be increased. This increases the number of assembling steps, leading to an increase in product cost.

本発明は以上のような問題点を解決するためになされたもので、真空断熱材を搭載した冷蔵庫に対し放熱パイプの凝縮能力を低下させる弊害がなく断熱能力をアップする技術を提供することを目的とする。また、本発明は、放熱パイプと真空断熱材との間にウレタンフォームが介在させ、真空断熱材の断熱能力を維持でき、また真空断熱材の経年劣化も抑制することが可能な実用的な冷蔵庫及びその品質を確保できる製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a technique for improving the heat insulation capacity without deteriorating the condensation capacity of the heat radiating pipe for a refrigerator equipped with a vacuum heat insulating material. Objective. In addition, the present invention is a practical refrigerator in which urethane foam is interposed between the heat radiating pipe and the vacuum heat insulating material, the heat insulating ability of the vacuum heat insulating material can be maintained, and the aging deterioration of the vacuum heat insulating material can be suppressed. And it aims at providing the manufacturing method which can ensure the quality.

本発明の冷蔵庫は、外箱と内箱の間で外箱または内箱に支持され内箱と外箱内側に設けられた放熱パイプとの中間位置に配置された真空断熱材と、真空断熱材を内箱及び放熱パイプに接しない状態で埋設する様に注入発泡されたウレタンフォームと、を備えたものである。   The refrigerator of the present invention includes a vacuum heat insulating material that is supported by the outer box or the inner box between the outer box and the inner box and is disposed at an intermediate position between the inner box and the heat radiating pipe provided inside the outer box, and a vacuum heat insulating material. And urethane foam that is injected and foamed so as to be embedded without contacting the inner box and the heat radiating pipe.

本発明の冷蔵庫は、外箱と内箱の間に配置され外箱および内箱に接しない状態でスペーサで外箱または内箱に固定され支持された真空断熱材と、真空断熱材を覆う様に埋設する外箱と内箱の間に注入発泡されるウレタンフォームと、を備え、スペーサはウレタンフォームの発泡時のエアーとウレタンフォームが通過できる流路を設けたものである。   The refrigerator of the present invention is disposed between the outer box and the inner box, and is supported by being fixed to the outer box or the inner box with a spacer in a state where it is not in contact with the outer box and the inner box, and the vacuum insulating material is covered. The outer box and the urethane foam to be injected and foamed between the inner box and the spacer are provided with a flow path through which the air and urethane foam can pass.

本発明の冷蔵庫の製造方法は、外箱と内箱の間で外箱または内箱にスペーサにて支持され内箱と外箱内側に設けられた放熱パイプとの中間位置に真空断熱材を配置するステップと、真空断熱材を内箱及び放熱パイプに接しない状態で埋設する様に冷蔵庫の背面側からウレタンフォームを注入するステップと、ウレタンフォームの発泡時のエアーとウレタンフォームがスペーサの流路を介して下から上へ通過して真空断熱材を覆う様に発泡させるステップと、を備えたものである。   The manufacturing method of the refrigerator of the present invention is arranged between the outer box and the inner box by placing a vacuum heat insulating material at an intermediate position between the inner box and the heat radiating pipe provided inside the outer box and supported by the spacer in the outer box or the inner box. A step of injecting urethane foam from the back side of the refrigerator so that the vacuum heat insulating material is not in contact with the inner box and the heat radiating pipe, and air and urethane foam during foaming of the urethane foam are flow paths of the spacer. And foaming so as to cover the vacuum heat insulating material by passing from the bottom through the top.

以上のように本発明によれば、断熱材に真空断熱材を用い発泡を行う構造の冷蔵庫に対し放熱による性能を確保した上で長期間の使用において品質が安定した断熱効率の良い冷蔵庫、その製造方法が得られる。 As described above, according to the present invention, a refrigerator with a heat insulation efficiency having a stable quality in a long-term use after ensuring performance by heat dissipation for a refrigerator having a structure in which foaming is performed using a vacuum heat insulating material as the heat insulating material, A manufacturing method is obtained.

実施の形態1.
以下、図面を参照してこの発明実施の形態1を説明する。図1、図2にウレタンフォーム発泡の形態説明図を示す。鉄などの金属製の冷蔵庫外箱1とABSなどの樹脂製の内箱2を一体にした冷蔵庫本体を扉側を下にして据付ける。外箱1は側板12で側部を形成し、後板13で背面を形成し、底板15で底面を形成している。この外箱を背面を上にして冷蔵庫製品前面即ち扉側が下向きの状態で冷蔵庫背面を上面にして背面と側面の間に設けた注入口16よりウレタンフォームの原液を注入する。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 and FIG. 2 are explanatory views of urethane foam foam. A refrigerator main body in which a metal refrigerator outer box 1 such as iron and a resin inner box 2 such as ABS are integrated is installed with the door side down. In the outer box 1, the side plate 12 forms a side portion, the rear plate 13 forms a back surface, and the bottom plate 15 forms a bottom surface. With this outer box facing up, the front surface of the refrigerator product, that is, the door side is facing downward, and the back surface of the refrigerator is the top surface, and the urethane foam stock solution is injected from the inlet 16 provided between the back surface and the side surface.

ウレタンフォームの原液注入が終了するとウレタンフォームの発泡が始まり、図2における矢印方向、即ち原液が貯留する下部から後板13で形成する背面側へウレタンが流動しながら発泡する。このときウレタンフォームの粘性度は発泡開始時において扉側では液体であるために小さいが、発泡が進むにつれて、即ち上部へ流動しながら固体へと変化するため上部へ行くほど粘性度は増大する。つまり、ウレタンフォーム発泡時においてウレタンフォームの粘性度は、冷蔵庫前面端部が低く、背面に近づくほど高くなる。つまり、冷蔵庫の側面に真空断熱材を内箱と外箱の中間に埋設する場合、背面に近い部位に搭載するとウレタンの粘性度が高いため真空断熱材近傍のウレタンの発泡不良が発生する可能性が高くなる。すなわち側面部では前面側よりに、背面では内箱よりが粘度が少しでも小さく流れやすいことになる。   When the injection of the urethane foam stock solution is completed, the foaming of the urethane foam starts, and the urethane foams while flowing from the direction of the arrow in FIG. 2, that is, from the lower portion where the stock solution is stored to the back side formed by the rear plate 13. At this time, the viscosity of the urethane foam is small because it is liquid on the door side at the start of foaming. However, as foaming progresses, that is, the foam changes to a solid while flowing upward, the viscosity increases toward the top. That is, when urethane foam is foamed, the viscosity of the urethane foam is lower as the refrigerator front end is lower and closer to the rear. In other words, when vacuum insulation is embedded in the side of the refrigerator between the inner box and the outer box, if it is mounted near the back, the viscosity of the urethane is high, which may cause urethane foam failure near the vacuum insulation Becomes higher. That is, the viscosity of the side surface portion is smaller than that of the front surface side, and that of the inner case is smaller on the back surface.

図3には冷蔵庫正面断面図、図4には冷蔵庫側面断面図、図5は冷蔵庫上面断面図を示す。図3、図4、図5において、1は金属板からなる外箱、2は合成樹脂からなる内箱、3は真空断熱材、6は真空断熱材を外箱から一定距離に設置するためのスペーサ、4は断熱材である外箱と内箱の間に充填するウレタンフォームである。真空断熱材3をスペーサ6によって外箱に一定の距離を確保した後ウレタンフォーム原料を注入して発泡を実施する。図3にては図の背後から手前に向かってウレタンフォーム原料を注入することになる。   3 is a front sectional view of the refrigerator, FIG. 4 is a sectional side view of the refrigerator, and FIG. 5 is a sectional top view of the refrigerator. 3, 4, and 5, 1 is an outer box made of a metal plate, 2 is an inner box made of synthetic resin, 3 is a vacuum heat insulating material, and 6 is for installing the vacuum heat insulating material at a certain distance from the outer box. The spacers 4 are urethane foam filled between the outer box and the inner box which are heat insulating materials. The vacuum heat insulating material 3 is secured to the outer box by the spacer 6 and then foamed by injecting a urethane foam raw material. In FIG. 3, the urethane foam raw material is injected from the back of the figure toward the front.

図3のA−Aから見た断面図を図4に示し、B−Bから見た断面図を図5に示す。ハッチング部である真空断熱材3はグラスウールなどの無機質集合体を複数の金属層などからなる袋内に収納されたものなどを使用する。外箱1に真空断熱材3を固定して支持するスペーサ6はコ字状、波形状、空洞箱状などの薄板樹脂製、例えばABS樹脂であり、外箱1の金属や真空断熱材3の外側表面のナイロン樹脂との間は例えばゴム系接着剤により接着固定している。冷蔵庫の側部を形成する側板12と内箱の側板との間の中間位置に真空断熱材3がスペーサで固定されその両側、即ち真空断熱材と側板2との間、及び内箱2と真空断熱材3との間の隙間に図の様にウレタンが流れる。図4の矢印はウレタンフォーム原料を注入して発泡を実施する際の後板13側からウレタンフォーム原料を注入した後、前側の端面側から発泡した場合の発泡方向を示す。このウレタン原料注入方向と発泡方向に対してスペーサ6はウレタンの流を邪魔しない構造になっている。   FIG. 4 shows a cross-sectional view taken along line AA in FIG. 3, and FIG. 5 shows a cross-sectional view taken along line BB. As the vacuum heat insulating material 3 which is a hatched portion, a material in which an inorganic aggregate such as glass wool is accommodated in a bag made of a plurality of metal layers or the like is used. The spacer 6 for fixing and supporting the vacuum heat insulating material 3 to the outer box 1 is made of a thin plate resin such as a U shape, a wave shape, or a hollow box shape, for example, ABS resin, and the metal of the outer box 1 or the vacuum heat insulating material 3 Between the outer surface and the nylon resin, for example, a rubber adhesive is adhered and fixed. The vacuum heat insulating material 3 is fixed with a spacer at an intermediate position between the side plate 12 forming the side portion of the refrigerator and the side plate of the inner box, and both sides thereof, that is, between the vacuum heat insulating material and the side plate 2 and between the inner box 2 and the vacuum. Urethane flows in the gap between the heat insulating material 3 as shown in the figure. The arrows in FIG. 4 indicate the foaming direction when the urethane foam raw material is injected from the rear plate 13 side when the urethane foam raw material is injected and foamed, and then foamed from the front end face side. The spacer 6 has a structure that does not obstruct the flow of urethane with respect to the urethane raw material injection direction and the foaming direction.

図5は冷蔵庫箱体の側部を上から見た断面図で、上側が後板13からなる背面側で、下側が前面端部側である。矢印Dがウレタン原料注入方向で、矢印Cがウレタン発泡方向である。放熱バイプ5は側板12に溶接固定されている。但しこの放熱パイプの各位置に対してスペーサ6は空洞部となっており直接接触しておらず、即ち放熱パイプは薄板でかわしスペーサが存在しない位置としている。この結果真空断熱材3と側板12との間のみならず、真空断熱材3と放熱パイプ5との間の隙間である空間にはウレタンが発泡して隙間を充填することになる。ウレタンが流れる方向はスペーサ間の間でありウレタンの流を妨げない構造としているだけでなく、スペーサ内部の空洞部にもウレタンが流れる様にしてある。このように断熱壁の一部を形成する真空断熱材は、外箱と内箱の間で外箱または内箱に支持され、内箱と外箱内側に設けられた放熱パイプとの中間位置に配置されて、この真空断熱材を内箱及び放熱パイプに接しない状態で埋設する様に注入発泡されたウレタンフォームとで冷蔵庫の外壁を構成する。   FIG. 5 is a cross-sectional view of the side of the refrigerator box as viewed from above, with the upper side being the back side comprising the rear plate 13 and the lower side being the front end side. Arrow D is the urethane raw material injection direction, and arrow C is the urethane foaming direction. The heat dissipation vip 5 is fixed to the side plate 12 by welding. However, the spacer 6 is a hollow portion and is not in direct contact with each position of the heat radiating pipe, that is, the heat radiating pipe is made of a thin plate and does not have a spacer. As a result, not only the space between the vacuum heat insulating material 3 and the side plate 12 but also the space that is the space between the vacuum heat insulating material 3 and the heat radiating pipe 5 foams and fills the space. The direction in which the urethane flows is between the spacers, and not only does the structure prevent the flow of urethane, but also allows the urethane to flow into the cavity inside the spacer. Thus, the vacuum heat insulating material forming a part of the heat insulating wall is supported by the outer box or the inner box between the outer box and the inner box, and is located at an intermediate position between the inner box and the heat radiating pipe provided inside the outer box. The outer wall of the refrigerator is configured with urethane foam that is disposed and injected and foamed so as to embed the vacuum heat insulating material without contacting the inner box and the heat radiating pipe.

ここでの真空断熱材3と外箱の側板12、後板13、天板14、底板15などとの間のクリアランスであるが、図5に示す様に真空断熱材3を搭載する壁面で外箱と内箱との間のウレタンが流れる隙間が最も薄い部位において、真空断熱材3が外箱1と内箱2の中央位置になるように設置する。つまり図5に示す真空断熱材3と外箱1の最小クリアランスd1と真空断熱材と内箱の最小クリアランスd2が略等しい位置に設置する。これにより、ウレタンフォーム発泡時においてウレタンが通過する最も狭い部位が略均等になることで、真空断熱材の内箱側と外箱側の極端なウレタン流動の抵抗の不均衡が回避でき、発泡時のエアボイドの発生などの問題を回避することが可能となる。実際に冷蔵庫に厚さ10mmの真空断熱材を搭載する場合にはこの図5に示す真空断熱材と外箱の最小クリアランスd1と真空断熱材と内箱の最小クリアランスd2はともに12mm程度となる。なおこの最も薄い部位からは放熱パイプ5は配置しない様にして発泡時の邪魔になら無い様にしている。図5に示す様に、配管を4mm径とすればと真空断熱材とのクリアランスd6を5mm程度以上確保することで真空断熱材の温度上昇を防ぐことが可能となり、真空断熱材の断熱効率がアップし、寿命的観点からも有効である。この様に、放熱パイプと真空断熱材との間にウレタンフォームが介在することで、真空断熱材の温度上昇を抑制し、真空断熱材の断熱能力が維持でき、真空断熱材の経年劣化も抑制することが可能となる。   Here, the clearance between the vacuum heat insulating material 3 and the side plate 12, the rear plate 13, the top plate 14, the bottom plate 15 and the like of the outer box is outside the wall surface on which the vacuum heat insulating material 3 is mounted as shown in FIG. The vacuum heat insulating material 3 is installed so as to be at the center position of the outer box 1 and the inner box 2 in the portion where the gap through which urethane flows between the box and the inner box is the thinnest. That is, the minimum clearance d1 between the vacuum heat insulating material 3 and the outer box 1 and the minimum clearance d2 between the vacuum heat insulating material and the inner box shown in FIG. As a result, the narrowest part through which urethane passes during foaming of urethane foam is substantially uniform, thereby avoiding an extreme imbalance in resistance to urethane flow between the inner box side and the outer box side of the vacuum insulation material. It is possible to avoid problems such as the generation of air voids. When a vacuum heat insulating material having a thickness of 10 mm is actually mounted on the refrigerator, the minimum clearance d1 between the vacuum heat insulating material and the outer box and the minimum clearance d2 between the vacuum heat insulating material and the inner box shown in FIG. It should be noted that the heat radiating pipe 5 is not arranged from the thinnest part so as not to interfere with foaming. As shown in FIG. 5, if the pipe has a diameter of 4 mm, it is possible to prevent the temperature rise of the vacuum heat insulating material by securing the clearance d6 with the vacuum heat insulating material of about 5 mm or more, and the heat insulating efficiency of the vacuum heat insulating material is improved. It is also effective from the viewpoint of life. In this way, the urethane foam intervenes between the heat radiating pipe and the vacuum heat insulating material to suppress the temperature rise of the vacuum heat insulating material, maintain the heat insulating ability of the vacuum heat insulating material, and suppress the deterioration of the vacuum heat insulating material over time. It becomes possible to do.

また、図5に示す真空断熱材と外箱前面端部とのクリアランスd3であるが、外箱前面端部から冷蔵庫奥行き長さ方向に奥行き寸法の17%を超えない範囲の距離に設置すると良く、例えば11%や7%のレベルであれば問題ないと言う結果が得られている。これは製品外形奥行き寸法699mmの冷蔵庫の実験結果によるものでd3が80mm等以下であれば発泡不良が発生しなかった実験結果に基づいている。ただしd3の小さいほうの許容値は、発泡をスムースに行うため冷蔵庫の外壁を形成する前面端部の断熱壁の厚さぐらいは必要である。この実験結果を図10に示す。製品奥行き外形寸法699mmの冷蔵庫で確認したもので、真空断熱材と外箱前面端部とのクリアランスd3を50mm、80mm、120mm、の3段階で発泡時のエアボイドの発生を確認している。この試験ではクリアランス80mmまではエアボイドの発生が見られなかった。これによりウレタンフォーム発泡時において、ウレタンの粘性度が低い状態で真空断熱材の内箱側、外箱側の両側を略均等に通過することが可能となることが判明した。このd3が冷蔵庫奥行き長さの17%を超えるとウレタン粘性度が高くなるため、図5に示す真空断熱材と外箱の最小クリアランスd1と真空断熱材と内箱の最小クリアランスd2を12mm程度確保した場合でもウレタンフォーム発泡時にエアボイドが発生することがある。即ち17パーセントを超える寸法は避けたほうが良い。真空断熱材が冷蔵庫前面端部に近づくことでウレタンフォーム原液注入直後、発泡しても液状態のウレタンフォームが粘度の低い状態で真空断熱材近傍を通過するために、真空断熱材と外箱、内箱のクリアランスが小さくても問題なく発泡が可能となる。   Moreover, although it is clearance d3 of the vacuum heat insulating material shown in FIG. 5 and an outer case front edge part, it is good to install in the distance of the range which does not exceed 17% of a depth dimension from an outer case front edge part to a refrigerator depth length direction. For example, if the level is 11% or 7%, no problem is obtained. This is based on an experimental result of a refrigerator having a product outer depth of 699 mm, and is based on an experimental result in which foaming failure does not occur when d3 is 80 mm or less. However, the smaller allowable value of d3 is required to be about the thickness of the heat insulating wall at the front end portion that forms the outer wall of the refrigerator in order to foam smoothly. The result of this experiment is shown in FIG. It was confirmed with a refrigerator having a product depth external dimension of 699 mm, and the occurrence of air voids during foaming was confirmed in three stages of clearance d3 between the vacuum heat insulating material and the front end of the outer box: 50 mm, 80 mm, and 120 mm. In this test, no air void was observed up to a clearance of 80 mm. As a result, it has been found that, during foaming of urethane foam, it is possible to pass through both sides of the inner side of the vacuum heat insulating material and the outer side of the vacuum heat insulating material substantially evenly while the viscosity of the urethane is low. If this d3 exceeds 17% of the refrigerator depth, the urethane viscosity increases, so the minimum clearance d1 between the vacuum insulation and outer box and the minimum clearance d2 between the vacuum insulation and inner box shown in FIG. In some cases, air voids may occur when urethane foam is foamed. That is, it is better to avoid dimensions exceeding 17 percent. Immediately after injecting the urethane foam stock solution as the vacuum heat insulating material approaches the front end of the refrigerator, the liquid urethane foam passes through the vicinity of the vacuum heat insulating material in a low viscosity state even if foamed. Even if the inner box clearance is small, foaming is possible without any problem.

また、図6にスペーサの概略構造説明図と、ウレタンフォーム発泡時におけるウレタンの流れ方向の関係を示す。この際スペーサ幅が図5に示す真空断熱材と外箱とのクリアランスd1よりスペーサ幅d4が大きいと、ウレタンフォーム発泡時にウレタン流動の障害となる。一方、スペーサ幅d4をd1より小さくすると貼り付け面積が低下し、発泡圧によってスペーサが真空断熱材から剥離してしまう。しかし貼り付け面積を確保するためスペーサ数量を増加すると貼り付け工数の増加、スペーサの熱伝導による断熱性能悪化などの問題が生じる。そこで、発泡時のウレタン流れ方向およびその垂直方向に真空断熱材と外箱とのクリアランスd1以上の幅のウレタン発泡方向に対し垂直な面あるいは投影幅を持たせないために、スペーサに穴形状を設ける。このとき図4に示す穴の直径あるいは短辺d5の平均値は最低でも3mm程度以上のウレタン流路を確保する必要が実験値よりわかっている。   FIG. 6 shows the schematic structure of the spacer and the relationship between the flow direction of urethane when urethane foam is foamed. At this time, when the spacer width d4 is larger than the clearance d1 between the vacuum heat insulating material and the outer box shown in FIG. On the other hand, when the spacer width d4 is smaller than d1, the pasting area is reduced, and the spacer is peeled off from the vacuum heat insulating material by the foaming pressure. However, if the number of spacers is increased in order to secure the affixing area, problems such as an increase in affixing man-hours and deterioration of heat insulation performance due to heat conduction of the spacers arise. Therefore, in order to prevent the urethane flow direction at the time of foaming and the perpendicular direction to the urethane foaming direction having a width greater than the clearance d1 between the vacuum heat insulating material and the outer box from having a plane or projected width, the spacer has a hole shape. Provide. At this time, it is known from experimental values that it is necessary to secure a urethane flow path having a diameter of the hole or the short side d5 shown in FIG.

また、このスペーサを設置する場合には、図6に示すようにスペーサ長辺がウレタンフォーム発泡時におけるウレタン流れ方向と平行に設置することで、効果的にウレタン流動の阻害要因を排除することができる。更にウレタン発泡方向にウレタンが流動できる流路を設けるが、これ以外の方向にも流路を設け、例えばウレタン流れ方向と交差する方向に設けるなど複数の方向に設けるとウレタン発泡時の流をスムースにするなど効果的である。またいずれにしろ広い開口を有する流路を設けると発泡時の流がスムースに行われるので効果的である。   In addition, when installing this spacer, as shown in FIG. 6, by installing the long side of the spacer in parallel with the urethane flow direction at the time of urethane foam foaming, it is possible to effectively eliminate the obstruction factor of urethane flow. it can. In addition, there is a flow path in which urethane can flow in the direction of urethane foaming, but there are also flow paths in other directions, for example, in a direction that intersects with the urethane flow direction. Is effective. In any case, providing a flow path having a wide opening is effective because the flow during foaming is smoothly performed.

即ち、スペーサをウレタン流れ方向と平行に設置しなくても、真空断熱材と外箱とのクリアランスd1以上の幅のウレタン発泡方向に対し垂直な面、あるいは投影幅を持たせなければよい。   That is, even if the spacer is not installed in parallel with the urethane flow direction, it does not have to have a plane perpendicular to the urethane foaming direction having a width equal to or larger than the clearance d1 between the vacuum heat insulating material and the outer box, or a projection width.

また図6に示すスペーサ形状を側面に使用した場合、冷媒の放熱パイプの形状に制約が発生してしまう。そこで、図7に示すパイプ逃がし形状を適用したスペーサを使用する。これにより放熱パイプ5の形状は変更無しの形状のまま真空断熱材を搭載することが可能となる。図7のスペーサ構造は波型の真空断熱材3と接着する面と外箱3と接着する面とを接続する柱以外は全て空洞でウレタンの流を妨げない構造である。スペーサの外箱との接着面以外のところに放熱パイプ5を配置すればこのパイプと真空断熱材の間の隙間をウレタンは流れることになる。   In addition, when the spacer shape shown in FIG. 6 is used on the side surface, the shape of the refrigerant heat radiating pipe is restricted. Therefore, a spacer to which the pipe relief shape shown in FIG. 7 is applied is used. Thereby, it becomes possible to mount a vacuum heat insulating material with the shape of the heat radiating pipe 5 unchanged. The spacer structure in FIG. 7 is a structure that is hollow and does not hinder the flow of urethane except for the pillar that connects the surface to be bonded to the corrugated vacuum heat insulating material 3 and the surface to be bonded to the outer box 3. If the heat radiating pipe 5 is disposed at a place other than the surface of the spacer that is bonded to the outer box, the urethane flows through the gap between the pipe and the vacuum heat insulating material.

また図7に示すようなウレタン流路および放熱パイプ逃がし形状を多く持ったスペーサを搭載することでスペーサの熱伝導部分を少なくして断熱性能悪化を抑制することができる。即ちウレタンのように発泡された樹脂はABS合成樹脂に比べ熱伝導をしにくいためである。図7におけるスペーサ6bは真空断熱材3の発泡方向に並列になるように一面を接着させた状態で、外箱1の後板13の方向へ波型の頂部を突き出させ、この頂部を後板に接着させて真空断熱材を支持する構造である。更に波型の頂部と頂部の間で波の底部に相当する位置に、後板に接着させて放熱パイプ5を設けている。これにより放熱パイプとスペーサおよび真空断熱材の間に空間を設けることが出来、発泡剤を充填できることになる。スペーサ波型の頂部を底部側から四隅で支える構造にし且つこの頂部位置に相当する底部の真ん中をくり貫くスペーサにすることで発泡剤の流れに対する障害をより少なくできるとともに発泡後はスペーサ全体をウレタンが確実に固定する強固な構造とすることができる。   Further, by mounting a spacer having a large number of urethane flow paths and heat radiating pipe escape shapes as shown in FIG. 7, it is possible to reduce the heat conduction portion of the spacer and suppress deterioration of heat insulation performance. That is, a foamed resin such as urethane is less likely to conduct heat than an ABS synthetic resin. The spacer 6b in FIG. 7 has a corrugated top protruding in the direction of the rear plate 13 of the outer box 1 in a state where one surface is adhered so as to be parallel to the foaming direction of the vacuum heat insulating material 3, and this top is rear plate It is the structure which is made to adhere to and supports a vacuum heat insulating material. Further, a heat radiating pipe 5 is provided on the rear plate at a position corresponding to the bottom of the wave between the tops of the waves. Thereby, a space can be provided between the heat radiating pipe, the spacer, and the vacuum heat insulating material, and the foaming agent can be filled. By using a structure that supports the top of the spacer wave shape at the four corners from the bottom side and making it a spacer that penetrates the middle of the bottom corresponding to this top position, the obstacle to the flow of the foaming agent can be reduced and after foaming the entire spacer is urethane It can be set as the firm structure which fixes firmly.

次に図8を用いて放熱パイプの配置に付いて説明する。図8は冷蔵庫の側面断面と冷蔵庫を背面側から見た構造説明図である。冷蔵庫外箱1の中には、真空断熱材3、冷媒回路の放熱パイプ5が取り付けられ、内箱2の中には、冷蔵室7、野菜室8、製氷室9、冷凍室10が上から下へそれぞれ仕切りで仕切られて配置されている。図8に示す冷蔵室7および野菜室8は0℃以上の温度帯である。一方製氷室9、冷凍室10は0℃以下の温度帯である。本発明において図8に示すように0℃以下の温度帯の背壁面に真空断熱材3を、0℃以上の温度帯の背壁面に放熱パイプを集約して設置する。このことで庫内の温度上昇を抑制する必要がある製氷室9と冷凍室10の断熱能力を強化し、0℃以下になると逆に凍結等の問題が生じる冷蔵室7、野菜室8壁面に放熱パイプを設置することで庫内を適正温度に保つことが可能となる。なお図8では0℃以下の温度帯の庫室の周囲全体を取り巻くように真空断熱材3が設けられており、この真空断熱材は外箱に固着されたものとして形成されている。ただし、この真空断熱材を図3などのようにスペーサを介して外箱または内箱の内壁面に固定し、注入し発泡されたウレタンフォームによりこの真空断熱材を埋設するようにしても良いことは当然である。この構成により冷凍温度帯など0℃以下の温度帯のスペースを大きくして有効に活用できる。更にこの構成では断熱効率を確保した上で外箱の表面積に対し真空断熱材の被覆率が50%より少なく出来経済的な冷蔵庫とすることが出来る。   Next, the arrangement of the heat radiating pipe will be described with reference to FIG. FIG. 8 is a side sectional view of the refrigerator and a structure explanatory view of the refrigerator viewed from the back side. Inside the refrigerator outer box 1 are attached a vacuum heat insulating material 3 and a heat radiating pipe 5 for the refrigerant circuit. Inside the inner box 2 are a refrigerator compartment 7, a vegetable compartment 8, an ice making compartment 9, and a freezer compartment 10 from above. Each of them is arranged with a partition downward. The refrigerator compartment 7 and the vegetable compartment 8 shown in FIG. 8 are temperature zones of 0 ° C. or higher. On the other hand, the ice making chamber 9 and the freezing chamber 10 are in a temperature range of 0 ° C. or lower. In the present invention, as shown in FIG. 8, the vacuum heat insulating material 3 is installed on the back wall surface in the temperature range of 0 ° C. or lower, and the heat radiating pipe is installed on the back wall surface in the temperature range of 0 ° C. or higher. This enhances the heat insulation capacity of the ice making chamber 9 and the freezing chamber 10 that need to suppress the temperature rise in the refrigerator, and on the wall of the refrigerator compartment 7 and the vegetable compartment 8 where problems such as freezing occur when the temperature becomes 0 ° C. or lower. It is possible to keep the inside of the cabinet at an appropriate temperature by installing a heat radiating pipe. In FIG. 8, the vacuum heat insulating material 3 is provided so as to surround the entire periphery of the storage room in a temperature zone of 0 ° C. or lower, and this vacuum heat insulating material is formed as being fixed to the outer box. However, this vacuum heat insulating material may be fixed to the inner wall surface of the outer box or the inner box through a spacer as shown in FIG. 3 and the vacuum heat insulating material may be embedded by urethane foam injected and foamed. Is natural. With this configuration, a space in a temperature range of 0 ° C. or lower such as a freezing temperature range can be enlarged and effectively used. Furthermore, in this configuration, the heat insulating efficiency is ensured, and the coverage of the vacuum heat insulating material is less than 50% with respect to the surface area of the outer box, so that an economical refrigerator can be obtained.

冷凍サイクル内を冷媒を循環させる圧縮機は冷蔵庫下部の機械室に設けられている。この圧縮機のモーターを回転させて圧縮した高温高圧の冷媒は先ず放熱パイプを循環して高い温度の熱を外箱の金属を介して外部に放出する。したがって放熱パイプに対向する位置の庫室は比較的高い温度の影響を受けることになる。図8の野菜室8の野菜凍結防止ヒータ11を庫室を仕切る仕切り部の野菜室側を加熱する位置に設ける冷蔵庫に適用した場合、放熱パイプ5の影響を受けて野菜室の温度が高くなる傾向のため、ヒーターの通電が少なくなり、このヒータ通電率低下によって消費電力の低減の効果も得られる。真空断熱材は寿命、断熱効率の観点より温度が低いほうが良いため、放熱パイプを設ける部分とは異なる部分に配置するが、特に周囲の外気との温度差が大きい0℃以下の庫室を取り巻く断熱材として使用すると良い。特に温度差の大きな冷凍室などへの影響を減らすように−18℃以下の低温度を維持する冷凍室周りを外気や他の庫室と断熱するために用いると効果的である。この際放熱パイプを配置する部分とこの冷凍室周りを配置する部分が交差する場合には、真空断熱材に接触しない経路を取るように放熱パイプの接続部を配置する。もし放熱パイプの経路が真空断熱材の配置位置と交差しないようにするには0℃以下の冷却を行う庫室、特に冷凍室を上部に配置すればよい。   A compressor that circulates the refrigerant in the refrigeration cycle is provided in a machine room below the refrigerator. The high-temperature and high-pressure refrigerant compressed by rotating the motor of the compressor first circulates through the heat radiating pipe and releases high-temperature heat to the outside through the metal in the outer box. Therefore, the storage room at the position facing the heat radiating pipe is affected by a relatively high temperature. When the vegetable freeze prevention heater 11 of the vegetable compartment 8 of FIG. 8 is applied to a refrigerator provided at a position where the vegetable compartment side of the partition that partitions the storage compartment is heated, the temperature of the vegetable compartment increases due to the influence of the heat radiating pipe 5. Due to the tendency, the heater is less energized, and the effect of reducing the power consumption can be obtained by this decrease in the heater energization rate. Since the vacuum insulation material should have a lower temperature from the viewpoint of life and heat insulation efficiency, it should be placed in a part different from the part where the heat-dissipating pipe is provided. It is good to use as a heat insulating material. In particular, it is effective to use the surroundings of the freezing room that maintains a low temperature of −18 ° C. or less to insulate the outside air and other storage rooms so as to reduce the influence on the freezing room having a large temperature difference. At this time, when the portion where the heat radiating pipe is arranged and the portion where the refrigeration room is arranged intersect, the connecting portion of the heat radiating pipe is arranged so as to take a path not contacting the vacuum heat insulating material. In order to prevent the path of the heat radiating pipe from intersecting with the position where the vacuum heat insulating material is disposed, a storage room for cooling at 0 ° C. or lower, particularly a freezing room, may be disposed at the upper part.

次に図9を用いて本発明の図8の構成の別の例を説明する。図9は冷蔵庫の側面断面図である。冷蔵庫の外箱又は内箱に真空断熱材3、外箱に冷媒回路の放熱パイプ5を取り付ける。冷蔵庫は上から冷蔵室7、野菜室8、製氷室9、冷凍室10を配置した例で説明する。図9に示す冷蔵室7、野菜室8の庫内温度は0℃以上であり、壁面の断熱厚さd7は製氷室9や冷凍室10のような0℃以下の部屋の断熱厚さd8に比較して20〜40%ほど断熱薄く作られている。これは内容積を大きくし、設置サイズを小さくするため断熱厚さを最低限まで抑制しているためである。上部の断面厚さd7には、真空断熱材3が外箱1に固定されその内箱側はウレタン樹脂を発泡させて内箱と外箱から形成する断熱壁の厚さを得ている。一方下部の断面厚さd8には、真空断熱材3無しに放熱パイプ5が外箱1に固定されその内箱と外箱の間はウレタン樹脂を発泡させて内箱と外箱から形成する断熱壁の厚さを得ている。なお、図6のようなスペーサを使用し、注入し発泡されたウレタンフォームによりこの真空断熱材を埋設するようにしても良いことは当然である。この場合、放熱パイプが上方に集約され、この放熱パイプに接続する配管を上記説明のスペーサなどを使用すれば放熱パイプと真空断熱材とを離して簡単に配設することが出来る。   Next, another example of the configuration of FIG. 8 according to the present invention will be described with reference to FIG. FIG. 9 is a side sectional view of the refrigerator. The vacuum heat insulating material 3 is attached to the outer box or inner box of the refrigerator, and the heat radiation pipe 5 of the refrigerant circuit is attached to the outer box. The refrigerator will be described using an example in which the refrigerator compartment 7, the vegetable compartment 8, the ice making compartment 9, and the freezer compartment 10 are arranged from the top. The inside temperature of the refrigerator compartment 7 and the vegetable compartment 8 shown in FIG. 9 is 0 ° C. or higher, and the heat insulation thickness d 7 of the wall surface is equal to the heat insulation thickness d 8 of a room below 0 ° C. such as the ice making chamber 9 or the freezer compartment 10. Compared to 20-40%, the insulation is made thin. This is because the heat insulation thickness is suppressed to the minimum in order to increase the internal volume and reduce the installation size. In the upper section thickness d7, the vacuum heat insulating material 3 is fixed to the outer box 1, and the inner box side is obtained by foaming urethane resin to obtain the thickness of the heat insulating wall formed from the inner box and the outer box. On the other hand, in the lower section thickness d8, the heat radiating pipe 5 is fixed to the outer box 1 without the vacuum heat insulating material 3, and a urethane resin is foamed between the inner box and the outer box to form heat insulation formed from the inner box and the outer box. Gaining wall thickness. Of course, a spacer as shown in FIG. 6 may be used, and the vacuum heat insulating material may be embedded by urethane foam that has been injected and foamed. In this case, the heat radiating pipes are gathered upward, and the pipes connected to the heat radiating pipes can be easily disposed by separating the heat radiating pipes and the vacuum heat insulating material by using the spacers described above.

下部の断熱厚さd8はその厚みで断熱能力を維持できるし、断熱厚さの薄い上部は断熱能力の低い冷蔵室7の断熱能力を向上させるため、真空断熱材3を冷蔵室7の背面壁に搭載する。この際放熱パイプは真空断熱材の寿命、断熱効率の観点より温度が低いほうが良いため、真空断熱材に接触しない経路をとる。この構成により冷蔵室など冷蔵スペースを有効に活用できるとともに、必要最小限の真空断熱材を使用し、且つ、放熱パイプも最短にできるので経済的な冷蔵庫を製造できる。即ちこの構成では断熱効率を確保した上で外箱の表面積に対し真空断熱材の被覆率が50%より少ない経済的な冷蔵庫とすることが出来る。   The lower heat insulation thickness d8 can maintain the heat insulation capacity by the thickness, and the upper heat insulation thickness lowers the heat insulation capacity of the cold room 7 having a low heat insulation capacity. To be installed. At this time, since the heat radiation pipe should have a lower temperature from the viewpoint of the life of the vacuum heat insulating material and the heat insulating efficiency, a path that does not contact the vacuum heat insulating material is taken. With this configuration, it is possible to effectively use a refrigerating space such as a refrigerating room, use a minimum amount of vacuum heat insulating material, and shorten the heat radiation pipe, so that an economical refrigerator can be manufactured. In other words, with this configuration, it is possible to provide an economical refrigerator in which the heat insulating efficiency is ensured and the coverage of the vacuum heat insulating material is less than 50% with respect to the surface area of the outer box.

本発明は、図1のように、冷蔵庫製品前面が下向きの状態で上向きにした冷蔵庫背面に設けた注入口よりウレタンフォームの原液を注入する。ウレタンフォームの原液注入が終了するとウレタンフォームの発泡が始まり、図2における矢印方向にウレタンが流動しながら発泡する。このときウレタンフォームの粘性度は発泡開始時において液体であるために小さいが、発泡が進むにつれて固体へと変化するため粘性度は増大する。つまり、ウレタンフォーム発泡時においてウレタンフォームの粘性度は、冷蔵庫前面端部が低く、背面に近づくほど高くなる。つまり、冷蔵庫の側面に真空断熱材を内箱と外箱の中間に埋設する場合、背面に近い部位に搭載するとウレタンの粘性度が高いため真空断熱材近傍のウレタンの発泡不良が発生する可能性が高くなる。   In the present invention, as shown in FIG. 1, the urethane foam stock solution is injected from an inlet provided on the back of the refrigerator that is faced up with the front of the refrigerator product facing downward. When the injection of the urethane foam stock solution is completed, the foaming of the urethane foam starts, and the urethane foams while flowing in the direction of the arrow in FIG. At this time, the viscosity of the urethane foam is small because it is a liquid at the start of foaming, but the viscosity increases because it changes to a solid as foaming proceeds. That is, when urethane foam is foamed, the viscosity of the urethane foam is lower as the refrigerator front end is lower and closer to the rear. In other words, when vacuum insulation is embedded in the side of the refrigerator between the inner box and the outer box, if it is mounted near the back, the viscosity of the urethane is high, which may cause urethane foam failure near the vacuum insulation Becomes higher.

これに対し本発明の冷蔵庫は、外箱と内箱の間に硬質ウレタンフォームと真空断熱材を備え、真空断熱材が外箱および内箱に接しない状態で埋設し、真空断熱材を放熱パイプと内箱の中間の位置に設置するとともに、ウレタン発泡時の粘度の変化に応じた真空断熱材と内箱外箱の配置位置関係を規定することにより品質の良い断熱性能が得られるものである。これにより、真空断熱材を搭載した場合にも放熱パイプが従来の長さ、放熱形状を維持できることで凝縮能力を低下させる弊害がなく断熱能力をアップすることが可能となる。また、放熱パイプと真空断熱材との間にウレタンフォームが介在することで、真空断熱材の温度が上昇を抑制し、真空断熱材の断熱能力が維持できる。また真空断熱材の経年劣化も抑制することが可能となる。   On the other hand, the refrigerator of the present invention includes a hard urethane foam and a vacuum heat insulating material between the outer box and the inner box, embedded in a state where the vacuum heat insulating material does not contact the outer box and the inner box, and the vacuum heat insulating material is radiated from the heat sink. It is installed at a position between the inner box and the inner box, and a good heat insulating performance can be obtained by defining the arrangement positional relationship between the vacuum heat insulating material and the inner box outer box according to the change in viscosity at the time of urethane foaming. . As a result, even when a vacuum heat insulating material is mounted, since the heat radiating pipe can maintain the conventional length and heat radiating shape, it is possible to increase the heat insulating capacity without deteriorating the condensation capacity. Moreover, the urethane foam is interposed between the heat radiating pipe and the vacuum heat insulating material, so that the temperature of the vacuum heat insulating material can be suppressed from rising and the heat insulating ability of the vacuum heat insulating material can be maintained. In addition, it is possible to suppress aged deterioration of the vacuum heat insulating material.

例えば本発明の冷蔵庫は、ウレタン注入および発泡時に下部となる外箱前端面部より製品奥行き寸法の7%以内程度の寸法位置より上に真空断熱材を設置するとウレタンを注入発泡させる際最大限の断熱性能を確保できる最低の隙間を確保できるとともに、製品奥行き寸法の17%を超える寸法位置よりも端面に近くしないと粘度が高くなりウレタンの発泡時にエアボイドが発生させるなどの品質不良を起こす可能性がある。すなわち7%以内程度の寸法位置を選択する場合は外箱内箱との間のクリアランスd1、d2、例えば各10mm程度を確保できる最小値とすればよいし、断熱性能に余裕がありこの位置より上に、すなわち端面より離した位置に真空断熱材を設置する場合は発泡の粘度が高くなりすぎない位置、すなわちウレタンの発泡時にエアボイドが発生させるなどの品質不良を起こさない17%を超える寸法位置よりも端面に近くする必要がある。この結果、端面部付近の真空断熱材の存在による確実にウレタン注入発泡させ断熱性能を確保できる所望の品質が得られる冷蔵庫を製造できる。このように本発明によれば、真空断熱材が冷蔵庫前面端部に近づくことでウレタンフォーム原液注入直後、液状態のウレタンフォームが粘度の低い状態で真空断熱材近傍を通過するために、真空断熱材と外箱、内箱のクリアランスが小さくても問題なく発泡が可能となるし、粘度の高い位置では流動に必要なクリアランスが確保できるものである。   For example, in the refrigerator of the present invention, when a vacuum heat insulating material is installed above a dimension position within about 7% of the product depth dimension from the front end surface portion of the outer box which is a lower part when urethane is injected and foamed, the maximum heat insulation is achieved when urethane is injected and foamed. It is possible to secure the minimum gap that can ensure the performance, and if it is not closer to the end face than the dimension position exceeding 17% of the product depth dimension, the viscosity becomes high, and there is a possibility of causing quality defects such as generation of air voids when urethane foams. is there. That is, when selecting a dimensional position of about 7% or less, the clearances d1 and d2 between the outer box and the inner box may be set to a minimum value that can secure, for example, about 10 mm, and there is a margin in heat insulation performance. When installing a vacuum heat insulating material on the top, that is, away from the end face, the position where the foaming viscosity does not become too high, that is, the dimension position exceeding 17% which does not cause quality defects such as air voids when urethane is foamed It is necessary to be closer to the end face than. As a result, it is possible to manufacture a refrigerator in which desired quality can be obtained by reliably injecting and foaming urethane due to the presence of the vacuum heat insulating material in the vicinity of the end face portion and ensuring the heat insulating performance. Thus, according to the present invention, the vacuum heat insulating material approaches the front end of the refrigerator, and immediately after the injection of the urethane foam stock solution, the liquid urethane foam passes through the vicinity of the vacuum heat insulating material in a low viscosity state. Even if the clearance between the material, the outer box, and the inner box is small, foaming can be performed without any problem, and a clearance necessary for flow can be secured at a high viscosity position.

次に本発明の冷蔵庫は、外箱と内箱の間に硬質ウレタンフォームと真空断熱材を備え、真空断熱材が外箱および内箱に接しない状態で埋設し、真空断熱材と外箱および内箱とのクリアランスを均等に、それぞれ1/3等分程度にすると効果の良い断熱性能が得られる。両方のクリアランスをそれぞれ冷蔵庫の壁面断熱厚さの1/3以上確保して設置しても良い。   Next, the refrigerator of the present invention includes a hard urethane foam and a vacuum heat insulating material between the outer box and the inner box, embedded in a state where the vacuum heat insulating material does not contact the outer box and the inner box, and the vacuum heat insulating material and the outer box, When the clearance with the inner box is equally divided into about 1/3 of each, effective heat insulation performance can be obtained. You may install both clearances ensuring 1/3 or more of the wall surface insulation thickness of a refrigerator, respectively.

例えば冷蔵庫の製造におけるウレタン発泡時に真空断熱材とのクリアランスを冷蔵庫壁面断熱厚さの1/3程度にすることで、冷蔵庫の側面断熱厚さが30mm程度、真空断熱材が10mm程度の場合は、真空断熱材を外箱と内箱の中央に埋設することになり、真空断熱材の両側のウレタン流路面積が同等となるため、ウレタンの発泡圧力による真空断熱材へかかる圧力の不均衡による真空断熱材の変形によるウレタン流動の阻害を防止することが可能となり、ウレタンのボイドによる箱体強度の低下、外装不良などの問題が回避できる。しかも真空断熱材が10mm程度の厚みを確保でき、確実な断熱性能を確保できる。   For example, by making the clearance with the vacuum heat insulating material at the time of urethane foaming in the manufacture of the refrigerator about 1/3 of the refrigerator wall surface insulating thickness, the side heat insulating thickness of the refrigerator is about 30 mm, and the vacuum heat insulating material is about 10 mm, Vacuum insulation is buried in the center of the outer box and inner box, and the urethane flow passage area on both sides of the vacuum insulation is equal, so the vacuum due to pressure imbalance on the vacuum insulation due to the foaming pressure of urethane Inhibition of urethane flow due to deformation of the heat insulating material can be prevented, and problems such as a decrease in box strength due to urethane voids and defective exteriors can be avoided. Moreover, the vacuum heat insulating material can secure a thickness of about 10 mm, and a reliable heat insulating performance can be ensured.

更に本発明の冷蔵庫は外箱と内箱の間に硬質ウレタンフォームと真空断熱材とを備え、真空断熱材が外箱および内箱に接しない状態で埋設する際、ウレタンフォーム発泡時のウレタン発泡方向および発泡方向と垂直方向の両方ににエアーとウレタンが通過できる流路を設けたスペーサを搭載する。真空断熱材を支持するスペーサ自体にウレタン流路形状を搭載することで、ウレタン流動がスペーサによって阻害されることがなくなり、さらにエアーがスペーサに設けたウレタン流路形状を通過できるためエアーロックを防止でき、ウレタンの流動を阻害することなく発泡が可能となり、ウレタンのボイドによる箱体強度の低下、外装不良などの問題が回避できる。   Furthermore, the refrigerator of the present invention is provided with a hard urethane foam and a vacuum heat insulating material between the outer box and the inner box, and when the vacuum heat insulating material is embedded in a state not in contact with the outer box and the inner box, the urethane foam at the time of foaming the urethane foam A spacer provided with a flow path through which air and urethane can pass in both the direction and the foaming direction and the vertical direction is mounted. By mounting the urethane channel shape on the spacer itself that supports the vacuum insulation material, the urethane flow is not hindered by the spacer, and air can be passed through the urethane channel shape provided in the spacer, preventing air lock In addition, foaming is possible without impeding the flow of urethane, and problems such as a drop in box strength and poor exterior due to urethane voids can be avoided.

また単純なブロック形状のスペーサでは、スペーサ自身の熱伝導により断熱性能を悪化することが考えられるが、空洞によるウレタン流路を設けたスペーサでは一体となったウレタンがスペーサ自体を形成するので熱抵抗が大きくなり、スペーサから庫内への熱伝導を抑制することが可能となる。   In the case of a simple block-shaped spacer, the heat insulation performance may be deteriorated due to the heat conduction of the spacer itself. However, in the spacer provided with the urethane flow path by the cavity, the united urethane forms the spacer itself, so the thermal resistance Becomes larger, and heat conduction from the spacer to the interior can be suppressed.

本発明の冷蔵庫は、冷蔵庫背面に真空断熱材を搭載する際、断熱厚さが冷蔵庫平均断熱厚さに満たない部位に搭載して、一方真空断熱材非搭載箇所に放熱パイプを集約して設置する。このため、冷蔵庫背面の断熱厚さが薄い部位に真空断熱材を搭載して断熱能力を向上し、一方断熱厚さが厚い断熱能力の高い部位に放熱パイプを設置することで庫内への熱侵入を防ぐ効果が得られる。また本発明の冷蔵庫は、冷蔵庫背面に真空断熱材を搭載する際、庫内温度が0℃以下の壁面に真空断熱材を搭載し、一方真空断熱材非搭載箇所に放熱パイプを集約して設置する構成にしても良い。冷蔵庫庫内の温度が0℃以下の壁面に真空断熱材を搭載して、庫内への熱侵入量を低減し、冷蔵庫庫内の温度が0℃以上の壁面に放熱パイプを集約することで、0℃以下の庫内温度を効率的に維持することが可能となる。   When the vacuum heat insulating material is mounted on the rear surface of the refrigerator, the refrigerator of the present invention is mounted on a portion where the heat insulating thickness is less than the average heat insulating thickness of the refrigerator, and on the other hand, the heat radiating pipes are aggregated and installed on the portion where the vacuum heat insulating material is not mounted. To do. For this reason, the heat insulation capacity is improved by installing a vacuum heat insulating material in the part where the heat insulation thickness on the back of the refrigerator is thin, while the heat radiation pipe is installed in the part where the heat insulation thickness is thick and the heat insulation capacity is high. The effect of preventing intrusion is obtained. In addition, the refrigerator of the present invention is equipped with a vacuum heat insulating material on the wall surface where the inside temperature is 0 ° C. or lower when a vacuum heat insulating material is mounted on the rear surface of the refrigerator, and on the other hand, a heat radiating pipe is gathered at a place where the vacuum heat insulating material is not installed. You may make it the structure to carry out. By installing a vacuum heat insulating material on the wall surface where the temperature in the refrigerator compartment is 0 ° C or less to reduce the amount of heat intrusion into the compartment, and consolidating the heat radiation pipes on the wall surface where the temperature in the refrigerator compartment is 0 ° C or higher. It is possible to efficiently maintain the internal temperature of 0 ° C. or lower.

本発明の冷蔵庫は、冷蔵庫製品上下方向にくし型あるいはU字型の放熱パイプを設置する。これによれば、冷蔵庫の上下方向にくし型あるいはU字型の放熱パイプ形状にすることで、放熱パイプの長さを維持したままターン加工部を減少させることができるため、加工コストを減少させることができ、安価な冷蔵庫を提供することが可能となる。   In the refrigerator of the present invention, a comb-shaped or U-shaped radiating pipe is installed in the vertical direction of the refrigerator product. According to this, since the turn processing part can be reduced while maintaining the length of the heat radiating pipe by forming a comb-shaped or U-shaped heat radiating pipe shape in the vertical direction of the refrigerator, the processing cost is reduced. It is possible to provide an inexpensive refrigerator.

本発明によれば発泡時のウレタンフォームが粘性度の低い状態で真空断熱材近傍を通過することで流動性の悪化による冷蔵庫の外装不良およびウレタン断熱材不良による断熱能力悪化を起こすことなく真空断熱材を搭載が可能となり、真空断熱材を外箱から浮かせた位置に搭載することで冷蔵庫の冷媒配管を従来の冷蔵庫と同様に搭載できるために、凝縮能力を低下させることなく、真空断熱材搭載による断熱能力を向上させ、冷却能力の向上および消費電力の低減を両立する冷蔵庫を製造することが可能となる。   According to the present invention, the foamed urethane foam passes through the vicinity of the vacuum heat insulating material in a state of low viscosity, so that the vacuum heat insulation does not occur due to poor exterior of the refrigerator due to poor fluidity and poor heat insulating capacity due to poor urethane heat insulating material. It is possible to mount the material, and since the refrigerant piping of the refrigerator can be mounted in the same way as a conventional refrigerator by mounting the vacuum heat insulating material in a position floating from the outer box, the vacuum heat insulating material is mounted without reducing the condensation capacity Thus, it is possible to manufacture a refrigerator that improves the heat insulation ability by reducing the cooling capacity and the power consumption.

以上のように本発明によれば、真空断熱材を搭載した場合にも放熱パイプが従来の長さ、放熱形状を維持できることで凝縮能力を低下させる弊害がなく断熱能力をアップすることが可能となる。また、放熱パイプと真空断熱材との間にウレタンフォームが介在することで、真空断熱材の温度が上昇を抑制し、真空断熱材の断熱能力が維持できる。また真空断熱材の経年劣化も抑制することが可能となる。   As described above, according to the present invention, even when a vacuum heat insulating material is mounted, since the heat radiating pipe can maintain the conventional length and heat radiating shape, it is possible to increase the heat insulating capacity without deteriorating the condensation capacity. Become. Moreover, the urethane foam is interposed between the heat radiating pipe and the vacuum heat insulating material, so that the temperature of the vacuum heat insulating material can be suppressed from rising and the heat insulating ability of the vacuum heat insulating material can be maintained. In addition, it is possible to suppress aged deterioration of the vacuum heat insulating material.

また、冷蔵庫のウレタン発泡時にウレタンが粘度の低い状態で真空断熱材近傍を通過するために、真空断熱材と外箱、内箱のクリアランスが小さくても問題なく発泡が可能となる。   Further, since urethane passes through the vicinity of the vacuum heat insulating material in a state of low viscosity when the urethane is foamed in the refrigerator, even if the clearance between the vacuum heat insulating material, the outer box, and the inner box is small, foaming can be performed without any problem.

また、冷蔵庫ウレタン発泡時に真空断熱材とのクリアランスを冷蔵庫の壁面断熱厚さの1/3以上確保することで、ウレタンの流動を阻害することなく発泡が可能となり、ウレタンのボイドによる箱体強度の低下、外装不良などの問題が回避できる。   In addition, by securing the clearance with the vacuum heat insulating material at least 1/3 of the wall insulation thickness of the refrigerator at the time of refrigerator urethane foaming, foaming is possible without hindering the flow of urethane, and the strength of the box due to urethane voids Problems such as deterioration and exterior defects can be avoided.

また、真空断熱材を支持するスペーサ自体にウレタン形状を搭載することで、ウレタン流動性を確保し、ウレタンの流動を阻害することなく発泡が可能となり、ウレタンのボイドによる箱体強度の低下、外装不良などの問題が回避できる。また単純なブロック形状のスペーサでは、スペーサ自身の熱伝導により断熱性能を悪化することが考えられるが、ウレタン流路を設けたスペーサでは熱抵抗が大きくなり、スペーサから庫内への熱伝導を抑制することが可能となる。   In addition, by installing a urethane shape on the spacer itself that supports the vacuum heat insulating material, urethane fluidity is ensured, foaming is possible without impeding urethane flow, and the box strength is reduced by urethane voids. Problems such as defects can be avoided. In addition, with a simple block-shaped spacer, the heat insulation performance may be deteriorated due to the heat conduction of the spacer itself, but the spacer with the urethane channel increases the thermal resistance and suppresses heat conduction from the spacer to the interior. It becomes possible to do.

また、真空断熱材を搭載した場合にも放熱パイプが従来の長さ、放熱形状を維持できることで凝縮能力を低下させる弊害がなく断熱能力をアップすることが可能となり、冷蔵庫の上下方向にくし型あるいはU字型の放熱パイプ形状にすることで、放熱パイプの長さを維持したままターン加工部を減少させることができるため、加工コストが抑制できて安価な冷蔵庫が提供できる。また、放熱パイプと真空断熱材との間にウレタンフォームが介在することで、真空断熱材の温度が上昇を抑制し、真空断熱材の断熱能力が維持できる。また真空断熱材の経年劣化も抑制することが可能となる。   In addition, even when vacuum insulation is installed, the heat radiation pipe can maintain the conventional length and heat radiation shape, so that the heat insulation capacity can be improved without deteriorating the condensation capacity. Alternatively, by using a U-shaped radiating pipe shape, the number of turn processing parts can be reduced while maintaining the length of the radiating pipe, so that the processing cost can be suppressed and an inexpensive refrigerator can be provided. Moreover, the urethane foam is interposed between the heat radiating pipe and the vacuum heat insulating material, so that the temperature of the vacuum heat insulating material can be suppressed from rising and the heat insulating ability of the vacuum heat insulating material can be maintained. In addition, it is possible to suppress aged deterioration of the vacuum heat insulating material.

また、冷蔵庫背面の断熱厚さが薄い部位に真空断熱材を搭載して断熱能力を向上し、一方断熱厚さが厚い断熱能力の高い部位に放熱パイプを設置することで庫内への熱侵入を防ぐ効果が得られる。   In addition, vacuum insulation is installed on the backside of the refrigerator where the heat insulation thickness is thin to improve the heat insulation capacity, while heat radiation intrudes into the cabinet by installing a heat radiation pipe at a high heat insulation capacity area. The effect which prevents is obtained.

また、冷蔵庫庫内の温度が0℃以下の壁面に真空断熱材を搭載して、庫内への熱侵入量を低減し、冷蔵庫庫内の温度が0℃以上の壁面に放熱パイプを集約することで、0℃以下の庫内温度を効率的に維持することが可能となる。   Moreover, a vacuum heat insulating material is mounted on the wall surface where the temperature in the refrigerator compartment is 0 ° C. or less to reduce the amount of heat intrusion into the compartment, and the heat radiating pipe is concentrated on the wall surface where the temperature in the refrigerator compartment is 0 ° C. or more. Thus, it is possible to efficiently maintain the internal temperature of 0 ° C. or lower.

本発明によれば、真空断熱材を搭載した場合にも凝縮能力を低下させる弊害がなく断熱能力をアップすることが可能な冷蔵庫が得られる。また、放熱パイプと真空断熱材との間にウレタンフォームが介在することで、真空断熱材の温度上昇を抑制し、真空断熱材の断熱能力が維持でき、真空断熱材の経年劣化も抑制することが可能で品質の良い冷蔵庫の製造方法が得られる。   ADVANTAGE OF THE INVENTION According to this invention, even when a vacuum heat insulating material is mounted, the refrigerator which can raise the heat insulation capability without the harmful effect which reduces a condensation capability is obtained. In addition, urethane foam intervenes between the heat radiating pipe and the vacuum heat insulating material, so that the temperature rise of the vacuum heat insulating material can be suppressed, the heat insulating ability of the vacuum heat insulating material can be maintained, and the aged deterioration of the vacuum heat insulating material can also be suppressed. Can be obtained, and a method for producing a high-quality refrigerator can be obtained.

本発明の実施の形態1における冷蔵庫のウレタン注入時の概略説明図。Schematic explanatory drawing at the time of urethane injection of the refrigerator in Embodiment 1 of the present invention. 本発明の実施の形態1における冷蔵庫のウレタン発泡時のウレタン流れ概略説明図。The urethane flow schematic explanatory drawing at the time of urethane foaming of the refrigerator in Embodiment 1 of this invention. 本発明の実施の形態1における冷蔵庫正面断面図。The refrigerator front sectional view in Embodiment 1 of the present invention. 本発明の実施の形態1における冷蔵庫側面断面図。The refrigerator side surface sectional drawing in Embodiment 1 of this invention. 本発明実施の形態1における冷蔵庫上面断面図。The refrigerator upper surface sectional view in Embodiment 1 of the present invention. 本発明実施の形態1におけるスペーサ概略説明図。FIG. 3 is a schematic explanatory diagram of a spacer in the first embodiment of the present invention. 本発明実施の形態1におけるスペーサ概略説明図。FIG. 3 is a schematic explanatory diagram of a spacer in the first embodiment of the present invention. 本発明実施の形態1における冷蔵庫側面および背面断面図。The refrigerator side surface and back sectional drawing in Embodiment 1 of this invention. 本発明実施の形態1における冷蔵庫側面および背面断面図。The refrigerator side surface and back sectional drawing in Embodiment 1 of this invention. 本発明の実施の形態1における冷蔵庫の実験結果説明図。Explanatory drawing of the experimental result of the refrigerator in Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 外箱、 2 内箱、 3 真空断熱材、 4 ウレタンフォーム、 5 放熱パイプ、 6 スペーサ、 7 冷蔵室、 8 野菜室、 9 製氷室、 10 冷凍室、 11 野菜凍結防止ヒータ、 12 側板、 13 後板、 14 天板、 15 底板、 16 ウレタン注入口。   DESCRIPTION OF SYMBOLS 1 Outer box, 2 Inner box, 3 Vacuum insulation material, 4 Urethane foam, 5 Radiation pipe, 6 Spacer, 7 Refrigeration room, 8 Vegetable room, 9 Ice making room, 10 Freezing room, 11 Vegetable freezing prevention heater, 12 Side plate, 13 Rear plate, 14 Top plate, 15 Bottom plate, 16 Urethane inlet.

Claims (11)

外箱と内箱の間で前記外箱または前記内箱に支持され前記内箱と前記外箱内側に設けられた放熱パイプとの中間位置に配置された真空断熱材と、前記真空断熱材を前記内箱及び前記放熱パイプに接しない状態で埋設する様に注入発泡されたウレタンフォームと、を備えたことを特徴とする冷蔵庫。 A vacuum heat insulating material disposed between the outer box and the inner box and supported by the outer box or the inner box at an intermediate position between the inner box and the heat radiating pipe provided inside the outer box; and And a urethane foam that is injected and foamed so as to be embedded without contacting the inner box and the heat radiating pipe. 前記外箱背面側に前記ウレタンフォームの注入口を設け、前端面部より冷蔵庫製品奥行き方向に所定の距離範囲より背面側に真空断熱材を設置することを特徴とする請求項1記載の冷蔵庫。 The refrigerator according to claim 1, wherein an inlet for the urethane foam is provided on the back side of the outer box, and a vacuum heat insulating material is installed on the back side from a predetermined distance range in the refrigerator product depth direction from the front end surface part. 前記真空断熱材と前記外箱および内箱とのクリアランスとをそれぞれ冷蔵庫の壁面断熱厚さの1/3程度の同程度として設置することを特徴とした請求項1又は2記載の冷蔵庫。 The refrigerator according to claim 1 or 2, wherein the clearance between the vacuum heat insulating material and the outer box and the inner box is set to be approximately equal to about 1/3 of the wall surface insulation thickness of the refrigerator. 外箱と内箱の間に配置され前記外箱および内箱に接しない状態でスペーサにて前記外箱または内箱に固定され支持された真空断熱材と、前記真空断熱材を覆う様に埋設する前記外箱と内箱の間に注入発泡されるウレタンフォームと、を備え、前記スペーサは前記ウレタンフォームの発泡時のエアーとウレタンフォームが通過できる流路を設けたことを特徴とする冷蔵庫。 A vacuum heat insulating material disposed between the outer box and the inner box and fixed to and supported by the outer box or the inner box with a spacer without being in contact with the outer box and the inner box, and embedded so as to cover the vacuum heat insulating material And a urethane foam injected and foamed between the outer box and the inner box, wherein the spacer is provided with a flow path through which the air and urethane foam can pass. 冷蔵庫背面に真空断熱材を搭載する際、冷蔵庫庫内温度が0℃以下の壁面に相当する位置に前記真空断熱材を搭載し、一方前記真空断熱材非搭載箇所に放熱パイプを集約し、断熱壁面の厚さを前記真空断熱材を搭載した位置より前記放熱パイプを集約した位置を厚くしたことを特徴とした冷蔵庫。 When mounting the vacuum heat insulating material on the back of the refrigerator, the vacuum heat insulating material is mounted at a position corresponding to the wall surface where the temperature in the refrigerator cabinet is 0 ° C. or lower, while the heat radiating pipe is gathered at the location where the vacuum heat insulating material is not mounted. A refrigerator characterized in that the wall thickness is made thicker at a position where the heat radiating pipes are gathered than a position where the vacuum heat insulating material is mounted. 冷蔵庫背面に真空断熱材を搭載する際、外箱と内箱の間の断熱厚さが冷蔵庫平均断熱厚さに満たない部位に前記真空断熱材を搭載し、一方前記真空断熱材非搭載箇所に放熱パイプを集約することにより、断熱壁面の厚さを前記真空断熱材を搭載した位置より前記真空断熱材非搭載位置を厚くしたことを特徴とした冷蔵庫。 When the vacuum heat insulating material is mounted on the back of the refrigerator, the vacuum heat insulating material is mounted on a portion where the heat insulating thickness between the outer box and the inner box is less than the average heat insulating thickness of the refrigerator, while the vacuum heat insulating material is not mounted. A refrigerator characterized in that the heat insulating wall is made thicker so that the heat insulating wall surface is thicker than the position where the vacuum heat insulating material is mounted. 前記放熱パイプは、冷蔵庫上下方向にくし型あるいはU字型のパターンを繰り返すパイプであることを特徴とする請求項1ないし6のいずれかに記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 6, wherein the heat radiating pipe is a pipe that repeats a comb-shaped or U-shaped pattern vertically in the refrigerator. 冷蔵庫背面を上向きにした状態でウレタンフォーム発泡し、前記スペーサのエアーとウレタンフォームが通過できる流路は略ウレタン発泡方向を含めた複数の方向の流路を有することを特徴とする請求項1ないし7のいずれかに記載の冷蔵庫。 The urethane foam is foamed in a state where the refrigerator rear surface is facing upward, and the flow path through which the air and the urethane foam of the spacer can pass has flow paths in a plurality of directions including a substantially urethane foaming direction. The refrigerator in any one of 7. 外箱と内箱の間で前記外箱または前記内箱にスペーサにて支持され前記内箱と前記外箱内側に設けられた放熱パイプとの中間位置に真空断熱材を配置するステップと、前記真空断熱材を前記内箱及び前記放熱パイプに接しない状態で埋設する様に冷蔵庫の背面側からウレタンフォームを注入するステップと、前記ウレタンフォームの発泡時のエアーとウレタンフォームが前記スペーサの流路を介して下から上へ通過して前記真空断熱材を覆う様に発泡させるステップと、を備えたことを特徴とする冷蔵庫の製造方法。 Arranging a vacuum heat insulating material at an intermediate position between the outer box and the inner box between the outer box or the inner box and supported by a spacer in the outer box or the inner box between the inner box and the radiating pipe provided inside the outer box; Injecting urethane foam from the back side of the refrigerator so as to embed the vacuum heat insulating material without contacting the inner box and the heat radiating pipe, and air and urethane foam when foaming the urethane foam are flow paths of the spacer And a step of foaming so as to cover the vacuum heat insulating material by passing from the bottom through the top. 前記ウレタンフォームが発泡する前記真空断熱材の外箱及び内箱との間の隙間が略同等となるようにすることを特徴とした請求項9記載の冷蔵庫の製造方法。 The manufacturing method of the refrigerator according to claim 9, wherein a gap between the outer box and the inner box of the vacuum heat insulating material in which the urethane foam is foamed is substantially equal. 前記ウレタンフォームを注入発泡する際、前記真空断熱材を支持するスペーサの内部に前記ウレタンフォームが流入し充填可能なことを特徴とした請求項9または10記載の冷蔵庫の製造方法。 The method for manufacturing a refrigerator according to claim 9 or 10, wherein, when the urethane foam is injected and foamed, the urethane foam flows into a spacer supporting the vacuum heat insulating material and can be filled.
JP2003286890A 2003-08-05 2003-08-05 refrigerator Expired - Fee Related JP4111096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003286890A JP4111096B2 (en) 2003-08-05 2003-08-05 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003286890A JP4111096B2 (en) 2003-08-05 2003-08-05 refrigerator

Publications (2)

Publication Number Publication Date
JP2005055086A true JP2005055086A (en) 2005-03-03
JP4111096B2 JP4111096B2 (en) 2008-07-02

Family

ID=34366055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003286890A Expired - Fee Related JP4111096B2 (en) 2003-08-05 2003-08-05 refrigerator

Country Status (1)

Country Link
JP (1) JP4111096B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178080A (en) * 2005-12-28 2007-07-12 Matsushita Electric Ind Co Ltd Refrigerator
JP2008170031A (en) * 2007-01-10 2008-07-24 Sharp Corp Refrigerator heat insulating housing and its manufacturing method
WO2010087039A1 (en) * 2009-01-29 2010-08-05 三菱電機株式会社 Vacuum insulation material and insulation box using the same
JP2010266089A (en) * 2009-05-12 2010-11-25 Hitachi Appliances Inc Heat insulating case, refrigerator including the same and method of manufacturing heat insulating case
WO2010137081A1 (en) * 2009-05-29 2010-12-02 日立アプライアンス株式会社 Refrigerator equipped with vacuum insulation material
JP2012083068A (en) * 2010-10-14 2012-04-26 Mitsubishi Electric Corp Refrigerator
CN102735015A (en) * 2011-04-15 2012-10-17 三菱电机株式会社 Refrigerator
JP2014070738A (en) * 2012-09-27 2014-04-21 Toshiba Corp Heat insulating housing for refrigerator
CN104634047A (en) * 2010-10-28 2015-05-20 Lg电子株式会社 Refrigerator
JPWO2014196609A1 (en) * 2013-06-07 2017-02-23 三菱電機株式会社 Insulated box and refrigerator
WO2020179640A1 (en) * 2019-03-05 2020-09-10 アクア株式会社 Refrigerator and method of manufacturing same
CN113432357A (en) * 2020-03-23 2021-09-24 日立环球生活方案株式会社 Refrigerator and manufacturing method
CN113474602A (en) * 2018-12-27 2021-10-01 青岛海尔电冰箱有限公司 Refrigerator with a door
WO2022100616A1 (en) 2020-11-11 2022-05-19 重庆海尔制冷电器有限公司 Refrigerator

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5303397B2 (en) * 2009-08-12 2013-10-02 日立アプライアンス株式会社 refrigerator
US9038403B2 (en) 2012-04-02 2015-05-26 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9476633B2 (en) 2015-03-02 2016-10-25 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US9897370B2 (en) 2015-03-11 2018-02-20 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US9441779B1 (en) 2015-07-01 2016-09-13 Whirlpool Corporation Split hybrid insulation structure for an appliance
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
EP3443285B1 (en) 2016-04-15 2021-03-10 Whirlpool Corporation Vacuum insulated refrigerator cabinet
EP3443284B1 (en) 2016-04-15 2020-11-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
WO2018022007A1 (en) 2016-07-26 2018-02-01 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
EP3548813B1 (en) 2016-12-02 2023-05-31 Whirlpool Corporation Hinge support assembly
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696906B2 (en) * 2005-12-28 2011-06-08 パナソニック株式会社 refrigerator
JP2007178080A (en) * 2005-12-28 2007-07-12 Matsushita Electric Ind Co Ltd Refrigerator
JP2008170031A (en) * 2007-01-10 2008-07-24 Sharp Corp Refrigerator heat insulating housing and its manufacturing method
JP4602357B2 (en) * 2007-01-10 2010-12-22 シャープ株式会社 Refrigerator insulation box and manufacturing method thereof
WO2010087039A1 (en) * 2009-01-29 2010-08-05 三菱電機株式会社 Vacuum insulation material and insulation box using the same
JP2010174975A (en) * 2009-01-29 2010-08-12 Mitsubishi Electric Corp Vacuum heat insulating material and heat-insulated box provided with the same
US8617684B2 (en) 2009-01-29 2013-12-31 Mitsubishi Electric Corporation Vacuum thermal insulating material and thermal insulating box including the same
CN102301175A (en) * 2009-01-29 2011-12-28 三菱电机株式会社 Vacuum Insulation Material And Insulation Box Using The Same
JP2010266089A (en) * 2009-05-12 2010-11-25 Hitachi Appliances Inc Heat insulating case, refrigerator including the same and method of manufacturing heat insulating case
JP2010276310A (en) * 2009-05-29 2010-12-09 Hitachi Appliances Inc Refrigerator having vacuum heat insulating material
CN102449417A (en) * 2009-05-29 2012-05-09 日立空调·家用电器株式会社 Refrigerator equipped with vacuum insulation material
WO2010137081A1 (en) * 2009-05-29 2010-12-02 日立アプライアンス株式会社 Refrigerator equipped with vacuum insulation material
JP2012083068A (en) * 2010-10-14 2012-04-26 Mitsubishi Electric Corp Refrigerator
US11199357B2 (en) 2010-10-28 2021-12-14 Lg Electronics Inc. Refrigerator with vacuum space
CN104634047A (en) * 2010-10-28 2015-05-20 Lg电子株式会社 Refrigerator
US11732951B2 (en) 2010-10-28 2023-08-22 Lg Electronics Inc. Refrigerator with vacuum space
US10174989B2 (en) 2010-10-28 2019-01-08 Lg Electronics Inc. Refrigerator with vacuum space
US10591199B2 (en) 2010-10-28 2020-03-17 Lg Electronics Inc. Refrigerator with vacuum space
CN102735015A (en) * 2011-04-15 2012-10-17 三菱电机株式会社 Refrigerator
JP2014070738A (en) * 2012-09-27 2014-04-21 Toshiba Corp Heat insulating housing for refrigerator
JPWO2014196609A1 (en) * 2013-06-07 2017-02-23 三菱電機株式会社 Insulated box and refrigerator
CN113474602A (en) * 2018-12-27 2021-10-01 青岛海尔电冰箱有限公司 Refrigerator with a door
JP2020143814A (en) * 2019-03-05 2020-09-10 アクア株式会社 Refrigerator and manufacturing method of the same
CN113544450A (en) * 2019-03-05 2021-10-22 海尔智家股份有限公司 Refrigerator and method of manufacturing the same
WO2020179640A1 (en) * 2019-03-05 2020-09-10 アクア株式会社 Refrigerator and method of manufacturing same
CN113544450B (en) * 2019-03-05 2023-02-03 海尔智家股份有限公司 Refrigerator and method of manufacturing the same
JP7261459B2 (en) 2019-03-05 2023-04-20 アクア株式会社 Refrigerator and manufacturing method thereof
JP7449009B2 (en) 2019-03-05 2024-03-13 アクア株式会社 refrigerator
CN113432357A (en) * 2020-03-23 2021-09-24 日立环球生活方案株式会社 Refrigerator and manufacturing method
WO2022100616A1 (en) 2020-11-11 2022-05-19 重庆海尔制冷电器有限公司 Refrigerator

Also Published As

Publication number Publication date
JP4111096B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP4111096B2 (en) refrigerator
JP6192634B2 (en) Insulated box, refrigerator and hot water storage device provided with the insulated box
US11060787B2 (en) Refrigerator
JP5677737B2 (en) refrigerator
JP3493009B2 (en) refrigerator
JP2015007524A (en) Refrigerator
JP5506733B2 (en) refrigerator
JP2007198622A (en) Refrigerator
JP4196851B2 (en) refrigerator
AU2019427660A1 (en) Refrigerator
JPH08247632A (en) Refrigerator
WO2015025477A1 (en) Refrigerator
JP2004125216A (en) Refrigerator
JPH09269177A (en) Refrigerator
JP2005164200A (en) Refrigerator
TWI727348B (en) refrigerator
JP6504379B2 (en) refrigerator
JP6402352B2 (en) refrigerator
JP6379348B2 (en) refrigerator
JP6314311B2 (en) refrigerator
KR20220059316A (en) Vacuum adiabatic body
JP2005016879A (en) Refrigerator
KR20220059313A (en) Vacuum adiabatic body
JP2005214485A (en) Refrigerator
KR20220059323A (en) Vacuum adiabatic body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R151 Written notification of patent or utility model registration

Ref document number: 4111096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees