JP6854789B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP6854789B2
JP6854789B2 JP2018151436A JP2018151436A JP6854789B2 JP 6854789 B2 JP6854789 B2 JP 6854789B2 JP 2018151436 A JP2018151436 A JP 2018151436A JP 2018151436 A JP2018151436 A JP 2018151436A JP 6854789 B2 JP6854789 B2 JP 6854789B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
air passage
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018151436A
Other languages
Japanese (ja)
Other versions
JP2018169159A (en
JP2018169159A5 (en
Inventor
祥 花岡
祥 花岡
中津 哲史
哲史 中津
坂本 克正
克正 坂本
沙織 飯田
沙織 飯田
浩史 中島
浩史 中島
大石 隆
隆 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JP2018169159A publication Critical patent/JP2018169159A/en
Publication of JP2018169159A5 publication Critical patent/JP2018169159A5/ja
Application granted granted Critical
Publication of JP6854789B2 publication Critical patent/JP6854789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Description

本発明は、真空断熱材を備えた断熱箱体、真空断熱材を備えた冷蔵庫、ショーケース、貯湯装置、真空断熱材を備えた機器等に関するものである。 The present invention relates to a heat insulating box body provided with a vacuum heat insulating material, a refrigerator provided with the vacuum heat insulating material, a showcase, a hot water storage device, a device provided with the vacuum heat insulating material, and the like.

近年、地球環境保護、原子力発電所の安全性の観点から、省資源、省エネルギー、特に省電力化に対して様々な取り組みがなされている。 In recent years, various efforts have been made to save resources and energy, especially power saving, from the viewpoints of global environmental protection and safety of nuclear power plants.

省エネルギー、省電力化の観点では、外箱及び内箱で外郭が形成された断熱箱体内に、硬質ウレタンフォームに加えて真空断熱材も配設する技術が提案されており、たとえば、硬質ウレタンフォームと真空断熱材とからなり、前記真空断熱材の被覆率を外箱表面積に対して規定している断熱箱体の発明が提案されている(特許文献1参照)。 From the viewpoint of energy saving and power saving, a technique of arranging a vacuum heat insulating material in addition to the hard urethane foam inside the heat insulating box in which the outer box and the inner box are formed has been proposed. For example, the hard urethane foam. And a vacuum heat insulating material, and an invention of a heat insulating box body in which the coverage of the vacuum heat insulating material is defined with respect to the outer box surface area has been proposed (see Patent Document 1).

また、冷蔵庫などの断熱箱体を有する機器においては、内容積の拡大を行うためには、箱体の壁厚さを薄くする必要があり、そのため、外箱と内箱との間の真空断熱材を設け、真空断熱材が設けられている部分にはウレタン断熱材を介さないようにして真空断熱材を直接、外箱と内箱に貼り付けるものが提案されている。(特許文献2参照) Further, in a device having a heat insulating box such as a refrigerator, it is necessary to reduce the wall thickness of the box in order to expand the internal volume. Therefore, vacuum heat insulation between the outer box and the inner box is performed. It has been proposed that the material is provided and the vacuum heat insulating material is directly attached to the outer box and the inner box without passing through the urethane heat insulating material in the portion where the vacuum heat insulating material is provided. (See Patent Document 2)

また、冷蔵庫において、引き出し式のケースを支持するレール部材を内箱にネジなどによって固定している。(特許文献3参照)
また、冷蔵庫において、引き出し式の貯蔵室の引出扉にレール部材をネジなどで固定している。(特許文献4参照)
Further, in a refrigerator, a rail member that supports a pull-out case is fixed to an inner box with screws or the like. (See Patent Document 3)
Further, in a refrigerator, a rail member is fixed to a drawer door of a drawer-type storage chamber with screws or the like. (See Patent Document 4)

特許第3478810号公報Japanese Patent No. 3478810 特開平07−120138号公報Japanese Unexamined Patent Publication No. 07-12138 特開2006−177654号公報Japanese Unexamined Patent Publication No. 2006-177654 特開2009−228948号公報Japanese Unexamined Patent Publication No. 2009-228948

真空断熱材は、従来の硬質ウレタンフォームの断熱性能に対し、例えば6倍以上の断熱性能を有している。このため、省エネルギー化の観点等から、外箱と内箱との間に形成された空間には、硬質ウレタンフォームに加えて、真空断熱材も配設されるようになってきた。そして、近年、省エネルギー化の要請が高まるにつれて、例えば特許文献1に記載の断熱箱体のように、断熱箱体に配設される真空断熱材の使用量も増大してきている。 The vacuum heat insulating material has, for example, 6 times or more the heat insulating performance of the conventional rigid urethane foam. Therefore, from the viewpoint of energy saving and the like, a vacuum heat insulating material has come to be arranged in the space formed between the outer box and the inner box in addition to the rigid urethane foam. In recent years, as the demand for energy saving has increased, the amount of the vacuum heat insulating material arranged in the heat insulating box, such as the heat insulating box described in Patent Document 1, has also increased.

一方、近年、断熱箱体には、省スペース化や内容積の大容量化の観点から、外箱と内箱との間に形成される空間、つまり断熱箱体の壁厚の低減も求められている。しかしながら、従来の断熱箱体は、硬質ウレタンフォームが主に断熱機能を担い、真空断熱材は硬質ウレタンフォームの断熱機能を補助するという技術思想によって製作されていた。ここで、従来の断熱箱体は、硬質ウレタンフォームを内箱と外箱の間の空間に所定の密度で充填することによって箱体強度を得ているが、ウレタンの厚さを低減して壁面の厚さを低減させようとした場合には、ウレタンの厚さが小さくなりウレタンの密度が増加して断熱性能が低下するため、断熱性能を満足し、しかも必要な箱体強度を得るのが困難であった。 On the other hand, in recent years, from the viewpoint of space saving and large internal volume, the heat insulating box is required to reduce the space formed between the outer box and the inner box, that is, the wall thickness of the heat insulating box. ing. However, in the conventional heat insulating box body, the rigid urethane foam mainly plays a heat insulating function, and the vacuum heat insulating material is manufactured by the technical idea of assisting the heat insulating function of the hard urethane foam. Here, in the conventional heat insulating box body, the box body strength is obtained by filling the space between the inner box and the outer box with a predetermined density, but the thickness of urethane is reduced to reduce the wall surface. If you try to reduce the thickness of the box, the thickness of the urethane will decrease, the density of the urethane will increase, and the heat insulation performance will decrease. Therefore, it is necessary to satisfy the heat insulation performance and obtain the required box strength. It was difficult.

すなわち、従来の断熱箱体や冷蔵庫などの真空断熱材を備えた機器では、壁面及び箱体の断熱性能及び箱体や壁の強度を硬質ウレタンフォームによって確保しており、断熱箱体の壁厚を低減しようとして硬質ウレタンフォームの厚さを低減させると断熱箱体の断熱性能不足あるいは強度不足が生じ、壁厚さの低減を図ることが困難であるという問題点があった。 That is, in the conventional equipment equipped with the vacuum heat insulating material such as the heat insulating box and the refrigerator, the heat insulating performance of the wall surface and the box body and the strength of the box body and the wall are secured by the hard urethane foam, and the wall thickness of the heat insulating box body is secured. If the thickness of the rigid urethane foam is reduced in an attempt to reduce the heat insulating box, the heat insulating performance or strength of the heat insulating box is insufficient, and it is difficult to reduce the wall thickness.

ここで、特許文献1に記載の断熱箱体においては、真空断熱材の使用量(被覆率)を増大させて、硬質ウレタンフォームの曲げ弾性率(硬質ウレタンフォームの剛性)を大きくしているため、断熱箱体の強度面からは壁厚をある程度低減することが可能とも思われる。しかしながら、特許文献1に記載の断熱箱体は、硬質ウレタンフォームが主に断熱機能を担い、真空断熱材は硬質ウレタンフォームの断熱機能を補助するという技術思想によって製作されたものであり、硬質ウレタンフォームが主に断熱機能を担い、真空断熱材は硬質ウレタンフォームの断熱機能を補助するものであり、硬質ウレタンフォームによって、断熱箱体の断熱性能及び壁面の強度が確保されるものである。しかしながら、硬質ウレタンフォームは厚さが小さくなると密度、曲げ弾性率は大きくなるが、断熱性は悪化する。したがって、硬質ウレタンフォームの断熱性能が低下することを抑制するため、硬質ウレタンフォームの曲げ弾性率、密度が所定値以下(曲げ弾性率10MPa以下、密度60kg/m以下)になるように設定している。曲げ弾性率や密度が所定値を越えると箱体強度は満足するが、断熱性能が悪化するため、使用することが困難であった。したがって、特許文献1に記載の断熱箱体は、箱体や壁面の強度、断熱性能の両方を確保するためにウレタンの厚さをある程度以上確保する必要があり、そのためにウレタンの発泡後の密度が所定値以下(密度60kg/m以下)になるように、ウレタンが充填される部位のウレタン流路厚さが所定の厚さ以上になるように調整する必要があり、壁厚の低減を図ることが困難であるという問題点があった。 Here, in the heat insulating box described in Patent Document 1, the amount of the vacuum heat insulating material used (coverage) is increased to increase the flexural modulus of the rigid urethane foam (rigidity of the rigid urethane foam). From the viewpoint of the strength of the heat insulating box, it seems possible to reduce the wall thickness to some extent. However, the heat insulating box described in Patent Document 1 is manufactured by the technical idea that the rigid urethane foam mainly bears the heat insulating function and the vacuum heat insulating material assists the heat insulating function of the hard urethane foam. The foam mainly plays a heat insulating function, the vacuum heat insulating material assists the heat insulating function of the rigid urethane foam, and the rigid urethane foam secures the heat insulating performance of the heat insulating box and the strength of the wall surface. However, as the thickness of the rigid urethane foam decreases, the density and flexural modulus increase, but the heat insulating property deteriorates. Therefore, in order to suppress the deterioration of the heat insulating performance of the rigid urethane foam, the flexural modulus and density of the rigid urethane foam are set to be equal to or less than a predetermined value (flexural modulus of 10 MPa or less, density of 60 kg / m 3 or less). ing. When the flexural modulus and density exceed a predetermined value, the box body strength is satisfied, but the heat insulating performance deteriorates, so that it is difficult to use. Therefore, in the heat insulating box body described in Patent Document 1, it is necessary to secure a certain thickness or more of urethane in order to secure both the strength of the box body and the wall surface and the heat insulating performance, and therefore, the density of urethane after foaming. It is necessary to adjust so that the urethane flow path thickness of the urethane-filled part is equal to or more than the predetermined thickness so that the value is equal to or less than the predetermined value (density 60 kg / m 3 or less), and the wall thickness can be reduced. There was a problem that it was difficult to plan.

また、特許文献2は、真空断熱材を備えた断熱箱体の強度対策として、真空断熱材の外包材にプラスチック材料などを真空成形、圧空成形等により目的の形状に成形し、内部に粒状の芯材を充填することで強度を確保した凹凸形状に成形した真空断熱材、内箱、外箱を使用している。しかしながら、内箱、外箱を真空断熱材の外包材の凹凸と略同形状の凸凹形状にして嵌めこんで内箱及び外箱に強度を持たせており、外包材、内箱、外箱の形状が複雑となり、コストアップ、組立性の悪化などの課題があった。また、強度確保から真空断熱材も外包材を凹凸形状に成形する必要があり、外包材内に封入する芯材も外包材の凹凸形状に沿った形状にする必要があるため、芯材に流動性を有する粒状のものを使用する必要があり、ガラス繊維などの繊維系芯材に比べてコストアップとなり、断熱性能も悪くなる可能性があった。また、室内(断熱箱体内の貯蔵品などの収納空間)の背面が凹凸形状であり形状が複雑であり意匠性が悪くなっていた。 Further, in Patent Document 2, as a measure for the strength of the heat insulating box body provided with the vacuum heat insulating material, a plastic material or the like is molded into a desired shape by vacuum forming, pneumatic molding, etc. on the outer packaging material of the vacuum heat insulating material, and the inside is granular. The vacuum heat insulating material, inner box, and outer box molded into an uneven shape that secures strength by filling the core material are used. However, the inner box and the outer box are fitted in an uneven shape having substantially the same shape as the unevenness of the outer packaging material of the vacuum heat insulating material to give strength to the inner box and the outer box. The shape becomes complicated, and there are problems such as cost increase and deterioration of assembling property. In addition, in order to ensure strength, the vacuum heat insulating material also needs to be formed into an uneven shape of the outer packaging material, and the core material to be sealed in the outer packaging material also needs to have a shape that follows the uneven shape of the outer packaging material. It is necessary to use a granular material having properties, which increases the cost as compared with the fiber-based core material such as glass fiber, and may deteriorate the heat insulating performance. In addition, the back surface of the room (storage space for stored items in the heat insulating box) has an uneven shape, and the shape is complicated, resulting in poor design.

したがって、従来の断熱箱体や機器、特に冷蔵庫においては、所定の断熱性能と所定の箱体強度を確保し、真空断熱材を含む断熱壁あるいは断熱材の薄型化が困難であり、したがって、断熱箱体、冷蔵庫、機器等の内容積のさらなる拡大、あるいは外形寸法の小形化を図ることが困難であった。また、特許文献2においては、断熱箱体(冷蔵庫)の背面壁に真空断熱材が設けられているが、真空断熱材の幅が断熱箱体(冷蔵庫)の庫内幅よりも小さいので、断熱性能が悪かった。ここで、断熱性能を向上させるために真空断熱材の幅を大きくした場合には、断熱箱体の背面の幅方向端部(あるいは上下方向の端部)に設けられるウレタン注入口が真空断熱材と干渉するため、真空断熱材を幅方向(あるいは上下方向)に大きくできず、断熱性能の向上が困難であった。 Therefore, in a conventional heat insulating box or device, particularly a refrigerator, it is difficult to secure a predetermined heat insulating performance and a predetermined box strength, and to thin the heat insulating wall or the heat insulating material including the vacuum heat insulating material. It was difficult to further expand the internal volume of boxes, refrigerators, equipment, etc., or to reduce the external dimensions. Further, in Patent Document 2, the vacuum heat insulating material is provided on the back wall of the heat insulating box (refrigerator), but since the width of the vacuum heat insulating material is smaller than the width of the inside of the heat insulating box (refrigerator), heat insulation is provided. The performance was bad. Here, when the width of the vacuum heat insulating material is increased in order to improve the heat insulating performance, the urethane injection port provided at the width direction end (or the vertical end) of the back surface of the heat insulating box is the vacuum heat insulating material. Therefore, the vacuum heat insulating material could not be enlarged in the width direction (or the vertical direction), and it was difficult to improve the heat insulating performance.

また、特許文献3、特許文献4に記載の冷蔵庫では、引き出し式の貯蔵室のケースを支持するレール部材あるいは扉フレームをネジによって断熱壁(内箱、あるいは内箱と外箱の間のウレタン断熱材、あるいは内箱と外箱の間に設けられる補強部材)に固定している。しかし、外箱と内箱の間に真空断熱材が配設された場合、真空断熱材と内箱の間の断熱材の厚さが薄い場合には、真空断熱材の厚さのバラツキなどによりレール部材あるいは扉フレームの固定ネジが真空断熱材の外包材を傷つけたり、破ったりして真空断熱材の断熱性能の低下、信頼性の低下を引き起こす恐れがあった。 Further, in the refrigerators described in Patent Documents 3 and 4, the rail member or door frame supporting the case of the pull-out storage chamber is insulated by a screw into a heat insulating wall (inner box or urethane heat insulating between the inner box and the outer box). It is fixed to a material or a reinforcing member provided between the inner box and the outer box). However, when the vacuum heat insulating material is arranged between the outer box and the inner box, and the thickness of the heat insulating material between the vacuum heat insulating material and the inner box is thin, the thickness of the vacuum heat insulating material varies. The fixing screw of the rail member or the door frame may damage or tear the outer packaging material of the vacuum heat insulating material, which may cause deterioration of the heat insulating performance and reliability of the vacuum heat insulating material.

また、真空断熱材を傷つけないためにネジのネジ部の長さを短くすることが考えられるが、真空断熱材と内箱の間に充填されるウレタン断熱材の強度(たとえば密度、曲げ弾性等)が小さいとネジの保持強度も弱く、またウレタンと一体に形成される断熱壁の強度も弱いので、断熱壁あるいは箱体が変形したり、あるいはネジが緩んだりする恐れがあり信頼性が低下するため、ネジ部長さを所定長さ以下には短くできなかった。そのため、真空断熱材を有する断熱壁にネジあるいは嵌合構造などにより保持あるいは固定される別部材(たとえばケースを支持するレール部材あるいは扉フレームなどのように重量物を支持する重量物支持部材、あるいは貯蔵室を冷却する冷気を生成する冷却器あるいは貯蔵室に冷気を送風するファンなどのように運転時の振動の影響を受ける振動影響部材など)を取り付ける場合には、取り付ける部位は取り付け強度が得られる壁厚さが必要であり、また、ネジの取り付け強度の関係からネジなどの固定部材のネジ部の長さも所定長さ(たとえば15mm)以下にすることが困難なため、壁厚さを小さくすることが困難であり、内容積を大きくすることが困難であった。 In addition, it is conceivable to shorten the length of the screw part of the screw so as not to damage the vacuum heat insulating material, but the strength of the urethane heat insulating material filled between the vacuum heat insulating material and the inner box (for example, density, bending elasticity, etc.) If) is small, the holding strength of the screw is also weak, and the strength of the heat insulating wall formed integrally with the urethane is also weak, so that the heat insulating wall or the box body may be deformed or the screw may be loosened, resulting in reduced reliability. Therefore, the length of the screw portion could not be shortened below the predetermined length. Therefore, another member that is held or fixed to the heat insulating wall having the vacuum heat insulating material by screws or a fitting structure (for example, a heavy object supporting member that supports a heavy object such as a rail member or a door frame that supports the case, or a heavy object supporting member that supports a heavy object, or When installing a cooler that generates cold air that cools the storage room or a vibration-affecting member that is affected by vibration during operation, such as a fan that blows cold air into the storage room), the mounting strength is obtained at the mounting part. In addition, it is difficult to reduce the length of the screw part of the fixing member such as a screw to a predetermined length (for example, 15 mm) or less due to the mounting strength of the screw. It was difficult to increase the internal volume.

本発明は上述のような課題を解決するためになされたものであり、断熱箱体を有した冷蔵庫の断熱性能と強度を確保することを主たる目的とする。併せて、断熱壁あるいは断熱材の薄型化が可能な断熱箱体、冷蔵庫、貯湯装置、高温部あるいは低温部を有する機器などを得ることを目的とする。 The present invention has been made to solve the above-mentioned problems, and a main object of the present invention is to secure the heat insulating performance and strength of a refrigerator having a heat insulating box. At the same time, it is an object of the present invention to obtain a heat insulating box, a refrigerator, a hot water storage device, a device having a high temperature part or a low temperature part, etc., which can make the heat insulating wall or the heat insulating material thinner.

また、断熱箱体、冷蔵庫、機器などの内容積を従来よりも拡大すること(室の容積の拡大化)、あるいは断熱箱体、冷蔵庫、機器などの外形寸法を小さくする(外形寸法の小形化)ことが可能な断熱箱体、冷蔵庫、貯湯装置、機器などを得ることを目的とする。 In addition, the internal volume of the heat-insulating box, refrigerator, equipment, etc. should be increased (expansion of the volume of the room), or the external dimensions of the heat-insulating box, refrigerator, equipment, etc. should be reduced (miniaturization of the external dimensions). ) The purpose is to obtain a heat insulating box, refrigerator, hot water storage device, equipment, etc. that can be used.

また、真空断熱材を有する断熱壁にネジあるいは嵌合構造などにより保持あるいは固定される別部材(たとえば重量物支持部材、あるいは振動影響部材など)を取り付ける場合でも、断熱壁あるいは断熱材の薄型化が可能な断熱箱体、冷蔵庫、貯湯装置、機器などを得ることを目的とする。また、信頼性が高く内容積の大きな断熱箱体、冷蔵庫、貯湯装置、機器などを得ることを目的とする。 Further, even when another member (for example, a heavy object support member or a vibration-affected member) that is held or fixed by a screw or a fitting structure is attached to the heat insulating wall having the vacuum heat insulating material, the heat insulating wall or the heat insulating material is made thinner. The purpose is to obtain heat insulating boxes, refrigerators, hot water storage devices, equipment, etc. that can be used. Another object of the present invention is to obtain a heat insulating box, a refrigerator, a hot water storage device, equipment, etc., which are highly reliable and have a large internal volume.

また、壁厚さを小さくするとともに、室内(たとえば貯蔵品収納する貯蔵室内)の意匠性も向上させることを目的とする。 Another object of the present invention is to reduce the wall thickness and improve the design of the room (for example, the storage room for storing stored items).

また、貯湯タンクなどの熱源を断熱する場合には、断熱壁の厚さを薄くして円筒状や角筒状や前面開口を有する箱体などの断熱箱体の外形の大きさ(たとえば外径、幅、奥行き、高さなど)を小さくしたコンパクトな断熱箱体、冷蔵庫、貯湯装置、機器などを得ることを目的とする。 When insulating a heat source such as a hot water storage tank, the thickness of the heat insulating wall is reduced to reduce the outer diameter of the heat insulating box such as a cylindrical box, a square tube, or a box having a front opening (for example, outer diameter). , Width, depth, height, etc.) The purpose is to obtain a compact heat insulating box, refrigerator, hot water storage device, equipment, etc.

本発明の第1態様は、
外箱と内箱とにより形成された天井壁、背面壁、左右の側壁、および底面壁を有し、前面に開口を有する仕切壁で区画された貯蔵室が形成された箱体と、
前記左側壁と前記背面壁とのコーナー部、及び、前記右側壁と前記背面壁とのコーナー部の各々に形成され、断面形状が斜辺部を有する略三角形状であり、前記斜辺部が略直線状あるいは曲線状あるいはアーチ状あるいは円弧状である凸部と、
前記背面壁を形成する前記内箱と前記外箱との間に設けられた真空断熱材と、
前記天井壁を形成する前記内箱と前記外箱との間に設けられた第2の真空断熱材と、
前記凸部及び前記凸部間において、前記真空断熱材と前記内箱との間に充填あるいは注入され、前記真空断熱材と前記内箱とを接着、固着、もしくは固定する発泡断熱材と、
前記背面壁の前記貯蔵室側の少なくとも一部を覆うカバー部材と、
左右の前記凸部の間の前記内箱に前記内箱とは別体で設けられ、前記カバー部材を保持あるいは固定する取り付け部と、
外部機器と送受信可能な送受信手段を有し、前記貯蔵室の温度制御を行う制御装置と、
前記天井壁あるいは前記背面壁に設けられ、前記制御装置の制御基板が収納された制御基板室と、
前記制御基板室に設けられた制御基板室カバーと、
前記制御基板室内あるいは前記制御基板室カバーに設けられ、前記送受信手段が接続可能なネットワーク接続用端子と、
を備え、
前記制御基板室と前記内箱との間には前記真空断熱材あるいは前記第2の真空断熱材が配置され、前記真空断熱材あるいは前記第2の真空断熱材と前記内箱との間に前記発泡断熱材が充填されており、
前記発泡断熱材の密度は60g/mより大きく100kg/m以下である冷蔵庫。
本発明の第2態様は、
外箱と内箱とにより形成された天井壁、背面壁、左右の側壁、および底面壁を有し、前面に開口を有する仕切壁で区画された貯蔵室が形成された箱体と、
前記側壁と前記背面壁とのコーナー部に形成され、前記側壁と前記背面壁とを接続する斜辺部を有し、前記斜辺部が直線状あるいは曲線状あるいは円弧状である凸部と、
前記背面壁を形成する前記内箱と前記外箱との間に設けられた真空断熱材と、
前記天井壁を形成する前記内箱と前記外箱との間に設けられた第2の真空断熱材と、
前記凸部及び凸部間の前記真空断熱材と前記内箱との間に充填あるいは注入され、前記真空断熱材と前記内箱とを接着、固着、もしくは固定する発泡断熱材と、
左右の前記凸部の間に前記内箱とは別体で設けられ、前記背面壁の前記貯蔵室側の少なくとも一部を覆うカバー部材を保持あるいは固定する取り付け部と、
外部機器と送受信可能な送受信手段を有し、前記貯蔵室の温度制御を行う制御装置と、
前記天井壁あるいは前記背面壁に設けられ、前記制御装置の制御基板が収納された制御基板室と、
前記貯蔵室の開口を開閉する貯蔵室扉に設けられ、前記貯蔵室の温度設定または前記貯蔵室の温度表示が行える操作パネルと、
を備え、
前記制御基板室と前記内箱との間には前記真空断熱材あるいは前記第2の真空断熱材が配置され、前記真空断熱材あるいは前記第2の真空断熱材と前記内箱との間に前記発泡断熱材が充填されており、
前記発泡断熱材の密度は60g/mより大きく100kg/m以下であり、
前記送受信手段は前記制御基板室内あるいは前記制御基板室の近傍に設けられており、
前記操作パネルにより、インターネットへの接続設定、インターネットへの接続、前記外部機器の情報の閲覧、前記外部機器からの指示内容の閲覧、あるいは前記外部機器に対する送信情報の閲覧も可能にしている冷蔵庫。
本発明の第3態様は、
外箱と内箱とにより形成された天井壁、背面壁、側壁、および底面壁を有し、前面に開口を有する仕切壁で区画された貯蔵室が形成された箱体と、
前記背面壁を形成する前記内箱と前記外箱との間に設けられた真空断熱材と、
前記天井壁を形成する前記内箱と前記外箱との間に設けられた第2の真空断熱材と、
前記側壁と前記背面壁とのコーナー部に形成され、断面形状が斜辺部を有する略三角形状であり、前記斜辺部が略直線状あるいは曲線状あるいはアーチ状あるいは円弧状である凸部と、
前記凸部及び前記凸部間において、前記真空断熱材と前記内箱との間に充填あるいは注入され、前記真空断熱材と前記内箱とを接着、固着、もしくは固定する発泡断熱材と、
左右の前記凸部の間の前記背面壁に設けられ、前記背面壁の前記貯蔵室側の少なくとも一部を覆うカバー部材を保持あるいは固定する取り付け部と、
外部機器と送受信可能な送受信手段を有し、前記貯蔵室の温度制御を行う制御装置と、
前記天井壁あるいは前記背面壁に設けられ、前記制御装置の制御基板が収納された制御基板室と、
前記貯蔵室の開口を開閉する貯蔵室扉に設けられ、前記貯蔵室の温度設定または前記貯蔵室の温度表示が行える操作パネルと、
を備え、
前記制御基板室と前記内箱との間には前記真空断熱材あるいは前記第2の真空断熱材が配置され、前記真空断熱材あるいは前記第2の真空断熱材と前記内箱との間に前記発泡断熱材が充填されており、
前記発泡断熱材の密度は60g/mより大きく100kg/m以下であり、
前記送受信手段は前記制御基板室内あるいは前記制御基板室の近傍に設けられており、
前記操作パネルを操作することによって、前記外部機器との間のインターネット接続設定またはインターネットへの接続が行える冷蔵庫。
本発明の第4態様は、
外箱と内箱とにより形成された天井壁、背面壁、左右の側壁、および底面壁を有し、前面に開口を有する仕切壁で区画された貯蔵室が形成された箱体と、
前記背面壁を形成する前記内箱と前記外箱との間に設けられた真空断熱材と、
前記天井壁を形成する前記内箱と前記外箱との間に設けられた第2の真空断熱材と、
前記側壁と前記背面壁とのコーナー部に形成され、前記側壁と前記背面壁とを接続する斜辺部を有し、前記斜辺部が直線状、曲線状あるいは円弧状である凸部と、
前記凸部及び凸部間において、前記真空断熱材と前記内箱との間に充填あるいは注入され、前記真空断熱材と前記内箱との間で発泡した発泡断熱材と、
前記背面壁の前記貯蔵室側の少なくとも一部を覆うカバー部材と、
左右の前記凸部の間の前記背面壁に前記内箱とは別体で設けられ、前記カバー部材を保持あるいは固定する取り付け部と、
外部機器と送受信可能な送受信手段を有し、前記貯蔵室の温度制御を行う制御装置と、
前記天井壁あるいは前記背面壁に設けられ、前記制御装置の制御基板が収納された制御基板室と、
前記貯蔵室の開口を開閉する貯蔵室扉に設けられ、前記貯蔵室の温度設定または前記貯蔵室の温度表示が行える操作パネルと、
携帯機器あるいはパソコンが接続できる接続端子と、
を備え、
前記制御基板室と前記内箱との間には前記真空断熱材あるいは前記第2の真空断熱材が配置され、前記真空断熱材あるいは前記第2の真空断熱材と前記内箱との間に前記発泡断熱材が充填されており、
前記発泡断熱材の密度は60g/mより大きく100kg/m以下であり、
前記操作パネルを操作することによって、前記接続端子に接続された機器の充電を行なえる冷蔵庫。
The first aspect of the present invention is
A box body having a ceiling wall, a back wall, left and right side walls, and a bottom wall formed by an outer box and an inner box, and a storage chamber formed by a partition wall having an opening at the front.
Corner portions between the left side wall and the rear wall, and wherein formed in each corner portion of the right wall and the rear wall, Ri substantially triangular der the cross-sectional shape having a slant portion, the slant portion is substantially Convex parts that are straight, curved, arched, or arcuate,
The vacuum heat insulating material provided between the inner box and the outer box forming the back wall,
A second vacuum heat insulating material provided between the inner box and the outer box forming the ceiling wall, and
A foam heat insulating material that is filled or injected between the vacuum heat insulating material and the inner box between the convex portion and the convex portion to bond, fix, or fix the vacuum heat insulating material and the inner box.
A cover member that covers at least a part of the back wall on the storage chamber side,
An attachment portion provided separately from the inner box in the inner box between the left and right convex portions to hold or fix the cover member,
A control device having a transmission / reception means capable of transmitting / receiving to / from an external device and controlling the temperature of the storage chamber,
A control board room provided on the ceiling wall or the back wall and accommodating a control board of the control device, and a control board room.
The control board room cover provided in the control board room and
A network connection terminal provided in the control board room or the control board room cover to which the transmission / reception means can be connected.
With
The vacuum heat insulating material or the second vacuum heat insulating material is arranged between the control board chamber and the inner box, and the vacuum heat insulating material or the second vacuum heat insulating material and the inner box are described. Filled with foam insulation,
The density of the foam insulation is 60 k g / m 3 greater than 100 kg / m 3 or less refrigerator.
The second aspect of the present invention is
A box body having a ceiling wall, a back wall, left and right side walls, and a bottom wall formed by an outer box and an inner box, and a storage chamber formed by a partition wall having an opening at the front.
A convex portion formed at a corner portion between the side wall and the back wall, having a hypotenuse portion connecting the side wall and the back wall, and the hypotenuse portion being linear, curved, or arcuate.
The vacuum heat insulating material provided between the inner box and the outer box forming the back wall,
A second vacuum heat insulating material provided between the inner box and the outer box forming the ceiling wall, and
A foam heat insulating material that is filled or injected between the convex portion and the vacuum heat insulating material between the convex portions and the vacuum heat insulating material and the inner box to bond, fix, or fix the vacuum heat insulating material and the inner box.
A mounting portion provided between the left and right convex portions separately from the inner box and holding or fixing a cover member covering at least a part of the back wall on the storage chamber side.
A control device having a transmission / reception means capable of transmitting / receiving to / from an external device and controlling the temperature of the storage chamber,
A control board room provided on the ceiling wall or the back wall and accommodating a control board of the control device, and a control board room.
An operation panel provided on the storage room door that opens and closes the opening of the storage room and can set the temperature of the storage room or display the temperature of the storage room.
With
The vacuum heat insulating material or the second vacuum heat insulating material is arranged between the control board chamber and the inner box, and the vacuum heat insulating material or the second vacuum heat insulating material and the inner box are described. Filled with foam insulation,
The density of the foam insulation is a 60 k g / m 3 greater than 100 kg / m 3 or less,
The transmitting / receiving means is provided in the control board room or in the vicinity of the control board room.
A refrigerator that enables connection setting to the Internet, connection to the Internet, viewing of information of the external device, viewing of instruction contents from the external device, or viewing of transmission information to the external device by the operation panel.
A third aspect of the present invention is
A box body having a ceiling wall, a back wall, a side wall, and a bottom wall formed by an outer box and an inner box, and a storage chamber formed by a partition wall having an opening at the front.
The vacuum heat insulating material provided between the inner box and the outer box forming the back wall,
A second vacuum heat insulating material provided between the inner box and the outer box forming the ceiling wall, and
A convex portion formed at a corner between the side wall and the back wall and having a substantially triangular cross-sectional shape having a hypotenuse, and the hypotenuse is substantially straight, curved, arched, or arcuate.
A foam heat insulating material that is filled or injected between the vacuum heat insulating material and the inner box between the convex portion and the convex portion to bond, fix, or fix the vacuum heat insulating material and the inner box.
A mounting portion provided on the back wall between the left and right convex portions to hold or fix a cover member that covers at least a part of the back wall on the storage chamber side.
A control device having a transmission / reception means capable of transmitting / receiving to / from an external device and controlling the temperature of the storage chamber,
A control board room provided on the ceiling wall or the back wall and accommodating a control board of the control device, and a control board room.
An operation panel provided on the storage room door that opens and closes the opening of the storage room and can set the temperature of the storage room or display the temperature of the storage room.
With
The vacuum heat insulating material or the second vacuum heat insulating material is arranged between the control board chamber and the inner box, and the vacuum heat insulating material or the second vacuum heat insulating material and the inner box are described. Filled with foam insulation,
The density of the foam insulation is a 60 k g / m 3 greater than 100 kg / m 3 or less,
The transmitting / receiving means is provided in the control board room or in the vicinity of the control board room.
A refrigerator that allows you to set up an Internet connection with the external device or connect to the Internet by operating the operation panel.
A fourth aspect of the present invention is
A box body having a ceiling wall, a back wall, left and right side walls, and a bottom wall formed by an outer box and an inner box, and a storage chamber formed by a partition wall having an opening at the front.
The vacuum heat insulating material provided between the inner box and the outer box forming the back wall,
A second vacuum heat insulating material provided between the inner box and the outer box forming the ceiling wall, and
A convex portion formed at a corner portion between the side wall and the back wall, having a hypotenuse portion connecting the side wall and the back wall, and the hypotenuse portion being linear, curved, or arcuate.
A foam heat insulating material that is filled or injected between the vacuum heat insulating material and the inner box and foamed between the vacuum heat insulating material and the inner box between the convex portions and the convex portions.
A cover member that covers at least a part of the back wall on the storage chamber side,
A mounting portion provided on the back wall between the left and right convex portions separately from the inner box to hold or fix the cover member.
A control device having a transmission / reception means capable of transmitting / receiving to / from an external device and controlling the temperature of the storage chamber,
A control board room provided on the ceiling wall or the back wall and accommodating a control board of the control device, and a control board room.
An operation panel provided on the storage room door that opens and closes the opening of the storage room and can set the temperature of the storage room or display the temperature of the storage room.
A connection terminal to which a mobile device or computer can be connected,
With
The vacuum heat insulating material or the second vacuum heat insulating material is arranged between the control board chamber and the inner box, and the vacuum heat insulating material or the second vacuum heat insulating material and the inner box are described. Filled with foam insulation,
The density of the foam insulation is a 60 k g / m 3 greater than 100 kg / m 3 or less,
A refrigerator that can charge the equipment connected to the connection terminal by operating the operation panel.

上記の構成により、冷蔵庫の断熱箱体の強度を確保できる。また、カバー部材で貯蔵室の背面の少なくとも一部を覆うので、意匠性が向上する。 With the above configuration, the strength of the heat insulating box of the refrigerator can be ensured. Further, since the cover member covers at least a part of the back surface of the storage chamber, the design is improved.

本発明の実施の形態1に係る冷蔵庫の正面図である。It is a front view of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫の側断面図である。It is a side sectional view of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫の制御装置のブロック図である。It is a block diagram of the control device of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫の横断面図である。It is a cross-sectional view of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る別の冷蔵庫の横断面図である。It is a cross-sectional view of another refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る別の冷蔵庫の横断面図である。It is a cross-sectional view of another refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る別の冷蔵庫の横断面図である。It is a cross-sectional view of another refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る別の冷蔵庫の横断面図である。It is a cross-sectional view of another refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫の前面扉を除いた場合の冷蔵庫の正面図である。It is a front view of the refrigerator when the front door of the refrigerator which concerns on Embodiment 1 of this invention is removed. 本発明の実施の形態1に係る冷蔵庫の側断面図である。It is a side sectional view of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る断熱箱体の正面断面図である。It is a front sectional view of the heat insulating box body which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る断熱箱体の背面図である。It is a rear view of the heat insulating box body which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る断熱箱体の斜視図である。It is a perspective view of the heat insulating box body which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る断熱箱体の斜視図である。It is a perspective view of the heat insulating box body which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る断熱箱体の硬質ウレタンフォームの密度と熱伝導率の関係を示す図である。It is a figure which shows the relationship between the density and thermal conductivity of the rigid urethane foam of the heat insulating box body which concerns on Embodiment 1 of this invention. 本発明の実施の形態1を表す硬質ウレタンフォームの密度と曲げ弾性率を示す図である。It is a figure which shows the density and flexural modulus of the rigid urethane foam which represents Embodiment 1 of this invention. 本発明の実施の形態1に係る硬質ウレタンフォームを充填したときのウレタンの流路厚さとウレタンの熱伝導率の関係を示す図である。It is a figure which shows the relationship between the flow path thickness of urethane and the thermal conductivity of urethane at the time of filling the rigid urethane foam which concerns on Embodiment 1 of this invention. 本発明の実施の形態1を表す硬質ウレタンフォームを充填したときのウレタンの流路厚さとウレタンの曲げ弾性率の関係を示す図である。It is a figure which shows the relationship between the flow path thickness of urethane and the flexural modulus of urethane at the time of filling hard urethane foam which represents Embodiment 1 of this invention. 本発明の実施の形態1を表す断熱箱体の壁厚さに対する硬質ウレタンの厚さの比率と複合熱伝導率の関係を示す図である。It is a figure which shows the relationship between the ratio of the thickness of hard urethane with respect to the wall thickness of the heat insulating box body which represents Embodiment 1 of this invention, and composite thermal conductivity. 本発明の実施の形態1を表す断熱箱体の壁内空間に占める真空断熱材の充填率と、断熱箱体の変形量の関係を示した図である。It is a figure which showed the relationship between the filling rate of the vacuum heat insulating material in the space in the wall of the heat insulating box body which represents Embodiment 1 of this invention, and the deformation amount of the heat insulating box body. 本発明の実施の形態1を表す断熱箱体の側面部と背面部の表面積に対する真空断熱材の占める面積比率と箱体変形量の関係を表した図である。It is a figure which showed the relationship between the area ratio occupied by the vacuum heat insulating material with respect to the surface area of the side surface portion and the back surface portion of the heat insulating box body which represents Embodiment 1 of this invention, and the amount of deformation of a box body. 本発明の実施の形態1に係る断熱箱体の背面図である。It is a rear view of the heat insulating box body which concerns on Embodiment 1 of this invention. 硬質ウレタンフォームが発泡した後の断熱箱体側壁の断面形状の模式図である。It is a schematic diagram of the cross-sectional shape of the side wall of the heat insulating box body after the rigid urethane foam is foamed. 硬質ウレタンフォームが発泡した後の断熱箱体側壁の別の断面形状の模式図である。It is a schematic diagram of another cross-sectional shape of the side wall of the heat insulating box body after the rigid urethane foam is foamed. 本発明の実施の形態を表す冷蔵庫のレール取り付け部近傍の要部断面図である。It is sectional drawing of the main part near the rail attachment part of the refrigerator which shows the embodiment of this invention. 本発明の実施の形態を表す別の冷蔵庫のレール取り付け部近傍の要部断面図である。It is sectional drawing of the main part near the rail attachment part of another refrigerator which shows embodiment of this invention. 本発明の実施の形態を表す別の冷蔵庫のレール取り付け部近傍の要部断面図である。It is sectional drawing of the main part near the rail attachment part of another refrigerator which shows embodiment of this invention. 本発明の実施の形態を表す別の冷蔵庫のレール取り付け部近傍の要部断面図である。It is sectional drawing of the main part near the rail attachment part of another refrigerator which shows embodiment of this invention.

実施の形態1
(冷蔵庫)
図1は本発明の実施の形態1を表す冷蔵庫の正面図、図2は本発明の実施の形態1を示す冷蔵庫の側断面図である。これらの図に示すように、冷蔵庫1は最上段に観音開き式(あるいは開閉式)の貯蔵室である冷蔵室2を備えている。冷蔵室2の下には貯蔵室である製氷室3及び切替室4が左右に並列に配設されている。冷蔵庫1の最下段には貯蔵室である冷凍室6を備え、冷凍室6の上には貯蔵室である野菜室5を備えている。この野菜室5は、左右に並列に配設された製氷室3と切替室4の下方で、冷凍室6の上方に設けられている。
Embodiment 1
(refrigerator)
FIG. 1 is a front view of a refrigerator showing the first embodiment of the present invention, and FIG. 2 is a side sectional view of the refrigerator showing the first embodiment of the present invention. As shown in these figures, the refrigerator 1 is provided with a refrigerating room 2 which is a double-door (or openable) storage room at the uppermost stage. Below the refrigerating chamber 2, an ice making chamber 3 and a switching chamber 4, which are storage chambers, are arranged side by side in parallel on the left and right. A freezing room 6 which is a storage room is provided at the bottom of the refrigerator 1, and a vegetable room 5 which is a storage room is provided above the freezing room 6. The vegetable compartment 5 is provided below the ice making chamber 3 and the switching chamber 4 arranged in parallel on the left and right, and above the freezing chamber 6.

貯蔵室である冷蔵室2内は、貯蔵品(食料品や飲料品等)を収納するための貯蔵品収納空間を有し、この貯蔵品収納空間には、貯蔵品を載置する複数の樹脂製やガラス製の棚80が設けられている。この貯蔵品収納空間の下方(庫内棚の下方)には、略密閉構造の容器2X、2Yが設けられており、+3℃〜−3℃程度のチルド温度帯に制御されるチルド室2X、あるいは、+3℃〜+5℃程度に維持される野菜室温度帯に制御される野菜室2Yとして使用される。この略密閉構造の容器2X、2Yは、たまごを保存する卵室として使用しても良い。また、この略密閉構造の容器2X、2Yは、たとえば引出式構造を有しており、容器を引き出すことで貯蔵品の出し入れが行える。 The refrigerating room 2 which is a storage room has a storage space for storing stored goods (food, beverages, etc.), and a plurality of resins for storing the stored goods are stored in this storage space. A wooden or glass shelf 80 is provided. Below this storage space (below the internal shelves), containers 2X and 2Y with a substantially sealed structure are provided, and the chilled chamber 2X, which is controlled in a chilled temperature range of about + 3 ° C to -3 ° C, Alternatively, it is used as a vegetable chamber 2Y controlled in a vegetable chamber temperature range maintained at about + 3 ° C to + 5 ° C. The containers 2X and 2Y having a substantially sealed structure may be used as an egg chamber for storing eggs. Further, the containers 2X and 2Y having a substantially sealed structure have, for example, a drawer type structure, and the stored items can be taken in and out by pulling out the container.

略密閉構造の容器2X、2Yの構造としては、上面が開口した上面開口部を有する容器の上面開口部に着脱式のフタを設けるようにすれば略密閉構造の容器を構成できる。このフタは容器の方に設けても良いし、容器上部に設けられている棚80や仕切壁に設けても良いし、容器上部の棚や仕切壁のそのものをフタと兼用しても良い。 As the structure of the containers 2X and 2Y having a substantially sealed structure, a container having a substantially sealed structure can be constructed by providing a removable lid on the upper surface opening of the container having the upper surface opening with an open upper surface. This lid may be provided on the container side, on the shelf 80 or partition wall provided on the upper part of the container, or the shelf or partition wall itself on the upper part of the container may also be used as the lid.

もちろん、各室の配置は本実施の形態を制限するものではなく、上段に設けられた冷蔵室2の下に製氷室3及び切替室4を左右に並列に配設し、これら左右に並列に配設された製氷室3及び切替室4の下方で、かつ下段に設けられた野菜室5の上部に冷凍室6を配設する、いわゆる野菜室5と左右に並列に配設された製氷室3及び切替室4との間に冷凍室6を配設するミッドフリーザータイプの方が低温室(例えば、製氷室3、切替室4、冷凍室6)が近接するため低温室間の断熱材が不要であり、また、熱漏れも少ないので省エネルギーで低コストの冷蔵庫が提供できる。 Of course, the arrangement of each room does not limit the present embodiment, and the ice making room 3 and the switching room 4 are arranged in parallel on the left and right under the refrigerating room 2 provided in the upper stage, and these are arranged in parallel on the left and right. An ice making chamber arranged in parallel on the left and right with the so-called vegetable chamber 5 in which the freezing chamber 6 is arranged below the arranged ice making chamber 3 and the switching chamber 4 and above the vegetable chamber 5 provided in the lower stage. In the mid-freezer type in which the freezing chamber 6 is arranged between the 3 and the switching chamber 4, the low temperature chamber (for example, the ice making chamber 3, the switching chamber 4, and the freezing chamber 6) is closer to each other, so that the heat insulating material between the low temperature chambers is Since it is unnecessary and there is little heat leakage, it is possible to provide an energy-saving and low-cost refrigerator.

貯蔵室である冷蔵室2の正面側開口部は、自在に開放、閉塞することができる観音開き式の冷蔵室扉7が設けられており、この冷蔵室扉7は、冷蔵室扉左7A、冷蔵室扉右7Bの2つにより観音式扉を構成している。もちろん、観音式扉ではなく、1枚式の回転式扉でもよい。他の貯蔵室である製氷室3、切替室4、野菜室5、冷凍室6には、製氷室3の開口部を自在に開口・閉塞することができる引出式の製氷室扉8、切替室4の開口部を自在に開放・閉塞することができる引出式の切替室扉9、野菜室5の開口部を自在に開放・閉塞することができる引出式の野菜室扉10、冷凍室6の開口部を自在に開放・閉塞することができる引出式の冷凍室扉11がそれぞれ設けられている。ここで、引出式の貯蔵室扉(たとえば、製氷室扉8、切替室扉9、野菜室扉10、冷凍室扉11)には、貯蔵室を形成する内箱750にレール部材がネジなどのレール固定部材735あるいは嵌合構造にて固定あるいは保持されており、扉内板に固定あるいは保持された扉フレームがレール部材上を直接あるいはローラなどを介して摺動することで、扉及び扉フレームに載置されたケースが引き出し可能となっている。 The front opening of the refrigerating room 2 which is a storage room is provided with a double-door type refrigerating room door 7 which can be freely opened and closed. The Kannon type door is composed of two parts, 7B on the right side of the room door. Of course, instead of the Kannon type door, a single rotary door may be used. The other storage chambers, the ice making chamber 3, the switching chamber 4, the vegetable compartment 5, and the freezing chamber 6, have a drawer-type ice making chamber door 8 and a switching chamber that can freely open and close the opening of the ice making chamber 3. A drawer-type switching chamber door 9 that can freely open and close the opening of 4, a drawer-type vegetable compartment door 10 that can freely open and close the opening of the vegetable compartment 5, and a freezing chamber 6. Draw-out type freezer doors 11 that can freely open and close the openings are provided. Here, in the drawer type storage room door (for example, the ice making room door 8, the switching room door 9, the vegetable room door 10, the freezing room door 11), the rail member is screwed to the inner box 750 forming the storage room. The door and the door frame are fixed or held by the rail fixing member 735 or the fitting structure, and the door frame fixed or held to the door inner plate slides directly on the rail member or via a roller or the like. The case placed on the door can be pulled out.

また、貯蔵室である冷蔵室2の左右の冷蔵室扉左7A、冷蔵室扉右7Bのいずれかには、後述する図3に示すように、貯蔵室内の温度設定などを行う操作スイッチ(部屋選択スイッチ60a、温度帯切替スイッチ60b、瞬冷凍スイッチ60c、製氷切替スイッチ60d、ミスト供給スイッチ60e)や庫内温度や設定温度などの温度情報の表示を行う操作パネル60が設けられており、操作スイッチの操作情報や液晶表示部の表示情報や貯蔵室内の温度情報などが冷蔵庫の背面上部(冷蔵室背面)に設けられたマイコンなどを実装した制御基板で構成される制御装置30によって制御される。 Further, as shown in FIG. 3 described later, an operation switch (room) for setting the temperature of the storage room or the like is provided on either the left and right refrigerating room doors 7A or the refrigerating room door right 7B of the refrigerating room 2 which is a storage room. A selection switch 60a, a temperature zone changeover switch 60b, an instant refrigeration switch 60c, an ice making changeover switch 60d, a mist supply switch 60e) and an operation panel 60 for displaying temperature information such as the refrigerator temperature and the set temperature are provided for operation. Switch operation information, LCD display information, storage room temperature information, etc. are controlled by a control device 30 composed of a control board on which a microcomputer or the like is installed on the upper back surface of the refrigerator (rear surface of the refrigerator compartment). ..

冷蔵庫1の背面最下部に設けられている機械室1Aには圧縮機12が配されている。冷蔵庫1は、冷凍サイクルを備えており、圧縮機12は冷凍サイクルを構成する1部品であり機械室1Aに配置されており、冷凍サイクル内の冷媒を圧縮する作用を有する。圧縮機12で圧縮された冷媒は凝縮器(図示せず)において凝縮される。凝縮された状態の冷媒は減圧装置である毛細管(図示せず)や膨張弁(図示せず)において減圧される。冷却器13は、冷蔵庫の冷凍サイクルを構成する1部品で冷却器室131に配置されている。減圧装置にて減圧された冷媒は、冷却器13において蒸発し、この蒸発時の吸熱作用により冷却器13周辺の気体は冷却される。冷気循環用ファン14は冷却器室131内で冷却器13の近傍に配置されており、冷却器13周辺で冷却された冷気を冷気風路(例えば、切替室冷気風路16や冷蔵室冷気風路50など)を介して冷蔵庫1の貯蔵室である各室(冷蔵室2、製氷室3、切替室4、野菜室5、冷凍室6)へと送風するためのものである。 A compressor 12 is arranged in a machine room 1A provided at the lowermost part of the back surface of the refrigerator 1. The refrigerator 1 includes a refrigerating cycle, and the compressor 12 is a component constituting the refrigerating cycle and is arranged in the machine room 1A, and has an action of compressing the refrigerant in the refrigerating cycle. The refrigerant compressed by the compressor 12 is condensed in a condenser (not shown). The condensed refrigerant is decompressed in a capillary tube (not shown) or an expansion valve (not shown), which are decompression devices. The cooler 13 is a component that constitutes the refrigeration cycle of the refrigerator and is arranged in the cooler chamber 131. The refrigerant decompressed by the decompression device evaporates in the cooler 13, and the gas around the cooler 13 is cooled by the heat absorbing action at the time of evaporation. The cold air circulation fan 14 is arranged in the cooler chamber 131 in the vicinity of the cooler 13, and the cold air cooled around the cooler 13 is passed through the cold air passage (for example, the switching chamber cold air passage 16 or the refrigerating chamber cold air). It is for blowing air to each room (refrigerator room 2, ice making room 3, switching room 4, vegetable room 5, freezing room 6) which is a storage room of the refrigerator 1 via a road 50 or the like.

冷却器室131内に設けられている冷却器13の下方には冷却器13の除霜を行う除霜手段である除霜用ヒータ150(除霜用のガラス管ヒータで、例えば、石英ガラス管内に石英ガラス管を透過する波長0.2μm〜4μmの光を出すカーボン繊維が用いられたカーボンヒータなど)が設けられている。冷却器13と除霜用ヒータ150の間で除霜用ヒータ150の上部には、冷却器13より落下してきた除霜水が直接除霜用ヒータ150に当たらない様に、ヒータルーフ151が設けられている。除霜用ヒータ150にカーボンヒータなどの黒色媒体のヒータを使用すれば、輻射伝熱により冷却器13の霜を効率的に溶かすことができるため表面温度を低温度(約70℃〜80℃)にすることが可能となり、冷凍サイクルに使用される冷媒に可燃性冷媒(例えば、炭化水素冷媒であるイソブタンなど)を使用している場合に冷媒漏れなどが発生しても着火の危険性が低減できる。また、ニクロム線ヒータに比べて輻射伝熱により冷却器13の霜を効率的に溶かすことができるため冷却器13に着霜した霜が除々に溶けるようになり霜が塊となってどさっと落下しにくくなるので、ヒータルーフ151に落下したときの落下音が低減できるので、低騒音で除霜効率の良い冷蔵庫が提供できる。 Below the cooler 13 provided in the cooler chamber 131 is a defrosting heater 150 (a glass tube heater for defrosting, for example, in a quartz glass tube) which is a defrosting means for defrosting the cooler 13. Is provided with a carbon heater or the like using carbon fiber that emits light having a wavelength of 0.2 μm to 4 μm that passes through a quartz glass tube. A heater roof 151 is provided above the defrosting heater 150 between the cooler 13 and the defrosting heater 150 so that the defrosting water that has fallen from the cooler 13 does not directly hit the defrosting heater 150. ing. If a black medium heater such as a carbon heater is used for the defrosting heater 150, the frost of the cooler 13 can be efficiently melted by radiant heat transfer, so that the surface temperature can be lowered (about 70 ° C to 80 ° C). When a flammable refrigerant (for example, isobutane which is a hydrocarbon refrigerant) is used as the refrigerant used in the refrigeration cycle, the risk of ignition is reduced even if a refrigerant leak occurs. it can. In addition, compared to the Nichrome wire heater, the frost in the cooler 13 can be melted more efficiently by radiant heat transfer, so the frost that has settled on the cooler 13 gradually melts, and the frost drops quickly as a lump. Since it becomes difficult to do so, the falling noise when the heater roof 151 is dropped can be reduced, so that a refrigerator with low noise and good defrosting efficiency can be provided.

ここで、除霜用ヒータ150は、冷却器13に一体に組み込まれたかち込みタイプのヒータであっても良い。また、ガラス管タイプヒータとかち込みタイプヒータを併用しても良い。冷却器13で生成される除霜水あるいはヒータルーフ151に落下した除霜水は、冷却器室内で落下して冷却器室131の下方に設けられている除霜水排出口より冷蔵庫外部(たとえば機械室1Aに設けられている蒸発皿等)に排出される。 Here, the defrosting heater 150 may be a built-in type heater integrally incorporated in the cooler 13. Further, a glass tube type heater and a built-in type heater may be used in combination. The defrost water generated by the cooler 13 or the defrost water that has fallen on the heater roof 151 falls inside the cooler room and is outside the refrigerator (for example, a machine) from the defrost water discharge port provided below the cooler room 131. It is discharged to an evaporating dish or the like provided in the chamber 1A.

風量調整手段である切替室ダンパ15は、冷気循環用ファン14により貯蔵室である切替室4に送風される冷気の冷気量を調整し、切替室4内の温度を所定温度に制御したり、切替室4の設定温度を切り替えたりするためのものである。冷却器13で冷却された冷気が冷気風路である切替室冷気風路16を通って、切替室4内に送風される。また、この切替室冷気風路16は、切替室ダンパ15の下流に配されている。 The switching chamber damper 15 which is an air volume adjusting means adjusts the cold air amount of the cold air blown to the switching chamber 4 which is a storage chamber by the cold air circulation fan 14, and controls the temperature in the switching chamber 4 to a predetermined temperature. This is for switching the set temperature of the switching chamber 4. The cold air cooled by the cooler 13 is blown into the switching chamber 4 through the switching chamber cold air passage 16 which is a cold air passage. Further, the switching chamber cold air passage 16 is arranged downstream of the switching chamber damper 15.

また、風量調整手段である冷蔵室ダンパ55も、冷気循環用ファン14により貯蔵室である冷蔵室2に送風される冷気の冷気量を調整し、冷蔵室2内の温度を所定温度に制御したり、冷蔵室2の設定温度を変更したりするためのものである。冷却器13で冷却された冷気が冷気風路である冷蔵室冷気風路50を通って、冷蔵室2内に送風される。 Further, the refrigerating chamber damper 55, which is an air volume adjusting means, also adjusts the amount of cold air blown to the refrigerating chamber 2 which is a storage chamber by the cold air circulation fan 14, and controls the temperature in the refrigerating chamber 2 to a predetermined temperature. Or, it is for changing the set temperature of the refrigerating room 2. The cold air cooled by the cooler 13 is blown into the refrigerating chamber 2 through the refrigerating chamber cold air passage 50 which is a cold air passage.

貯蔵室である、例えば切替室4は、貯蔵室内の温度を冷凍温度帯(−17℃以下)から野菜室温度帯(3〜10℃)までの間で複数の段階から選択可能な部屋(貯蔵室)であり、冷蔵庫1の冷蔵室扉左7A、冷蔵室扉右7Bのいずれかに設置した操作パネル60を操作することで貯蔵室内の温度の選択や切り替えを行う。 The storage room, for example, the switching room 4, is a room (storage) in which the temperature of the storage room can be selected from a plurality of stages from the freezing temperature range (-17 ° C. or lower) to the vegetable room temperature range (3 to 10 ° C.). The temperature in the storage room is selected or switched by operating the operation panel 60 installed on either the refrigerator 1 door left 7A or the refrigerator door right 7B.

切替室4の、例えば奥側壁面には、切替室4内の空気温度を検知するための第1の温度検出手段である切替室サーミスタ19(図3参照)を設置し、切替室4の例えば天上面(中央部、前面部、あるいは後面部など)には貯蔵室である切替室4内に投入された貯蔵物の表面温度を直接的に検出するための第2の温度検出手段であるサーモパイル22(図3参照、あるいは赤外線センサ)を設置している。冷却器室131から切替室4に冷気を送る風路には、風量の制御や風路を遮蔽して冷気の流入を阻止することができる風量調整装置である切替室ダンパ15を設け、第1の温度検出手段である切替室サーミスタ19の検出温度(あるいはサーモパイル22の検出温度)により切替室ダンパ15を開・閉することで、切替室4の温度が選択された温度帯になるように調整したり、設定された温度範囲内に入るように制御装置30にて制御される。また、第2の温度検出手段であるサーモパイル22にて切替室4内の貯蔵物である食品の温度を直接検出するようにしている。ここで、機械室1Aは、冷蔵庫1の背面最下部に設けられている例をしめしたが、背面上部(たとえば背面最上部)に設けても良い。 A switching chamber thermistor 19 (see FIG. 3), which is a first temperature detecting means for detecting the air temperature in the switching chamber 4, is installed on the switching chamber 4, for example, the back side wall surface, and the switching chamber 4, for example, is installed. Thermopile, which is a second temperature detecting means for directly detecting the surface temperature of the stored material put into the switching chamber 4, which is a storage chamber, on the top surface (central portion, front portion, rear surface portion, etc.) 22 (see FIG. 3 or infrared sensor) is installed. The air passage for sending cold air from the cooler chamber 131 to the switching chamber 4 is provided with a switching chamber damper 15 which is an air volume adjusting device capable of controlling the air volume and blocking the air passage to prevent the inflow of cold air. By opening and closing the switching chamber damper 15 according to the detection temperature of the switching chamber thermistor 19 (or the detection temperature of the thermopile 22), which is the temperature detecting means of the above, the temperature of the switching chamber 4 is adjusted to be in the selected temperature range. It is controlled by the control device 30 so as to be within the set temperature range. In addition, the thermopile 22, which is the second temperature detecting means, directly detects the temperature of the food stored in the switching chamber 4. Here, although the machine room 1A is provided at the lowermost part of the back surface of the refrigerator 1, it may be provided at the upper part of the back surface (for example, the uppermost part of the back surface).

(ミスト供給装置)
貯蔵室であるたとえば冷蔵室2の奥側(背面側)の仕切壁51(背面壁、断熱壁)には、貯蔵室内の除菌や加湿など行うミストを供給するミスト装置である静電霧化装置200が設けられている。静電霧化装置200は、貯蔵室内の空気中の水分を結露水として収集するための冷却部材(たとえば冷却板)が貯蔵室である冷蔵室2内から冷蔵室2の奥側の断熱された背面の仕切壁51あるいは冷却器13や冷気循環用ファン14などが配置される冷却器室131の前面壁を形成する冷却器室壁に接触するか、あるいは貫通するように設けられている。仕切壁51は、背面壁730、側壁790、天面壁740、底面壁780、貯蔵室間の仕切壁24であっても良い。この冷却部材(たとえば冷却板)は、仕切壁51の背面側や側面側や上下に設けられる冷気風路である冷蔵室冷気風路50、760内の冷気、あるいは、仕切壁51に対して貯蔵室(たとえば冷蔵室や野菜室)と反対側に設けられる貯蔵室とは別の低温の貯蔵室(たとえば貯蔵室よりも低温の冷凍室や製氷室や切替室など)内の冷気を利用して冷却されるように設けられている。ここでは静電霧化装置200について説明するが、貯蔵室内の除菌、殺菌あるいは加湿ができれば、別の除菌装置や殺菌装置や加湿装置などであっても良い。
(Mist supply device)
The partition wall 51 (rear wall, heat insulating wall) on the back side (rear side) of the storage chamber, for example, the refrigerating chamber 2, is electrostatically atomized, which is a mist device that supplies mist for disinfecting and humidifying the storage chamber. A device 200 is provided. In the electrostatic atomizer 200, a cooling member (for example, a cooling plate) for collecting moisture in the air in the storage chamber as dew condensation water is insulated from the inside of the refrigerating chamber 2 which is a storage chamber to the back side of the refrigerating chamber 2. It is provided so as to contact or penetrate the partition wall 51 on the back surface or the cooler chamber wall forming the front wall of the cooler chamber 131 in which the cooler 13 and the fan 14 for circulating cold air are arranged. The partition wall 51 may be a back wall 730, a side wall 790, a top wall 740, a bottom wall 780, and a partition wall 24 between storage chambers. This cooling member (for example, a cooling plate) is stored in the cold air in the refrigerating chamber cold air passages 50 and 760, which are cold air passages provided on the back side, side surface side, and upper and lower sides of the partition wall 51, or in the partition wall 51. Utilizing the cold air in a low temperature storage room (for example, a freezing room, an ice making room, a switching room, etc.) that is colder than the storage room provided on the opposite side of the room (for example, a refrigerator room or a vegetable room) It is provided to be cooled. Although the electrostatic atomizing device 200 will be described here, another sterilizing device, a sterilizing device, a humidifying device, or the like may be used as long as the storage chamber can be sterilized, sterilized, or humidified.

(表示)
図3は本発明の実施の形態1を表す冷蔵庫1の制御装置30のブロック図である。制御装置30にはマイコン30a(マイクロコンピュータ)を搭載し、予め記憶しているプログラムにより、冷蔵庫1の各貯蔵室の温度制御、圧縮機12や冷気循環用ファン14の回転数制御、切替室ダンパ15、冷蔵室ダンパ55の開閉制御、ミスト装置(静電霧化装置)200への電圧印加制御などを行っている。操作パネル60には、たとえば、以下に示すスッチを備える。
(1)冷蔵室、冷凍室、切替室などの貯蔵室を選択する部屋選択スイッチ60a;
(2)切替室などの貯蔵室の温度帯(冷蔵、冷凍、チルド、ソフトフリージングなど)を切替えたり、急冷や強・中・弱などを切り替える温度帯切替スイッチ60b;
(3)貯蔵室内を過冷却状態を経て冷凍保存する瞬冷凍スイッチ60c(瞬冷凍は、過冷却冷凍ともいう);
(4)製氷に関して、透明氷、通常、急速、停止などを選択する製氷切替スイッチ60d;
(5)ミスト装置200に通電して貯蔵室内にミスト供給(静電噴霧)を実施するミスト供給スイッチ60e(静電噴霧選択)。
(6)有線や無線によりインターネットに接続するインターネット接続スイッチ(図示せず)
(7)クラウドサーバや携帯端末など冷蔵庫と有線や無線で接続されているサーバの情報あるいはサーバや携帯端末からの指示内容あるいはサーバや携帯端末へ送信した送信情報を閲覧する閲覧スイッチ(図示せず)
(8)携帯電話や携帯端末やパソコンなどの充電を行う充電スイッチ(図示せず)
(display)
FIG. 3 is a block diagram of the control device 30 of the refrigerator 1 showing the first embodiment of the present invention. A microcomputer 30a (microcomputer) is mounted on the control device 30, and a temperature control of each storage chamber of the refrigerator 1, rotation speed control of the compressor 12 and the cold air circulation fan 14 and a switching chamber damper are performed by a program stored in advance. 15. The opening / closing control of the refrigerator damper 55, the voltage application control to the mist device (electrostatic atomizing device) 200, and the like are performed. The operation panel 60 is provided with, for example, the following switches.
(1) Room selection switch 60a for selecting a storage room such as a refrigerating room, a freezing room, or a switching room;
(2) Temperature zone changeover switch 60b for switching the temperature zone (refrigerating, freezing, chilled, soft freezing, etc.) of a storage room such as a switching room, or switching between quenching and strong / medium / weak;
(3) Instant freezing switch 60c that freezes and stores the storage chamber after being supercooled (instant freezing is also called supercooled freezing);
(4) Regarding ice making, an ice making changeover switch 60d that selects transparent ice, normal, rapid, stop, etc.;
(5) A mist supply switch 60e (electrostatic spray selection) that energizes the mist device 200 to supply mist (electrostatic spray) into the storage chamber.
(6) Internet connection switch that connects to the Internet by wire or wireless (not shown)
(7) A browsing switch for viewing information on servers such as cloud servers and mobile terminals that are connected to a refrigerator by wire or wirelessly, instructions from the server or mobile terminal, or transmission information sent to the server or mobile terminal (not shown). )
(8) Charging switch for charging mobile phones, mobile terminals, personal computers, etc. (not shown)

ここで、貯蔵室(例えば切替室4)内の温度を検出する温度検出センサについて説明する。本実施の形態では、貯蔵室(例えば、切替室4)内の温度を検出する温度検出センサとして、第1の温度検出手段である切替室サーミスタ19と第2の温度検出手段であるサーモパイル22を備えている。貯蔵室(例えば、切替室4)内の空気の温度を検出する第1の温度検出手段である切替室サーミスタ19の検出温度は、制御装置30を構成するマイコン30aに入力され、マイコン30a(例えば、マイコン30a内の温度判定手段)で所定値と比較して温度判定を行い、所定の温度範囲内に入るように制御を行う。また、貯蔵室(例えば、切替室4)内の食品などの表面温度などを直接検出する第2の温度検出手段であるサーモパイル22の検出信号はマイコン30aに入力され、マイコン30a(例えばマイコン30a内の演算手段)で演算処理されて食品などの表面温度に換算された後、急速冷凍制御や過冷却冷凍制御など所定の温度制御を行う。また、制御装置30は、各貯蔵室(冷蔵室2、製氷室3、切替室4、野菜室5、冷凍室6)内の温度制御や静電霧化装置200の通電制御などの各種制御行い、冷蔵室扉左7A、冷蔵室扉右7Bのいずれかに設けられた操作パネル60(表示パネル)あるいはサーバあるいは携帯端末に各貯蔵室の設定温度や食品(表面)温度や各貯蔵室に設置された静電霧化装置200の動作状況などを表示する。 Here, a temperature detection sensor that detects the temperature in the storage chamber (for example, the switching chamber 4) will be described. In the present embodiment, as the temperature detection sensor for detecting the temperature in the storage chamber (for example, the switching chamber 4), the switching chamber thermistor 19 which is the first temperature detecting means and the thermopile 22 which is the second temperature detecting means are used. I have. The detection temperature of the switching chamber thermistor 19, which is the first temperature detecting means for detecting the temperature of the air in the storage chamber (for example, the switching chamber 4), is input to the microcomputer 30a constituting the control device 30 and is input to the microcomputer 30a (for example, the switching chamber 4). , The temperature determination means in the microcomputer 30a) determines the temperature by comparing with the predetermined value, and controls the temperature so as to be within the predetermined temperature range. Further, the detection signal of the thermopile 22, which is a second temperature detecting means for directly detecting the surface temperature of food or the like in the storage chamber (for example, the switching chamber 4), is input to the microcomputer 30a and is input to the microcomputer 30a (for example, in the microcomputer 30a). After being calculated and converted into the surface temperature of foods and the like, predetermined temperature control such as quick freezing control and supercooled freezing control is performed. Further, the control device 30 performs various controls such as temperature control in each storage room (refrigerator room 2, ice making room 3, switching room 4, vegetable room 5, freezing room 6) and energization control of the electrostatic atomizer 200. , The operation panel 60 (display panel) provided on either the refrigerating room door left 7A or the refrigerating room door right 7B, or installed on the server or mobile terminal at the set temperature of each storage room, the food (surface) temperature, and each storage room. The operating status of the electrostatic atomizer 200 and the like are displayed.

(冷蔵庫の箱体構造)
図4は、本発明の実施の形態1を表す冷蔵庫の横断面図である。図は、冷蔵庫1の上下方向に対して垂直な面で冷蔵庫をカットしたときの横断面図である。図4において、図1〜図3と同等部分は同一の符号を付して説明は省略する。
(Refrigerator box structure)
FIG. 4 is a cross-sectional view of a refrigerator showing the first embodiment of the present invention. The figure is a cross-sectional view when the refrigerator is cut on a plane perpendicular to the vertical direction of the refrigerator 1. In FIG. 4, the same parts as those in FIGS. 1 to 3 are designated by the same reference numerals, and the description thereof will be omitted.

図4において、冷蔵庫1を構成する断熱箱体700は、外箱710と内箱750とから構成され、外箱710と内箱750との間には、真空断熱材400が配設されている。真空断熱材400は、冷蔵庫1の背面に設けられており、外箱710に直接、ホットメルトや両面テープなどの第2の介在部材である第2の接着剤を介して貼り付けられている。また、真空断熱材400は、内箱750の一部(たとえば内箱750の背面を形成する壁面の左右方向略中央部)に直接、接着剤により貼り付けられており、内箱750背面の略中央部を除く側壁790近傍の左右端部(コーナー部)は、背面壁730よりも前面側に突出した凸部450が形成されており、真空断熱材400はこの凸部450と所定長さだけ重なるように配置されるが、凸部450には、真空断熱材400を配置せずウレタンのみが充填されている部位が存在しても良い。また、内箱750と真空断熱材400との間には第1の介在部材である接着剤(たとえば硬質ウレタン等自己接着性を有する発泡断熱材を使用しても良い)が充填されており、真空断熱材400は、第1の介在部材である接着剤(たとえば硬質ウレタン等)を介して内箱750と外箱710との間に設けられている。したがって、真空断熱材400は第1の介在部材及び第2の介在部材によって内箱750あるいは外箱710に接着あるいは固着あるいは固定されている。 In FIG. 4, the heat insulating box body 700 constituting the refrigerator 1 is composed of an outer box 710 and an inner box 750, and a vacuum heat insulating material 400 is arranged between the outer box 710 and the inner box 750. .. The vacuum heat insulating material 400 is provided on the back surface of the refrigerator 1 and is directly attached to the outer box 710 via a second adhesive which is a second intervening member such as a hot melt or double-sided tape. Further, the vacuum heat insulating material 400 is directly attached to a part of the inner box 750 (for example, a substantially central portion in the left-right direction of the wall surface forming the back surface of the inner box 750) by an adhesive, and is substantially attached to the back surface of the inner box 750. The left and right ends (corners) near the side wall 790 excluding the central portion are formed with convex portions 450 protruding toward the front side from the back wall 730, and the vacuum heat insulating material 400 has only the convex portions 450 and a predetermined length. Although they are arranged so as to overlap each other, the convex portion 450 may have a portion where the vacuum heat insulating material 400 is not arranged and only urethane is filled. Further, the inner box 750 and the vacuum heat insulating material 400 are filled with an adhesive which is a first intervening member (for example, a foam heat insulating material having self-adhesiveness such as hard urethane may be used). The vacuum heat insulating material 400 is provided between the inner box 750 and the outer box 710 via an adhesive (for example, hard urethane) which is a first intervening member. Therefore, the vacuum heat insulating material 400 is adhered, fixed or fixed to the inner box 750 or the outer box 710 by the first intervening member and the second intervening member.

ここで、内箱750の背面形状は、冷蔵庫1の前面側(貯蔵室側)から見た場合、上下にわたって略中央部が凹んだ凹溝状の凹部440(第1の凹部ともいう)をなしており、この略中央部に形成された凹部440においては、真空断熱材400は、直接、外箱710と内箱750に接着剤を介して貼り付けられていることになる。また、冷蔵庫1の前面側(貯蔵室側)から見た場合、内箱750の背面形状は、幅方向(左右方向)端部側が幅方向(左右方向)略中央部に比べて前面開口部側(貯蔵室側)に突出した凸形状になる。言い換えると、内箱750の背面形状は、左右方向の略中央部が左右端部側に比べて外箱側(冷蔵庫の後方側)に凹んだ凹溝状である凹部440を有し、この凹部440が貯蔵室(たとえば冷蔵室2)内において冷蔵庫の上下方向に設けられている。
すなわち、凸部450の側面452と背面壁730とによって凹部440が形成されており、背面壁730の内面(貯蔵室側)を形成する内箱750と背面壁730の外面を形成する外箱710との間には板状の真空断熱材400が設けられている。ここで、図示されていないが、側壁790の内面(貯蔵室側)を形成する内箱750と側壁790の外面を形成する外箱710との間にも板状の真空断熱材400が設けられてもよい。背面壁730あるいは凹部440に設けられる冷気風路760は、意匠性を有するカバー部材である第1風路部品762と、第1風路部品762の背面側(内箱750側)に設けられ、断熱性を有する第2風路部品764とから構成され、凹部440内に配置されている。このカバー部材である第1風路部品762あるいは第2風路部品764は、取り付け部(係合部)を有しており、凸部450あるいは背面壁730に設けられている取り付け部(係合部)に嵌め込みあるいはねじ等の固定部材によって取り付け部同士が係合するなどしてカバー部材が凸部450あるいは背面壁730に取り付けられる。
Here, the back shape of the inner box 750 does not have a recessed groove-shaped recess 440 (also referred to as a first recess) in which the central portion is recessed in the vertical direction when viewed from the front side (storage chamber side) of the refrigerator 1. In the recess 440 formed in the substantially central portion, the vacuum heat insulating material 400 is directly attached to the outer box 710 and the inner box 750 via an adhesive. Further, when viewed from the front side (storage chamber side) of the refrigerator 1, the back shape of the inner box 750 is such that the end side in the width direction (left-right direction) is on the front opening side as compared with the substantially central part in the width direction (left-right direction). It has a convex shape that protrudes (on the storage chamber side). In other words, the back shape of the inner box 750 has a recess 440 in which the substantially central portion in the left-right direction is recessed toward the outer box side (rear side of the refrigerator) as compared with the left-right end side, and this recess 440 are provided in the storage room (for example, the refrigerating room 2) in the vertical direction of the refrigerator.
That is, the recess 440 is formed by the side surface 452 of the convex portion 450 and the back wall 730, and the inner box 750 forming the inner surface (storage chamber side) of the back wall 730 and the outer box 710 forming the outer surface of the back wall 730 are formed. A plate-shaped vacuum heat insulating material 400 is provided between the two. Here, although not shown, a plate-shaped vacuum heat insulating material 400 is also provided between the inner box 750 forming the inner surface (storage chamber side) of the side wall 790 and the outer box 710 forming the outer surface of the side wall 790. You may. The cold air passage 760 provided in the back wall 730 or the recess 440 is provided on the back side (inner box 750 side) of the first air passage component 762 and the first air passage component 762, which are cover members having a design. It is composed of a second air passage component 764 having a heat insulating property, and is arranged in the recess 440. The first air passage component 762 or the second air passage component 764, which is the cover member, has an attachment portion (engagement portion), and the attachment portion (engagement portion) provided on the convex portion 450 or the back wall 730. The cover member is attached to the convex portion 450 or the back wall 730 by fitting into the portion) or engaging the attachment portions with each other by a fixing member such as a screw.

この貯蔵室内背面の左右端部側に形成される凸部450において、幅方向の中央側(重なり長さXの範囲)は、外箱710と内箱750との間に真空断熱材400が配設され真空断熱材400と内箱750の間は第1の介在部材である接着剤(自己接着性の発泡断熱材701であり、たとえば硬質ウレタン)が充填されており、また、外箱710と真空断熱材400の間は、第2の介在部材である第2の接着剤で接着されている。凸部450における幅方向の端部側は、外箱710と内箱750との間に断熱材701(たとえば硬質ウレタン)が充填され、真空断熱材400が設けられていない部分が存在している。もちろん、凸部450において、真空断熱材400を幅方向に大きくして幅方向の真空断熱材400の配置面積を大きくした方が断熱性能及び箱体強度が向上して良いが、コストUPになるため断熱性能と強度が所定値以上であれば真空断熱材400を設けない部分を設定しても良い。 In the convex portions 450 formed on the left and right end sides of the back surface of the storage chamber, the vacuum heat insulating material 400 is arranged between the outer box 710 and the inner box 750 on the central side in the width direction (range of overlapping length X). The vacuum heat insulating material 400 and the inner box 750 are filled with an adhesive (self-adhesive foam heat insulating material 701, for example, hard urethane) which is a first intervening member, and also with the outer box 710. The vacuum heat insulating material 400 is bonded with a second adhesive which is a second intervening member. On the end side of the convex portion 450 in the width direction, a heat insulating material 701 (for example, hard urethane) is filled between the outer box 710 and the inner box 750, and there is a portion where the vacuum heat insulating material 400 is not provided. .. Of course, in the convex portion 450, the heat insulating performance and the strength of the box body may be improved by increasing the vacuum heat insulating material 400 in the width direction and increasing the arrangement area of the vacuum heat insulating material 400 in the width direction, but the cost is increased. Therefore, if the heat insulating performance and strength are equal to or higher than a predetermined value, a portion where the vacuum heat insulating material 400 is not provided may be set.

ここで、凹部440では、真空断熱材400は、外箱710とは直接、第2の介在部材である第2の接着剤を介して貼り付けられ、内箱750とは、第1の介在部材であるウレタン等の自己接着性及び発泡性を有する接着剤を介して貼り付けられている。(真空断熱材400と内箱750との間には、たとえば接着剤としての硬質ウレタンフォームが充填されている。) Here, in the recess 440, the vacuum heat insulating material 400 is directly attached to the outer box 710 via a second adhesive which is a second intervening member, and the inner box 750 is a first intervening member. It is attached via an adhesive having self-adhesiveness and foamability such as urethane. (For example, a hard urethane foam as an adhesive is filled between the vacuum heat insulating material 400 and the inner box 750.)

したがって、真空断熱材を備えた断熱箱体や冷蔵庫において、従来(たとえば特許文献2)のように貯蔵室背面の幅方向において、真空断熱材の配設部分にウレタン等断熱を主目的とする断熱材701を設けずに内箱750に、直接、真空断熱材400を設ける場合に比べて、本実施の形態においては、左右端部側(幅方向端部側)において上下方向にわたってウレタンなどの断熱材701で構成された凸部450が形成されるので、この凸部450が形成されることによって箱体のねじれ強度、折り曲げ強度が改善される。特許文献2に示される構成では、貯蔵室背面の幅方向において、凸部450と真空断熱材400の配設部分との重なり部分が無いので箱体がねじれた場合に、凸部450と真空断熱材400とが分断されて強度低下、箱体破損の恐れが生じる可能性がある。ここで、真空断熱材の耳部(外包材のみの部分)は、芯材を有していないので断熱機能を有さず、また、強度的にも弱いので、真空断熱材の耳部については、真空断熱材の構成部品から除外して考えている。 Therefore, in a heat insulating box or a refrigerator provided with a vacuum heat insulating material, heat insulation such as urethane is mainly used for the portion where the vacuum heat insulating material is arranged in the width direction of the back surface of the storage chamber as in the conventional case (for example, Patent Document 2). Compared with the case where the vacuum heat insulating material 400 is directly provided on the inner box 750 without providing the material 701, in the present embodiment, heat insulation such as urethane is provided on the left and right end sides (width direction end side) in the vertical direction. Since the convex portion 450 made of the material 701 is formed, the torsional strength and the bending strength of the box body are improved by forming the convex portion 450. In the configuration shown in Patent Document 2, since there is no overlapping portion between the convex portion 450 and the arranged portion of the vacuum heat insulating material 400 in the width direction of the back surface of the storage chamber, when the box body is twisted, the convex portion 450 and the vacuum heat insulating material are insulated. There is a possibility that the material 400 is separated to reduce the strength and damage the box body. Here, since the ear part of the vacuum heat insulating material (the part having only the outer packaging material) does not have a core material, it does not have a heat insulating function, and the strength is also weak. , I am thinking of excluding it from the components of the vacuum heat insulating material.

ここで、本実施の形態で示すように、貯蔵室背面の幅方向において、凸部450が真空断熱材400の配設部分に少なくとも一部重なるように設ければ(重なり長さXだけ重なるように設ければ)、凸部450の内部に充填される硬質ウレタンフォームが真空断熱材400の幅方向(左右方向)の端部側の真空断熱材400と内箱750の間の一部にも充填されることになるので、凸部450と対向する位置の真空断熱材400と内箱750の間に充填される硬質ウレタンフォームの厚さを、凹部440と対向する位置の真空断熱材400と内箱750に充填される硬質ウレタンフォームの厚さよりも大きくできるため、真空断熱材400に対する硬質ウレタンフォームの接着面積を大きくできるとともに、真空断熱材400部分の硬質ウレタンフォームの厚さを大きくできるため、凸部450内の硬質ウレタンフォームと真空断熱材400との接合強度が増大する。 Here, as shown in the present embodiment, if the convex portion 450 is provided so as to overlap at least a part of the arranged portion of the vacuum heat insulating material 400 in the width direction of the back surface of the storage chamber (so that the overlapping length X overlaps). The hard urethane foam filled inside the convex portion 450 is also partly between the vacuum heat insulating material 400 and the inner box 750 on the end side in the width direction (left-right direction) of the vacuum heat insulating material 400. Since it will be filled, the thickness of the hard urethane foam filled between the vacuum heat insulating material 400 at the position facing the convex portion 450 and the inner box 750 is set to the vacuum heat insulating material 400 at the position facing the concave portion 440. Since it can be made larger than the thickness of the hard urethane foam filled in the inner box 750, the adhesion area of the hard urethane foam to the vacuum heat insulating material 400 can be made large, and the thickness of the hard urethane foam of the vacuum heat insulating material 400 part can be made large. , The joint strength between the rigid urethane foam in the convex portion 450 and the vacuum heat insulating material 400 is increased.

したがって、凹部440での真空断熱材400と内箱750との間の硬質ウレタンフォームの厚さを薄くしても、凸部450と真空断熱材400、及び凸部450と側壁790(あるいは凸部450が設けられる周囲壁)との接合強度を大きく向上させることができ、箱体の強度が大きく改善される。また、凸部450においては、硬質ウレタンフォームの厚さを大きくできるので、真空断熱材400が設けられていない部分があったとしても断熱性能が向上する。 Therefore, even if the thickness of the hard urethane foam between the vacuum heat insulating material 400 and the inner box 750 in the concave portion 440 is reduced, the convex portion 450 and the vacuum heat insulating material 400, and the convex portion 450 and the side wall 790 (or the convex portion) are reduced. The joint strength with the peripheral wall on which the 450 is provided) can be greatly improved, and the strength of the box body is greatly improved. Further, since the thickness of the rigid urethane foam can be increased in the convex portion 450, the heat insulating performance is improved even if there is a portion where the vacuum heat insulating material 400 is not provided.

また、本発明の実施の形態では、従来の特許文献2のように真空断熱材、内箱、外箱を箱体強度確保のために複雑な形状に成形する必要がなく、また、真空断熱材の芯材に安価で断熱性能の良い有機繊維や無機繊維の芯材(綿状芯材や不織布芯材など)が使用可能となるので、低コストで構造が簡単で断熱性能の高い断熱箱体、冷蔵庫、ショーケース、給湯機、真空断熱材を備えた機器等を得ることができる。 Further, in the embodiment of the present invention, it is not necessary to mold the vacuum heat insulating material, the inner box, and the outer box into a complicated shape in order to secure the box body strength as in the conventional patent document 2, and the vacuum heat insulating material Since organic fiber and inorganic fiber core materials (cotton-like core material, non-woven fabric core material, etc.) that are inexpensive and have good heat insulation performance can be used as the core material, the heat insulating box has a simple structure and high heat insulation performance at low cost. , Refrigerators, showcases, water heaters, equipment equipped with vacuum heat insulating materials, etc. can be obtained.

したがって、たとえば、箱体背面が変形して貯蔵室内に凹凸が形成されたり、また、たとえば、箱体が変形して貯蔵室(例えば冷蔵室2)の前面に設けられた貯蔵室扉(例えば冷蔵室扉7)が傾いたり、また、たとえば観音開き扉の場合に左右の扉(7A、7B)の一方が傾いて位置ずれを起こしたりすることがなくなるので、貯蔵室扉の開閉がスムーズに行えるし、また、左右の貯蔵室扉の位置ズレが起こらないので見栄え(意匠性)が良い。また、箱体が変形することによって貯蔵室(たとえば製氷室3、切替室4、野菜室5、冷凍室6等)内壁や左右の側壁に設けられた開閉扉や引出式ケース用のレール部材の取り付け高さが左右で異なったり、傾いたりすることがなくなるので、ケースの出し入れがスムーズに行え、信頼性が高く、使い勝手が良い冷蔵庫、機器が得られる。 Therefore, for example, the back surface of the box body may be deformed to form irregularities in the storage chamber, or the box body may be deformed to form a storage room door (for example, refrigerating room 2) provided in front of the storage room (for example, refrigerating room 2). Since the room door 7) does not tilt, and in the case of a double door, for example, one of the left and right doors (7A, 7B) does not tilt and cause misalignment, the storage room door can be opened and closed smoothly. Also, the left and right storage room doors do not shift in position, so the appearance (design) is good. In addition, due to the deformation of the box body, the opening / closing doors and rail members for the pull-out case provided on the inner wall of the storage chamber (for example, the ice making chamber 3, the switching chamber 4, the vegetable compartment 5, the freezing chamber 6, etc.) and the left and right side walls. Since the mounting height does not differ on the left and right or tilts, the case can be taken in and out smoothly, and a highly reliable and easy-to-use refrigerator and equipment can be obtained.

また、真空断熱材400が平板状である場合には、真空断熱材400を冷蔵庫1の背面に搭載した状態では、左右方向(幅方向)や前後方向に折り曲がりやすく、また、ねじれやすいが、この点に関しても冷蔵庫などの機器に搭載された状態では、背面の左右端部側において上下方向にウレタンなどの断熱材が設けられた凸部450を形成して真空断熱材400を凸部450内に充填されるウレタンと一体に形成すれば、内箱750、真空断熱材400、外箱710が凸部450によって一体に接着されるので、箱体700の折り曲げ強度(特に前後方向への折り曲げ強度)やねじれ強度が改善できる。したがって、前面が開口している貯蔵室の開口部がたわんで変形したり、開口部のシール部材の位置ずれなどにより冷気漏れを起こしたりすることを抑制できるので、信頼性が高く、高性能で省エネルギーな断熱箱体、冷蔵庫、真空断熱材を備えた機器が得られる。 Further, when the vacuum heat insulating material 400 has a flat plate shape, when the vacuum heat insulating material 400 is mounted on the back surface of the refrigerator 1, it is easy to bend in the left-right direction (width direction) and the front-back direction, and it is easy to twist. Regarding this point as well, when mounted on a device such as a refrigerator, a convex portion 450 provided with a heat insulating material such as urethane in the vertical direction is formed on the left and right end sides of the back surface, and the vacuum heat insulating material 400 is placed inside the convex portion 450. If the inner box 750, the vacuum heat insulating material 400, and the outer box 710 are integrally bonded by the convex portion 450, the bending strength of the box body 700 (particularly the bending strength in the front-rear direction) is formed. ) And torsional strength can be improved. Therefore, it is possible to prevent the opening of the storage chamber, which has an open front surface, from bending and deforming, or causing cold air leakage due to misalignment of the seal member of the opening, resulting in high reliability and high performance. Equipment equipped with energy-saving heat insulating boxes, refrigerators, and vacuum heat insulating materials can be obtained.

また、内箱750と真空断熱材400との間には、断熱を主目的とするウレタンなどの発泡断熱材を設ける部位(凸部450)と断熱を主目的としない接着剤(たとえば断熱を主目的とせず接着を主目的とするので自己接着性を有すれば良くウレタンなどであっても良い)が設けられる部位(凹部440)を有しているので、接着を主目的とする接着剤が設けられる部位(凹部440)は、断熱を主目的としたウレタンなど断熱材が設けられた部位に比べて、断熱性能を得るための断熱材としての所定厚さが必要なく、所定の接着強度を有していれば良いので、接着を主目的として使用される部位(たとえば凹部440)は、接着剤の厚さをかなり小さくしても良くて済むため、接着剤として硬質ウレタンを使用した場合、断熱を主目的として使用される部位に対してウレタンの厚さをかなり小さくできる。しかたがって、接着剤の厚さの差分だけ壁厚さを小さくでき、したがって貯蔵室の内容積を大きくすることが可能となり、使い勝手の良い冷蔵庫、機器が得られる。 Further, between the inner box 750 and the vacuum heat insulating material 400, there is a portion (convex portion 450) where a foam heat insulating material such as urethane whose main purpose is heat insulation is provided, and an adhesive whose main purpose is not heat insulation (for example, mainly heat insulating material). Since the main purpose is adhesion, not the purpose, it has a portion (recess 440) where a self-adhesive property may be provided (urethane or the like may be used), so that the adhesive whose main purpose is adhesion is The provided portion (recessed 440) does not require a predetermined thickness as a heat insulating material for obtaining heat insulating performance as compared with a portion provided with a heat insulating material such as urethane whose main purpose is heat insulation, and has a predetermined adhesive strength. Since it is sufficient to have the adhesive, the thickness of the adhesive may be considerably reduced in the portion used mainly for the purpose of adhesion (for example, recess 440). Therefore, when hard urethane is used as the adhesive, The thickness of urethane can be made considerably smaller than that of the part used mainly for heat insulation. Therefore, the wall thickness can be reduced by the difference in the thickness of the adhesive, and therefore the internal volume of the storage chamber can be increased, so that a refrigerator and equipment that are easy to use can be obtained.

ここで、制御配線や圧縮機やファンなどの駆動用電力線等のリード線が収納されるリード線収納部材であるパイプ720は凸部450を形成するウレタン等の断熱材701内に上下方向に渡って埋設されて設けられている。このパイプ720内に各種ダンパの開閉制御や圧縮機12や冷気循環用ファン14などの運転制御などを行うための制御配線や圧縮機12や冷気循環用ファン14などに電力を供給するための電力線等のリード線が収納される。制御配線や電力線等のリード線は、パイプ720内を通って、冷蔵庫1の下部(あるいは上部)に設けられる機械室1A内に配置された圧縮機12や、冷蔵庫1の背面や底面や上面に設けられる制御装置(制御基板など)30や、冷却器室131などに設けられる冷気循環用ファン14や、冷気風路に設けられる切替室ダンパ15、冷蔵室ダンパ55や、貯蔵室(例えば冷蔵室2)の前面を覆うように設けられた開閉扉(例えば冷蔵室扉7)に設けられた操作パネル60などと接続されている。 Here, the pipe 720, which is a lead wire accommodating member for accommodating the control wiring and the lead wire of the driving power line of the compressor, the fan, etc., extends in the vertical direction in the heat insulating material 701 such as urethane forming the convex portion 450. It is buried and provided. Control wiring for opening / closing control of various dampers and operation control of the compressor 12 and the cold air circulation fan 14 in the pipe 720, and a power line for supplying power to the compressor 12 and the cold air circulation fan 14 and the like. Etc. lead wires are stored. Lead wires such as control wiring and power lines pass through the pipe 720 to the compressor 12 arranged in the machine room 1A provided in the lower part (or upper part) of the refrigerator 1 and on the back surface, bottom surface and upper surface of the refrigerator 1. A control device (control board, etc.) 30 provided, a cold air circulation fan 14 provided in a cooler room 131, a switching chamber damper 15 provided in a cold air passage, a refrigerator room damper 55, and a storage room (for example, a refrigerator room). It is connected to an operation panel 60 or the like provided on an opening / closing door (for example, a refrigerator compartment door 7) provided so as to cover the front surface of 2).

冷蔵庫1の背面に設けられる真空断熱材400の左右方向の幅は、冷蔵庫1の側壁790の貯蔵室内面壁791、792間の幅よりも小さくしており、冷蔵庫1の背面の左右方向の端部に複数設けられるウレタンなどの断熱材の充填口(注入口)703、704を塞ぐことがないようにしており、充填口703、704より充填されるウレタンなどの断熱材の充填流路を塞ぐことがないようにしている。 The width of the vacuum heat insulating material 400 provided on the back surface of the refrigerator 1 in the left-right direction is smaller than the width between the storage chamber surface walls 791 and 792 of the side wall 790 of the refrigerator 1, and the end portion of the back surface of the refrigerator 1 in the left-right direction. The filling ports (injection ports) 703 and 704 of the heat insulating material such as urethane provided in a plurality of the filling ports 703 and 704 are not blocked, and the filling flow path of the heat insulating material such as urethane filled from the filling ports 703 and 704 is blocked. I try not to have.

ここで、冷蔵庫1の背面に設けられる真空断熱材400の左右方向の幅は、冷蔵庫1の側壁790の貯蔵室内面壁間(貯蔵室内面壁左791と貯蔵室内面壁右792との間)の幅(距離)と同等かそれよりも小さくした方がウレタンなどの断熱材の充填口あるいは充填流路を塞ぐことがないのでウレタン断熱材が途切れることなく充填されるため断熱性能の低下などが発生しないので良いが、真空断熱材400が冷蔵庫1の背面側の左右端部に設けられるウレタンなどの断熱材の充填口703、704の配設位置と同等か充填口703、704よりも中心側(内側方向)に配置されていれば、ウレタン断熱材の充填口703、704が真空断熱材400によって塞がれることがないので、充填口703、704より充填されるウレタンなどの断熱材が側壁790内、あるいは凸部450内、あるいは真空断熱材400と内箱750との間などを流れる(充填される)のを邪魔せず、ウレタン充填不良などが発生せず断熱性能も低下しない。 Here, the width of the vacuum heat insulating material 400 provided on the back surface of the refrigerator 1 in the left-right direction is the width between the storage chamber surface walls (between the storage chamber surface wall left 791 and the storage chamber surface wall right 792) of the side wall 790 of the refrigerator 1. If the distance is equal to or smaller than the distance), the filling port or filling flow path of the heat insulating material such as urethane will not be blocked, and the urethane heat insulating material will be filled without interruption, so that the heat insulating performance will not deteriorate. It is good, but is the vacuum heat insulating material 400 equivalent to the arrangement position of the filling ports 703 and 704 of the heat insulating material such as urethane provided at the left and right ends on the back side of the refrigerator 1? ), Since the filling ports 703 and 704 of the urethane heat insulating material are not blocked by the vacuum heat insulating material 400, the heat insulating material such as urethane filled from the filling ports 703 and 704 is inside the side wall 790. Alternatively, it does not interfere with the flow (filling) in the convex portion 450 or between the vacuum heat insulating material 400 and the inner box 750, causes no urethane filling defect, and does not deteriorate the heat insulating performance.

ここで真空断熱材400が冷蔵庫1の側壁790の内面壁よりも幅方向外側に突出したりしてウレタン断熱材の充填口703、704の少なくとも一部を塞ぐと、ウレタンなどの断熱材の充填口703、704より充填されるウレタンが真空断熱材400によって側壁790内、あるいは凸部450内、あるいは真空断熱材400と内箱750との間などを流れるのを阻害したり邪魔したりする恐れがあり、側壁などにウレタンなどの断熱材の充填不良が発生して断熱性能が低下する可能性がある。 Here, when the vacuum heat insulating material 400 projects outward in the width direction from the inner wall of the side wall 790 of the refrigerator 1 to close at least a part of the urethane heat insulating material filling ports 703 and 704, the filling port of the heat insulating material such as urethane is closed. Urethane filled from 703 and 704 may be obstructed or hindered from flowing in the side wall 790 or the convex portion 450 by the vacuum heat insulating material 400, or between the vacuum heat insulating material 400 and the inner box 750. Therefore, there is a possibility that the heat insulating performance may be deteriorated due to poor filling of the heat insulating material such as urethane on the side wall or the like.

したがって、真空断熱材400は冷蔵庫1の背面側の左右端部に設けられるウレタンなどの断熱材の充填口703、704よりも外側にはみ出さない程度に左右に配置される左側(一方)の充填口703と右側(他方)の充填口704の内側の範囲内に配置することで充填口703、704より充填されるウレタンなどの断熱材が断熱箱体内(内箱750と外箱710の間、たとえば側壁790内、凸部450内、真空断熱材400と内箱750との間、真空断熱材400と外箱710との間など)に充填されるのを阻害したり邪魔したりしないので、断熱性能が低下しない高性能な断熱箱体や冷蔵庫が得られる。 Therefore, the vacuum heat insulating material 400 is filled on the left side (one side) arranged to the left and right so as not to protrude outside the filling ports 703 and 704 of the heat insulating material such as urethane provided at the left and right ends on the back side of the refrigerator 1. The heat insulating material such as urethane filled from the filling ports 703 and 704 is placed inside the heat insulating box (between the inner box 750 and the outer box 710) by arranging the heat insulating material such as urethane filled from the filling ports 703 and 704 within the range inside the filling port 704 on the right side (the other side) of the mouth 703. For example, it does not hinder or interfere with filling in the side wall 790, the convex portion 450, between the vacuum heat insulating material 400 and the inner box 750, between the vacuum heat insulating material 400 and the outer box 710, etc.). A high-performance heat-insulating box or refrigerator that does not deteriorate the heat-insulating performance can be obtained.

ここで、真空断熱材400の幅が冷蔵庫1の背面側の左右端部に設けられるウレタンなどの断熱材の充填口703、704よりも外側にはみ出す(真空断熱材400の幅方向端部位置が冷蔵庫1の背面側の左右端部に設けられるウレタンなどの充填口703、704の配置位置よりも外側位置まで配置される)場合には、充填口703、704が真空断熱材400で塞がれる可能性があるので、真空断熱材400が充填口703、704の少なくとも一部を塞がないように真空断熱材400において充填口703、704と対向する部分に切欠きや開口などの切欠き部33を設けるようにすれば良い。このようにすれば真空断熱材400の幅を大きくすることが可能になるので、真空断熱材400の配設面積を大きくでき、断熱箱体あるいは断熱箱体の背面壁の外表面積に対する真空断熱材の配置面積の比率(被覆率)を大きくすることができる。したがって、断熱性能を向上させることが可能となる。(たとえば図12、図22参照) Here, the width of the vacuum heat insulating material 400 protrudes outside the filling ports 703 and 704 of the heat insulating material such as urethane provided at the left and right ends on the back side of the refrigerator 1 (the position of the end portion in the width direction of the vacuum heat insulating material 400 is In the case of (arranged to a position outside the arrangement positions of the filling ports 703 and 704 such as urethane provided at the left and right ends on the back side of the refrigerator 1), the filling ports 703 and 704 are closed with the vacuum heat insulating material 400. Since there is a possibility, the notch such as a notch or an opening is formed in the portion of the vacuum heat insulating material 400 facing the filling ports 703 and 704 so that the vacuum heat insulating material 400 does not block at least a part of the filling ports 703 and 704. 33 may be provided. In this way, the width of the vacuum heat insulating material 400 can be increased, so that the area of the vacuum heat insulating material 400 can be increased, and the vacuum heat insulating material with respect to the outer surface area of the heat insulating box or the back wall of the heat insulating box can be increased. The ratio of the arranged area (coverage) can be increased. Therefore, it is possible to improve the heat insulating performance. (See, for example, FIGS. 12 and 22)

本実施の形態では、凸部を形成する内箱750と外箱710との間(あるいは内箱750と真空断熱材400との間)にウレタン等の断熱材701を充填したり別部品(ウレタン以外の断熱材)の断熱材を配置したりして断熱箱体700の強度を向上させるようにしているが、断熱箱体700の強度を更に向上させたい場合は、凸部450内(たとえば真空断熱材400と内箱750の間、真空断熱材400の幅方向端部近傍など)、あるいは凸部450近傍であってたとえば凸部450の外部(たとえば内箱750の内側や内箱750の外側)に補強部材を設けても良い。 In the present embodiment, the heat insulating material 701 such as urethane is filled between the inner box 750 and the outer box 710 (or between the inner box 750 and the vacuum heat insulating material 400) forming the convex portion, or another part (urethane). The heat insulating material (other than the heat insulating material) is arranged to improve the strength of the heat insulating box 700, but if the strength of the heat insulating box 700 is to be further improved, the inside of the convex portion 450 (for example, vacuum) is used. Between the heat insulating material 400 and the inner box 750, near the widthwise end of the vacuum heat insulating material 400, or near the convex portion 450, for example, outside the convex portion 450 (for example, inside the inner box 750 or outside the inner box 750). ) May be provided with a reinforcing member.

この補強部材は、たとえば金属製等に比べて熱伝導率の悪い部材(たとえば樹脂製の樹脂部材など)が断熱性能の低下に与える影響が小さくなるので良いが、補強部材の周囲を断熱材で覆うようにすれば金属製(アルミ製やアルミ合金製など)の部材であっても断熱性能を損なうことを抑制できるので良く、形状は棒状(丸棒や角棒など)やパイプ状であっても良い。また、内箱750にリブなどを設ける構成であってもよく、断熱箱体700のねじれ強度や折り曲げ強度など箱体強度を向上できるものであれば良い。ここで、制御配線や電力線等のリード線が収納されるパイプ720や冷媒配管725を補強部材として代用することも可能であり、パイプ720や冷媒配管725を補強部材として代用すれば、別途補強のための部品が不要となるので低コストであり、しかも断熱箱体の補強が行えるので断熱箱体の箱体強度が向上できる。また、補強部材を凸部450内や内箱750と外箱710との間の空間に配置することが可能であり、補強部材が直接ユーザに見えないため意匠性も向上する。したがって、低コストで信頼性が高く意匠性の優れた断熱箱体、冷蔵庫、機器が得られる。 This reinforcing member is good because a member having a poor thermal conductivity (for example, a resin member made of resin) has a smaller effect on the deterioration of the heat insulating performance than a member made of metal, for example, but a heat insulating material is used around the reinforcing member. If it is covered, even if it is made of metal (aluminum, aluminum alloy, etc.), it is good because it can suppress the deterioration of heat insulation performance, and the shape is rod-shaped (round bar, square bar, etc.) or pipe-shaped. Is also good. Further, the inner box 750 may be provided with ribs or the like, and any box body strength such as torsional strength and bending strength of the heat insulating box body 700 may be improved. Here, it is possible to substitute the pipe 720 or the refrigerant pipe 725 in which the lead wires such as the control wiring and the power line are stored as the reinforcing member, and if the pipe 720 or the refrigerant pipe 725 is substituted as the reinforcing member, the reinforcement is separately performed. Since no parts are required for this, the cost is low, and the heat insulating box body can be reinforced, so that the box body strength of the heat insulating box body can be improved. Further, the reinforcing member can be arranged in the convex portion 450 or in the space between the inner box 750 and the outer box 710, and the reinforcing member is not directly visible to the user, so that the design is improved. Therefore, a heat insulating box, a refrigerator, and an apparatus having high reliability and excellent design at low cost can be obtained.

(凹部を冷気風路として利用(その1))
内箱750と真空断熱材400とが接着剤(自己接着性の発泡断熱材でも良い)を介して直接貼り付けられている部分である凹部440は、凹部440の周囲に形成されている周囲壁(たとえば側壁790あるいは天井壁740あるいは仕切壁24)とのコーナー部に設けられる凸部450に対して凹んでいるため、この凹み部を冷気風路760として使用しても良い。(ここで、たとえば、貯蔵室が冷蔵室2である場合には、冷気風路760は冷蔵室冷気風路50に相当し、貯蔵室が切替室4である場合には、冷気風路760は切替室冷気風路16に相当し、貯蔵室が野菜室5である場合には、冷気風路760は野菜室冷気風路に相当する。)
(Use the recess as a cold air passage (1))
The recess 440, which is the portion where the inner box 750 and the vacuum heat insulating material 400 are directly attached via an adhesive (may be a self-adhesive foam heat insulating material), is a peripheral wall formed around the recess 440. Since it is recessed with respect to the convex portion 450 provided at the corner portion with (for example, the side wall 790, the ceiling wall 740, or the partition wall 24), this recessed portion may be used as the cold air passage 760. (Here, for example, when the storage chamber is the refrigerating chamber 2, the cold air passage 760 corresponds to the refrigerating chamber cold air passage 50, and when the storage chamber is the switching chamber 4, the cold air passage 760 is When the switching chamber is equivalent to the cold air passage 16 and the storage chamber is the vegetable chamber 5, the cold air passage 760 corresponds to the vegetable chamber cold air passage.)

凹部440を冷気風路760として使用する場合は、U字状(あるいは凹形状)の開口部を有する第2風路部品764の開口部が貯蔵室側に開口するように配置し、風路カバーである第1風路部品762を第2風路部品764のU字状の開口部を覆うように配置して第2風路部品764の開口部を第1風路部品762で塞ぐことで略密閉空間の冷気風路760を形成することができる。第1風路部品762、第2風路部品764とも、たとえば発泡スチロールや樹脂などの断熱部材で構成されるが、凹部440に配置される第2風路部品764は、背面側の風路背面部材765、側面側の風路側面部材766から構成される。 When the recess 440 is used as the cold air passage 760, the opening of the second air passage component 764 having a U-shaped (or concave) opening is arranged so as to open toward the storage chamber, and the air passage cover is provided. The first air passage component 762 is arranged so as to cover the U-shaped opening of the second air passage component 764, and the opening of the second air passage component 764 is closed by the first air passage component 762. A cold air passage 760 in a closed space can be formed. Both the first air passage component 762 and the second air passage component 764 are composed of heat insulating members such as styrofoam and resin, but the second air passage component 764 arranged in the recess 440 is a rear air passage member on the back side. It is composed of 765 and a side member 766 of the air passage on the side surface side.

第2風路部品764の背面側の部材(風路背面部材765)の背面側には凹部440を形成する内箱750が配置されている。真空断熱材400は、背面壁730を形成する内箱750と接着剤を介して設けられており、また、第2風路部品764の側面側の部材(風路側面部材766)の側面側には内箱750により形成される凸部450が設けられており、凸部450内にはウレタンなどの断熱材701が設けられている。したがって、第2風路部品764を構成する風路背面部材765、風路側面部材766は、断熱性を有さなくても断熱性能を確保できる。すなわち、冷気風路760の背面側は背面壁730内に配置される真空断熱材400にて断熱性能が確保され、冷気風路760の側面側は凸部450内の断熱材701によって断熱性能を確保されるので、第2風路部品764を構成する風路背面部材765、風路側面部材766は、発泡スチロールなどの断熱材であっても良いが断熱性能を有さない樹脂製や金属製などの部材であっても冷気風路760の断熱性能は確保できる。よって、第2風路部品764を構成する部材は、断熱性を有する発泡スチロールなどの断熱材であっても良いが、断熱性を有さない樹脂製や金属製などの部材であっても冷気風路760を形成する部品等への露などの付着、あるいは露の発生による露付きを抑制できる。 An inner box 750 forming a recess 440 is arranged on the back side of the member on the back side of the second air passage component 764 (air passage back member 765). The vacuum heat insulating material 400 is provided via an adhesive to the inner box 750 forming the back wall 730, and is also provided on the side surface side of the side surface side member (air passage side surface member 766) of the second air passage component 764. Is provided with a convex portion 450 formed by the inner box 750, and a heat insulating material 701 such as urethane is provided in the convex portion 450. Therefore, the air passage back member 765 and the air passage side surface member 766 constituting the second air passage component 764 can secure the heat insulating performance even if they do not have the heat insulating property. That is, the heat insulating performance of the back side of the cold air passage 760 is ensured by the vacuum heat insulating material 400 arranged in the back wall 730, and the heat insulating performance of the side surface side of the cold air passage 760 is improved by the heat insulating material 701 in the convex portion 450. Since it is secured, the air passage back member 765 and the air passage side member 766 constituting the second air passage component 764 may be made of a heat insulating material such as styrofoam, but are made of resin or metal which does not have heat insulating performance. The heat insulating performance of the cold air passage 760 can be ensured even with the member of. Therefore, the member constituting the second air passage component 764 may be a heat insulating material such as styrofoam having heat insulating properties, but even if it is a member made of resin or metal having no heat insulating property, cold air is used. Adhesion of dew or the like to parts or the like forming the road 760, or dew condensation due to the generation of dew can be suppressed.

また、第1風路部品762は、たとえば、発泡スチロールなどの断熱性を有する断熱部材あるいは樹脂などで構成されており、貯蔵室側に露などが付着、あるいは発生しないように露付きを抑制している。図では、第1風路部品762は、凹部440の左右方向の幅、あるいは第2風路部品764のU字状の開口部の左右方向の幅よりも大きな幅を有した突出部(延出部)763が設けられており、この突出部(延出部)763にて第2風路部品764の開口部あるいは凹部440を略密閉状態で塞いで冷気風路760を形成するとともに、突出部(延出部)763を利用して第1風路部品762を凸部450、あるいは第2風路部品764に着脱可能に固定することができる。ここで、第1風路部品762は第2風路部品764の開口部を塞いで冷気風路を確保できれば良いので、第2風路部品の開口部だけ塞ぐことができれば良く、凹部440までも塞ぐ必要は無いが、凹部440の開口部を塞ぐようにすれば、第1風路部品762の取り付け製が向上し、また、意匠性も向上する。 Further, the first air passage component 762 is made of, for example, a heat insulating member having heat insulating properties such as styrofoam or a resin, and suppresses dew so that dew or the like does not adhere to or occur on the storage chamber side. There is. In the figure, the first air passage component 762 has a protrusion (extension) having a width larger than the width of the recess 440 in the left-right direction or the width of the U-shaped opening of the second air passage component 764 in the left-right direction. A part) 763 is provided, and the protrusion (extending part) 763 closes the opening or the recess 440 of the second air passage component 764 in a substantially sealed state to form a cold air passage 760 and the protrusion. The first air passage component 762 can be detachably fixed to the convex portion 450 or the second air passage component 764 by using the (extending portion) 763. Here, since it is sufficient that the first air passage component 762 can close the opening of the second air passage component 764 to secure the cold air passage, it is sufficient that only the opening of the second air passage component can be closed, and even the recess 440 is required. It is not necessary to close it, but if the opening of the recess 440 is closed, the attachment of the first air passage component 762 is improved, and the design is also improved.

ここで、冷気風路760を形成する冷気風路部品(たとえば第1風路部品762あるいは第2風路部品764等)は、箱体の強度向上のための補強部材としても使用可能である。箱体強度あるいは箱体剛性(たとえばねじり強度、あるいは折り曲げ強度など)が弱いと考えられる場合には、第1風路部品762あるいは第2風路部品764を補強部材として使用して箱体強度(箱体剛性)を大きくすればよい。第1風路部品あるいは第2風路部品764が樹脂製の場合には箱体強度が得られる程度の所定厚さを有するようにすれば良いが、厚さを薄くしたければ、樹脂製でなく熱伝導率の小さい金属製(たとえば銅やアルミなどよりは熱伝導率の小さく断熱性能の良い金属が良い)にしても良い。また、第1風路部品762あるいは第2風路部品764に幅方向あるいは上下方向にリブを設けるなどしてねじれ強度や曲げ強度を向上させれば良い。断熱箱体700の強度あるいは剛性が問題とならない場合には、第2風路部品764を省略して凹部440を直接、冷気風路760の背面壁、側面壁として使用し、凹部440の開口部を覆うように第1風路部品762を設けるようにすることも可能である。 Here, the cold air passage component (for example, the first air passage component 762 or the second air passage component 764, etc.) forming the cold air passage 760 can also be used as a reinforcing member for improving the strength of the box body. If the box body strength or box body rigidity (for example, torsional strength or bending strength) is considered to be weak, the box body strength (for example, the first air passage component 762 or the second air passage component 764 is used as a reinforcing member. Box body rigidity) should be increased. When the first air passage part or the second air passage part 764 is made of resin, it may have a predetermined thickness enough to obtain the strength of the box, but if the thickness is to be reduced, it is made of resin. It may be made of a metal having a low thermal conductivity (for example, a metal having a low thermal conductivity and good heat insulating performance is better than copper or aluminum). Further, the torsional strength and the bending strength may be improved by providing ribs in the width direction or the vertical direction in the first air passage component 762 or the second air passage component 764. If the strength or rigidity of the heat insulating box 700 does not matter, the second air passage component 764 is omitted and the recess 440 is directly used as the back wall and side wall of the cold air passage 760, and the opening of the recess 440 is used. It is also possible to provide the first air passage component 762 so as to cover the air passage component 762.

凹部440を直接、冷気風路760の背面壁、側面壁として使用する場合には、第2風路部品764を設ける必要がなくなるので、構造が簡単で低コストの断熱箱体700、冷蔵庫1が得られる。この場合には、凹部440を覆うように第1風路部品762を設け、凸部450に第1風路部品762の突出部(延出部)763を着脱可能に固定すれば良く、突出部(延出部)763を凸部450に直接固定することで箱体の強度も向上する。第1風路部品762を凹部440を覆うカバーとして使用することで凹部440が冷気風路760として利用できる。ここで、第1風路部品762の板厚を厚くしたり、あるいはリブを設けるなどして剛性を大きくして補強部材として使用しても良く、断熱箱体強度を向上させることができる。 When the recess 440 is directly used as the back wall and side wall of the cold air passage 760, it is not necessary to provide the second air passage component 764, so that the heat insulating box 700 and the refrigerator 1 having a simple structure and low cost can be used. can get. In this case, the first air passage component 762 may be provided so as to cover the concave portion 440, and the protruding portion (extending portion) 763 of the first air passage component 762 may be detachably fixed to the convex portion 450. By directly fixing the (extending portion) 763 to the convex portion 450, the strength of the box body is also improved. By using the first air passage component 762 as a cover for covering the recess 440, the recess 440 can be used as the cold air passage 760. Here, the plate thickness of the first air passage component 762 may be increased, or the rigidity may be increased by providing ribs to use it as a reinforcing member, and the strength of the heat insulating box can be improved.

冷気風路760には、貯蔵室(例えば冷蔵室2や野菜室5等)内に冷気を供給するための冷気供給口(冷気吹出口)768が1つあるいは複数個設けられている。冷気供給口(冷気吹出口)768は、第1風路部品762、あるいは第2風路部品764に1個あるいは複数個(少なくとも1個)設けられており、貯蔵室内を効率よく冷却できるように配置されている。冷気供給口768は、貯蔵室内の側方へ吹出す側方吹出口、あるいは前方へ吹出す前方吹出口、あるいは側方と前方の斜め方向へ吹出し可能な側前方斜め吹出口、あるいは上方と前方の斜め方向へ吹出し可能な上前方斜め吹出口、あるいは下方と前方の斜め方向へ吹出し可能な下前方斜め吹出口、あるいは側方と上方の斜め方向へ吹出し可能な側方上斜め吹出口、あるいは側方と下方の斜め方向へ吹出し可能な側方下斜め吹出口が設けられている。 The cold air passage 760 is provided with one or a plurality of cold air supply ports (cold air outlets) 768 for supplying cold air into the storage chamber (for example, the refrigerating chamber 2 and the vegetable compartment 5). The cold air supply port (cold air outlet) 768 is provided in one or more (at least one) in the first air passage component 762 or the second air passage component 764 so that the storage chamber can be efficiently cooled. Have been placed. The cold air supply port 768 is a side outlet that blows out to the side of the storage chamber, a front outlet that blows forward, a side front diagonal outlet that can blow out in the diagonal direction of the side and the front, or an upper and front An upper front diagonal outlet that can blow out diagonally, a lower front diagonal outlet that can blow downward and forward diagonally, or a lateral upper diagonal outlet that can blow out laterally and upward diagonally, or There is a lateral lower diagonal outlet that can blow out in the lateral and downward diagonal directions.

本実施の形態では、真空断熱材400を、断熱箱体700の背面壁730や冷蔵庫1の背面に設ける例について説明しているが、断熱箱体700の側壁790や天面壁740や底面壁780、あるいは冷蔵庫1の側面や天面や底面に設けても良い。また、貯蔵室の前面開口を覆う貯蔵室扉(例えば冷蔵室扉7や冷凍室扉11など)に真空断熱材400を設けても良く、この場合には、さらなる断熱性能の向上が図れる。 In the present embodiment, an example in which the vacuum heat insulating material 400 is provided on the back wall 730 of the heat insulating box 700 and the back surface of the refrigerator 1 is described, but the side wall 790, the top wall 740, and the bottom wall 780 of the heat insulating box 700 are described. Alternatively, it may be provided on the side surface, top surface, or bottom surface of the refrigerator 1. Further, the vacuum heat insulating material 400 may be provided on the storage room door (for example, the refrigerating room door 7 or the freezing room door 11) that covers the front opening of the storage room, and in this case, the heat insulating performance can be further improved.

図4においては、冷気風路760には側面(前面カバーである第1風路部品762の側面)に冷気供給口(冷気吹出口)768が設けられている。この冷気供給口768は、凸部450の前面側の端面451に第1風路部品762の突出部(延出部)763が設けられている。ここで、第2風路部品764の風路側面部材766に冷気供給口(冷気吹出口)768が設けられている場合には、冷気供給口(冷気吹出口)768の開口部の大きさの分だけ冷気風路760が凸部450の前面側の端面451よりも冷蔵庫1の前面側に突出するため、カバーである第1風路部品762の前面側端面769に対して凸部450の前面側端面451が奥側(後方)に凹んでおり、この奥側に凹んだ凹み部分(突出部(延出部)763と側壁790との間の空間)770が収納スペースとして有効活用できる。 In FIG. 4, the cold air passage 760 is provided with a cold air supply port (cold air outlet) 768 on a side surface (side surface of the first air passage component 762 which is a front cover). The cold air supply port 768 is provided with a protruding portion (extending portion) 763 of the first air passage component 762 on the end surface 451 on the front surface side of the convex portion 450. Here, when the air passage side member 766 of the second air passage component 764 is provided with the cold air supply port (cold air outlet) 768, the size of the opening of the cold air supply port (cold air outlet) 768 is large. Since the cold air passage 760 projects toward the front side of the refrigerator 1 from the front end surface 451 of the convex portion 450 by the amount, the front surface of the convex portion 450 with respect to the front end surface 769 of the first air passage component 762 which is a cover. The side end surface 451 is recessed to the back side (rear), and the recessed portion (the space between the protruding portion (extending portion) 763 and the side wall 790) 770 can be effectively used as a storage space.

本実施の形態では、カバーである第1風路部品762の前面側の端面769が凸部450の前面側の端面451よりも貯蔵室側に突出するように設けられるので、高さに差(段差部775)が生じる。この段差部775を利用して冷気供給口(冷気吹出口)768を設けることができ、また段差部775を設けることによって、段差部775の側方(冷気供給口768の側方)と側壁790との間の空間770に食品などの貯蔵物を収納する収納スペースを設けることができるので、第1風路部品762に延出部763を設けることで、段差部775を形成でき、この段差部775に冷気供給口(冷気吹出口)768を設けることで段差部775の側方の空間770である貯蔵スペースに収納あるいは貯蔵される食品などの貯蔵物を効率よく冷却することができる。 In the present embodiment, the front end surface 769 of the first air passage component 762, which is a cover, is provided so as to project toward the storage chamber side from the front end surface 451 of the convex portion 450, so that there is a difference in height ( A step portion 775) is generated. The cold air supply port (cold air outlet) 768 can be provided by using the step portion 775, and by providing the step portion 775, the side of the step portion 775 (the side of the cold air supply port 768) and the side wall 790. Since a storage space for storing food and other stored items can be provided in the space 770 between the two, by providing the extension portion 763 in the first air passage component 762, a step portion 775 can be formed, and this step portion 775 can be formed. By providing the cold air supply port (cold air outlet) 768 in the 775, it is possible to efficiently cool the stored food or the like stored or stored in the storage space which is the space 770 on the side of the step portion 775.

(凹部を冷気風路として利用(その2))
上記は、凹部440を冷気風路760として使用し、段差部775に冷気供給口(冷気吹出口)768を設ける例について説明したが、段差を極力小さくして貯蔵室内容積を大きくしても良い。
(Use the recess as a cold air passage (Part 2))
In the above, the example in which the recess 440 is used as the cold air passage 760 and the cold air supply port (cold air outlet) 768 is provided in the step portion 775 has been described, but the step may be made as small as possible to increase the storage chamber volume. ..

図5は、本発明の実施の形態1を表す別の冷蔵庫の横断面図で、冷蔵庫1の上下方向に対して垂直な面で冷蔵庫をカットしたときの横断面図である。図5において、図1〜図4と同等部分は同一の符号を付して説明は省略する。 FIG. 5 is a cross-sectional view of another refrigerator showing the first embodiment of the present invention, and is a cross-sectional view of the refrigerator 1 when the refrigerator is cut in a plane perpendicular to the vertical direction. In FIG. 5, the same parts as those in FIGS. 1 to 4 are designated by the same reference numerals, and the description thereof will be omitted.

図5において、凹部440は図4と同じように冷気風路760として利用されている。
すなわち、凸部450の側面452と背面壁730とによって凹部440が形成されており、背面壁730の内面(貯蔵室側)を形成する内箱750と背面壁730の外面を形成する外箱710との間には板状の真空断熱材400が設けられている。ここで、図示されていないが、側壁790の内面(貯蔵室側)を形成する内箱750と側壁790の外面を形成する外箱710との間にも板状の真空断熱材400が設けられてもよい。背面壁730あるいは凹部440に設けられる冷気風路760は、意匠性を有するカバー部材である第1風路部品762と、第1風路部品762の背面側(内箱750側)に設けられ、断熱性を有する第2風路部品764とから構成され、凹部440内に配置されている。このカバー部材である第1風路部品762あるいは第2風路部品764は、取り付け部(係合部)を有しており、凸部450あるいは背面壁730に設けられている取り付け部(係合部)に嵌め込みあるいはねじ等の固定部材によって取り付け部同士が係合するなどして凸部450あるいは背面壁730に取り付けられる。
冷気風路760は、凹部440内に少なくとも一部あるいは全部が収納される第2風路部品764の貯蔵室側開口部あるいは凹部440の貯蔵室側開口部を覆うように設けられるカバーである第1風路部品762と、凹部440あるいは第2風路部品764とから構成され、第1風路部品762が凸部450の前面側の端面451、あるいは、第2風路部品764の風路側面部材766に固定あるいは保持されている。本実施の形態では、第1風路部品762の延出部763により形成される段差部775の大きさが小さいので、第1風路部品762の延出部763により形成される側面の段差部775には冷気供給口768が設けることが困難なため、冷気供給口(冷気吹出口)768は第1風路部品762の前面側にしか設けられていない。しかし第1風路部品762の突出部(延出部)763の厚さを小さくできるため段差部775の大きさが小さくできる。したがって、段差部775が小さくなった分だけ貯蔵室内の奥行き方向長さを大きくでき、貯蔵室内の収納容積を大きくできる。
In FIG. 5, the recess 440 is used as a cold air passage 760 as in FIG.
That is, the recess 440 is formed by the side surface 452 of the convex portion 450 and the back wall 730, and the inner box 750 forming the inner surface (storage chamber side) of the back wall 730 and the outer box 710 forming the outer surface of the back wall 730 are formed. A plate-shaped vacuum heat insulating material 400 is provided between the two. Here, although not shown, a plate-shaped vacuum heat insulating material 400 is also provided between the inner box 750 forming the inner surface (storage chamber side) of the side wall 790 and the outer box 710 forming the outer surface of the side wall 790. You may. The cold air passage 760 provided in the back wall 730 or the recess 440 is provided on the back side (inner box 750 side) of the first air passage component 762 and the first air passage component 762, which are cover members having a design. It is composed of a second air passage component 764 having a heat insulating property, and is arranged in the recess 440. The first air passage component 762 or the second air passage component 764, which is the cover member, has an attachment portion (engagement portion), and the attachment portion (engagement portion) provided on the convex portion 450 or the back wall 730. It is attached to the convex portion 450 or the back wall 730 by fitting into the portion) or engaging the attachment portions with each other by a fixing member such as a screw.
The cold air passage 760 is a cover provided so as to cover the storage chamber side opening of the second air passage component 764 or the storage chamber side opening of the recess 440 in which at least a part or the whole is housed in the recess 440. It is composed of one air passage component 762 and a concave portion 440 or a second air passage component 764, and the first air passage component 762 is an end surface 451 on the front side of the convex portion 450 or an air passage side surface of the second air passage component 764. It is fixed or held to the member 766. In the present embodiment, since the size of the stepped portion 775 formed by the extending portion 763 of the first air passage component 762 is small, the stepped portion on the side surface formed by the extending portion 763 of the first air passage component 762. Since it is difficult to provide the cold air supply port 768 in the 775, the cold air supply port (cold air outlet) 768 is provided only on the front side of the first air passage component 762. However, since the thickness of the protruding portion (extending portion) 763 of the first air passage component 762 can be reduced, the size of the stepped portion 775 can be reduced. Therefore, the length of the storage chamber in the depth direction can be increased by the smaller the step portion 775, and the storage volume of the storage chamber can be increased.

ここで、カバーである第1風路部品762の形状は、図4、図5に示すように板状でも良いが、貯蔵室側に突出する曲面状(たとえば円弧状あるいはアーチ形状など)であっても良い。第1風路部品762が曲面状の方が、冷気供給口768の開口方向を貯蔵室内の前面方向だけでなく、曲面部分に設けることで斜め方向にも設けることが可能となり、冷気供給口768を設ける位置の自由度が向上するので、貯蔵室内を満遍なく冷却することが可能となる。 Here, the shape of the first air passage component 762, which is a cover, may be a plate shape as shown in FIGS. 4 and 5, but is a curved surface shape (for example, an arc shape or an arch shape) protruding toward the storage chamber side. You may. If the first air passage component 762 has a curved surface, the opening direction of the cold air supply port 768 can be provided not only in the front direction of the storage chamber but also in the curved surface portion so that the cold air supply port 768 can be provided in an oblique direction. Since the degree of freedom of the position where the space is provided is improved, it is possible to evenly cool the storage room.

第2風路部品764を凹部440に固定あるいは保持した後に第1風路部品762を凸部450の前面側の端面451あるいは第2風路部品764に固定あるいは保持しても良いが、第2風路部品764を予め第1風路部品762に固定、あるいは保持して一体に形成した状態で第1風路部品762と第2風路部品764との組立体を凹部440内に収納あるいは配置し、第1風路部品762の突出部(延出部)763を凸部450(たとえば前面側の端面451)に固定あるいは保持するようにしても良い。このようにすれば、第2風路部品764が第1風路部品762に固定、あるいは保持されて冷気風路760を形成した状態で、貯蔵室内の凸部450に取り付けることができるので、組立が容易であり、しかも取り外すことも容易である(第1風路部品762と第2風路部品764とによって冷気風路760の組立体を構成することができる)ので、着脱可能に冷気風路760の組立体を貯蔵室内(たとえば凸部450)に容易に取り付けることができる。 After fixing or holding the second air passage component 764 in the recess 440, the first air passage component 762 may be fixed or held in the front end surface 451 of the convex portion 450 or the second air passage component 764. The assembly of the first air passage part 762 and the second air passage part 764 is housed or arranged in the recess 440 in a state where the air passage part 764 is fixed or held to the first air passage part 762 in advance and integrally formed. Then, the protruding portion (extending portion) 763 of the first air passage component 762 may be fixed or held to the convex portion 450 (for example, the end surface 451 on the front surface side). In this way, the second air passage component 764 can be attached to the convex portion 450 in the storage chamber in a state where the second air passage component 764 is fixed or held to the first air passage component 762 to form the cold air passage 760, and thus assembled. Is easy, and it is also easy to remove (the assembly of the cold air passage 760 can be formed by the first air passage component 762 and the second air passage component 764), so that the cold air passage can be attached and detached. The 760 assembly can be easily attached to the storage chamber (eg, convex 450).

また、真空断熱材400との間に主目的が接着である第1介在部材である接着剤(自己接着性を有する発泡断熱材であっても良い)が介在する凹部440においては、内箱750と真空断熱材400との間の第1介在部材である接着剤(自己接着性を有する発泡断熱材であっても良い)の厚さが小さいので、仮に冷気風路760(第1風路部品あるいは第2風路部品764あるいは第1風路部品と第2風路部品の組立体等)を凹部440に取り付ける場合には、固定するためのネジなどにより真空断熱材400を傷つけてしまう可能性があるが、本実施の形態では、冷気風路760を凸部450に取り付けるようにしているため、冷気風路760を真空断熱材400と対向する位置の凹部440あるいは内箱750に取り付けなくてもよくなるので、真空断熱材400の外包材などを傷つけることが無くなり信頼性が高く断熱性能の低下や劣化の少ない断熱箱体、冷蔵庫、機器が得られる。 Further, in the recess 440 in which the adhesive (which may be a foam heat insulating material having self-adhesiveness), which is the first intervening member whose main purpose is adhesion, is interposed with the vacuum heat insulating material 400, the inner box 750 Since the thickness of the adhesive (which may be a foam heat insulating material having self-adhesiveness) which is the first intervening member between the vacuum heat insulating material 400 and the vacuum heat insulating material 400 is small, the cold air passage 760 (first air passage component) is assumed. Alternatively, when the second air passage component 764 or the assembly of the first air passage component and the second air passage component is attached to the recess 440, the vacuum heat insulating material 400 may be damaged by the fixing screw or the like. However, in the present embodiment, since the cold air passage 760 is attached to the convex portion 450, the cold air passage 760 is not attached to the concave portion 440 or the inner box 750 at the position facing the vacuum heat insulating material 400. Therefore, the outer packaging material of the vacuum heat insulating material 400 is not damaged, and a heat insulating box, a refrigerator, and equipment having high reliability and less deterioration of heat insulating performance and deterioration can be obtained.

ここで、冷気風路760としては、凹部440を覆うように第1風路部品762を凸部450に取り付けるようにすれば、第2風路部品764を設けなくても冷気風路760を形成することができるので、部品点数が少なく低コストで組み立て容易で信頼性の高い断熱箱体や冷蔵庫が得られる。 Here, as the cold air passage 760, if the first air passage component 762 is attached to the convex portion 450 so as to cover the concave portion 440, the cold air passage 760 is formed without providing the second air passage component 764. Therefore, it is possible to obtain a highly reliable heat insulating box or refrigerator with a small number of parts, low cost, and easy to assemble.

(凹部を冷気風路として利用(その3))
図6は、本発明の実施の形態1を表す別の冷蔵庫の横断面図で、冷蔵庫1の上下方向に対して垂直な面で冷蔵庫をカットしたときの横断面図である。図6において、図1〜図5と同等部分は同一の符号を付して説明は省略する。
(Use the recess as a cold air passage (3))
FIG. 6 is a cross-sectional view of another refrigerator showing the first embodiment of the present invention, and is a cross-sectional view of the refrigerator 1 when the refrigerator is cut in a plane perpendicular to the vertical direction. In FIG. 6, the same parts as those in FIGS. 1 to 5 are designated by the same reference numerals, and the description thereof will be omitted.

図6において、凸部450の側面452と背面壁730とによって凹部440が形成されており、背面壁730の内面(貯蔵室側)を形成する内箱750と背面壁730の外面を形成する外箱710との間には板状の真空断熱材400が設けられている。また、図示されていないが、側壁790の内面(貯蔵室側)を形成する内箱750と側壁790の外面を形成する外箱710との間にも板状の真空断熱材400が設けられている。背面壁730あるいは凹部440に設けられる冷気風路760は、意匠性を有するカバー部材である第1風路部品762と、第1風路部品762の背面側(内箱750側)に設けられ、断熱性を有する第2風路部品764とから構成され、凹部440内に配置されている。このカバー部材である第1風路部品762あるいは第2風路部品764は、取り付け部(係合部)を有しており、背面壁に設けられている取り付け部(係合部)に嵌め込みあるいはねじ等の固定部材によって取り付け部同士が係合するなどして背面壁730に取り付けられる。図では、冷気風路760の側部(側面)766と凸部450の側面(側方)452との間に空間770が設けられており、この空間770が貯蔵スペースとして使用できるので、貯蔵室(たとえば冷蔵室2)内の収納物の収納容積を大きくすることが可能となっている。 In FIG. 6, the concave portion 440 is formed by the side surface 452 of the convex portion 450 and the back wall 730, and the inner box 750 forming the inner surface (storage chamber side) of the back wall 730 and the outer surface forming the outer surface of the back wall 730 are formed. A plate-shaped vacuum heat insulating material 400 is provided between the box and the box 710. Further, although not shown, a plate-shaped vacuum heat insulating material 400 is also provided between the inner box 750 forming the inner surface (storage chamber side) of the side wall 790 and the outer box 710 forming the outer surface of the side wall 790. There is. The cold air passage 760 provided in the back wall 730 or the recess 440 is provided on the back side (inner box 750 side) of the first air passage component 762 and the first air passage component 762, which are cover members having a design. It is composed of a second air passage component 764 having a heat insulating property, and is arranged in the recess 440. The first air passage component 762 or the second air passage component 764, which is the cover member, has an attachment portion (engagement portion) and is fitted or fitted into the attachment portion (engagement portion) provided on the back wall. It is attached to the back wall 730 by engaging the attachment portions with each other by a fixing member such as a screw. In the figure, a space 770 is provided between the side (side surface) 766 of the cold air passage 760 and the side surface (side) 452 of the convex portion 450, and this space 770 can be used as a storage space. It is possible to increase the storage volume of the stored items in (for example, the refrigerating room 2).

図6においては、冷気風路760を構成する第2風路部品764は、冷気の流れ方向(たとえば冷蔵庫1の上下方向)に対する断面形状が開口部を有するU字状をしており、このU字状の開口部が冷蔵庫1の背面方向を向くように冷蔵庫1の貯蔵室内に設置される(貯蔵室背面の凹部440内に配置される)。この第2風路部品764のU字状の開口が凹部440を形成する内箱750に当接するように第1風路部品762で押圧した状態で第1風路部品762を凸部450に固定あるいは保持することで第2風路部品764と内箱750により冷気風路760が構成される。ここで、第1風路部品762が断熱機能を有する部材(たとえばスチロールや多孔質部材等)で構成されている場合には、第2風路部品764は不要となるので、第1風路部品762と内箱にて冷気風路760を構成することができ、低コストの冷蔵庫、機器が得られる。ここで、第2風路部品764は、冷気の流れ方向に対する断面がU字状の開口を有しているが、別にU字状でなくてもよく、冷気風路を構成できれば良いので、冷気の流れ方向に対する断面形状が角状あるいは楕円状であって内部に冷気風路が形成できていれば良い。内部の冷気風路の断面形状も角状あるいは楕円状であっても良い。冷気風路は円形あるいは楕円形状の方が流路抵抗が小さく効率が良く、また、円形よりも幅方向に細長い楕円形状の方が、奥行き方向の長さを小さくできるので、貯蔵室内への突出量を小さくでき、収納容積も大きくできる。 In FIG. 6, the second air passage component 764 constituting the cold air air passage 760 has a U-shape having an opening in the cross-sectional shape with respect to the flow direction of cold air (for example, the vertical direction of the refrigerator 1). The character-shaped opening is installed in the storage chamber of the refrigerator 1 so as to face the back surface of the refrigerator 1 (located in the recess 440 on the back of the storage chamber). The first air passage component 762 is fixed to the convex portion 450 in a state of being pressed by the first air passage component 762 so that the U-shaped opening of the second air passage component 764 abuts on the inner box 750 forming the concave portion 440. Alternatively, by holding it, the cold air passage 760 is formed by the second air passage component 764 and the inner box 750. Here, when the first air passage component 762 is composed of a member having a heat insulating function (for example, a styrene or a porous member), the second air passage component 764 is unnecessary, so that the first air passage component is not required. The cold air passage 760 can be configured by the 762 and the inner box, and a low-cost refrigerator and equipment can be obtained. Here, the second air passage component 764 has a U-shaped opening in the cross section with respect to the flow direction of the cold air, but it does not have to be U-shaped separately, and it is sufficient if the cold air passage can be formed. It suffices if the cross-sectional shape with respect to the flow direction is angular or elliptical and a cold air passage can be formed inside. The cross-sectional shape of the internal cold air passage may also be angular or elliptical. A circular or elliptical shape has lower flow path resistance and is more efficient, and an elliptical shape that is elongated in the width direction can have a smaller length in the depth direction than a circular shape, so that it protrudes into the storage chamber. The amount can be reduced and the storage volume can be increased.

ここで、第1風路部品762あるいは第2風路部品764を直接凹部440を形成する内箱750に固定あるいは保持することで冷気風路760を形成しても良いが、図4のように第1風路部品762に突出部(延出部)763を設け、この突出部763を図4の場合よりも長く延出させることによって、突出部(延出部)763が空間770をまたいで凸部450に固定できるようにしても良い。この場合、突出部(延出部)763を固定する場所によっては突出部763により空間770の収納容積が減少する可能性があるため、冷気風路760の上下に設けられる天面壁740あるいは底面壁780あるいは貯蔵室間を仕切る仕切壁24あるいは棚80の近傍にまで突出部(延出部)763を延出させて(またがせて)凸部450に固定あるいは保持させるようにすれば収納容積の減少を小さくできる(背の高い収納物が突出部(延出部)763に当たって収納できない事態を抑制できる)。 Here, the cold air passage 760 may be formed by directly fixing or holding the first air passage component 762 or the second air passage component 764 to the inner box 750 forming the recess 440, as shown in FIG. By providing the protruding portion (extending portion) 763 in the first air passage component 762 and extending the protruding portion 763 longer than in the case of FIG. 4, the protruding portion (extending portion) 763 straddles the space 770. It may be possible to fix it to the convex portion 450. In this case, the storage volume of the space 770 may be reduced by the protrusion 763 depending on the place where the protrusion (extension) 763 is fixed. Therefore, the top wall 740 or the bottom wall provided above and below the cold air passage 760 is provided. If the protrusion (extension) 763 is extended (straddled) to the vicinity of the partition wall 24 or the shelf 80 that divides the storage chambers from 780 or the storage chambers and fixed or held to the protrusion 450, the storage volume is increased. (It is possible to suppress a situation in which a tall stored object hits a protruding portion (extending portion) 763 and cannot be stored).

ここで、冷気風路760を形成する部品(第1風路部品あるいは第2風路部品)は、冷気風路760の上下に設けられる天面壁740近傍あるいは底面壁780近傍あるいは貯蔵室間を仕切る仕切壁24近傍あるいは側壁790に直接、固定あるいは保持するようにしても良い。(たとえば突出部763が空間770の上下方向略中央あるいは略中央よりも下方に設けられている場合には、空間770に背の高い収納物を収納する場合に収納物が突出部763に当たって収納できない可能性があるので、天面壁740近傍(あるいは底面壁780近傍あるいは貯蔵室間を仕切る仕切壁24近傍)などの邪魔になりにくい場所に設けるようにすれば、空間770に収納物を収納しても突出部763が邪魔になりにくく収納容積を大きくできる。) Here, the parts (first air passage parts or second air passage parts) forming the cold air passage 760 partition the vicinity of the top wall 740, the bottom wall 780, or the storage chambers provided above and below the cold air passage 760. It may be fixed or held directly in the vicinity of the partition wall 24 or in the side wall 790. (For example, when the projecting portion 763 is provided at substantially the center in the vertical direction of the space 770 or below the substantially center, the stored object hits the projecting portion 763 and cannot be stored when the tall stored object is stored in the space 770. Since there is a possibility, if it is provided in a place that does not get in the way, such as near the top wall 740 (or near the bottom wall 780 or the partition wall 24 that partitions the storage chambers), the stored items can be stored in the space 770. The protruding part 763 does not get in the way and the storage volume can be increased.)

また、少なくとも貯蔵室内の背面の一部を覆うカバーである第1風路部品762は、冷気風路760の少なくとも一部を形成あるいは冷気風路760の少なくとも一部を覆う風路カバー部と、風路カバー部から幅方向(左右方向あるいは側壁790方向)に延出し背面壁730あるいは凹部440の少なくとも一部を覆う背面カバー部と、背面カバー部に接続あるいは背面カバー部に一体に形成されて側壁790の少なくとも一部を覆う側面カバー部と、を備えるようにしてもよい。そして、背面カバー部を背面壁730あるいは凹部440あるいは凸部450を形成する内箱750に固定あるいは保持するなどして取り付けるようにしても良い。あるいは、側面カバー部を側壁790あるいは凸部450を形成する内箱750に固定あるいは保持するなどして取り付けるようにしても良い。このようにすると、カバーである第1風路部品762によって、背面壁730や側壁790や凸部450の少なくとも一部を覆うことができるので、意匠性が向上し、組立性も向上する。 Further, the first air passage component 762, which is a cover that covers at least a part of the back surface of the storage chamber, forms at least a part of the cold air passage 760 or covers at least a part of the cold air passage 760. A back cover portion that extends from the air passage cover portion in the width direction (left-right direction or side wall 790 direction) and covers at least a part of the back wall 730 or the recess 440, and is connected to the back cover portion or integrally formed with the back cover portion. A side cover portion that covers at least a part of the side wall 790 may be provided. Then, the back cover portion may be attached by being fixed or held to the back wall 730 or the inner box 750 forming the concave portion 440 or the convex portion 450. Alternatively, the side cover portion may be attached by being fixed or held to the inner box 750 forming the side wall 790 or the convex portion 450. In this way, the first air passage component 762, which is a cover, can cover at least a part of the back wall 730, the side wall 790, and the convex portion 450, so that the design is improved and the assembling property is also improved.

また、少なくとも貯蔵室内の背面の一部を覆うカバーである第1風路部品762は、冷気風路760の少なくとも一部を形成あるいは冷気風路760の少なくとも一部を覆う風路カバー部と、風路カバー部から幅方向(左右方向あるいは側壁790方向)に延出し背面壁730あるいは凹部440の少なくとも一部を覆う背面カバー部と、風路カバー部と接続あるいは風路カバー部と一体に形成されて背面壁730の上下方向に設けられる仕切壁24(天井壁740あるいは底面壁780を含む)の少なくとも一部を覆う上下壁カバー部と、を備えるようにしてもよい。そして、背面カバー部を背面壁730あるいは凹部440あるいは凸部450を形成する内箱750に固定あるいは保持するなどして取り付けるようにしても良い。あるいは、上下壁カバー部を背面壁730の上下方向に設けられる仕切壁24(天井壁740あるいは底面壁780を含む)を形成する内箱750に固定あるいは保持するなどして取り付けるようにしても良い。このようにすると、カバーである第1風路部品762によって、背面壁730や仕切壁24や天井壁740や底面壁780の少なくとも一部を覆うことができるので、意匠性が向上し、組立性も向上する。 Further, the first air passage component 762, which is a cover that covers at least a part of the back surface of the storage chamber, forms at least a part of the cold air passage 760 or covers at least a part of the cold air passage 760. A back cover portion that extends from the air passage cover portion in the width direction (left-right direction or side wall 790 direction) and covers at least a part of the back wall 730 or the recess 440 is connected to the air passage cover portion or integrally formed with the air passage cover portion. The upper and lower wall covering portions that cover at least a part of the partition wall 24 (including the ceiling wall 740 or the bottom wall 780) provided in the vertical direction of the back wall 730 may be provided. Then, the back cover portion may be attached by being fixed or held to the back wall 730 or the inner box 750 forming the concave portion 440 or the convex portion 450. Alternatively, the upper and lower wall cover portions may be attached by being fixed or held to the inner box 750 forming the partition wall 24 (including the ceiling wall 740 or the bottom wall 780) provided in the vertical direction of the back wall 730. .. In this way, the first air passage component 762, which is a cover, can cover at least a part of the back wall 730, the partition wall 24, the ceiling wall 740, and the bottom wall 780, so that the design is improved and the assembling property is improved. Also improves.

冷気風路760あるいは冷気風路760を形成する部品(第1風路部品あるいは第2風路部品など)には、冷却器13で生成されて冷気風路760内等を流れてきた冷気を貯蔵室(たとえば冷蔵室2や野菜室5や冷凍室6など)内に供給するための冷気供給口768が冷気風路760の側面あるいは前面に1つあるいは複数設けられており、この冷気供給口768は貯蔵室内の食品などの収納物や貯蔵物を効果的に冷却できる位置に設けられている。側面の冷気供給口と前面の冷気供給口の上下方向の高さ位置は同じ位置でも良いが、高さ位置をずらして配置した方が高さの異なる位置から冷却できるので、食品などの収納物や貯蔵物を満遍なく効率よく冷却できる。また、左右の側面(右側面と左側面)に設けられる冷気供給口768の高さ位置も同じ高さでも良いが、高さ位置をずらして配置した方が高さの異なる位置から冷却できるので、食品などの収納物や貯蔵物を満遍なく効率よく冷却できる。 The parts (first air passage parts, second air passage parts, etc.) forming the cold air passage 760 or the cold air passage 760 store the cold air generated by the cooler 13 and flowing through the cold air passage 760 and the like. One or more cold air supply ports 768 for supplying into the chamber (for example, the refrigerating room 2, the vegetable room 5, the freezing room 6, etc.) are provided on the side surface or the front surface of the cold air passage 760, and the cold air supply port 768 is provided. Is installed in a position where the stored items such as food in the storage room and the stored items can be effectively cooled. The height position of the cold air supply port on the side and the cold air supply port on the front side may be the same in the vertical direction, but if the height positions are staggered, cooling can be performed from different height positions, so food and other storage items can be stored. And storage can be cooled evenly and efficiently. Further, the height positions of the cold air supply ports 768 provided on the left and right side surfaces (right side surface and left side surface) may be the same height, but if the height positions are staggered, cooling can be performed from different height positions. , Food and other stored items and stored items can be cooled evenly and efficiently.

なお、真空断熱材400の幅寸法、断熱箱体や冷蔵庫への設置位置は図4や図5と同等である。すなわち、冷蔵庫1の背面壁730に設けられる真空断熱材400の左右方向の幅は、たとえば冷蔵庫1の側壁790の貯蔵室内面壁791、792間の幅よりも小さくしており、冷蔵庫1の背面側に設けられるウレタン断熱材の充填口703、704より充填されるウレタンなどの断熱材の充填流路を塞ぐことがないようにしている。 The width dimension of the vacuum heat insulating material 400 and the installation position in the heat insulating box and the refrigerator are the same as those in FIGS. 4 and 5. That is, the width of the vacuum heat insulating material 400 provided on the back wall 730 of the refrigerator 1 in the left-right direction is smaller than the width between the storage chamber surface walls 791 and 792 of the side wall 790 of the refrigerator 1, for example, on the back side of the refrigerator 1. The filling flow path of the heat insulating material such as urethane filled from the filling ports 703 and 704 of the urethane heat insulating material provided in the above is not blocked.

ここで、真空断熱材400は、冷蔵庫1の背面の左右端部側に設けられるウレタンなどの断熱材の充填口703、704よりも外側にはみ出さない位置(たとえば充填口703、704の開口を塞がない位置、あるいは充填口703、704の開口より断熱箱体内(たとえば側壁790)に流入するウレタンなどの断熱材が側壁790内あるいは背面壁730内等に流入するのを阻害したり邪魔したりしない位置)に配置されていれば良い。たとえば左右の充填口(左充填口703と右充填口704)よりも幅方向中心側(内側)の位置、また、充填口703、704とは上下方向位置が重ならない位置に配置することで充填口703、704より断熱箱体内(内箱750と外箱710の間の空間315、たとえば側壁790内や背面壁730内など)に充填されるウレタンなどの断熱材が断熱箱体内(内箱750と外箱710の間の空間315)に充填されるのを阻害したり邪魔したりしないので、断熱材の充填不足や密度不足がなくなり、断熱性能が低下しない高性能な断熱箱体や冷蔵庫が得られる。 Here, the vacuum heat insulating material 400 has a position (for example, an opening of the filling ports 703 and 704) that does not protrude outside the filling ports 703 and 704 of the heat insulating material such as urethane provided on the left and right end sides of the back surface of the refrigerator 1. The heat insulating material such as urethane that flows into the heat insulating box (for example, the side wall 790) from the position where there is no blockage or the openings of the filling ports 703 and 704 is prevented or hindered from flowing into the side wall 790 or the back wall 730. It suffices if it is placed in a position where it does not hang. For example, filling is performed by arranging the filling ports 703 and 704 on the center side (inside) in the width direction from the left and right filling ports (left filling port 703 and right filling port 704) and at positions where the vertical positions do not overlap with the filling ports 703 and 704. Insulation material such as urethane that fills the inside of the heat insulating box (the space 315 between the inner box 750 and the outer box 710, for example, the inside of the side wall 790 or the back wall 730) from the mouths 703 and 704 is inside the heat insulating box (inner box 750). Since it does not hinder or interfere with the filling of the space 315) between the outer box and the outer box 710, there is no insufficient filling or density of the heat insulating material, and a high-performance heat insulating box or refrigerator that does not deteriorate the heat insulating performance. can get.

ここで、真空断熱材400と内箱750が接着を主目的とする接着剤(自己接着性を有する発泡断熱材でも良い)を介して直接、接着されている直接接着部位である凹部440は、たとえば硬質ウレタンなどの補強部材が充填されている補強部材介在部位(たとえば凸部450)に対して凸部450の突出高さ分だけ段差部776を有しており、凹部440は凸部450に対して奥行き方向(後方側)に凹んでいる。逆に補強部材介在部位である凸部450は、段差部776の分だけ直接接着部位である凹部440に対して奥行き方向の前方側に突出している。また真空断熱材400と内箱750が自己接着性の発泡断熱材などの接着剤を介して直接、接着されている直接接着部位である凹部440は、冷気風路760の高さ(厚さ)分だけ段差を有しており、凹部440は冷気風路760の前面側端面769に対して奥行き方向(後方側)に凹んでいる。逆に冷気風路760の前面側端面769は、段差の分だけ直接接着部位に対して奥行き方向の前方側に突出している。 Here, the recess 440, which is a direct bonding portion where the vacuum heat insulating material 400 and the inner box 750 are directly bonded via an adhesive whose main purpose is bonding (may be a foam heat insulating material having self-adhesiveness), is formed. For example, the recess portion 440 has a stepped portion 776 for the protrusion height of the convex portion 450 with respect to the reinforcing member intervening portion (for example, the convex portion 450) filled with the reinforcing member such as hard urethane, and the concave portion 440 is formed in the convex portion 450. On the other hand, it is dented in the depth direction (rear side). On the contrary, the convex portion 450, which is the portion where the reinforcing member is interposed, protrudes forward in the depth direction with respect to the concave portion 440, which is the directly bonded portion, by the amount of the step portion 776. Further, the recess 440, which is a direct bonding portion where the vacuum heat insulating material 400 and the inner box 750 are directly bonded via an adhesive such as a self-adhesive foam heat insulating material, is the height (thickness) of the cold air passage 760. The recess 440 is recessed in the depth direction (rear side) with respect to the front end surface 769 of the cold air passage 760. On the contrary, the front end surface 769 of the cold air passage 760 projects to the front side in the depth direction with respect to the directly bonded portion by the amount of the step.

以上のように本実施の形態では、内箱750と外箱710から形成され、内箱750と外箱710との間に真空断熱材400を備えた断熱箱体や冷蔵庫や保冷庫やショーケースなどの機器において、室内(たとえば貯蔵室内)の背面壁730内に設けられる真空断熱材400を内箱750に直接、自己接着性を有する発泡断熱材などの接着剤で貼り付けた直接接着部位(図では凹部440)と、真空断熱材400と内箱750との間に箱体の強度を向上させる補強部材であるウレタンなどの断熱材が介在する補強部材介在部位(図では凸部450)とを備えている。ここで、真空断熱材400と外箱710とは、直接、ホットメルトや両面接着テープなどの第2の接着剤で貼り付けられている。ホットメルトや両面テープなどの第2の接着剤は、真空断熱材400側、あるいは外箱710側に予め塗布あるいは貼り付けることができるので、接着剤の厚さを薄く出来るので良いが、塗りムラや貼りムラなどができる恐れがあるので、真空断熱材400と内箱750の間は自己接着性を有する発泡断熱材を使用した方が良い。 As described above, in the present embodiment, a heat insulating box body, a refrigerator, a cold storage, or a showcase formed of an inner box 750 and an outer box 710 and having a vacuum heat insulating material 400 between the inner box 750 and the outer box 710. In such equipment, the vacuum heat insulating material 400 provided in the back wall 730 of the room (for example, the storage room) is directly attached to the inner box 750 with an adhesive such as a foam heat insulating material having self-adhesiveness. In the figure, the concave portion 440) and the reinforcing member intervening portion (convex portion 450 in the figure) in which a heat insulating material such as urethane, which is a reinforcing member for improving the strength of the box body, is interposed between the vacuum heat insulating material 400 and the inner box 750. It has. Here, the vacuum heat insulating material 400 and the outer box 710 are directly attached with a second adhesive such as hot melt or double-sided adhesive tape. A second adhesive such as hot melt or double-sided tape can be applied or attached to the vacuum heat insulating material 400 side or the outer box 710 side in advance, so that the thickness of the adhesive can be reduced, but coating unevenness is good. Since there is a risk of uneven sticking, it is better to use a foam heat insulating material having self-adhesiveness between the vacuum heat insulating material 400 and the inner box 750.

また、本実施の形態では、たとえば補強部材介在部位(たとえば凸部450)と直接接着部位(たとえば凹部440)とが貯蔵室内の同一高さ位置の幅方向に設けられており、貯蔵室内の幅方向の左右端部に設けられた補強部材介在部位(たとえば凸部450)と、左右の補強部材介在部位に挟まれるように左右の補強部材介在部位の間に設けられた直接接着部位(たとえば凹部440)と、によって、貯蔵室背面の左右方向に凸部450(補強部材介在部位)が形成され、凸部450の間に凹部440(直接接着部位)が形成されている。ここで、凹部440と凸部450は、貯蔵室内の上下方向のほぼ全高さ範囲にわたって設けた方が箱体の強度確保あるいは冷気風路の確保の点より望ましい。 Further, in the present embodiment, for example, the reinforcing member intervening portion (for example, the convex portion 450) and the direct adhesive portion (for example, the concave portion 440) are provided in the width direction at the same height position in the storage chamber, and the width of the storage chamber is wide. Directly bonded parts (for example, concave parts) provided between the left and right reinforcing member intervening parts (for example, convex portion 450) provided at the left and right end portions in the direction and the left and right reinforcing member intervening parts so as to be sandwiched between the left and right reinforcing member intervening parts. With 440), a convex portion 450 (reinforcing member intervening portion) is formed in the left-right direction on the back surface of the storage chamber, and a concave portion 440 (directly bonded portion) is formed between the convex portions 450. Here, it is preferable that the concave portion 440 and the convex portion 450 are provided over almost the entire height range in the vertical direction of the storage chamber from the viewpoint of ensuring the strength of the box body or securing the cold air passage.

このように、凹部440と対向する位置において、真空断熱材400と外箱710とを第2の接着剤を介して直接接触あるいは当接させるようにしているので、外箱710と真空断熱材400との間に断熱材が不要であり、断熱材を介在させる場合に比べて貯蔵室内容積を大きくできる。また、直接接着部位(たとえば凹部440)においては、真空断熱材400と内箱750を接着性を有する発泡接着剤を介して接触あるいは当接させている。本実施の形態では、真空断熱材400の配設部位(たとえば凹部440)では、真空断熱材400で断熱性能と強度を持たせるようにしているので、内箱750と真空断熱材400との間には断熱を主目的とする断熱材が不要であり、断熱を主目的として断熱材を介在させる場合に比べて壁厚さを薄くできるので、貯蔵室内容積を大きくできる。ここで、接着剤として流動性が必要な場合には、自己接着性を有する硬質ウレタンフォームなどを使用して空間315内に二相状態で流入させた後に発泡させることで接着させてもよい。 In this way, the vacuum heat insulating material 400 and the outer box 710 are brought into direct contact or contact with each other via the second adhesive at the position facing the recess 440, so that the outer box 710 and the vacuum heat insulating material 400 are brought into direct contact with each other. No heat insulating material is required between the and, and the volume of the storage chamber can be increased as compared with the case where the heat insulating material is interposed. Further, in the direct adhesive portion (for example, the recess 440), the vacuum heat insulating material 400 and the inner box 750 are brought into contact with or in contact with each other via an adhesive foam adhesive. In the present embodiment, the vacuum heat insulating material 400 is provided with heat insulating performance and strength at the arrangement portion (for example, the recess 440) of the vacuum heat insulating material 400, so that the space between the inner box 750 and the vacuum heat insulating material 400 is provided. Does not require a heat insulating material whose main purpose is heat insulation, and the wall thickness can be reduced as compared with the case where the heat insulating material is interposed for the main purpose of heat insulation, so that the volume of the storage chamber can be increased. Here, when fluidity is required as the adhesive, a hard urethane foam having self-adhesiveness may be used to allow the adhesive to flow into the space 315 in a two-phase state and then foam to bond the adhesive.

本実施の形態では、貯蔵室内を冷却する冷気を送風する冷気風路760として凹部440を利用することができるので、ユーザの手の届きにくい貯蔵室の背面の凹部440の有効利用が行えるため、貯蔵室内の収納容積を効率よく使用できる。また、所定の強度(曲げ強度や折り曲げ用度)を有する真空断熱材400を使用し、また、凸部450を貯蔵室内に所定の幅(ねじり強度や折り曲げ強度が確保できる程度が好ましい)で上下方向に連続して設けるようにすれば、断熱箱体700や冷蔵庫1の必要な強度が得られ、ねじり強度や前後方向や左右方向の折り曲げ強度が確保できるので、信頼性の高い断熱箱体700や冷蔵庫1が得られる。なお、断熱箱体700や冷蔵庫1の必要な強度が得られ、ねじり強度や前後方向や左右方向の折り曲げ強度が確保できれば、凸部450は、上下方向に連続して設ける必要はなく、1箇所あるいは断続して複数箇所設けても良い。 In the present embodiment, since the recess 440 can be used as the cold air passage 760 for blowing the cold air that cools the storage chamber, the recess 440 on the back surface of the storage chamber, which is difficult for the user to reach, can be effectively used. The storage volume in the storage room can be used efficiently. Further, a vacuum heat insulating material 400 having a predetermined strength (bending strength and bending strength) is used, and the convex portion 450 is moved up and down in the storage chamber with a predetermined width (preferably a degree that can secure the torsional strength and the bending strength). If the heat insulating box 700 and the refrigerator 1 are provided continuously in the direction, the required strength of the heat insulating box 700 and the refrigerator 1 can be obtained, and the torsional strength and the bending strength in the front-back direction and the left-right direction can be secured. And refrigerator 1 can be obtained. If the required strength of the heat insulating box 700 and the refrigerator 1 can be obtained and the torsional strength and the bending strength in the front-rear direction and the left-right direction can be secured, the convex portion 450 does not need to be continuously provided in the vertical direction and is provided at one place. Alternatively, it may be provided at a plurality of locations intermittently.

本実施の形態では、貯蔵室内背面の左右端部側(幅方向端部側)において上下方向にわたって配設されたウレタンなどの断熱材701で構成された凸部450が形成されるので、この凸部450が形成されることによって断熱箱体700や冷蔵庫1のねじれ強度、折り曲げ強度が改善される。したがって、断熱箱体700や冷蔵庫1が変形して貯蔵室(例えば冷蔵室2)の前面に設けられた貯蔵室扉(例えば回転式(ヒンジ式)の冷蔵室扉7)が傾いたり、たとえば観音開き扉の場合に左右の扉(7A、7B)の一方が傾いて位置ずれを起こしたりすることがなくなるので、貯蔵室扉の開閉がスムーズに行える。また、左右の貯蔵室扉の位置ズレが起こらないので見栄えが良い。また、引き出し式扉の場合には、断熱箱体700が変形することによって貯蔵室(たとえば製氷室3、切替室4、野菜室5、冷凍室6等)内壁(左右の側壁)791、792に設けられた引出式ケース用のレールの取り付け高さが左右で異なったり、傾いたりすることがなくなるので、ケースの出し入れがスムーズに行える。 In the present embodiment, a convex portion 450 composed of a heat insulating material 701 such as urethane arranged in the vertical direction is formed on the left and right end side (width direction end side) of the back surface of the storage chamber. By forming the portion 450, the torsional strength and the bending strength of the heat insulating box 700 and the refrigerator 1 are improved. Therefore, the heat insulating box 700 and the refrigerator 1 are deformed, and the storage room door (for example, the rotary (hinge type) refrigerating room door 7) provided in front of the storage room (for example, the refrigerating room 2) is tilted, or the double door is opened, for example. In the case of a door, one of the left and right doors (7A, 7B) does not tilt and cause a misalignment, so that the storage chamber door can be opened and closed smoothly. In addition, the left and right storage room doors do not shift in position, so they look good. Further, in the case of a drawer type door, the heat insulating box 700 is deformed to form the inner walls (left and right side walls) 791 and 792 of the storage chamber (for example, ice making chamber 3, switching chamber 4, vegetable compartment 5, freezing chamber 6 and the like). Since the mounting height of the provided pull-out case rail does not differ on the left and right or tilts, the case can be taken in and out smoothly.

ここで、本実施の形態では、真空断熱材400、凸部450を形成するウレタンなどの断熱材は、所定の強度が必要なため、真空断熱材400は曲げ弾性率は20MPa以上、凸部450を形成するウレタンなどの断熱材は曲げ弾性率が13.0MPa以上(好ましくは15MPa以上)、密度が60kg/mより大きなもの(好ましくは62kg/m以上)を使用している。従来は、ウレタンなどの断熱材で箱体強度と断熱性能の両方を得ようとしていたため、箱体強度確保の観点からウレタン断熱材には曲げ弾性率を大きくすることが必要であるが、硬質ウレタンの特性として曲げ弾性率を大きくしようとすると密度が大きくなり密度が大きくなると断熱性能が低下する。したがって、ウレタンの場合、所定の断熱性能を得るために曲げ弾性率を10MPa程度以上にすることが困難であり、したがって、ウレタンの厚さをたとえば15mm程度よりも薄くすることができなかった。ここで、ウレタンの厚さは薄ければ薄い方が壁の厚さを小さくでき、貯蔵室内容積を大きくできるので良い。しかし、壁厚さを小さくするためにウレタンの厚さを薄くしていくとウレタンの密度が大きくなり曲げ弾性率も大きくなるため箱体強度は大きくできるが、密度が大きくなると断熱性能が悪化するため、ウレタンの厚さを所定値(たとえば15mm)よりも薄くすることは困難であった。 Here, in the present embodiment, since the heat insulating material such as urethane forming the vacuum heat insulating material 400 and the convex portion 450 needs a predetermined strength, the vacuum heat insulating material 400 has a bending elastic modulus of 20 MPa or more and the convex portion 450. As the heat insulating material such as urethane that forms the heat insulating material, a heat insulating material having a flexural modulus of 13.0 MPa or more (preferably 15 MPa or more) and a density of more than 60 kg / m 3 (preferably 62 kg / m 3 or more) is used. In the past, it was attempted to obtain both box body strength and heat insulation performance with a heat insulating material such as urethane, so from the viewpoint of ensuring box body strength, it is necessary to increase the flexural modulus of urethane heat insulating material, but it is hard. As a characteristic of urethane, if an attempt is made to increase the flexural modulus, the density increases, and if the density increases, the heat insulating performance decreases. Therefore, in the case of urethane, it is difficult to increase the flexural modulus to about 10 MPa or more in order to obtain a predetermined heat insulating performance, and therefore, the thickness of urethane cannot be made thinner than, for example, about 15 mm. Here, the thinner the urethane, the smaller the wall thickness and the larger the storage chamber volume. However, if the urethane thickness is reduced in order to reduce the wall thickness, the urethane density increases and the flexural modulus also increases, so that the box strength can be increased, but the heat insulation performance deteriorates as the density increases. Therefore, it is difficult to make the thickness of urethane thinner than a predetermined value (for example, 15 mm).

本発明では、真空断熱材400に曲げ弾性率が20MPa以上の大きなものを使用するようにしているので、真空断熱材400が配設されている部分(箱体あるいは壁)では、断熱性能と強度の両方を真空断熱材400に持たせることが可能であり、外箱と内箱の間にウレタンなどの断熱材を充填する場合でも、真空断熱材が配設されている部位では、ウレタンを断熱を主目的とする断熱材として使用する必要がなく接着剤として使用可能となる。したがって、ウレタンなどの断熱材を真空断熱材400と内箱750、あるいは真空断熱材400と外箱710とを接着する接着剤として使用できるので、ウレタンの厚さを小さくしてウレタンの断熱性能が低下しても問題ない。ここで、真空断熱材400の被覆率(断熱箱体700、扉の表面積に対する真空断熱材400の配設面積の比率)あるいは真空断熱材400の充填率(外箱710と内箱750との間の空間315に対する真空断熱材400の占める容積比率)を所定値以上(たとえば40%以上)に大きくすることで、真空断熱材400が配設されていない部位があったとしても断熱箱体700としての断熱性能、強度も確保できる。 In the present invention, since the vacuum heat insulating material 400 having a large bending elasticity of 20 MPa or more is used, the heat insulating performance and strength are provided in the portion (box body or wall) where the vacuum heat insulating material 400 is arranged. It is possible to have both of the above in the vacuum heat insulating material 400, and even when a heat insulating material such as urethane is filled between the outer box and the inner box, the urethane is heat-insulated at the part where the vacuum heat insulating material is arranged. It is not necessary to use it as a heat insulating material whose main purpose is, and it can be used as an adhesive. Therefore, since a heat insulating material such as urethane can be used as an adhesive for adhering the vacuum heat insulating material 400 and the inner box 750 or the vacuum heat insulating material 400 and the outer box 710, the thickness of the urethane can be reduced to improve the heat insulating performance of the urethane. There is no problem even if it drops. Here, the coverage of the vacuum heat insulating material 400 (the ratio of the arranged area of the vacuum heat insulating material 400 to the surface area of the heat insulating box 700 and the door) or the filling rate of the vacuum heat insulating material 400 (between the outer box 710 and the inner box 750). By increasing the volume ratio of the vacuum heat insulating material 400 to the space 315 to a predetermined value or more (for example, 40% or more), even if there is a part where the vacuum heat insulating material 400 is not arranged, the heat insulating box 700 can be used. Insulation performance and strength can be secured.

したがって、本実施の形態のように凹部440など外箱710と内箱750との間に真空断熱材400が配設されている部位においては、真空断熱材400で断熱箱体700の強度と断熱性能の両方を持たせるようにすれば、真空断熱材400と外箱710との間、あるいは真空断熱材400と内箱750との間には、接着を主目的とする接着剤として硬質ウレタンフォームを使用することができるため、ウレタンの厚さを小さくすることが可能となり、ウレタンの断熱性能の低下を考慮しなくても良くなる。したがって、硬質ウレタンフォームの厚さを薄くすることで壁厚さを小さくして硬質ウレタンの断熱性能が低下しても箱体の断熱性能は真空断熱材400が担うので問題ない。よって、ウレタンの厚さを小さくして壁厚さを小さくすることで貯蔵室内容積を大きくすることが可能となる。ただし、外箱710と真空断熱材400の間、あるいは内箱750と真空断熱材400との間のいずれか一方には、ホットメルトや両面テープなどの第2の接着剤を使用した方が、壁厚さを薄くできるので、貯蔵室内の容積を大きくできる。 Therefore, in the portion where the vacuum heat insulating material 400 is arranged between the outer box 710 and the inner box 750 such as the recess 440 as in the present embodiment, the vacuum heat insulating material 400 is used to provide the strength and heat insulation of the heat insulating box 700. If both performances are provided, hard urethane foam is used as an adhesive whose main purpose is to bond between the vacuum heat insulating material 400 and the outer box 710, or between the vacuum heat insulating material 400 and the inner box 750. Therefore, it is possible to reduce the thickness of the urethane, and it is not necessary to consider the deterioration of the heat insulating performance of the urethane. Therefore, even if the wall thickness is reduced by reducing the thickness of the rigid urethane foam to reduce the heat insulating performance of the rigid urethane, the vacuum heat insulating material 400 is responsible for the heat insulating performance of the box body, so that there is no problem. Therefore, it is possible to increase the volume of the storage chamber by reducing the thickness of urethane and the wall thickness. However, it is better to use a second adhesive such as hot melt or double-sided tape between the outer box 710 and the vacuum heat insulating material 400, or between the inner box 750 and the vacuum heat insulating material 400. Since the wall thickness can be reduced, the volume of the storage chamber can be increased.

ここで、真空断熱材400と外箱710との間、あるいは真空断熱材400と内箱750との間に使用する接着剤として使用する場合の硬質ウレタンフォームの厚さは、所定値以下あるいは真空断熱材400の厚さよりも小さくした方が壁厚さを小さくできるので、貯蔵室内の容積を大きくできる。ここで、真空断熱材400と外箱710との間、あるいは真空断熱材400と内箱750との間のどちらか一方に対して接着を主目的として使用する硬質ウレタンフォームの厚さを真空断熱材400の厚さよりも小さくすれば壁厚さを小さくできる効果が得られるが、真空断熱材400と外箱710の間の硬質ウレタンフォームの厚さと、真空断熱材400と内箱750との間の硬質ウレタンフォームの厚さの合計を、真空断熱材400の厚さよりも小さくすれば、更に壁厚さを小さくできるので、貯蔵室内の容積を大きくできる。 Here, the thickness of the hard urethane foam when used as an adhesive used between the vacuum heat insulating material 400 and the outer box 710 or between the vacuum heat insulating material 400 and the inner box 750 is equal to or less than a predetermined value or vacuum. Since the wall thickness can be reduced by making the thickness of the heat insulating material 400 smaller than that of the heat insulating material 400, the volume of the storage chamber can be increased. Here, the thickness of the rigid urethane foam used mainly for adhesion to either the vacuum heat insulating material 400 and the outer box 710 or the vacuum heat insulating material 400 and the inner box 750 is vacuum heat insulating. The effect of reducing the wall thickness can be obtained by making the thickness smaller than the thickness of the material 400, but between the thickness of the rigid urethane foam between the vacuum heat insulating material 400 and the outer box 710 and between the vacuum heat insulating material 400 and the inner box 750. If the total thickness of the rigid urethane foam is made smaller than the thickness of the vacuum heat insulating material 400, the wall thickness can be further reduced, so that the volume of the storage chamber can be increased.

本実施の形態では、真空断熱材400と外箱710の間、あるいは真空断熱材400と内箱750との間に使用する接着剤として硬質ウレタンフォームを使用し、ウレタンの厚さを可能な限り薄くしているが、真空断熱材400と外箱710の間、あるいは真空断熱材400と内箱750との間だけでなく、真空断熱材400が設けられていないウレタンのみが充填される部位(壁内)であっても同じ硬質ウレタンフォームを使用しても良い。真空断熱材400が設けられていないウレタンのみが充填される部位(たとえば壁内あるいは凸部内の一部)については、真空断熱材400が存在しないので、真空断熱材400の厚さ分だけ硬質ウレタンの厚さを大きくできるため、ウレタンの断熱厚さも大きくできる。したがって、真空断熱材400と外箱710との間、あるいは真空断熱材400と内箱750との間に充填されるウレタンの厚さよりも真空断熱材400が存在しない部位のウレタンの厚さを大きくできるので、真空断熱材400が配設されている部位のウレタンの密度よりも真空断熱材400が配設されていない部位のウレタンの密度を小さくできるため、真空断熱材400が配設されていない部位のウレタンの断熱性能が向上し所定の性能を確保できる。また、真空断熱材400が配設されていない部位ではウレタンの厚さを大きくできるため、箱体強度も向上する。ここで、本実施の形態では、箱体強度と断熱性能の両方を満足させるため、真空断熱材400の被覆率(断熱箱体700、扉の表面積に対する真空断熱材400の配設面積の比率)あるいは真空断熱材400の充填率(外箱710と内箱750との間の空間315に対する真空断熱材400の占める容積比率)を所定値以上に大きくしている。 In the present embodiment, hard urethane foam is used as the adhesive used between the vacuum heat insulating material 400 and the outer box 710, or between the vacuum heat insulating material 400 and the inner box 750, and the thickness of urethane is made as large as possible. Although it is thin, not only between the vacuum heat insulating material 400 and the outer box 710, or between the vacuum heat insulating material 400 and the inner box 750, but also a part where only urethane without the vacuum heat insulating material 400 is filled ( The same rigid urethane foam may be used even in the wall). Since the vacuum heat insulating material 400 does not exist in the part where the vacuum heat insulating material 400 is not provided and is filled only with urethane (for example, in the wall or a part of the convex portion), the hard urethane is equal to the thickness of the vacuum heat insulating material 400. Since the thickness of the urethane can be increased, the heat insulating thickness of urethane can also be increased. Therefore, the thickness of the urethane in the portion where the vacuum heat insulating material 400 does not exist is larger than the thickness of the urethane filled between the vacuum heat insulating material 400 and the outer box 710 or between the vacuum heat insulating material 400 and the inner box 750. Therefore, the density of urethane in the portion where the vacuum heat insulating material 400 is not arranged can be made smaller than the density of urethane in the portion where the vacuum heat insulating material 400 is arranged, so that the vacuum heat insulating material 400 is not arranged. The heat insulating performance of the urethane of the part is improved and the predetermined performance can be secured. Further, since the thickness of the urethane can be increased in the portion where the vacuum heat insulating material 400 is not arranged, the strength of the box body is also improved. Here, in the present embodiment, in order to satisfy both the box body strength and the heat insulating performance, the coverage of the vacuum heat insulating material 400 (the heat insulating box body 700, the ratio of the arranged area of the vacuum heat insulating material 400 to the surface surface of the door). Alternatively, the filling rate of the vacuum heat insulating material 400 (the volume ratio of the vacuum heat insulating material 400 to the space 315 between the outer box 710 and the inner box 750) is increased to a predetermined value or more.

本実施の形態では、真空断熱材400で断熱性能、箱体強度を持たせるようにしているので、ウレタン断熱材の厚さを小さくしてウレタン断熱材の強度を曲げ弾性率が13.0MPa以上(好ましくは15MPa以上)に大きくしたものを使用可能である。また、ウレタン断熱材の密度についても60kg/mより大きなもの(好ましくは62kg/m以上)を使用することが可能であるので、ウレタンの厚さを低減でき、断熱箱体700の壁厚さも低減できる。ただし、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度は大きくなりすぎると、(1)ウレタンの注入量増加によるコストUP、(2)ウレタンの注入圧力増加によるウレタン漏れの発生、(3)ウレタン発泡時の発泡圧力増加による箱体変形抑制用金型や箱体押さえ部材などとウレタンとの密着力、接着力増加のため箱体変形抑制用金型や箱体押さえ部材などが箱体から抜けにくくなる(箱体から取り外しにくくなる)、(4)ウレタンの密度増による断熱性能の急激な悪化など、品質悪化、性能悪化、コストUP等の問題が発生する可能性があるので、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度(発泡断熱材の場合は発泡後の密度)は100kg/m以下(好ましくは90kg/m以下)にした方が良い。 In the present embodiment, since the vacuum heat insulating material 400 is provided with heat insulating performance and box body strength, the thickness of the urethane heat insulating material is reduced to bend the strength of the urethane heat insulating material and the elastic modulus is 13.0 MPa or more. It is possible to use the one increased to (preferably 15 MPa or more). Further, since it is possible to use a urethane heat insulating material having a density higher than 60 kg / m 3 (preferably 62 kg / m 3 or more), the urethane thickness can be reduced and the wall thickness of the heat insulating box 700 can be reduced. It can also be reduced. However, if the density of the heat insulating material (for example, rigid urethane foam) such as urethane, which is an intervening member, becomes too high, (1) the cost increases due to the increase in the injection amount of urethane, and (2) urethane leakage occurs due to the increase in the injection pressure of urethane. , (3) Mold for suppressing deformation of the box due to the increase in foaming pressure during urethane foaming, the mold for suppressing the deformation of the box, the holding member for the box, etc. There is a possibility that problems such as quality deterioration, performance deterioration, and cost increase may occur, such as difficulty in removing from the box (difficult to remove from the box), (4) rapid deterioration of heat insulation performance due to increased urethane density. Therefore, it is better to set the density of the heat insulating material (for example, rigid urethane foam) such as urethane, which is an intervening member, (in the case of foamed heat insulating material, the density after foaming) to 100 kg / m 3 or less (preferably 90 kg / m 3 or less). good.

(凸部に冷気風路)
以上は、凹部440(内箱750の貯蔵室側空間)を冷気風路760として使用する例について説明したが、凸部450内(内箱750と外箱710との間の空間)に冷気風路760を設けても良いし、凸部450の代わりに冷気風路760を別に設けても良い。図7は、本発明の実施の形態1を表す別の冷蔵庫の横断面図で、冷蔵庫1の上下方向に対して垂直な面で冷蔵庫をカットしたときの横断面図である。図7において、図1〜図6と同等部分は同一の符号を付して説明は省略する。
(Cold air passage on the convex part)
The example in which the concave portion 440 (the space on the storage chamber side of the inner box 750) is used as the cold air passage 760 has been described above, but the cold air air is inside the convex portion 450 (the space between the inner box 750 and the outer box 710). A passage 760 may be provided, or a cold air passage 760 may be provided separately instead of the convex portion 450. FIG. 7 is a cross-sectional view of another refrigerator showing the first embodiment of the present invention, and is a cross-sectional view of the refrigerator 1 when the refrigerator is cut in a plane perpendicular to the vertical direction. In FIG. 7, the same parts as those in FIGS. 1 to 6 are designated by the same reference numerals, and the description thereof will be omitted.

図7において、凸部450の側面452と背面壁730とによって凹部440が形成されており、背面壁730の内面(貯蔵室側)を形成する内箱750と背面壁730の外面を形成する外箱710との間には板状の真空断熱材400が設けられている。ここで、図示されていないが、側壁790の内面(貯蔵室側)を形成する内箱750と側壁790の外面を形成する外箱710との間にも板状の真空断熱材400が設けられてもよい。凸部450に設けられる冷気風路760は、意匠性を有するカバー部材である第1風路部品762と、第1風路部品762の背面側(外箱710側)に設けられ、断熱性を有する第2風路部品764とから構成され、凸部450内に配置されている。このカバー部材である第1風路部品762あるいは第2風路部品764は、取り付け部(係合部)を有しており、背面壁730あるいは側壁790に設けられている取り付け部(係合部)に嵌め込みあるいはねじ等の固定部材によって取り付け部同士が係合するなどして、背面壁730あるいは側壁790に取り付けられる。
ここで、凸部450内には冷気風路760が形成されており、この凸部450は貯蔵室内の背面の幅方向端部側に1つあるいは2つ、あるいは複数設けられている。冷気風路760は断面U字状あるいは断面略矩形状の第2風路部品764(あるいは第2風路部品764と真空断熱材400)によって構成され、凸部450は第2風路部品764とこの第2風路部品764の貯蔵室側を覆うように設けられた内箱750によって構成される。すなわち、真空断熱材400と内箱750との間には冷気風路760が介在している。冷気風路760には、貯蔵室内に冷気を供給する冷気供給口768が1つあるいは複数設けられている。
In FIG. 7, the concave portion 440 is formed by the side surface 452 of the convex portion 450 and the back wall 730, and the inner box 750 forming the inner surface (storage chamber side) of the back wall 730 and the outer surface forming the outer surface of the back wall 730 are formed. A plate-shaped vacuum heat insulating material 400 is provided between the box and the box 710. Here, although not shown, a plate-shaped vacuum heat insulating material 400 is also provided between the inner box 750 forming the inner surface (storage chamber side) of the side wall 790 and the outer box 710 forming the outer surface of the side wall 790. You may. The cold air passage 760 provided in the convex portion 450 is provided on the back side (outer box 710 side) of the first air passage component 762, which is a cover member having a design property, and the first air passage component 762, and provides heat insulation. It is composed of a second air passage component 764 and is arranged in the convex portion 450. The first air passage component 762 or the second air passage component 764, which is the cover member, has an attachment portion (engagement portion), and the attachment portion (engagement portion) provided on the back wall 730 or the side wall 790. ), Or by engaging the mounting portions with each other by a fixing member such as a screw, the mounting portion is mounted on the back wall 730 or the side wall 790.
Here, a cold air passage 760 is formed in the convex portion 450, and one, two, or a plurality of the convex portions 450 are provided on the widthwise end side of the back surface of the storage chamber. The cold air passage 760 is composed of a second air passage component 764 (or a second air passage component 764 and a vacuum heat insulating material 400) having a U-shaped cross section or a substantially rectangular cross section, and the convex portion 450 is a second air passage component 764. It is composed of an inner box 750 provided so as to cover the storage chamber side of the second air passage component 764. That is, a cold air passage 760 is interposed between the vacuum heat insulating material 400 and the inner box 750. The cold air passage 760 is provided with one or a plurality of cold air supply ports 768 for supplying cold air to the storage chamber.

ここで、第2風路部品764の断面形状が開口部を有するU字状の場合には、開口部が真空断熱材400側に向くように配置されており、U字状の開口部を真空断熱材400が塞ぐことで冷気風路760を構成している。ただし、U字状の開口部は真空断熱材400側を向くように配置せずに、側壁790側、あるいは貯蔵室側を向くように配置して発泡スチロールなどの断熱材でU字状の開口部を塞ぐことで冷気風路760を構成しても良い。また、第2風路部品764を断面の外形形状は矩形状あるいは円状(円管状)あるいは楕円形状であっても良く、内部に冷気風路760が形成されていればどのような形状でもかまわないが、円形や楕円形状の方が流路抵抗が少なくて済むので良い。円形よりも幅方向に細長い楕円形状の方が高さを小さくできるので、貯蔵室内への突出高さを小さくできるので、実効容積を大きくでき、使い勝手がよい。第2風路部品764の断面の外形形状が矩形状あるいは円状(円管状)あるいは楕円形状のように冷気供給口768以外に開口部を有さない形状の場合には、第2風路部品764だけで冷気風路760を形成しても良い。 Here, when the cross-sectional shape of the second air passage component 764 is U-shaped having an opening, the opening is arranged so as to face the vacuum heat insulating material 400 side, and the U-shaped opening is evacuated. The heat insulating material 400 closes the cold air passage 760. However, the U-shaped opening is not arranged so as to face the vacuum heat insulating material 400 side, but is arranged so as to face the side wall 790 side or the storage chamber side, and the U-shaped opening is made of a heat insulating material such as Styrofoam. The cold air passage 760 may be configured by closing the air passage 760. Further, the outer shape of the cross section of the second air passage component 764 may be rectangular, circular (circular tubular), or elliptical, and any shape may be used as long as the cold air passage 760 is formed inside. There is no such thing, but a circular or elliptical shape is better because it requires less flow path resistance. Since the height of the elliptical shape elongated in the width direction can be made smaller than that of the circular shape, the height of protrusion into the storage chamber can be made small, so that the effective volume can be made large and the usability is good. When the outer shape of the cross section of the second air passage component 764 is rectangular, circular (circular tubular), or elliptical, and has no opening other than the cold air supply port 768, the second air passage component The cold air passage 760 may be formed only by 764.

ここで、冷気風路760を形成する第2風路部品764に所定のねじれ強度や折り曲げ強度を有する断面形状(たとえばU字状あるいは断面の外形形状は矩形状あるいは円状(円管状)あるいは楕円形状等)の部材を使用するようにすれば、凸部450内に冷気風路760を設けることで凸部450の強度が向上し、箱体強度を向上させることができる。ただし、第2風路部品764に断面U字状の部材を使用した場合で、箱体のねじれや折り曲げに対して、U字状の開口部が開いたり狭まったりして強度が不足する可能性がある場合には、第2風路部品764の開口部を別部材(たとえば、板状部材や棒状部材やリブ部材など)で開口部が開いたり狭まったりしないように開口部間を接続したり、開口部を塞ぐなどして強度が確保できるようにすれば良い。 Here, the cross-sectional shape (for example, the U-shape or the outer shape of the cross-section is rectangular, circular (cylindrical), or elliptical) having a predetermined torsional strength or bending strength in the second air passage component 764 forming the cold air passage 760. If a member having a shape (shape, etc.) is used, the strength of the convex portion 450 can be improved and the strength of the box body can be improved by providing the cold air passage 760 in the convex portion 450. However, when a member having a U-shaped cross section is used for the second air passage component 764, the U-shaped opening may open or narrow due to twisting or bending of the box body, resulting in insufficient strength. If there is, the opening of the second air passage component 764 may be connected by another member (for example, a plate-shaped member, a rod-shaped member, a rib member, etc.) so that the opening does not open or narrow. , The opening may be closed so that the strength can be secured.

以上のように、本実施の形態では、凸部450内に断熱材701を充填する代わりに補強部材として機能する冷気風路760が設けられている。したがって、本実施の形態では、内箱750と外箱710から形成され、内箱750と外箱710との間に真空断熱材400を備えた断熱箱体や冷蔵庫などの機器において、貯蔵室内の背面に真空断熱材400を内箱750に直接、接着剤等で貼り付けた直接接着部位(図では凹部440)と、真空断熱材400と内箱750との間に箱体の強度を向上させる補強部材である冷気風路760が介在する補強部材介在部位(凸部450)とを備えている。この補強部材介在部位(凸部450)は、背面壁730と側壁790のコーナー部に設けられている。ここで、真空断熱材400と外箱710とは、直接、ホットメルトや両面テープなどの第2の接着剤で貼り付けられている。 As described above, in the present embodiment, the cold air passage 760 that functions as a reinforcing member is provided instead of filling the convex portion 450 with the heat insulating material 701. Therefore, in the present embodiment, in a device such as a heat insulating box body or a refrigerator which is formed from the inner box 750 and the outer box 710 and has a vacuum heat insulating material 400 between the inner box 750 and the outer box 710, the inside of the storage chamber. Improve the strength of the box body between the direct bonding part (recessed 440 in the figure) where the vacuum heat insulating material 400 is directly attached to the inner box 750 on the back surface with an adhesive or the like, and between the vacuum heat insulating material 400 and the inner box 750. It is provided with a reinforcing member intervening portion (convex portion 450) in which a cold air passage 760, which is a reinforcing member, is interposed. The reinforcing member intervening portion (convex portion 450) is provided at the corner portion of the back wall 730 and the side wall 790. Here, the vacuum heat insulating material 400 and the outer box 710 are directly attached with a second adhesive such as hot melt or double-sided tape.

ここで、真空断熱材400と内箱750との間の第1の介在部材である接着剤としては、自己接着性を有する硬質ウレタンフォームを使用しても良い。接着剤として硬質ウレタンフォームを使用する場合は、断熱材として機能しなくても良いので、接着剤としてウレタンを使用する場合の接着剤厚さは小さくできる。この場合、ウレタンの厚さは真空断熱材400の厚さよりも小さい方が良く、11mm以下程度が良い。接着剤の厚さは薄ければ薄いほど壁厚さを薄くできるので、貯蔵室内の容積を大きくできるので良く、10mmより小さい方がよく、6mm以下程度が好ましい。1mmよりも小さいと真空断熱材400の表面の凹凸により接着できない部位ができてしまうため内箱750が真空断熱材400から剥がれるなどの品質低下が懸念されるので、ウレタンを接着剤として使用する場合には、3mm以上が好ましい。また、強度確保の点より接着剤として硬質ウレタンフォームを使用する場合には、密度は60Kg/mより大きい方が良い。ここで、箱体強度を向上させるためには、真空断熱材400に関しては、曲げ弾性率が13MPa以上のものを使用した方が良く、また、凸部450内に充填される断熱材701に関しても曲げ弾性率は13MPa以上、密度は60Kg/mより大きい方が良い。ただし、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度は大きくなりすぎると、(1)ウレタンの注入量増加によるコストUP、(2)ウレタンの注入圧力増加によるウレタン漏れの発生、(3)ウレタン発泡時の発泡圧力増加による箱体変形抑制用金型や箱体押さえ部材などとウレタンとの密着力、接着力増加のため箱体変形抑制用金型や箱体押さえ部材などが箱体から抜けにくくなる(箱体から取り外しにくくなる)、(4)ウレタンの密度増による断熱性能の急激な悪化など、品質悪化、性能悪化、コストUP等の問題が発生する可能性があるので、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度(発泡断熱材の場合は発泡後の密度)は100kg/m以下(好ましくは90kg/m以下)にした方が良い。 Here, as the adhesive which is the first intervening member between the vacuum heat insulating material 400 and the inner box 750, a hard urethane foam having self-adhesiveness may be used. When rigid urethane foam is used as the adhesive, it does not have to function as a heat insulating material, so that the adhesive thickness when urethane is used as the adhesive can be reduced. In this case, the thickness of the urethane should be smaller than the thickness of the vacuum heat insulating material 400, and should be about 11 mm or less. The thinner the adhesive is, the thinner the wall thickness can be, so that the volume of the storage chamber can be increased, and it is better that it is smaller than 10 mm, preferably about 6 mm or less. If it is smaller than 1 mm, there will be parts that cannot be adhered due to the unevenness of the surface of the vacuum heat insulating material 400, and there is a concern that the inner box 750 will peel off from the vacuum heat insulating material 400 and the quality will deteriorate. 3 mm or more is preferable. Further, when a rigid urethane foam is used as an adhesive from the viewpoint of ensuring strength, the density should be larger than 60 kg / m 3. Here, in order to improve the strength of the box body, it is better to use the vacuum heat insulating material 400 having a flexural modulus of 13 MPa or more, and also the heat insulating material 701 filled in the convex portion 450. The flexural modulus should be 13 MPa or more and the density should be larger than 60 kg / m 3. However, if the density of the heat insulating material (for example, rigid urethane foam) such as urethane, which is an intervening member, becomes too high, (1) the cost increases due to the increase in the injection amount of urethane, and (2) urethane leakage occurs due to the increase in the injection pressure of urethane. , (3) Mold for suppressing deformation of the box due to the increase in foaming pressure during urethane foaming, the mold for suppressing the deformation of the box, the holding member for the box, etc. There is a possibility that problems such as quality deterioration, performance deterioration, and cost increase may occur, such as difficulty in removing from the box (difficult to remove from the box), (4) rapid deterioration of heat insulation performance due to increased urethane density. Therefore, it is better to set the density of the heat insulating material (for example, rigid urethane foam) such as urethane, which is an intervening member, (in the case of foamed heat insulating material, the density after foaming) to 100 kg / m 3 or less (preferably 90 kg / m 3 or less). good.

(凹部を冷気風路として利用(その4))
つぎに、本発明の実施の形態1を表す別の冷蔵庫の構成について図8〜図10で説明する。図8は本発明の実施の形態1を表す別の冷蔵庫の横断面図で、冷蔵庫1の上下方向に対して垂直な面で冷蔵庫をカットしたときの横断面図である(図4〜図7も同じ)。図9は本発明の実施の形態1を表す冷蔵庫1の前面の開閉扉を除いた場合の冷蔵庫1を正面からみた正面図、図10は本発明の実施の形態1を示す冷蔵庫1の側断面図である。図8〜10において、図1〜図7と同等部分は同一の符号を付して説明は省略する。
(Use the recess as a cold air passage (4))
Next, the configuration of another refrigerator representing the first embodiment of the present invention will be described with reference to FIGS. 8 to 10. FIG. 8 is a cross-sectional view of another refrigerator showing the first embodiment of the present invention, and is a cross-sectional view of the refrigerator 1 when the refrigerator is cut in a plane perpendicular to the vertical direction (FIGS. 4 to 7). Is the same). FIG. 9 is a front view of the refrigerator 1 when the opening / closing door on the front surface of the refrigerator 1 representing the first embodiment of the present invention is removed, and FIG. 10 is a side cross section of the refrigerator 1 showing the first embodiment of the present invention. It is a figure. In FIGS. 8 to 10, the same parts as those in FIGS. 1 to 7 are designated by the same reference numerals, and the description thereof will be omitted.

図8において、凸部450が略三角形であり、凸部450の側面が斜辺456に相当する。凸部450は、一端である背面壁側端部798が背面壁730と接続され、他端である側壁側端部797が側壁790と接続されている。凸部450の側面に相当する斜辺456と背面壁730とによって凹部440が形成されており、背面壁730の内面(貯蔵室側)を形成する内箱750と背面壁730の外面を形成する外箱710との間には板状の真空断熱材400が設けられている。ここで、図示されていないが、側壁790の内面(貯蔵室側)を形成する内箱750と側壁790の外面を形成する外箱710との間にも板状の真空断熱材400が設けられてもよい。背面壁730あるいは凹部440に設けられる冷気風路760は、意匠性を有するカバー部材である第1風路部品762と、第1風路部品762の背面側(内箱750側)に設けられ、断熱性を有する第2風路部品764とから構成され、凹部440内に配置されている。このカバー部材である第1風路部品762あるいは第2風路部品764は、取り付け部(係合部)を有しており、凸部450あるいは背面壁730に設けられている取り付け部(係合部)に嵌め込みあるいはねじ等の固定部材によって取り付け部同士が係合するなどして凸部450あるいは背面壁730に取り付けられる。
貯蔵室内の背面に凹部440が形成されており、凹部440の幅方向の一部(たとえば幅方向の略中央部)が冷気風路760として利用されている。冷気風路760は、冷蔵室2に冷気を供給する冷蔵室用冷気風路50であってもよく、静電霧化装置(ミスト装置)200へ冷気を供給したり静電霧化装置200からのミストを貯蔵室である冷蔵室に冷気とともに供給するための冷気風路として使用される。また、冷気風路760は、凹部440の略中央部に設けられる第2風路部品764と第2風路部品764を覆うように設けられるカバーである第1風路部品762とから構成され、第1風路部品762は、断面形状が開口部を有するU字状をしており、前面部761と側面部767とから構成される。
In FIG. 8, the convex portion 450 is a substantially triangular shape, and the side surface of the convex portion 450 corresponds to the hypotenuse 456. In the convex portion 450, the back wall side end portion 798 at one end is connected to the back wall 730, and the side wall side end portion 797 at the other end is connected to the side wall 790. The recess 440 is formed by the hypotenuse 456 corresponding to the side surface of the convex portion 450 and the back wall 730, and the inner box 750 forming the inner surface (storage chamber side) of the back wall 730 and the outer surface forming the outer surface of the back wall 730 are formed. A plate-shaped vacuum heat insulating material 400 is provided between the box and the box 710. Here, although not shown, a plate-shaped vacuum heat insulating material 400 is also provided between the inner box 750 forming the inner surface (storage chamber side) of the side wall 790 and the outer box 710 forming the outer surface of the side wall 790. You may. The cold air passage 760 provided in the back wall 730 or the recess 440 is provided on the back side (inner box 750 side) of the first air passage component 762 and the first air passage component 762, which are cover members having a design. It is composed of a second air passage component 764 having a heat insulating property, and is arranged in the recess 440. The first air passage component 762 or the second air passage component 764, which is the cover member, has an attachment portion (engagement portion), and the attachment portion (engagement portion) provided on the convex portion 450 or the back wall 730. It is attached to the convex portion 450 or the back wall 730 by fitting into the portion) or engaging the attachment portions with each other by a fixing member such as a screw.
A recess 440 is formed on the back surface of the storage chamber, and a part of the recess 440 in the width direction (for example, a substantially central portion in the width direction) is used as a cold air passage 760. The cold air passage 760 may be a cold air passage 50 for a refrigerating chamber that supplies cold air to the refrigerating chamber 2, and may supply cold air to the electrostatic atomizer (mist device) 200 or from the electrostatic atomizer 200. It is used as a cold air passage for supplying the mist of the above to the refrigerating room, which is a storage room, together with cold air. Further, the cold air passage 760 is composed of a second air passage component 764 provided at a substantially central portion of the recess 440 and a first air passage component 762 which is a cover provided so as to cover the second air passage component 764. The first air passage component 762 has a U-shape having an opening in cross section, and is composed of a front surface portion 761 and a side surface portion 767.

第1風路部品(たとえば風路カバー)762は、凹部440において内箱750が貯蔵室側に突出するように設けられた突起部である固定用突起部910に少なくとも一部が接触するように側面部が配置されており、側面部あるいは前面部が固定用突起部910に固定あるいは保持されている。本実施の形態では、第1風路部品762の側面部の内側面が突起部910の外側面に少なくとも一部が接触しており、ネジや引っ掛け構造や嵌め込み構造等により第1風路部品762が固定あるいは保持されることで冷気風路760が形成される。ここで、第1風路部品762の形状は、断面U字形状の場合を示しているが、略半円形状または曲面形状(アーチ形状)または略V字形状等でもよい。また、第1風路部品762は、突起部910あるいは貯蔵室を形成する内箱(壁面)750あるいは棚80あるいは仕切壁(たとえば背面壁730、側壁790、天面壁740、底面壁780、貯蔵室と貯蔵室との間の仕切壁24等)等に固定あるいは保持されていれば良く、また冷気風路760が形成できれば、どのような形状であっても良い。 The first air passage component (for example, the air passage cover) 762 is provided so that at least a part of the first air passage component (for example, the air passage cover) 762 is in contact with the fixing protrusion 910, which is a protrusion provided so that the inner box 750 projects toward the storage chamber in the recess 440. A side surface portion is arranged, and the side surface portion or the front surface portion is fixed or held by the fixing protrusion 910. In the present embodiment, at least a part of the inner surface of the side surface portion of the first air passage component 762 is in contact with the outer surface of the protrusion 910, and the first air passage component 762 has a screw, a hooking structure, a fitting structure, or the like. Is fixed or held to form a cold air passage 760. Here, the shape of the first air passage component 762 shows the case of a U-shaped cross section, but it may be a substantially semicircular shape, a curved surface shape (arch shape), a substantially V-shaped shape, or the like. Further, the first air passage component 762 is an inner box (wall surface) 750 or a shelf 80 or a partition wall (for example, a back wall 730, a side wall 790, a top wall 740, a bottom wall 780, a storage chamber) forming a protrusion 910 or a storage chamber. It may be fixed or held by a partition wall 24 or the like between the storage chamber and the storage chamber, and may have any shape as long as the cold air passage 760 can be formed.

冷気風路760は、風量調整手段である冷蔵室ダンパ55を介して冷却器室131と接続されている。冷却器室131内に配置されている冷却器13にて生成された冷気が、冷却器室131に配置された冷気循環ファン(庫内ファン)14によって風路16、風量調整手段である冷蔵室ダンパ55を介して冷蔵室用冷気風路50である冷気風路760に運ばれる。冷気風路760に運ばれた冷気は、第1風路部品762あるいは第2風路部品764あるいは固定用の突起部910に設けられた冷気供給口768より貯蔵室(たとえば冷蔵室2)内に供給される。 The cold air passage 760 is connected to the cooler chamber 131 via a refrigerating chamber damper 55 which is an air volume adjusting means. The cold air generated by the cooler 13 arranged in the cooler chamber 131 is air passage 16 by the cold air circulation fan (internal fan) 14 arranged in the cooler chamber 131, and the refrigerating chamber which is an air volume adjusting means. It is carried to the cold air passage 760, which is the cold air passage 50 for the refrigerator compartment, via the damper 55. The cold air carried to the cold air passage 760 enters the storage chamber (for example, the refrigerating chamber 2) from the cold air supply port 768 provided in the first air passage component 762, the second air passage component 764, or the protrusion 910 for fixing. Be supplied.

本実施の形態では、貯蔵室内への冷気供給口(冷気吹出口)768は、第1風路部品762の前面部、あるいは側面部に1つあるいは複数(少なくとも1つ)設けられている。第2風路部品764が設けられている場合には、第2風路部品764の前面部、あるいは側面部あるいは背面部に1つあるいは複数(少なくとも1つ)設けられている。図では、冷気供給口768が第1風路部品762の前面部に第2風路部品764の前面部を貫通するように設けられているが、第1風路部品762の側面部に第2風路部品764の側面部を連通(あるいは貫通)するように冷気供給口768を設けるようにすれば、前面部からの冷気供給に加えて貯蔵室内に側方からも冷気を供給できるので、満遍なく効率よく、供給できる。ここで、第1風路部品762の冷気供給口と第2風路部品764の冷気供給口は同じ位置(連通する位置)に設ける必要はなく、別の位置(連通しない位置)に設けても良い。たとえば、第1風路部品762の冷気供給口を前面に設け、第2風路部品の冷気供給口を第1風路部品の冷気供給口の位置と上下方向の高さ位置が異なる部位(前面部、側面部)あるいは同じ高さ位置であっても左右方向が異なる位置(側面部)に設けるようにしても良い。 In the present embodiment, one or a plurality (at least one) of cold air supply ports (cold air outlets) 768 to the storage chamber are provided on the front surface portion or the side surface portion of the first air passage component 762. When the second air passage component 764 is provided, one or a plurality (at least one) is provided on the front surface portion, the side surface portion, or the back surface portion of the second air passage component 764. In the figure, the cold air supply port 768 is provided in the front portion of the first air passage component 762 so as to penetrate the front portion of the second air passage component 764, but is provided in the side surface portion of the first air passage component 762. If the cold air supply port 768 is provided so as to communicate (or penetrate) the side surface portion of the air passage component 764, cold air can be supplied to the storage chamber from the side in addition to the cold air supply from the front portion, so that the cold air can be supplied evenly. It can be supplied efficiently. Here, the cold air supply port of the first air passage component 762 and the cold air supply port of the second air passage component 764 do not need to be provided at the same position (communication position), and may be provided at different positions (non-communication position). good. For example, the cold air supply port of the first air passage component 762 is provided on the front surface, and the cold air supply port of the second air passage component is a portion where the position of the cold air supply port of the first air passage component and the height position in the vertical direction are different (front surface). It may be provided at a position (side surface portion) in which the left-right direction is different even if the height is the same.

第1風路部品762の前面部761の前面側端面769と凹部440(貯蔵室背面壁)とは、貯蔵室側(冷蔵庫1の前面方向)に対して高さに差があり、この高さの差分だけ段差(段差部775)を有している。この段差部775(たとえば冷気風路760の外郭を形成する部材である第1風路部品762の側面部767あるいは突起部910)に冷気供給口(開口や切欠きなど)768を設けないようにすれば、冷気供給口768の開口や切欠きの分だけ第1風路部品762の前面側端面769(庫内側(貯蔵室側)へ突出する厚さ(高さ))を小さくでき、段差部775の庫内側への突出量小さくできる。したがって、段差部775が小さくなった分だけ貯蔵室内の奥行き方向長さを大きくでき、貯蔵室内の収納容積を大きくできる。 There is a difference in height between the front end surface 769 of the front portion 761 of the first air passage component 762 and the recess 440 (rear wall of the storage chamber) with respect to the storage chamber side (front direction of the refrigerator 1), and this height. It has a step (step portion 775) by the difference of. The cold air supply port (opening, notch, etc.) 768 should not be provided in the step portion 775 (for example, the side surface portion 767 or the protrusion 910 of the first air passage component 762 which is a member forming the outer shell of the cold air passage 760). By doing so, the front end surface 769 (thickness (height) protruding toward the inside of the refrigerator (storage chamber side)) of the first air passage component 762 can be reduced by the amount of the opening or notch of the cold air supply port 768, and the stepped portion. The amount of protrusion of 775 to the inside of the refrigerator can be reduced. Therefore, the length of the storage chamber in the depth direction can be increased by the smaller the step portion 775, and the storage volume of the storage chamber can be increased.

ここで、突起部910は、幅方向に少なくとも2箇所(冷蔵庫1の前面開口からみて右突起部、左突起部)設けられており、左右の突起部910の間の空間が第2の凹部441を形成しており、第2の凹部441は上下方向に溝形状を形成している。この突起部910は、凹部440を形成する貯蔵室背面の内箱が貯蔵室側に突出することで形成されており、上下方向に渡って連続的、あるいは間欠的に設けられている(たとえば、突起部910は、溝形状(第2の凹部441)を形成するように上下方向に略平行に少なくとも2箇所設けられている)。ここで、突起部910は内箱750と別体で形成しても良い。 Here, the protrusions 910 are provided at least two places (right protrusion and left protrusion when viewed from the front opening of the refrigerator 1) in the width direction, and the space between the left and right protrusions 910 is the second recess 441. The second recess 441 forms a groove shape in the vertical direction. The protrusion 910 is formed by projecting an inner box on the back surface of the storage chamber forming the recess 440 toward the storage chamber, and is provided continuously or intermittently in the vertical direction (for example,). The protrusions 910 are provided at least two positions substantially parallel to each other in the vertical direction so as to form a groove shape (second recess 441). Here, the protrusion 910 may be formed separately from the inner box 750.

そして、第1風路部品762の側面部767の内面側が第2の凹部441を形成する突起部910の外面(溝形状を形成する突起部910の外側面)に凹凸嵌合や引っ掛け構造やネジ等により保持あるいは固定される。すなわち、凹凸嵌合により保持あるいは固定する凹凸嵌合構造、あるいは突出した引っ掛け部を有し引っ掛け部が凹部あるいは凸部に引っ掛かることにより保持あるいは固定する固定部材(あるいは保持手段)を第1風路部品762と突起部910に備えることにより第1風路部品762が第2の凹部441を形成する突起部910に固定、あるいは保持される。(たとえば、第1風路部品762に引っ掛け部を設け、突起部910に引っ掛け部と対向する位置に凹部あるいは凸部を設けることで、第1風路部品762を第2の凹部441を形成する突起部910に軽く押圧するだけの簡単な構成で、第1風路部品762が突起部910に固定、あるいは保持される。) Then, the inner surface side of the side surface portion 767 of the first air passage component 762 is fitted with unevenness on the outer surface of the protrusion 910 forming the second recess 441 (the outer surface of the protrusion 910 forming the groove shape), and the hook structure and screws. It is held or fixed by such means. That is, the first air passage has a concavo-convex fitting structure that holds or fixes by concavo-convex fitting, or a fixing member (or holding means) that has a protruding hooking portion and holds or fixes by hooking the hooking portion on the concave or convex portion. By providing the component 762 and the protrusion 910, the first air passage component 762 is fixed or held to the protrusion 910 forming the second recess 441. (For example, by providing a hook portion on the first air passage component 762 and providing a concave portion or a convex portion on the protrusion 910 at a position facing the hook portion, the first air passage component 762 forms the second concave portion 441. The first air passage component 762 is fixed or held to the protrusion 910 with a simple configuration of lightly pressing the protrusion 910.)

本実施の形態では、たとえば上述したように冷蔵庫1の背面の幅方向(左右方向)略中央部に上下方向に設けられた少なくとも2つの突起部910と、背面壁730の貯蔵室側に形成された第2の凹部(溝形状)441と、第1風路部品762(たとえばU字状をしたU字状部材やアーチ状をした曲面部材など)と、で囲まれた空間(冷蔵庫1の幅方向略中央部に上下方向に設けられる空間)が形成されている。この第2の凹部441と第1風路部品762とで囲まれた空間を冷気風路760として使用しても良いが、図に示すように第2の凹部441と第1風路部品762とで囲まれた空間内に第2風路部品764を収納してこの第2風路部品764を冷気風路760として使用しても良い。ここで、突起部910あるいは第1風路部品762の側面部767は、上下方向に連続している必要はなく、風路が形成できればよく、また、風路内の冷気を貯蔵室(たとえば冷蔵室2等)内に供給できる冷気供給口768が形成できれば良い。 In the present embodiment, for example, as described above, at least two protrusions 910 provided in the vertical direction at the substantially central portion in the width direction (horizontal direction) of the back surface of the refrigerator 1 and the storage chamber side of the back wall 730 are formed. A space (width of refrigerator 1) surrounded by a second recess (groove shape) 441 and a first air passage component 762 (for example, a U-shaped U-shaped member or an arched curved member). A space provided in the vertical direction is formed in a substantially central portion of the direction. The space surrounded by the second recess 441 and the first air passage component 762 may be used as the cold air passage 760, but as shown in the figure, the second recess 441 and the first air passage component 762 The second air passage component 764 may be housed in the space surrounded by, and the second air passage component 764 may be used as the cold air passage 760. Here, the protrusion 910 or the side surface portion 767 of the first air passage component 762 does not have to be continuous in the vertical direction, as long as the air passage can be formed, and the cold air in the air passage is stored in the storage chamber (for example, refrigerated). It suffices if a cold air supply port 768 that can be supplied into the chamber 2 or the like can be formed.

突起部910を冷蔵庫1の上下方向に断続的に複数設け、上下方向に断続的に設けられた複数の突起部間の突起の設けられていない突起無し部(たとえば切欠き等によって上下方向の突起部が途切れた切欠き部分)を貯蔵室内への冷気供給口768として利用しても良い。この場合、第1風路部品762で上下方向に設けられた複数の突起部間の突起なし部(上下方向の突起部が途切れた切欠き部)を塞いで風路を形成しても良いが、第2風路部品764を使用して風路を形成しても良い。また、突起部910を第1風路部品762の固定あるいは保持するための固定部あるいは保持部としてのみに使用しても良い。冷蔵庫1の上下方向に設けられた左右の2つの突起部910にて形成される第2の凹部441と第1風路部品762とで囲まれた空間(冷蔵庫1の上下方向に設けられる空間)を直接冷気風路760として使用する場合は、露付き防止や冷気風路760内の冷気の温度上昇抑制のため、第1風路部品762、あるいは突起部910は断熱材など断熱性能を有する部材を使用した方が良い。この場合、突起部910は、内箱750を突出するように成形して内部にウレタン断熱材を充填するようにすれば良い。 A plurality of protrusions 910 are provided intermittently in the vertical direction of the refrigerator 1, and a protrusion-less portion (for example, a protrusion in the vertical direction due to a notch or the like) between the plurality of protrusions intermittently provided in the vertical direction is provided. The notched portion where the portion is interrupted) may be used as a cold air supply port 768 into the storage chamber. In this case, the air passage may be formed by closing the non-protrusion portion (the notch portion in which the protrusion in the vertical direction is interrupted) between the plurality of protrusions provided in the vertical direction by the first air passage component 762. , The second air passage component 764 may be used to form an air passage. Further, the protrusion 910 may be used only as a fixing portion or a holding portion for fixing or holding the first air passage component 762. A space surrounded by a second recess 441 formed by two left and right protrusions 910 provided in the vertical direction of the refrigerator 1 and a first air passage component 762 (a space provided in the vertical direction of the refrigerator 1). When directly used as the cold air passage 760, the first air passage component 762 or the protrusion 910 is a member having heat insulating performance such as a heat insulating material in order to prevent dew condensation and suppress the temperature rise of the cold air in the cold air air passage 760. It is better to use. In this case, the protrusion 910 may be formed so that the inner box 750 protrudes and the inside is filled with the urethane heat insulating material.

冷蔵庫1の上下方向に設けられた2つの突起部910で形成される第2の凹部441と第1風路部品762とで囲まれた空間(冷蔵庫1の上下方向に設けられる空間)を直接、冷気風路760として使用しても良いが、この空間内に、冷気風路760を有する第2風路部品764を設けても良い。第2風路部品764を設けるようにすれば、第2風路部品764を発泡スチロール等の断熱材などで形成することが可能となるので、第1風路部品762、あるいは突起部910に断熱材など断熱性能を有する部材を使用しなくても良くなり、第1風路部品762、あるいは突起部910の構造が簡略化できる。また、第2風路部品764を発泡スチロールや樹脂等の加工が容易な断熱材などで形成することが可能となるので、第2風路部品764の断面形状(断面の外形形状)を、円形状あるいは楕円形状あるいは多角形状(たとえば三角形や四角形や六角形等)等の色々な形状に加工あるいは成形できる。また、風路の断面形状においても、風路の流路損失や圧力損失など風路抵抗の小さな形状(たとえば円形や幅方向に細長い楕円形状など)を容易に形成できるため、効率の良い断熱箱体、冷蔵庫、機器が得られる。 Directly create a space (a space provided in the vertical direction of the refrigerator 1) surrounded by a second recess 441 formed by two protrusions 910 provided in the vertical direction of the refrigerator 1 and a first air passage component 762. Although it may be used as a cold air passage 760, a second air passage component 764 having a cold air passage 760 may be provided in this space. If the second air passage component 764 is provided, the second air passage component 764 can be formed of a heat insulating material such as styrofoam. Therefore, the heat insulating material is provided on the first air passage component 762 or the protrusion 910. It is not necessary to use a member having heat insulating performance such as, and the structure of the first air passage component 762 or the protrusion 910 can be simplified. Further, since the second air passage component 764 can be formed of a heat insulating material such as styrofoam or resin that can be easily processed, the cross-sectional shape (outer shape of the cross section) of the second air passage component 764 can be changed to a circular shape. Alternatively, it can be processed or molded into various shapes such as an elliptical shape or a polygonal shape (for example, a triangle, a quadrangle, a hexagon, etc.). Further, as for the cross-sectional shape of the air passage, a shape having a small air passage resistance such as a flow path loss or a pressure loss of the air passage (for example, a circular shape or an elliptical shape elongated in the width direction) can be easily formed, so that an efficient heat insulating box can be formed. You get a body, a refrigerator, and equipment.

第2風路部品764は、第1風路部品762と、幅方向に2つ(2つ以上でも良い)設けられた突起部910に固定あるいは保持された状態で冷蔵庫1の幅方向に設けられた2つの突起部910(2つの突起部910は長さ方向に、連続してあるいは間欠して設けられている)と内箱750とによって形成された第2の凹部441と、で囲まれた空間(冷蔵庫1の上下方向に設けられる空間)に配置されている。第2風路部品764は、内部に冷気風路760を有する風路構造を成しており、第2風路部品764の風路の外形断面形状は、円形状あるいは楕円形状あるいは多角形状(たとえば三角形や四角形や六角形等)等の形状であり、内部に冷気風路760が形成されている。第2風路部品は、内部に冷気風路760が形成できる形状であればどのような形状であっても良い。ここで、第1風路部品962あるいは第2風路部品764など風路を有する部品の場合の断面形状は、空気あるいは冷気の流れ方向に略直角な方向での断面形状を指す。 The second air passage component 764 is provided in the width direction of the refrigerator 1 in a state of being fixed or held to the first air passage component 762 and two (or two or more) protrusions 910 provided in the width direction. It is surrounded by a second recess 441 formed by two protrusions 910 (the two protrusions 910 are provided continuously or intermittently in the length direction) and an inner box 750. It is arranged in a space (a space provided in the vertical direction of the refrigerator 1). The second air passage component 764 has an air passage structure having a cold air passage 760 inside, and the outer cross-sectional shape of the air passage of the second air passage component 764 is a circular shape, an elliptical shape, or a polygonal shape (for example,). It has a shape such as a triangle, a quadrangle, a hexagon, etc.), and a cold air passage 760 is formed inside. The second air passage component may have any shape as long as the cold air passage 760 can be formed inside. Here, the cross-sectional shape in the case of a part having an air passage such as the first air passage component 962 or the second air passage component 764 refers to a cross-sectional shape in a direction substantially perpendicular to the flow direction of air or cold air.

ここで、第2風路部品764に形成される冷気風路760の断面の外形形状は、円形状あるいは楕円形状あるいは多角形状(たとえば三角形や四角形や六角形等)等の形状であり、第2風路部品764の断面形状と同等や相似形状であれば良いが、第2風路部品764の断面形状と異なっていても良い。すなわち、第2風路部品764の断面の外形形状が略四角形の場合、冷気風路760の断面の外形形状が略円形状あるいは楕円形状あるいは略三角形形状であっても良く、断面の外形形状が異なっても問題ない。ただし、第2風路部品764の風路断面は、空気(冷気)が流れるときの流路抵抗が小さい方が効率が良くなるので、円形や楕円形の方が角型や三角形形状などよりも良い。また、円形よりも幅方向に細長い楕円形状の方が設置時の高さ(貯蔵室内の突出高さ)を小さくできるので貯蔵室内の奥行き寸法を大きくできるので使い勝手が良い。したがって、第2風路部品764は、冷気風路を構成できれば良いので、冷気の流れ方向に対する断面形状が角状あるいは楕円状などであって内部に冷気風路760が形成できていれば良い。内部の冷気風路760の断面形状も角状あるいは楕円状などであっても良い。冷気風路760は円形あるいは楕円形状の方が流路抵抗が小さく効率が良く、また、円形よりも幅方向に細長い楕円形状の方が、奥行き方向の長さを小さくできるので、貯蔵室内への突出量を小さくでき、収納容積も大きくできる。(第2風路部品764の断面形状、あるいは、冷気風路760の断面形状が楕円形状の場合には、幅方向(長軸方向)が奥行き方向(短軸方向)よりも長く形成した方が良い)。ここで、第2風路部品764は、2分割、あるいは3分割など、複数分割して組み立てた状態で1つの風路部品を形成した方が加工しやすく、組み立てやすいので、良い。第2風路部品764の断面形状、あるいは、風路760の断面形状が楕円形状の場合には、第2風路部品764を分割する場合、長軸断面で2つに分割した方が加工性、組立性が向上するので良い。 Here, the external shape of the cross section of the cold air passage 760 formed in the second air passage component 764 is a circular shape, an elliptical shape, a polygonal shape (for example, a triangle, a quadrangle, a hexagon, etc.), and the second The shape may be the same as or similar to the cross-sectional shape of the air passage component 764, but may be different from the cross-sectional shape of the second air passage component 764. That is, when the outer shape of the cross section of the second air passage component 764 is a substantially quadrangular shape, the outer shape of the cross section of the cold air passage 760 may be a substantially circular shape, an elliptical shape, or a substantially triangular shape, and the outer shape of the cross section is It doesn't matter if they are different. However, the cross section of the air passage of the second air passage component 764 is more efficient when the flow path resistance when air (cold air) flows is smaller, so that the circular or elliptical shape is more efficient than the square or triangular shape. good. Further, the elliptical shape elongated in the width direction is easier to use than the circular shape because the height at the time of installation (protruding height in the storage chamber) can be reduced and the depth dimension of the storage chamber can be increased. Therefore, since it is sufficient that the second air passage component 764 can form a cold air passage, it is sufficient that the cross-sectional shape with respect to the flow direction of the cold air is angular or elliptical, and the cold air passage 760 can be formed inside. The cross-sectional shape of the internal cold air passage 760 may also be angular or elliptical. The circular or elliptical shape of the cold air passage 760 has lower flow path resistance and is more efficient, and the elliptical shape elongated in the width direction can reduce the length in the depth direction than the circular shape. The amount of protrusion can be reduced and the storage volume can be increased. (When the cross-sectional shape of the second air passage component 764 or the cross-sectional shape of the cold air passage 760 is elliptical, it is better to form the width direction (long axis direction) longer than the depth direction (minor axis direction). good). Here, the second air passage component 764 is preferable because it is easier to process and assemble if one air passage component is formed in a state where the second air passage component is divided into two or three parts and assembled. When the cross-sectional shape of the second air passage component 764 or the cross-sectional shape of the air passage 760 is elliptical, when the second air passage component 764 is divided, it is better to divide it into two in the long axis cross section for workability. , It is good because the assembling property is improved.

冷却器室131内に配置されている熱交換器である冷却器13で生成された冷気(空気)が冷気風路16、冷蔵室ダンパ55などを介してたとえば第2風路部品764に形成された冷気風路760内を流れて、冷気供給口768より貯蔵室内に供給される。ここで、第2の凹部441と第1風路部品762とで囲まれた空間は冷気風路760として使用される。本実施の形態では、冷気風路760として使用される空間は、冷蔵庫1の背面の幅方向略中央に上下方向に設けられており、冷蔵庫を正面(前面)からみて冷蔵庫1の幅方向(左右方向)の略中央に1箇所設けられているが、別に1カ所でなくても良く、冷蔵庫1の幅方向(左右方向)に2箇所あるいは複数設けても良い。また、略中央部でなくてもよく、幅方向の端側に設けても良い。 Cold air (air) generated by the cooler 13 which is a heat exchanger arranged in the cooler chamber 131 is formed in, for example, the second air passage component 764 through the cold air passage 16, the refrigerating chamber damper 55, and the like. It flows through the cold air passage 760 and is supplied to the storage chamber from the cold air supply port 768. Here, the space surrounded by the second recess 441 and the first air passage component 762 is used as the cold air passage 760. In the present embodiment, the space used as the cold air passage 760 is provided in the vertical direction substantially in the center of the back surface of the refrigerator 1 in the width direction, and the refrigerator 1 is viewed from the front (front) in the width direction (left and right) of the refrigerator 1. Although one place is provided substantially in the center of the direction), it is not necessary to provide one place separately, and two or more places may be provided in the width direction (horizontal direction) of the refrigerator 1. Further, it does not have to be substantially in the center, and may be provided on the end side in the width direction.

冷気風路760として使用される空間を2箇所あるいは複数設けるようにして、冷却器室131内の熱交換器である冷却器13で生成された冷気を貯蔵室(たとえば冷蔵室2や野菜室5や切替室4やチルド室2X、2Yなど)に供給する冷気風路と、ミスト装置200で生成されたミストを貯蔵室(たとえば冷蔵室2や野菜室5や切替室4やチルド室2X、2Yなど)に供給するミスト用風路とを共有せずに区分けして別々に形成しても良い。このように風路を独立させると、風量調整手段などにより冷気の供給(冷気供給のオン、オフ、あるいは冷気量の制御)とミストの供給(ミスト供給のオン、オフ、あるいはミスト供給量の制御)を独立して制御可能となる。もちろん、冷気風路とミスト用風路を共通にしても問題ない。 The cold air generated by the cooler 13 which is the heat exchanger in the cooler chamber 131 is stored in the storage chamber (for example, the refrigerator chamber 2 and the vegetable compartment 5) by providing two or a plurality of spaces used as the cold air passage 760. And the cold air passage that supplies the switching chamber 4 and the chilled chamber 2X, 2Y, etc., and the mist generated by the mist device 200 are stored in the storage chamber (for example, the refrigerating chamber 2, the vegetable compartment 5, the switching chamber 4, the chilled chamber 2X, 2Y). Etc.) may be separated and formed separately without sharing with the mist air passage to be supplied. When the air passages are made independent in this way, cold air supply (cold air supply on / off, or cold air amount control) and mist supply (mist supply on / off, or mist supply amount control) are performed by air volume adjusting means or the like. ) Can be controlled independently. Of course, there is no problem even if the cold air passage and the mist air passage are shared.

第2風路部品764を設ける場合は、第1風路部品762に固定、あるいは保持されるように構成すればよい。あるいは、第2風路部品764を突起部910や内箱750あるいは棚80や仕切壁24や壁面(背面壁730、天井壁740、底面壁780など)などに保持あるいは固定できるようにしても良い。第2風路部品764を第1風路部品762に固定あるいは保持するようにして第1風路部品762、第2風路部品764を一体に形成して風路組立て体とすることで、容易に断熱箱体700あるいは冷蔵庫1に取り付けることができ、しかも容易に取り外すことも可能である。ここで、第2風路部品764が独立した風路を形成する形状の組立体を構成できれば、第2風路部品764が風路組立体を構成することができるので、着脱可能に風路組立体を貯蔵室内(たとえば突起部910あるいは凹部440あるいは第2の凹部441あるいは第1風路部品762あるいは内箱750あるいは棚80など)に取り付けることができる。また、冷気風路760を真空断熱材400と対向する内箱750(凹部440あるいは第2の凹部441を形成する部分の内箱)で構成しなくて良くなるので、構造が簡単になり低コストの断熱箱体、冷蔵庫、機器が得られる。 When the second air passage component 764 is provided, it may be configured so as to be fixed or held to the first air passage component 762. Alternatively, the second air passage component 764 may be held or fixed to the protrusion 910, the inner box 750, the shelf 80, the partition wall 24, the wall surface (back wall 730, ceiling wall 740, bottom wall 780, etc.) or the like. .. It is easy to form the first air passage part 762 and the second air passage part 764 integrally to form an air passage assembly by fixing or holding the second air passage component 764 to the first air passage component 762. It can be attached to the heat insulating box 700 or the refrigerator 1 and can be easily removed. Here, if the second air passage component 764 can form an assembly having a shape forming an independent air passage, the second air passage component 764 can form an air passage assembly, so that the air passage assembly can be detached. The solid can be attached to the storage chamber (for example, the protrusion 910 or the recess 440 or the second recess 441 or the first air passage component 762 or the inner box 750 or the shelf 80). Further, since the cold air passage 760 does not have to be composed of the inner box 750 (the inner box of the portion forming the recess 440 or the second recess 441) facing the vacuum heat insulating material 400, the structure is simplified and the cost is low. Insulated boxes, refrigerators and equipment can be obtained.

また、第1風路部品762あるいは風路組立体(第2風路部品764、あるいは第1風路部品762と第2風路部品764の組立体)を貯蔵室内のたとえば突起部910あるいは第1風路部品762あるいは棚80などに取り付けるようにすれば、第1風路部品762あるいは風路組立体を真空断熱材400と対向する位置の内箱750(凹部440あるいは第2の凹部441)に直接取り付ける必要がなくなるので、冷気風路760の取付時に内箱750が変形したり、あるいはひびが入ったり、あるいは割れ等が発生したりすることを抑制でき、したがって、内箱が真空断熱材400の外包材などを傷つけることを抑制でき、信頼性が高く断熱性能の低下や劣化の少ない断熱箱体や冷蔵庫や機器が得られる。 Further, the first air passage component 762 or the air passage assembly (the second air passage component 764 or the assembly of the first air passage component 762 and the second air passage component 764) is placed in the storage chamber, for example, the protrusion 910 or the first. If it is attached to the air passage component 762 or the shelf 80, the first air passage component 762 or the air passage assembly is placed in the inner box 750 (recess 440 or second recess 441) at a position facing the vacuum heat insulating material 400. Since it is not necessary to directly attach the inner box, it is possible to prevent the inner box 750 from being deformed, cracked, cracked, etc. when the cold air passage 760 is attached. Therefore, the inner box is the vacuum heat insulating material 400. It is possible to obtain a heat insulating box, a refrigerator and equipment with high reliability and less deterioration of heat insulating performance and deterioration by suppressing damage to the outer packaging material.

ここで、冷気風路760としては、第1風路部品762を凹部440あるいは第2の凹部441を覆うように設けるようにして形成すれば、第2風路部品764を設けなくて冷冷気風路760を形成することができるので、部品点数が少なく低コストで組み立て容易で信頼性の高い断熱箱体や冷蔵庫が得られる。この場合、第1風路部品762を凸部450あるいは棚80あるいは仕切壁24、壁面(背面壁730あるいは側壁790あるいは天井壁740あるいは底面壁780)などに固定あるいは保持するようにすれば良い。 Here, if the cold air passage 760 is formed so as to cover the recess 440 or the second recess 441 with the first air passage component 762, the cold air air without providing the second air passage component 764. Since the road 760 can be formed, a heat insulating box or a refrigerator can be obtained which has a small number of parts, is easy to assemble at low cost, and is highly reliable. In this case, the first air passage component 762 may be fixed or held on the convex portion 450, the shelf 80, the partition wall 24, the wall surface (back wall 730 or side wall 790, ceiling wall 740, or bottom wall 780).

凸部450は、冷蔵庫1を正面側(前面側)からみて貯蔵室背面の幅方向のコーナー部(幅方向の左右端部、幅方向の端部)に少なくとも1箇所以上(1箇所あるいは複数箇所)設けられている。箱体のねじれ強度あるいは曲げ強度あるいは圧縮強度などの箱体強度(箱体剛性)を向上させるため、内箱750と外箱710の間に硬質ウレタンフォームなどの断熱材701が充填されて形成されている。凹部440あるいは第2の凹部441においては、箱体強度は真空断熱材400の強度を所定値以上(たとえば曲げ弾性率を20MPa以上)にすることで持たせるようにしているため、真空断熱材400と内箱750との間には、接着を主目的とする第1介在部材である接着剤(たとえば接着性を有する発泡断熱材など)が充填されており、この第1介在部材である接着剤によって真空断熱材400と内箱750は接着あるいは固定あるいは固着されている。ここで、第1介在部材である接着剤として、硬質ウレタンフォームを使用してもよく、この場合、接着剤として使用するウレタンは、断熱が主目的の断熱材として使用するわけではないのでウレタンの厚さを薄くできる。すなわち、第1介在部材としてウレタンを真空断熱材400と内箱750との間に使用する場合には断熱性能は悪くてもよいので薄くても良く、接着した時に断熱箱体が必要以上に変形や歪まない程度の剛性や強度が得られる接着強度あるいは固定強度を有する所定厚さを有していれば良い。第1介在部材である硬質ウレタンフォームを接着剤として使用する場合の所定厚さは、11mm以下程度(たとえば10mmより小さい)が良く、好ましくは6mm以下程度が良く、また、接着剤としての接着力(接着性能)を満足できれば薄ければ薄い方が良く1mm以上、好ましくは3mm以上程度が良い。 The convex portion 450 is at least one (one or a plurality of locations) at the corners (left and right ends in the width direction, ends in the width direction) on the back surface of the storage chamber when the refrigerator 1 is viewed from the front side (front side). ) It is provided. In order to improve the box body strength (box body rigidity) such as the torsional strength, bending strength, or compressive strength of the box body, a heat insulating material 701 such as hard urethane foam is filled between the inner box 750 and the outer box 710. ing. In the recess 440 or the second recess 441, the box body strength is provided by setting the strength of the vacuum heat insulating material 400 to a predetermined value or more (for example, the bending elasticity is 20 MPa or more), so that the vacuum heat insulating material 400 is provided. An adhesive (for example, a foam heat insulating material having adhesiveness), which is a first intervening member whose main purpose is adhesion, is filled between the inner box 750 and the inner box 750, and the adhesive which is the first intervening member. The vacuum heat insulating material 400 and the inner box 750 are adhered, fixed or fixed to each other. Here, a rigid urethane foam may be used as the adhesive which is the first intervening member. In this case, the urethane used as the adhesive is not used as a heat insulating material whose main purpose is heat insulation. The thickness can be reduced. That is, when urethane is used as the first intervening member between the vacuum heat insulating material 400 and the inner box 750, the heat insulating performance may be poor and therefore may be thin, and the heat insulating box body is deformed more than necessary when bonded. It suffices to have a predetermined thickness having adhesive strength or fixing strength that can obtain rigidity and strength that does not distort. When the rigid urethane foam as the first intervening member is used as an adhesive, the predetermined thickness is preferably about 11 mm or less (for example, smaller than 10 mm), preferably about 6 mm or less, and the adhesive strength as an adhesive. If (adhesive performance) can be satisfied, the thinner the better, the better 1 mm or more, preferably about 3 mm or more.

図4〜図8では、冷蔵庫1の横断面を示しており、凸部450は冷蔵庫1の幅方向両端部に設けられており、貯蔵室内側(冷蔵庫1の前面側)に突出した突出部を形成している。図4〜図7においては、凸部450の断面形状(冷蔵庫1の横断面において側壁790部分と背面壁部分を除いた突出部の断面形状)は角形(矩形)であるが、図8においては、凸部450の断面形状(冷蔵庫1の横断面において側壁790と背面壁730に対して貯蔵室内側に突出した部分の断面形状)は、略三角形状をしており、三角形の斜辺456の一端が側壁790内面の所定部位(側壁側端部)797に接続され、斜辺456の他端が背面壁730の内面の所定部位(背面壁側端部)798と接続されている。すなわち、略三角形の斜辺456は一端が側壁790内面の所定部位(側壁側端部)797に接続され、他端が背面壁730の内面の所定部位(背面壁側端部)798と接続されているので、背面壁側端部798と側壁側端部797を起点とした凸部450の斜辺部456は庫内側に突出していることになる。すなわち、凸部450の断面形状において、略三角形の斜辺456に相当する部分は、貯蔵室内の内箱750において、側壁790の所定部位797から背面壁730の所定部位798に渡って略直線状あるいは曲線状あるいはアーチ状等に形成されている。 4 to 8 show a cross section of the refrigerator 1, and convex portions 450 are provided at both ends in the width direction of the refrigerator 1 and have protrusions protruding toward the storage chamber side (front side of the refrigerator 1). Is forming. In FIGS. 4 to 7, the cross-sectional shape of the convex portion 450 (the cross-sectional shape of the protruding portion excluding the side wall 790 portion and the back wall portion in the cross section of the refrigerator 1) is square (rectangular), but in FIG. , The cross-sectional shape of the convex portion 450 (the cross-sectional shape of the portion of the cross section of the refrigerator 1 protruding toward the storage chamber side with respect to the side wall 790 and the back wall 730) is substantially triangular, and one end of the hypotenuse 456 of the triangle. Is connected to a predetermined portion (side end on the side wall side) 797 on the inner surface of the side wall 790, and the other end of the hypotenuse 456 is connected to a predetermined portion (end on the back wall side) 798 on the inner surface of the back wall 730. That is, one end of the hypotenuse 456 of the substantially triangular shape is connected to a predetermined portion (side wall side end portion) 797 on the inner surface of the side wall 790, and the other end is connected to a predetermined portion (back wall side end portion) 798 on the inner surface of the back wall 730. Therefore, the hypotenuse portion 456 of the convex portion 450 starting from the back wall side end portion 798 and the side wall side end portion 797 protrudes inward. That is, in the cross-sectional shape of the convex portion 450, the portion corresponding to the hypotenuse 456 of the substantially triangular shape is substantially linear or linear from the predetermined portion 797 of the side wall 790 to the predetermined portion 798 of the back wall 730 in the inner box 750 of the storage chamber. It is formed in a curved shape or an arch shape.

したがって、凸部450の断面形状が略三角形状の場合には、所定の強度が得られるように略三角形状の斜辺456の長さを設定すれば良い。凸部450の断面形状が角形形状の場合よりも略三角形形状の方が、凸部450に角部を有さないため貯蔵室内に突出する容積を小さくすることが可能となり、貯蔵室内の容積を大きくすることが可能となる。また、凸部450に角部を有さないので、意匠性も向上する。 Therefore, when the cross-sectional shape of the convex portion 450 is substantially triangular, the length of the substantially triangular hypotenuse 456 may be set so as to obtain a predetermined strength. When the cross-sectional shape of the convex portion 450 is substantially triangular, the volume protruding into the storage chamber can be reduced because the convex portion 450 does not have a corner, and the volume of the storage chamber can be reduced. It can be made larger. Further, since the convex portion 450 does not have a corner portion, the designability is also improved.

また、本実施の形態では、突起部910が溝形状(第2の凹部)441を形成するように貯蔵室側(冷蔵庫1の前面側)に突出して貯蔵室内の上下方向に連続的あるいは断続的に複数設けられているので、箱体強度を向上させることが可能となる。ここで、左右の側壁790と背面壁730とのコーナー部に設けられる左右2箇所の凸部450間に設けられる凹部440は、凸部が略三角形状の場合には、左右の凸部450のそれぞれの斜辺456が接続される背面壁の所定部位798間の範囲(図8においてWで表示した部分)となる。 Further, in the present embodiment, the protrusion 910 protrudes toward the storage chamber side (front side of the refrigerator 1) so as to form a groove shape (second recess) 441, and is continuous or intermittent in the vertical direction of the storage chamber. Since a plurality of boxes are provided in the box, it is possible to improve the strength of the box body. Here, the recesses 440 provided between the two left and right convex portions 450 provided at the corners of the left and right side walls 790 and the back wall 730 are the left and right convex portions 450 when the convex portions are substantially triangular. It is a range (the portion indicated by W in FIG. 8) between predetermined portions 798 of the back wall to which each hypotenuse 456 is connected.

図4〜図8では、冷蔵庫1の背面壁730内に設けられる真空断熱材400の左右方向の幅は、貯蔵室(たとえば、冷蔵室2や野菜室5や冷凍室6など)の内壁の幅と略同等(貯蔵室を形成する左右の側壁790間の距離(長さ)と略同等)にしており、ウレタン等の充填口703、704より充填されるウレタンなどの発泡断熱材が側壁790内にスムーズに充填できるようにしている。また、内箱750と外箱710の間の空間315にウレタン等の発泡断熱材を充填する充填口703、704が真空断熱材400と重ならない(真空断熱材400が充填口703、704を塞がない)ようにしており、ウレタン等の発泡断熱材を注入時に真空断熱材400が充填口703、704を塞いで発泡断熱材が側壁790内や天井壁740内や底面壁780内や仕切壁24内へ流入するのを邪魔しないようにしている。 In FIGS. 4 to 8, the width of the vacuum heat insulating material 400 provided in the back wall 730 of the refrigerator 1 in the left-right direction is the width of the inner wall of the storage room (for example, the refrigerating room 2, the vegetable room 5, the freezing room 6, etc.). (Approximately the same as the distance (length) between the left and right side walls 790 that form the storage chamber), and the foam heat insulating material such as urethane filled from the filling ports 703 and 704 of urethane etc. is inside the side wall 790. It is designed so that it can be filled smoothly. Further, the filling ports 703 and 704 filled with the foam heat insulating material such as urethane in the space 315 between the inner box 750 and the outer box 710 do not overlap with the vacuum heat insulating material 400 (the vacuum heat insulating material 400 closes the filling ports 703 and 704). When the foam heat insulating material such as urethane is injected, the vacuum heat insulating material 400 closes the filling ports 703 and 704, and the foam heat insulating material is inside the side wall 790, the ceiling wall 740, the bottom wall 780, and the partition wall. It does not interfere with the inflow into the 24.

また、図4〜図8においては、凸部450は箱体強度を維持あるいは向上させるための補強部材としての機能を有するが、パイプ720あるいは冷媒配管725などを収納する収納部も兼ねている。なお、図8における第2の凹部441を形成する突起部910をパイプ720あるいは冷媒配管725などを収納する収納部に使用しても良いし、発泡断熱材などを充填して補強部材として使用してもよい。凸部450あるいは突起部910の一方をパイプ720あるいは冷媒配管725などを収納する収納部として使用しても良いし、凸部450と突起部910の両方をパイプ720あるいは冷媒配管725などを収納する収納部として使用しても良い。このように凸部450あるいは突起部910をパイプ720あるいは冷媒配管725などを収納する収納部に使用したり、あるいは箱体補強部として使用すれば、別途、パイプ720あるいは冷媒配管725などを収納する収納部を設ける必要がなくなり、構造が簡単で低コストで高強度の断熱箱体、冷蔵庫、機器などが得られる。 Further, in FIGS. 4 to 8, the convex portion 450 has a function as a reinforcing member for maintaining or improving the strength of the box body, but also serves as a storage portion for accommodating the pipe 720 or the refrigerant pipe 725. The protrusion 910 forming the second recess 441 in FIG. 8 may be used as a storage portion for accommodating the pipe 720 or the refrigerant pipe 725, or may be filled with a foam heat insulating material or the like and used as a reinforcing member. You may. One of the convex portion 450 or the protrusion 910 may be used as a storage portion for storing the pipe 720 or the refrigerant pipe 725, or both the convex portion 450 and the protrusion 910 may store the pipe 720 or the refrigerant pipe 725 or the like. It may be used as a storage unit. In this way, if the convex portion 450 or the protruding portion 910 is used as a storage portion for storing the pipe 720 or the refrigerant pipe 725 or the like, or if it is used as a box body reinforcing portion, the pipe 720 or the refrigerant pipe 725 or the like is separately stored. There is no need to provide a storage unit, and a high-strength heat-insulated box, refrigerator, equipment, etc. can be obtained with a simple structure and low cost.

凸部450は、貯蔵室背面の幅方向の端側のコーナー部(片側コーナーあるいは両側コーナー)に設けられている。凸部450は、貯蔵室の幅方向に対して一端が貯蔵室を形成する側壁790の所定部位(側壁奥行き方向端部797)に接続され、幅方向の他端が真空断熱材400と幅方向に所定長さXだけ重なる位置の背面壁730の所定部位(背面壁幅方向端部798)に接続されており、内部に硬質ウレタン等の発泡断熱材が充填されている。このように凸部450を真空断熱材400の幅方向において一部が重なる位置(重なり長さXの位置)まで延設することで、真空断熱材400が凸部450内のウレタンを介して側壁790内のウレタンと一体に形成され、側壁790と背面壁730とが真空断熱材400、硬質ウレタンとともに一体に強固に形成され、断熱箱体700の強度が向上する。この場合、側壁790内に充填する硬質ウレタンフォームを真空断熱材400と内箱750との間の空間にも充填させて発泡させれば容易に対応可能である。ここで、凸部450はコーナー部に設けられており、断面形状が角形や矩形や略三角形状や円弧状やアーチ状で貯蔵室内に突出するように内箱750が成形され、この凸部450が形成される内箱750と外箱710との間に硬質ウレタンフォームなどを充填あるいは設置することで補強部材として凸部450が形成される。ここで、外箱710と内箱750の間の空間に充填されるウレタン等の充填材は、真空断熱材400が設けられている部分と設けられていない部分の断熱箱体700の断熱性能、内箱750と真空断熱材400と外箱710の接着強度、断熱箱体700の強度(剛性)などを考慮して決められ、本実施の形態では、硬質ウレタンフォームを充填材として使用している。 The convex portion 450 is provided at a corner portion (one-sided corner or both-sided corner) on the end side in the width direction of the back surface of the storage chamber. One end of the convex portion 450 is connected to a predetermined portion (end 797 in the depth direction of the side wall) of the side wall 790 forming the storage chamber with respect to the width direction of the storage chamber, and the other end in the width direction is connected to the vacuum heat insulating material 400 in the width direction. It is connected to a predetermined portion (end portion 798 in the width direction of the back wall) of the back wall 730 at a position where it overlaps with a predetermined length X, and the inside is filled with a foam heat insulating material such as hard urethane. By extending the convex portion 450 to the position where the convex portion 450 partially overlaps (the position of the overlapping length X) in the width direction of the vacuum heat insulating material 400, the vacuum heat insulating material 400 is placed on the side wall via the urethane in the convex portion 450. It is integrally formed with the urethane in the 790, and the side wall 790 and the back wall 730 are integrally and firmly formed together with the vacuum heat insulating material 400 and the hard urethane, so that the strength of the heat insulating box 700 is improved. In this case, it can be easily dealt with by filling the space between the vacuum heat insulating material 400 and the inner box 750 with the rigid urethane foam filled in the side wall 790 and foaming the foam. Here, the convex portion 450 is provided at the corner portion, and the inner box 750 is formed so that the cross-sectional shape is square, rectangular, substantially triangular, arcuate, or arched and protrudes into the storage chamber, and the convex portion 450 is formed. A convex portion 450 is formed as a reinforcing member by filling or installing a rigid urethane foam or the like between the inner box 750 and the outer box 710. Here, the filler such as urethane filled in the space between the outer box 710 and the inner box 750 has the heat insulating performance of the heat insulating box body 700 in the portion where the vacuum heat insulating material 400 is provided and the portion where the vacuum heat insulating material 400 is not provided. It is determined in consideration of the adhesive strength between the inner box 750, the vacuum heat insulating material 400 and the outer box 710, the strength (rigidity) of the heat insulating box 700, and the like, and in this embodiment, hard urethane foam is used as the filler. ..

強度部(補強部)である凸部450の背面壁730側の一端が、真空断熱材400と所定長さ(重なり長さ)Xだけ重なるように設けているので、凸部450内に充填された硬質ウレタンフォームによって、真空断熱材400と内箱750が強固に接着され、真空断熱材400がウレタンを介して側壁790とも強固に接続される。また、貯蔵室背面の幅方向のコーナー部に貯蔵室内に突出する凸部450が形成されるので、真空断熱材400の配置されている凹部440の硬質ウレタンフォームの厚さが薄くなっても、断熱性能の低下が抑制され、また凸部450及び真空断熱材400によって箱体強度が向上する。また、真空断熱材400の配置されていない壁面(たとえば側壁790や仕切壁24など)においても、真空断熱材の配設面積や配設容積を大きく(真空断熱材の被覆率や充填率を大きく)することによって、真空断熱材400の配置されていない壁面を含めた断熱箱体としての断熱性能も確保できる。また、凸部450が真空断熱材400と幅方向で重なる位置まで延設されているので、真空断熱材400、側壁790、背面壁の凹部(440、441)とが一体に形成(あるいは成形)でき、箱体強度が向上する。 Since one end of the convex portion 450, which is the strength portion (reinforcing portion), on the back wall 730 side is provided so as to overlap the vacuum heat insulating material 400 by a predetermined length (overlapping length) X, the convex portion 450 is filled. The vacuum heat insulating material 400 and the inner box 750 are firmly adhered to each other by the rigid urethane foam, and the vacuum heat insulating material 400 is also firmly connected to the side wall 790 via urethane. Further, since the convex portion 450 protruding into the storage chamber is formed at the corner portion in the width direction on the back surface of the storage chamber, even if the thickness of the hard urethane foam of the concave portion 440 in which the vacuum heat insulating material 400 is arranged becomes thin, The deterioration of the heat insulating performance is suppressed, and the box body strength is improved by the convex portion 450 and the vacuum heat insulating material 400. Further, even on a wall surface on which the vacuum heat insulating material 400 is not arranged (for example, a side wall 790 or a partition wall 24), the arranged area and the arranged volume of the vacuum heat insulating material are large (the coverage and filling rate of the vacuum heat insulating material are large). ), It is possible to secure the heat insulating performance as a heat insulating box including the wall surface on which the vacuum heat insulating material 400 is not arranged. Further, since the convex portion 450 extends to a position where it overlaps with the vacuum heat insulating material 400 in the width direction, the vacuum heat insulating material 400, the side wall 790, and the concave portions (440, 441) of the back wall are integrally formed (or molded). It can be done, and the strength of the box body is improved.

また、凸部450内には、制御配線や電力線等のリード線が収納されるパイプ720や冷媒配管725を配置しても良く、この場合には、凸部450による箱体強度向上に加えて、パイプ720や冷媒配管725も箱体強度の向上のための補強部材として活用できる。したがって、箱体強度向上のために別途補強部品が不要となるので低コストであり、しかも断熱箱体700の補強が行えるので断熱箱体の箱体強度が向上できる。また、補強部材を凸部450内に配置できるため、意匠性も向上する。したがって、低コストで信頼性の高く意匠性の優れた断熱箱体、冷蔵庫が得られる。 Further, a pipe 720 or a refrigerant pipe 725 in which lead wires such as control wiring and power lines are housed may be arranged in the convex portion 450. In this case, in addition to the improvement of the box body strength by the convex portion 450, the convex portion 450 may be arranged. , The pipe 720 and the refrigerant pipe 725 can also be used as a reinforcing member for improving the strength of the box body. Therefore, since a separate reinforcing component is not required to improve the strength of the box body, the cost is low, and the heat insulating box body 700 can be reinforced, so that the box body strength of the heat insulating box body can be improved. Further, since the reinforcing member can be arranged in the convex portion 450, the designability is also improved. Therefore, a heat-insulating box body and a refrigerator having high reliability and excellent design at low cost can be obtained.

ここで、凸部450が真空断熱材400と重なる幅方向の所定長さXは、長いほど凸部450内の硬質ウレタンと真空断熱材400とが固着(あるいは保持)できる長さ(あるいは固着面積)が大きくなり箱体強度を向上させることができるが、長すぎると凸部450の貯蔵室内への突出量(貯蔵室内に突出する体積)が大きくなり、貯蔵室内の容量が小さくなるので、200mm以下好ましくは180mm以下が良い。また、凸部450が真空断熱材400と重なる幅方向の所定長さXが短かすぎると、真空断熱材400と凸部450内の硬質ウレタンとの固着力が小さくなり箱体の強度が低下するし、また、硬質ウレタンなどの充填材の真空断熱材400に対する重なる長さXが30mmよりも短くなると真空断熱材400の表面を伝って熱漏洩が大きくなる。すなわち、硬質ウレタンなどの充填材が真空断熱材400に対して重なる部分の長さXが30mmよりも短くなると、真空断熱材400の内箱750側(貯蔵室側)の表面から外箱710側(背面側)の表面へのヒートブリッジによる熱漏洩が大きくなり断熱性能が低下するので、30mm以上好ましく40mm以上が良い。したがって、真空断熱材400と凸部450の重なる長さXは、下限は30mm以上(好ましくは40mm以上)が良く、上限は200mm以下(好ましくは180mm以下)が好ましく、断熱箱体700の側壁790間距離(貯蔵室内面壁791、792間の距離)の1/3以下程度が良い。(冷蔵庫1の外幅が約600mmとした場合、側壁790の厚さを30mmとすると、側壁790の内面壁間距離は約540mmとなるので、重なる長さXは540mmの1/3以下、すなわち180mm以下程度が良い。) Here, the predetermined length X in the width direction in which the convex portion 450 overlaps with the vacuum heat insulating material 400 is the length (or the fixing area) at which the hard urethane in the convex portion 450 and the vacuum heat insulating material 400 can be fixed (or held). ) Will increase and the box body strength can be improved, but if it is too long, the amount of protrusion of the convex portion 450 into the storage chamber (volume protruding into the storage chamber) will increase and the capacity of the storage chamber will decrease, so 200 mm. Hereinafter, preferably 180 mm or less is preferable. Further, if the predetermined length X in the width direction in which the convex portion 450 overlaps the vacuum heat insulating material 400 is too short, the adhesive force between the vacuum heat insulating material 400 and the hard urethane in the convex portion 450 becomes small, and the strength of the box body decreases. Further, when the overlapping length X of the filler such as hard urethane with respect to the vacuum heat insulating material 400 is shorter than 30 mm, heat leakage increases along the surface of the vacuum heat insulating material 400. That is, when the length X of the portion where the filler such as hard urethane overlaps with the vacuum heat insulating material 400 is shorter than 30 mm, the surface of the vacuum heat insulating material 400 from the inner box 750 side (storage chamber side) to the outer box 710 side. Since heat leakage due to the heat bridge to the (back side) surface becomes large and the heat insulating performance deteriorates, 30 mm or more is preferable, and 40 mm or more is preferable. Therefore, the lower limit of the overlapping length X of the vacuum heat insulating material 400 and the convex portion 450 is preferably 30 mm or more (preferably 40 mm or more), and the upper limit is preferably 200 mm or less (preferably 180 mm or less), and the side wall 790 of the heat insulating box 700. It is preferably about 1/3 or less of the distance (distance between the storage chamber surface walls 791 and 792). (When the outer width of the refrigerator 1 is about 600 mm and the thickness of the side wall 790 is 30 mm, the distance between the inner wall of the side wall 790 is about 540 mm, so that the overlapping length X is 1/3 or less of 540 mm, that is, 180 mm or less is good.)

本実施の形態では、真空断熱材400を背面壁に配置した例で説明しているが、側壁790に配置しても良く、真空断熱材400を背面壁と側壁790の両方に配置してもよい。この場合は、側壁側も、背面壁側と同様の理由から、真空断熱材400と凸部450の重なる長さは、下限は30mm以上(好ましくは40mm以上)が良く、上限は200mm以下(好ましくは180mm以下)が好ましい。(真空断熱材400と凸部450の重なる長さは、真空断熱材400の幅に対して第1の所定値(たとえば30mm好ましくは40mm)以上第2の所定値(たとえば真空断熱材400の幅の1/3程度)以下が望ましい。第1の所定値が30mmより小さいと、硬質ウレタンなどの充填材が真空断熱材400に対して重なる部分の長さXが短くなり、真空断熱材400の内箱側(貯蔵室側)の表面から外箱側(背面側)の表面へのヒートブリッジによる熱漏洩が大きくなり断熱性能が低下するし、凸部と真空断熱材400との重なる長さが短くなりすぎて箱体の強度が低下するので、第1の所定値は30mm以上(好ましくは40mm以上)が好ましい。また、第2の所定値が真空断熱材400の幅の1/3を越えると凹部440あるいは第2の凹部441の幅が小さくなり、冷気風路760が所定の大きさを確保できなくなるので、第2の所定値は1/3以下が良い。) In the present embodiment, the example in which the vacuum heat insulating material 400 is arranged on the back wall is described, but the vacuum heat insulating material 400 may be arranged on the side wall 790, or the vacuum heat insulating material 400 may be arranged on both the back wall and the side wall 790. Good. In this case, for the same reason as on the back wall side, the lower limit of the overlapping length of the vacuum heat insulating material 400 and the convex portion 450 is preferably 30 mm or more (preferably 40 mm or more), and the upper limit is 200 mm or less (preferably). 180 mm or less) is preferable. (The overlapping length of the vacuum heat insulating material 400 and the convex portion 450 is equal to or larger than the first predetermined value (for example, 30 mm, preferably 40 mm) with respect to the width of the vacuum heat insulating material 400 and the second predetermined value (for example, the width of the vacuum heat insulating material 400). When the first predetermined value is smaller than 30 mm, the length X of the portion where the filler such as hard urethane overlaps with the vacuum heat insulating material 400 becomes short, and the vacuum heat insulating material 400 Heat leakage due to the heat bridge from the surface on the inner box side (storage chamber side) to the surface on the outer box side (back side) increases, the heat insulation performance deteriorates, and the overlapping length of the convex portion and the vacuum heat insulating material 400 increases. Since it becomes too short and the strength of the box body decreases, the first predetermined value is preferably 30 mm or more (preferably 40 mm or more), and the second predetermined value exceeds 1/3 of the width of the vacuum heat insulating material 400. Since the width of the recess 440 or the second recess 441 becomes small and the cold air passage 760 cannot secure a predetermined size, the second predetermined value is preferably 1/3 or less.)

ここで、真空断熱材400を天井壁740あるいは底面壁780あるいは貯蔵室間を仕切る仕切壁24に配置してコーナー部に凸部450を設けても良い。背面壁730と天井壁740のコーナー部に形成される凸部と真空断熱材400との重なる長さ、あるいは背面壁730と底面壁780とのコーナー部に形成される凸部と真空断熱材400との重なる長さ、あるいは背面壁730と仕切壁24とのコーナー部に形成される凸部との重なる長さ、あるいは側壁790と天井壁740とのコーナー部に形成される凸部と真空断熱材400との重なる長さも、上記と同様に下限は30mm以上(好ましくは40mm以上)が良く、上限は200mm以下(好ましくは180mm以下)が好ましい。 Here, the vacuum heat insulating material 400 may be arranged on the ceiling wall 740, the bottom wall 780, or the partition wall 24 that partitions the storage chambers, and the convex portion 450 may be provided at the corner portion. The overlapping length of the convex portion formed at the corner portion of the back wall 730 and the ceiling wall 740 and the vacuum heat insulating material 400, or the convex portion formed at the corner portion between the back wall 730 and the bottom wall 780 and the vacuum heat insulating material 400 The length overlapping with, or the length overlapping the convex portion formed at the corner portion between the back wall 730 and the partition wall 24, or the convex portion formed at the corner portion between the side wall 790 and the ceiling wall 740 and the vacuum heat insulating. As for the length of the overlap with the material 400, the lower limit is preferably 30 mm or more (preferably 40 mm or more) and the upper limit is preferably 200 mm or less (preferably 180 mm or less) as described above.

以上のように、強度部である凸部450の一端が真空断熱材400に重なる部分の幅方向の長さXを所定範囲内に設定しているので、箱体強度と断熱性能を損なうことなく左右の凸部450間に形成される凹部440、あるいは凸部450と第2の凹部との間に形成される空間770(突起部910と凸部450との間の空間770)を大きくできる。したがって、所定の箱体強度及び所定の断熱性能を確保した上で、庫内容積を増大でき、食品などの貯蔵品収納空間である空間770を大きくできるので、貯蔵室内の収納容積を大きくでき、ユーザにとって使い勝手の良い冷蔵庫、機器が得られる。 As described above, since the length X in the width direction of the portion where one end of the convex portion 450, which is the strength portion, overlaps with the vacuum heat insulating material 400 is set within a predetermined range, the box body strength and the heat insulating performance are not impaired. The concave portion 440 formed between the left and right convex portions 450, or the space 770 formed between the convex portion 450 and the second concave portion (the space 770 between the convex portion 910 and the convex portion 450) can be increased. Therefore, while ensuring a predetermined box body strength and a predetermined heat insulating performance, the internal volume of the refrigerator can be increased, and the space 770, which is a storage space for stored items such as food, can be increased, so that the storage volume in the storage room can be increased. Refrigerators and equipment that are easy for users to use can be obtained.

本実施の形態では、貯蔵室前面の開閉ドア(たとえば冷蔵室扉7)内にも真空断熱材400が設けられており、扉外郭を形成する扉内板と扉外板に対して接着剤にて直接、真空断熱材400が貼り付けられている。この場合、接着剤として硬質ウレタンを使用してもよい。この場合は、ウレタンは、断熱材として使用されるわけではないので断熱性能が悪くてもよく、接着した時に所定の接着強度を有する所定厚さを有していれば良い。接着剤としての所定厚さは、11mm以下程度、好ましくは6mm以下程度が良く、また、接着剤としての接着力(接着性能)を満足できれば薄ければ薄い方が良く1mm以上、好ましくは3mm以上程度が良い。ここで、冷蔵室扉7の強度(ねじれ強度、曲げ強度など)は真空断熱材400の強度(剛性)で確保しているので、従来のように発泡断熱材で扉強度を確保する必要がないため、接着材にウレタンを使用する場合でも上述したように接着剤として所定厚さ分だけ確保できれば良いので、扉の厚さを薄くできる。したがって、その分、庫内容積を大きくできる。ここで、冷蔵室扉7などの貯蔵室扉7、8、9、10、11の前面にガラス面材を設け、ガラス面材と真空断熱材との間に介在部材として接着剤(たとえば硬質ウレタンフォーム)を使用する場合であっても、接着剤としての所定厚さは、11mm以下程度(たとえば10mmより小さい方が良い)、好ましくは6mm以下程度が良く、また、接着剤としての接着力(接着性能)を満足できれば薄ければ薄い方が良く1mm以上、好ましくは3mm以上程度が良い。 In the present embodiment, the vacuum heat insulating material 400 is also provided in the opening / closing door (for example, the refrigerating room door 7) on the front surface of the storage chamber, and is used as an adhesive for the door inner plate and the door outer plate forming the door outer shell. The vacuum heat insulating material 400 is directly attached. In this case, hard urethane may be used as the adhesive. In this case, urethane is not used as a heat insulating material, so that the heat insulating performance may be poor, and it is sufficient that urethane has a predetermined thickness having a predetermined adhesive strength when bonded. The predetermined thickness of the adhesive is preferably about 11 mm or less, preferably about 6 mm or less, and if the adhesive force (adhesive performance) as an adhesive can be satisfied, the thinner the better, the better 1 mm or more, preferably 3 mm or more. The degree is good. Here, since the strength (torsional strength, bending strength, etc.) of the refrigerating chamber door 7 is secured by the strength (rigidity) of the vacuum heat insulating material 400, it is not necessary to secure the door strength with the foam heat insulating material as in the conventional case. Therefore, even when urethane is used as the adhesive material, the thickness of the door can be reduced because it is sufficient to secure a predetermined thickness as the adhesive as described above. Therefore, the internal volume of the refrigerator can be increased accordingly. Here, a glass surface material is provided on the front surface of the storage room doors 7, 8, 9, 10, 11 such as the refrigerating room door 7, and an adhesive (for example, hard urethane) is provided as an intervening member between the glass surface material and the vacuum heat insulating material. Even when foam) is used, the predetermined thickness as an adhesive is preferably about 11 mm or less (for example, it is better to be smaller than 10 mm), preferably about 6 mm or less, and the adhesive strength as an adhesive (for example, is better). If the adhesive performance) can be satisfied, the thinner the better, the better 1 mm or more, preferably about 3 mm or more.

ここで、図4〜図7の場合と同様に、少なくとも貯蔵室内の背面の一部あるいは第2の凹部441を覆うカバー部材である第1風路部品762は、冷気風路760の少なくとも一部を形成あるいは冷気風路760の少なくとも一部を覆う風路カバー部と、風路カバー部から幅方向(左右方向あるいは側壁790方向)に延出し背面壁730あるいは凹部440の少なくとも一部を覆う背面カバー部と、背面カバー部に接続あるいは背面カバー部に一体に形成されて側壁790の少なくとも一部を覆う側面カバー部と、を備えるようにしてもよい。そして、背面カバー部を背面壁730あるいは凹部440あるいは凸部450を形成する内箱750に固定あるいは保持するなどして取り付けるようにしても良い。あるいは、側面カバー部を側壁790あるいは凸部450を形成する内箱750に固定あるいは保持するなどして取り付けるようにしても良い。このようにすると、カバーである第1風路部品762によって、背面壁730や側壁790や凸部450の少なくとも一部を覆うことができるので、意匠性が向上し、組立性も向上する。 Here, as in the case of FIGS. 4 to 7, at least a part of the back surface of the storage chamber or the first air passage component 762 which is a cover member covering the second recess 441 is at least a part of the cold air passage 760. The air passage cover portion that forms or covers at least a part of the cold air passage 760, and the back surface that extends from the air passage cover portion in the width direction (left-right direction or side wall 790 direction) and covers at least a part of the back wall 730 or the recess 440. The cover portion may be provided with a side cover portion connected to the back cover portion or integrally formed with the back cover portion to cover at least a part of the side wall 790. Then, the back cover portion may be attached by being fixed or held to the back wall 730 or the inner box 750 forming the concave portion 440 or the convex portion 450. Alternatively, the side cover portion may be attached by being fixed or held to the inner box 750 forming the side wall 790 or the convex portion 450. In this way, the first air passage component 762, which is a cover, can cover at least a part of the back wall 730, the side wall 790, and the convex portion 450, so that the design is improved and the assembling property is also improved.

また、少なくとも貯蔵室内の背面の一部を覆うカバー部材である第1風路部品762は、冷気風路760の少なくとも一部を形成あるいは冷気風路760の少なくとも一部を覆う風路カバー部と、風路カバー部から幅方向(左右方向あるいは側壁790方向)に延出し背面壁730あるいは凹部440の少なくとも一部を覆う背面カバー部と、風路カバー部と接続あるいは風路カバー部と一体に形成されて背面壁730の上下方向に設けられる仕切壁24(天井壁740あるいは底面壁780を含む)の少なくとも一部を覆うように背面壁730の上端部あるいは下端部から前方に延出して設けられる上下壁カバー部と、を備えるようにしてもよい。そして、背面カバー部を背面壁730あるいは凹部440あるいは凸部450を形成する内箱750に固定あるいは保持するなどして取り付けるようにしても良い。あるいは、上下壁カバー部を背面壁730の上下方向に設けられる仕切壁24(天井壁740あるいは底面壁780を含む)を形成する内箱750に固定あるいは保持するなどして取り付けるようにしても良い。このようにすると、カバーである第1風路部品762によって、背面壁730や仕切壁24や天井壁730や底面壁780の少なくとも一部を覆うことができるので、意匠性が向上し、組立性も向上する。 Further, the first air passage component 762, which is a cover member that covers at least a part of the back surface of the storage chamber, forms at least a part of the cold air passage 760 or has an air passage cover portion that covers at least a part of the cold air passage 760. , The back cover portion that extends from the air passage cover portion in the width direction (horizontal direction or the side wall 790 direction) and covers at least a part of the back wall 730 or the recess 440, and is connected to the air passage cover portion or integrally with the air passage cover portion. Provided so as to extend forward from the upper end or the lower end of the back wall 730 so as to cover at least a part of the partition wall 24 (including the ceiling wall 740 or the bottom wall 780) formed and provided in the vertical direction of the back wall 730. The upper and lower wall covers may be provided. Then, the back cover portion may be attached by being fixed or held to the back wall 730 or the inner box 750 forming the concave portion 440 or the convex portion 450. Alternatively, the upper and lower wall cover portions may be attached by being fixed or held to the inner box 750 forming the partition wall 24 (including the ceiling wall 740 or the bottom wall 780) provided in the vertical direction of the back wall 730. .. In this way, the first air passage component 762, which is a cover, can cover at least a part of the back wall 730, the partition wall 24, the ceiling wall 730, and the bottom wall 780, so that the design is improved and the assembling property is improved. Also improves.

図9、図10において、冷蔵庫1は最上段に観音開き式(あるいは開閉式)の貯蔵室である冷蔵室2を備えている。冷蔵室2の下には貯蔵室である製氷室3及び切替室4が左右に並列に配設されている。冷蔵庫1の最下段には貯蔵室である野菜室5を備え、野菜室5の上には貯蔵室である冷凍室6を備えている。この冷凍室6は、左右に並列に配設された製氷室3と切替室4の下方で、野菜室5の上方に設けられており、いわゆる野菜室5と左右に並列に配設された製氷室3及び切替室4との間に冷凍室6が配設されるミッドフリーザータイプの貯蔵室配置となっている。 In FIGS. 9 and 10, the refrigerator 1 is provided with a refrigerating room 2 which is a double-door (or openable) storage room at the uppermost stage. Below the refrigerating chamber 2, an ice making chamber 3 and a switching chamber 4, which are storage chambers, are arranged side by side in parallel on the left and right. A vegetable compartment 5 which is a storage room is provided at the bottom of the refrigerator 1, and a freezing chamber 6 which is a storage chamber is provided above the vegetable compartment 5. The freezing chamber 6 is provided below the ice making chamber 3 and the switching chamber 4 arranged in parallel on the left and right, and above the vegetable chamber 5, and is provided in parallel with the so-called vegetable chamber 5 on the left and right. The freezer chamber 6 is arranged between the chamber 3 and the switching chamber 4 in a mid-freezer type storage chamber arrangement.

貯蔵室である冷蔵室2内は、貯蔵品(食料品や飲料品等)を収納するための貯蔵品収納空間21を有し、この貯蔵品収納空間21には、貯蔵品を載置する複数の樹脂製やガラス製の棚80が設けられている。この貯蔵品収納空間21の下方(最下段の庫内棚の下部)には、略密閉構造の容器2X、2Yが設けられており、+3℃〜−3℃程度のチルド温度帯に制御されるチルド室2Y、あるいは、+3℃〜+5℃程度に維持される野菜室温度帯に制御される野菜室2Xとして使用される。この略密閉構造の容器2X、2Yは、たまごを保存する卵室として使用しても良い。また、この略密閉構造の容器2X、2Yは、たとえば引出式構造を有しており、容器を引き出すことで貯蔵品の出し入れが行える。 The refrigerating room 2 which is a storage room has a storage product storage space 21 for storing stored goods (food, beverages, etc.), and a plurality of stored goods are placed in the stored goods storage space 21. A resin or glass shelf 80 is provided. Containers 2X and 2Y having a substantially sealed structure are provided below the storage space 21 (lower part of the inner shelf at the bottom), and are controlled in a chilled temperature range of about + 3 ° C to -3 ° C. It is used as a chilled chamber 2Y or a vegetable chamber 2X controlled in a vegetable chamber temperature range maintained at about + 3 ° C to + 5 ° C. The containers 2X and 2Y having a substantially sealed structure may be used as an egg chamber for storing eggs. Further, the containers 2X and 2Y having a substantially sealed structure have, for example, a drawer type structure, and the stored items can be taken in and out by pulling out the container.

略密閉構造の容器2X、2Yの構造としては、上面が開口した上面開口部を有する容器の上面開口部に着脱式のフタを設けるようにすれば略密閉構造の容器を構成できる。このフタは容器の方に設けても良いし、容器上部に設けられている棚80や仕切壁に設けても良いし、容器上部の棚や仕切壁のそのものをフタと兼用しても良い。 As the structure of the containers 2X and 2Y having a substantially sealed structure, a container having a substantially sealed structure can be constructed by providing a removable lid on the upper surface opening of the container having the upper surface opening with an open upper surface. This lid may be provided on the container side, on the shelf 80 or partition wall provided on the upper part of the container, or the shelf or partition wall itself on the upper part of the container may also be used as the lid.

本実施の形態では、野菜室5と左右に並列に配設された製氷室3及び切替室4との間に冷凍室6を配設するミッドフリーザータイプであり、低温室(例えば、製氷室3、切替室4、冷凍室6)が近接するため低温室間の断熱材が不要であり、また、熱漏れも少ないので省エネルギーで低コストの冷蔵庫が提供できる。 The present embodiment is a mid-freezer type in which the freezing chamber 6 is arranged between the vegetable chamber 5 and the ice making chamber 3 and the switching chamber 4 arranged in parallel on the left and right, and is a low temperature chamber (for example, the ice making chamber 3). Since the switching chamber 4 and the freezing chamber 6) are close to each other, there is no need for a heat insulating material between the low temperature chambers, and since there is little heat leakage, an energy-saving and low-cost refrigerator can be provided.

また、図1と同様に、貯蔵室である冷蔵室2の正面側開口部は、自在に開放、閉塞することができる観音開き式の冷蔵室扉7が設けられており、この冷蔵室扉7は、冷蔵室扉左7A、冷蔵室扉右7Bの2つにより観音式扉を構成している。もちろん、観音式扉ではなく、1枚式の回転式扉でもよい。他の貯蔵室である製氷室3、切替室4、野菜室5、冷凍室6には、製氷室3の開口部を自在に開口・閉塞することができる引出式の製氷室扉8、切替室4の開口部を自在に開放・閉塞することができる引出式の切替室扉9、野菜室5の開口部を自在に開放・閉塞することができる引出式の野菜室扉10、冷凍室6の開口部を自在に開放・閉塞することができる引出式の冷凍室扉11がそれぞれ設けられている。 Further, as in FIG. 1, the front side opening of the refrigerating room 2 which is a storage room is provided with a double-door type refrigerating room door 7 which can be freely opened and closed, and the refrigerating room door 7 is provided. , The refrigerating room door left 7A and the refrigerating room door right 7B make up a double door. Of course, instead of the Kannon type door, a single rotary door may be used. The other storage chambers, the ice making chamber 3, the switching chamber 4, the vegetable compartment 5, and the freezing chamber 6, have a drawer-type ice making chamber door 8 and a switching chamber that can freely open and close the opening of the ice making chamber 3. A drawer-type switching chamber door 9 that can freely open and close the opening of 4, a drawer-type vegetable compartment door 10 that can freely open and close the opening of the vegetable compartment 5, and a freezing chamber 6. Draw-out type freezer doors 11 that can freely open and close the openings are provided.

また、貯蔵室である冷蔵室2の左右の冷蔵室扉左7A、冷蔵室扉右7Bのいずれかには、貯蔵室内の温度設定などを行う操作スイッチ(部屋選択スイッチ60a、温度帯切替スイッチ60b、瞬冷凍スイッチ60c、製氷切替スイッチ60d、ミスト供給スイッチ60e、その他の機能スイッチ(たとえばエコモードスイッチや省エネアドバイスを行うアドバイススイッチ、インターネットに接続や設定を行うインターネット設定・接続スイッチするなど))や庫内温度や設定温度などの温度情報の表示などを行う操作パネル60が設けられており、操作スイッチの操作情報や液晶表示部の表示情報や貯蔵室内の温度情報などが冷蔵庫背面上部(冷蔵室背面壁)あるいは冷蔵庫天井面(たとえば冷蔵室上面壁、天井壁)の制御基板室31に設けられたマイコンなどを実装した制御基板で構成される制御装置30によって制御される。 Further, on any of the left and right refrigerating room doors 7A and the refrigerating room door right 7B of the refrigerating room 2, which is a storage room, there are operation switches (room selection switch 60a, temperature zone switching switch 60b) for setting the temperature of the storage room. , Instant refrigerator switch 60c, ice making changeover switch 60d, mist supply switch 60e, other function switches (for example, eco-mode switch, advice switch for energy saving advice, internet setting / connection switch for connecting to the Internet, etc.) An operation panel 60 for displaying temperature information such as the temperature inside the refrigerator and the set temperature is provided, and the operation information of the operation switch, the display information of the liquid crystal display, the temperature information in the storage room, etc. are displayed in the upper part of the back of the refrigerator (refrigerator room). It is controlled by a control device 30 composed of a control board on which a microcomputer or the like provided in the control board room 31 on the ceiling surface of the refrigerator (for example, the upper wall or the ceiling wall of the refrigerator compartment) is mounted.

また、制御装置30はアンテナなどの送受信手段を有しており、送受信手段は制御装置(制御基板)30あるいは制御基板室31内あるいは冷蔵庫1の上部(制御装置30の近傍あるいは制御基板室31内が好ましい)あるいは冷蔵庫1の背面(制御装置30の近傍あるいは制御基板室31内が好ましい)あるいは冷蔵庫1の側面(制御装置30の近傍あるいは制御基板室31内が好ましい)に設けられている。したがって、制御装置30は、赤外線接続あるいは無線接続あるいは有線接続(電灯線接続やインターネット回線接続やLAN(ローカルエリアネットワーク)接続やUSB(ユニバーサル・シリアル・バス)接続など)にて冷蔵庫1の外部に配置される外部機器と機器情報を送受信できる。ここで冷蔵庫1の外部機器とは、外部サーバや携帯端末(携帯電話や携帯情報端末や携帯パソコンなど)や外部の他機器(エアコンやテレビや他冷蔵庫や給湯機や照明や洗濯機など)などである。また、機器情報とは、冷蔵庫1の機器情報(たとえば、庫内温度や消費電力や運転履歴や積算運転時間や圧縮機の運転情報(オン、オフ、回転数、電流情報など))や冷蔵庫1以外の情報(たとえば天気予報や災害情報(地震情報含む))やネットワークに接続された他機器の運転状況や各機器の消費電力量の情報などである。 Further, the control device 30 has a transmission / reception means such as an antenna, and the transmission / reception means is in the control device (control board) 30 or the control board room 31 or the upper part of the refrigerator 1 (near the control device 30 or in the control board room 31). (Preferably), the back surface of the refrigerator 1 (preferably in the vicinity of the control device 30 or in the control board room 31), or the side surface of the refrigerator 1 (preferably in the vicinity of the control device 30 or in the control board room 31). Therefore, the control device 30 is connected to the outside of the refrigerator 1 by infrared connection, wireless connection, or wired connection (light line connection, Internet line connection, LAN (local area network) connection, USB (universal serial bus) connection, etc.). Can send and receive device information to and from the external device to be placed. Here, the external devices of the refrigerator 1 include external servers, mobile terminals (mobile phones, mobile information terminals, mobile computers, etc.) and other external devices (air conditioners, TVs, other refrigerators, water heaters, lights, washing machines, etc.). Is. The device information includes the device information of the refrigerator 1 (for example, the temperature inside the refrigerator, the power consumption, the operation history, the integrated operation time, the operation information of the compressor (on, off, the number of rotations, the current information, etc.)) and the refrigerator 1. Information other than (for example, weather forecast and disaster information (including earthquake information)), operating status of other devices connected to the network, and information on the power consumption of each device.

ここで、冷蔵庫1が運転時間を計測する時間計測手段と計測した運転時間あるいは積算運転時間を記憶する記憶手段を備え、機器情報として予め定められた標準使用期間(標準使用時間)と積算運転時間の情報を外部サーバ(たとえばクラウドサーバなど)に送信することで、標準使用期間に対する実際の積算運転期間(積算運転時間)の割合(比率)や、標準使用期間に対して実際の積算運転期間(積算運転時間)が予め定められた所定の割合を越えた場合に買い替えのメッセージを受信して操作パネル60や携帯端末などに表示させたり音声でアナウンスさせることもできる。また、外部機器に対しても、標準使用期間に対する実際の積算運転期間(積算運転時間)の割合(比率)や、標準使用期間に対して実際の積算運転期間(積算運転時間)が予め定められた所定の割合を越えた場合に買い替えのメッセージを受信して操作パネル60や携帯端末などに表示させたり音声でアナウンスさせることもできる。 Here, the refrigerator 1 is provided with a time measuring means for measuring the operating time and a storage means for storing the measured operating time or the integrated operating time, and has a predetermined standard usage period (standard usage time) and integrated operating time as device information. By transmitting this information to an external server (for example, a cloud server), the ratio (ratio) of the actual cumulative operation period (integrated operation time) to the standard usage period and the actual cumulative operation period (ratio) to the standard usage period ( When the total operation time) exceeds a predetermined ratio, a replacement message can be received and displayed on the operation panel 60, a mobile terminal, or the like, or can be announced by voice. Also, for external devices, the ratio (ratio) of the actual integrated operation period (integrated operation time) to the standard usage period and the actual integrated operation period (integrated operation time) to the standard usage period are predetermined. When the ratio exceeds a predetermined ratio, a replacement message can be received and displayed on the operation panel 60, a mobile terminal, or the like, or can be announced by voice.

また、送受信手段を有しているため、外部の環境情報(天気予報や災害情報や地震情報や気温情報など)や外部機器情報(外部の他機器の運転状況や消費電力情報など)や電力の送受信が行えるため、サーバや外部機器からの情報を受信して省エネ制御を行ったり、他機器の情報を表示したりできる。また、冷蔵庫1の前面の開閉扉に設けられる操作パネル60あるいは外部の携帯端末を操作することで、冷蔵庫1の情報を外部サーバや他機器に送信したり、外部サーバや他機器からの情報を受信して操作パネル60や携帯端末などに表示させたり冷蔵庫などの機器を動作させたりすることができる。 In addition, because it has a means of transmitting and receiving, external environmental information (weather forecast, disaster information, earthquake information, temperature information, etc.), external device information (operating status of other external devices, power consumption information, etc.) and power consumption Since it can send and receive, it can receive information from servers and external devices to perform energy-saving control and display information on other devices. Further, by operating the operation panel 60 provided on the opening / closing door on the front surface of the refrigerator 1 or an external mobile terminal, the information of the refrigerator 1 can be transmitted to an external server or another device, or the information from the external server or another device can be transmitted. It can be received and displayed on the operation panel 60, a mobile terminal, or the like, or a device such as a refrigerator can be operated.

また、冷蔵庫やショーケースなどの機器の場合には、貯蔵室内を所定温度(たとえば冷凍室であれば−18℃)まで冷却して圧縮機12あるいは冷気循環用ファン14の運転を停止すると貯蔵室内温度は時間とともに上昇する。したがって、時間計測手段と温度計測手段を備えていれば、予め、工場出荷時などユーザが使用開始する前に貯蔵室内を所定の温度まで冷却した後に圧縮機12あるいは冷気循環用ファン14の運転を停止した状態、あるいはダンパ15、55を閉にした状態など所定の条件での経過時間に対する貯蔵室内温度の温度上昇度合い、あるいは計測開始時の貯蔵室内温度(所定温度)と所定時間(たとえば10分)後の貯蔵室内温度の差分などの貯蔵室内温度情報を初期の温度情報として制御装置30の記憶手段に記憶させておき、制御装置30の記憶手段から外部のサーバなどに機器情報として送信して記憶させておくようにすれば、断熱性能の劣化の判断や異常の判断が行え、ユーザに買い替えを促すメッセージを携帯端末や操作パネル60内の表示装置などに表示させることが可能となる。 In the case of equipment such as refrigerators and showcases, the storage chamber is cooled to a predetermined temperature (for example, -18 ° C in the case of a freezer) and the compressor 12 or the cold air circulation fan 14 is stopped. The temperature rises over time. Therefore, if the time measuring means and the temperature measuring means are provided, the compressor 12 or the cold air circulation fan 14 is operated after cooling the storage chamber to a predetermined temperature in advance before the user starts using the storage room, such as at the time of shipment from the factory. The degree of temperature rise of the storage room temperature with respect to the elapsed time under predetermined conditions such as the stopped state or the state where the dampers 15 and 55 are closed, or the storage room temperature (predetermined temperature) and the predetermined time (for example, 10 minutes) at the start of measurement. ) The storage room temperature information such as the difference in the temperature in the storage room after that is stored in the storage means of the control device 30 as the initial temperature information, and is transmitted from the storage means of the control device 30 to an external server or the like as device information. If it is stored, it is possible to determine the deterioration of the heat insulating performance and the abnormality, and it is possible to display a message prompting the user for replacement on a mobile terminal, a display device in the operation panel 60, or the like.

すなわち、予め、工場出荷時などユーザが使用開始する前に貯蔵室内を所定の温度まで冷却した後に圧縮機12あるいは冷気循環用ファン14の運転を停止した状態、あるいは切替室ダンパ15、55を閉にした状態など所定の条件での経過時間に対する貯蔵室内温度の温度上昇度合い(初期温度上昇度合い)、あるいは計測開始時の貯蔵室内温度(所定温度)と所定時間(たとえば10分)後の貯蔵室内温度との差分(初期温度差分)などの貯蔵室内温度情報を貯蔵室ごとの初期温度情報として制御装置30の記憶手段に記憶させておき、ユーザが使用開始した後にサーバなど外部機器に機器情報として送信して記憶させておく。そして定期的に初期と同条件で温度上昇度合い、あるいは貯蔵室内温度の差分を計測して、機器情報として外部のサーバなどの外部機器に送信してサーバなどの外部機器にて初期温度情報と比較して許容範囲内であれば「異常なし」を表す信号を冷蔵庫などの機器本体が受信する。初期温度情報と比較して許容範囲外であれば「異常あり」を表す信号を冷蔵庫などの機器本体あるいは携帯端末が受信し、信号を受信した機器本体あるいは携帯端末は断熱性能劣化などの異常のメッセージあるいは買い替えを促すメッセージなどを表示するようにすれば良い。 That is, in a state where the operation of the compressor 12 or the cold air circulation fan 14 is stopped after the storage chamber is cooled to a predetermined temperature before the user starts using the product, such as at the time of shipment from the factory, or the switching chamber dampers 15 and 55 are closed. The degree of temperature rise in the storage chamber temperature (initial temperature rise degree) with respect to the elapsed time under predetermined conditions such as the state in which the temperature is set, or the storage chamber temperature (predetermined temperature) at the start of measurement and the storage chamber after a predetermined time (for example, 10 minutes). Storage room temperature information such as the difference from the temperature (initial temperature difference) is stored in the storage means of the control device 30 as the initial temperature information for each storage room, and after the user starts using it, it is stored in an external device such as a server as device information. Send and memorize. Then, periodically measure the degree of temperature rise or the difference in the temperature inside the storage room under the same conditions as the initial temperature, send it as device information to an external device such as an external server, and compare it with the initial temperature information at the external device such as the server. If it is within the permissible range, the device body such as a refrigerator receives a signal indicating "no abnormality". If it is out of the permissible range compared to the initial temperature information, the device body or mobile terminal such as a refrigerator receives a signal indicating "abnormality", and the device body or mobile terminal that receives the signal has an abnormality such as deterioration of heat insulation performance. A message or a message urging a replacement may be displayed.

また、冷蔵庫1の前面の開閉扉に設けられる操作パネル60あるいは外部の携帯端末を操作したりあるいは冷蔵庫1の制御装置30が自動で、外部機器に電力を供給したり、あるいは外部電源(たとえば太陽光発電装置や充電池や燃料電池など電力の供給が可能な機器)からの電力の供給や外部機器から電力の供給に切り替えて電力の供給を受けるようにすることも可能である。特に停電時などで冷蔵庫1への電力の供給が停止した場合でも、携帯端末やパソコンなどを操作することで電力の供給元を電灯線から外部電源に切り替えることで冷蔵庫1への電力の供給を行うことが可能になるので、携帯電話や携帯端末等の携帯機器やパソコン等が接続できる接続端子などを冷蔵庫1(あるいはネットワークに接続された機器)が備えていれば、携帯電話や携帯端末等の携帯機器やパソコン等の充電ができ、また、携帯電話や携帯端末等の携帯機器やパソコン等が有する他機器や外部の情報を表示したり操作したりすることも可能となる。
また、冷蔵庫1の内箱750と外箱710から形成され前面に開口部が設けられた収納空間(たとえば各貯蔵室2、3、4、5、6など)を有する本体部と、収納空間の前面開口部を開閉自在に閉塞する扉(たとえば、7、8、9、10、11など)とを備えた冷蔵庫の場合、本体部と扉にそれぞれ温度情報や機器制御情報などの情報の送受信や電力搬送が可能な送受信手段を設け、本体部と扉とを無線や赤外線で接続して情報や電力の送受信可能にすれば、扉を本体部と有線で接続する必要がなくなるので、間口の狭い入口(たとえば間口の小さな住宅の玄関など)を通過して冷蔵庫を室内等に搬送する際に、扉を本体部から取り外して搬送することが可能になるので、間口の狭い住宅への設置が可能しなる。また、工場出荷時から、扉と本体部を別々に梱包して搬送することも可能になり、また、重量が軽くなるので搬送しやすくなる。また、扉が本体部と別体であっても、扉と本体部との間では電力の送電、受電が可能なので、扉の前面に設けられる操作パネルの操作電源も得られ、さらに扉と本体部との間では機器情報や、機器の操作信号や制御信号の送受信も可能なので、扉の操作パネルを操作した場合には、本体部の機器(圧縮機12やファン14やダンパ15、55など)の運転、停止、その他の制御動作が可能となる。
Further, the operation panel 60 provided on the opening / closing door on the front surface of the refrigerator 1 or an external mobile terminal can be operated, or the control device 30 of the refrigerator 1 automatically supplies electric power to an external device, or an external power source (for example, the sun). It is also possible to switch to the supply of electric power from an optical power generation device, a rechargeable battery, a fuel cell, or other device capable of supplying electric power) or from an external device to receive the electric power. In particular, even if the power supply to the refrigerator 1 is stopped due to a power failure, etc., the power supply to the refrigerator 1 can be supplied by switching the power supply source from the power line to the external power supply by operating the mobile terminal or personal computer. If the refrigerator 1 (or a device connected to the network) is equipped with a connection terminal to which a mobile device such as a mobile phone or a mobile terminal or a personal computer can be connected, the mobile phone or the mobile terminal or the like can be used. It is possible to charge mobile devices and personal computers, and to display and operate other devices and external information possessed by mobile devices such as mobile phones and mobile terminals and personal computers.
Further, the main body having a storage space (for example, each storage room 2, 3, 4, 5, 6) formed from the inner box 750 and the outer box 710 of the refrigerator 1 and provided with an opening on the front surface, and the storage space. In the case of a refrigerator equipped with a door that can open and close the front opening (for example, 7, 8, 9, 10, 11, etc.), information such as temperature information and device control information can be sent and received to the main body and the door, respectively. If a transmission / reception means capable of transporting power is provided and the main body and the door are connected wirelessly or infraredly to enable transmission / reception of information and power, the door does not need to be connected to the main body by wire, so the frontage is narrow. When transporting the refrigerator indoors through the entrance (for example, the entrance of a house with a small frontage), the door can be removed from the main body and transported, so it can be installed in a house with a narrow frontage. It bends. In addition, the door and the main body can be separately packed and transported from the time of shipment from the factory, and the weight is reduced, which facilitates transportation. In addition, even if the door is separate from the main body, power can be transmitted and received between the door and the main body, so the operation power supply for the operation panel provided on the front of the door can be obtained, and the door and the main body can be obtained. Since it is possible to send and receive device information and device operation signals and control signals to and from the unit, when the door operation panel is operated, the device in the main unit (compressor 12, fan 14, dampers 15, 55, etc.) ) Can be started, stopped, and other control operations.

冷蔵庫1の背面最下部(あるいは背面上部)に設けられている機械室1Aには圧縮機12が配置されている。冷蔵庫1は、冷凍サイクルを備えており、圧縮機12は冷凍サイクルを構成する1部品であり機械室1Aに配置されており、冷凍サイクル内の冷媒を圧縮する作用を有する。圧縮機12で圧縮された冷媒は凝縮器(図示せず)において凝縮される。凝縮された状態の冷媒は毛細管(図示せず)や膨張弁(図示せず)等の減圧装置において減圧される。冷却器13は、冷蔵庫の冷凍サイクルを構成する1部品であり、冷蔵室2、製氷室3、切替室4、野菜室5あるいは冷凍室6の背面壁内に形成されている冷却器室131に配置されている。減圧装置にて減圧された冷媒は、冷却器13において蒸発し、蒸発時の吸熱作用により冷却器13周辺の気体は冷却される。冷気循環用ファン(庫内ファン)14は、冷却器室131内で冷却器13の近傍に配置されており、冷却器13周辺で冷却された冷気を冷気風路(例えば、冷気風路16や冷蔵室冷気風路50、760など)を介して冷蔵庫1の複数の貯蔵室である各室(冷蔵室2、製氷室3、切替室4、野菜室5、冷凍室6)へと送風するためのものである。 The compressor 12 is arranged in the machine room 1A provided at the lowermost part of the back surface (or the upper part of the back surface) of the refrigerator 1. The refrigerator 1 includes a refrigerating cycle, and the compressor 12 is a component constituting the refrigerating cycle and is arranged in the machine room 1A, and has an action of compressing the refrigerant in the refrigerating cycle. The refrigerant compressed by the compressor 12 is condensed in a condenser (not shown). The condensed refrigerant is depressurized in a pressure reducing device such as a capillary tube (not shown) or an expansion valve (not shown). The cooler 13 is one component that constitutes the freezing cycle of the refrigerator, and is formed in the refrigerator chamber 131 formed in the back wall of the refrigerating chamber 2, the ice making chamber 3, the switching chamber 4, the vegetable chamber 5, or the freezing chamber 6. Have been placed. The refrigerant decompressed by the decompression device evaporates in the cooler 13, and the gas around the cooler 13 is cooled by the heat absorbing action at the time of evaporation. The cold air circulation fan (internal fan) 14 is arranged in the vicinity of the cooler 13 in the cooler chamber 131, and the cold air cooled around the cooler 13 is passed through the cold air passage (for example, the cold air passage 16 or the like). Refrigerator room To blow air to each of the multiple storage rooms (refrigerator room 2, ice making room 3, switching room 4, vegetable room 5, freezer room 6) of the refrigerator 1 via the cold air passages 50, 760, etc.) belongs to.

また、図1と同様に冷却器室131内に設けられている冷却器13の下方には冷却器13の除霜を行う除霜手段である除霜用ヒータ150が設けられており、冷却器13と除霜用ヒータ150の間で除霜用ヒータ150の上部には、冷却器13より落下してきた除霜水が直接除霜用ヒータ150に当たらない様に、ヒータルーフ151が設けられている。 Further, as in FIG. 1, a defrosting heater 150, which is a defrosting means for defrosting the cooler 13, is provided below the cooler 13 provided in the cooler chamber 131. A heater roof 151 is provided above the defrosting heater 150 between the defrosting heater 150 and the defrosting heater 150 so that the defrosting water that has fallen from the cooler 13 does not directly hit the defrosting heater 150. ..

ここで、除霜用ヒータ150は、冷却器13に一体に組み込まれたかち込みタイプのヒータであっても良い。また、ガラス管タイプヒータとかち込みタイプヒータを併用しても良い。冷却器13で生成される除霜水あるいはヒータルーフ151に落下した除霜水は、冷却器室131内で落下して冷却器室131の下方に設けられている除霜水排出口155より冷蔵庫外部(たとえば機械室1Aに設けられている蒸発皿等)に排出される。 Here, the defrosting heater 150 may be a built-in type heater integrally incorporated in the cooler 13. Further, a glass tube type heater and a built-in type heater may be used in combination. The defrost water generated by the cooler 13 or the defrost water that has fallen on the heater roof 151 falls inside the cooler room 131 and is outside the refrigerator from the defrost water discharge port 155 provided below the cooler room 131. It is discharged to (for example, an evaporating dish provided in the machine room 1A).

風量調整手段である切替室ダンパ15は、冷気循環用ファン14により貯蔵室である切替室4に送風される冷気の冷気量を調整し、切替室4内の温度を所定温度に制御したり、切替室4の設定温度を切り替えたりするためのものである。冷却器13で冷却された冷気は冷気風路16を通って、切替室4内に送風される。また、この冷気風路16は、切替室ダンパ15の下流に配されている。 The switching chamber damper 15 which is an air volume adjusting means adjusts the cold air amount of the cold air blown to the switching chamber 4 which is a storage chamber by the cold air circulation fan 14, and controls the temperature in the switching chamber 4 to a predetermined temperature. This is for switching the set temperature of the switching chamber 4. The cold air cooled by the cooler 13 is blown into the switching chamber 4 through the cold air passage 16. Further, the cold air passage 16 is arranged downstream of the switching chamber damper 15.

また、風量調整手段である冷蔵室ダンパ55も、冷気循環用ファン14により貯蔵室である冷蔵室2に送風される冷気の冷気量を調整し、冷蔵室2内の温度を所定温度に制御したり、冷蔵室2の設定温度を変更したりするためのものである。冷却器13で冷却された冷気が冷気風路16、冷気風路50、760を通って、冷蔵室2内に送風される。 Further, the refrigerating chamber damper 55, which is an air volume adjusting means, also adjusts the amount of cold air blown to the refrigerating chamber 2 which is a storage chamber by the cold air circulation fan 14, and controls the temperature in the refrigerating chamber 2 to a predetermined temperature. Or, it is for changing the set temperature of the refrigerating room 2. The cold air cooled by the cooler 13 is blown into the refrigerating chamber 2 through the cold air passages 16, the cold air passages 50, and 760.

貯蔵室である、例えば切替室4は、貯蔵室内の温度を冷凍温度帯(−17℃以下)から野菜室温度帯(3〜10℃)までの間で複数の段階から選択可能な部屋(貯蔵室)であり、冷蔵庫1の冷蔵室扉左7A、冷蔵室扉右7Bのいずれかに設置した操作パネル60あるいは外部の携帯端末などを操作することで貯蔵室内の温度の選択や切り替えを行う。 The storage room, for example, the switching room 4, is a room (storage) in which the temperature of the storage room can be selected from a plurality of stages from the freezing temperature range (-17 ° C. or lower) to the vegetable room temperature range (3 to 10 ° C.). Room), and the temperature in the storage room can be selected or switched by operating the operation panel 60 installed on either the refrigerator 1 door left 7A or the refrigerator door right 7B, or an external mobile terminal.

また、切替室4の、例えば奥側壁面には、切替室4内の空気温度を検知するための第1の温度検出手段である切替室サーミスタ19(図3と同等)が設置されており、切替室4の例えば天上面(中央部、前面部、あるいは後面部など)には貯蔵室である切替室4内に投入された貯蔵物の表面温度を直接的に検出するための第2の温度検出手段であるサーモパイル22(図3と同等、あるいは赤外線センサ)を設置されている。第1の温度検出手段である切替室サーミスタ19の検出温度(あるいはサーモパイル22の検出温度)により切替室ダンパ15を開・閉することで、切替室4の温度が選択された温度帯になるように調整したり、設定された温度範囲内に入るように制御装置30にて制御される。また、第2の温度検出手段であるサーモパイル22にて切替室4内の貯蔵物である食品の温度を直接検出できるようにしている。 Further, on the back side wall surface of the switching chamber 4, for example, a switching chamber thermistor 19 (equivalent to FIG. 3), which is a first temperature detecting means for detecting the air temperature in the switching chamber 4, is installed. For example, on the top surface (central portion, front portion, rear surface portion, etc.) of the switching chamber 4, a second temperature for directly detecting the surface temperature of the stored material put into the switching chamber 4, which is a storage chamber, is used. A thermopile 22 (equivalent to FIG. 3 or an infrared sensor), which is a detection means, is installed. By opening and closing the switching chamber damper 15 according to the detection temperature of the switching chamber thermistor 19 (or the detection temperature of the thermopile 22), which is the first temperature detecting means, the temperature of the switching chamber 4 becomes the selected temperature range. It is controlled by the control device 30 so as to be adjusted to or within the set temperature range. Further, the thermopile 22 which is the second temperature detecting means can directly detect the temperature of the food stored in the switching chamber 4.

(ミスト装置200)
貯蔵室(たとえば冷蔵室2)の奥側(背面側)の仕切壁51(背面壁730、風路カバーである第1風路部品762)、あるいは貯蔵室(たとえば冷蔵室2)内の貯蔵品収納空間21の下部に設けられた略密閉容器(たとえば略密閉容器2Xあるいは2Y)の容器背面壁の後方の仕切壁)、あるいは貯蔵室(たとえば野菜室5)の背面仕切壁または上面仕切壁24には、貯蔵室内にミストを供給するミスト装置200である静電霧化装置200が設けられている。
(Mist device 200)
Partition wall 51 (back wall 730, first air passage component 762 that is an air passage cover) on the back side (rear side) of the storage chamber (for example, refrigerating chamber 2), or stored items in the storage chamber (for example, refrigerating chamber 2) The partition wall behind the container back wall of the substantially closed container (for example, substantially closed container 2X or 2Y) provided at the lower part of the storage space 21, or the back partition wall or the upper partition wall 24 of the storage room (for example, the vegetable compartment 5). Is provided with an electrostatic atomizer 200, which is a mist device 200 that supplies mist to the storage chamber.

ミスト装置200は、少なくとも放電電極を備えており、放電電極に水が供給されるかあるいは放電電極に水を生成させて、放電電極に電圧を印加することで放電電極にミストが生成される。放電電極への水の供給は、放熱部を冷却することで放熱部と熱的に接続された放電電極に結露水を発生させれば良い。あるいは放熱部と放電電極が熱的に接続されていない場合には、放熱部が冷却されることで生成される結露水を放電電極に供給するようにすれば良い。(放電電極が吸熱部を兼ねる構造でも良く、この場合には、放熱部が放電電極と熱的に接続されており、放熱部が冷却されることで、放電電極に結露水を発生させても良い)。または、ミスト装置200は、少なくとも放電電極と放電電極を保持または収納する電極保持部とを備えており、放電電極に電圧を印加することでミストを発生させる。放電電極に水を供給する水供給手段を有する場合には、水供給手段より放電電極に水を供給し放電電極に電圧を印加することでミストを発生させても良い。ここで、水供給手段としては、水を貯留できる貯水タンクや熱交換器(たとえば冷却器13)などであれば良い。水供給手段が冷却器13の場合には、冷却器13で生成される除霜水を冷却器室131内に配置された容器152で受けて溜めて、容器内の水を毛細管現象などによって放電電極に供給するようにすれば良い。ここで、対向電極を備えた方が、ミストの生成が安定するが、対向電極はなくても良く、気中放電でも良い。 The mist device 200 includes at least a discharge electrode, and mist is generated in the discharge electrode by supplying water to the discharge electrode or generating water in the discharge electrode and applying a voltage to the discharge electrode. Water may be supplied to the discharge electrode by cooling the heat radiating portion to generate dew condensation water on the discharge electrode thermally connected to the heat radiating portion. Alternatively, when the heat radiating portion and the discharge electrode are not thermally connected, the condensed water generated by cooling the heat radiating portion may be supplied to the discharge electrode. (A structure in which the discharge electrode also serves as a heat absorbing portion may be used. In this case, the heat radiating portion is thermally connected to the discharge electrode, and the heat radiating portion is cooled so that dew condensation water is generated on the discharge electrode. good). Alternatively, the mist device 200 includes at least a discharge electrode and an electrode holding portion for holding or accommodating the discharge electrode, and generates mist by applying a voltage to the discharge electrode. When a water supply means for supplying water to the discharge electrode is provided, mist may be generated by supplying water to the discharge electrode from the water supply means and applying a voltage to the discharge electrode. Here, the water supply means may be a water storage tank or a heat exchanger (for example, a cooler 13) capable of storing water. When the water supply means is the cooler 13, the defrosted water generated by the cooler 13 is received and stored in the container 152 arranged in the cooler chamber 131, and the water in the container is discharged by a capillary phenomenon or the like. It may be supplied to the electrode. Here, the mist generation is more stable when the counter electrode is provided, but the counter electrode may not be provided, or an air discharge may be used.

ここで、放電電極は、貯蔵室(たとえば冷蔵室2)内に設けられており、ミスト装置200が設けられている仕切壁内に冷気風路が設けられている場合には、放熱部は貯蔵室の仕切壁(背面あるいは上面あるいは下面あるいは側面)に設けられる冷気風路(たとえば冷気風路16、50、760)の風路壁に直接接触するかあるいは熱伝導部材を介して間接接触するか、あるいは風路壁を貫通して冷気風路内に突出するように設ければ、冷気風路内の冷気で放熱部が冷却されて放熱部と熱的に接続されている放電電極に結露水が発生し放電電極に電圧が印加されることでミストが発生するので良い。 Here, the discharge electrode is provided in the storage chamber (for example, the refrigerating chamber 2), and when the cold air passage is provided in the partition wall in which the mist device 200 is provided, the heat radiating portion is stored. Whether to directly contact the air passage wall of the cold air passage (for example, cold air passages 16, 50, 760) provided on the partition wall (back surface or upper surface, lower surface or side surface) of the chamber, or to indirectly contact the air passage wall through a heat conductive member. Or, if it is provided so as to penetrate the air passage wall and protrude into the cold air passage, the heat radiating part is cooled by the cold air in the cold air air passage, and dew condensation water is formed on the discharge electrode thermally connected to the heat radiating part. Is good because mist is generated when a voltage is applied to the discharge electrode.

ミスト装置200が設けられている貯蔵室(上面あるいは下面あるいは側面)の仕切壁に対して貯蔵室(たとえば野菜室5)と反対側に設けられる別の隣接する貯蔵室(例えば冷凍室6)内の冷気を利用して放熱部を冷却しても良い。この場合には、放熱部を貯蔵室側から他の貯蔵室(例えば冷凍室)の底面壁あるいは上面壁に接触するように設ければ良い。(ミスト装置200は、貯蔵室であればどの部屋に設けても良く、冷蔵室2あるいは野菜室5あるいはチルド室2X、2Y等どの貯蔵室や容器内でも良い。ミスト装置200を背面壁に設ける場合は、貯蔵室と冷却器室の間に設けられる背面壁の一部を構成する仕切壁に設けても良い。(温度差を有する2つの隣接する貯蔵室間(たとえば高温側の貯蔵室である野菜室5と隣接する低温側の貯蔵室である冷凍室6の間)の仕切板に高温側の貯蔵室側にミスト装置200を設けて、放熱部の一端(放電電極と反対側の端部)を他の貯蔵室の仕切り板に接触するように設けて低温側の貯蔵室の低温の冷気を利用(高温側の貯蔵室と低温側の貯蔵室の温度差を利用)して放熱部を冷却するように設けてもよい。) In another adjacent storage room (for example, freezing room 6) provided on the opposite side of the storage room (for example, vegetable room 5) with respect to the partition wall of the storage room (upper surface, lower surface or side surface) where the mist device 200 is provided. The heat radiating part may be cooled by using the cold air of. In this case, the heat radiating portion may be provided so as to come into contact with the bottom wall or the top wall of another storage chamber (for example, a freezing chamber) from the storage chamber side. (The mist device 200 may be provided in any storage room as long as it is a storage room, and may be provided in any storage room or container such as the refrigerating room 2, the vegetable room 5, or the chilled room 2X, 2Y. The mist device 200 is provided on the back wall. In this case, it may be provided on a partition wall that forms a part of the back wall provided between the storage chamber and the cooler chamber (for example, in a storage chamber on the high temperature side between two adjacent storage chambers having a temperature difference). A mist device 200 is provided on the storage chamber side on the high temperature side on the partition plate of a vegetable chamber 5 and the freezing chamber 6 which is a storage chamber on the low temperature side adjacent to the vegetable chamber 5, and one end of the heat dissipation part (the end opposite to the discharge electrode). Part) is provided so as to be in contact with the partition plate of another storage room, and the low-temperature cold air of the low-temperature side storage room is used (using the temperature difference between the high-temperature side storage room and the low-temperature side storage room) to dissipate heat. May be provided to cool.)

図10に示すように、真空断熱材400は、冷蔵庫1の背面、上面、底面に設けられている。また、図示していないが、側面、仕切壁24、扉にも真空断熱材400が設けられている。背面に設けられる真空断熱材400は、図8で説明したように少なくとも凹部440の範囲においては、外箱710、内箱750に主目的が接着である接着剤としての発泡断熱材によって直接貼り付けられており、接着剤としては、接着性を有する硬質ウレタンフォームを使用すれば良く、硬質ウレタンフォームを使用すれば、フリーフォーム密度を適切に調整することによって狭い流路(たとえば真空断熱材400と内箱750の間など)内であっても満遍なくムラなく充填できる。また、狭い流路であっても接着できるため接着剤として硬質ウレタンフォームが適しており、硬質ウレタンフォームを接着剤として使用している。 As shown in FIG. 10, the vacuum heat insulating material 400 is provided on the back surface, the upper surface, and the bottom surface of the refrigerator 1. Further, although not shown, the vacuum heat insulating material 400 is also provided on the side surface, the partition wall 24, and the door. As described with reference to FIG. 8, the vacuum heat insulating material 400 provided on the back surface is directly attached to the outer box 710 and the inner box 750 by the foam heat insulating material as an adhesive whose main purpose is adhesion, at least within the range of the recess 440. As the adhesive, a rigid urethane foam having adhesiveness may be used, and if a rigid urethane foam is used, a narrow flow path (for example, the vacuum heat insulating material 400) can be used by appropriately adjusting the free foam density. Even inside the inner box (such as between 750), it can be filled evenly and evenly. Further, hard urethane foam is suitable as an adhesive because it can be adhered even in a narrow flow path, and hard urethane foam is used as an adhesive.

主目的を接着剤として硬質ウレタンフォームを使用する場合には、硬質ウレタンフォームの厚さが薄くなることによる断熱性能の低下について考慮しなくて良くなるため、硬質ウレタンフォームの厚さを所定の厚さ以下にすることができ、壁面(たとえば背面壁)の厚さを薄くでき貯蔵室内の容積を大きくすることが可能となる。硬質ウレタンフォームを接着剤として使用した場合の接着剤としての所定厚さは、11mm以下程度(たとえば10mmより小さい方が良い)、更に好ましくは6mm程度以下が良く、また、接着剤としての接着力(接着性能)を満足できれば薄ければ薄い方が良く所定厚さ(たとえば1mm以上、好ましくは3mm)以上程度が良い。たとえば1mmより薄くすると、真空断熱材400の表面の粗さ(外包材の凹凸)を接着剤の厚さが吸収できずに真空断熱材400の表面の凸部が直接内箱750に接触し接着できない部分が生じ接着強度が低下する可能性がので、硬質ウレタンフォームを接着材として使用する場合には、薄すぎると接着強度が低下する恐れがあるので、所定厚さ以上とした方が良い。 When the rigid urethane foam is used as the main purpose as an adhesive, it is not necessary to consider the deterioration of the heat insulating performance due to the thinning of the rigid urethane foam. Therefore, the thickness of the rigid urethane foam is set to a predetermined thickness. The thickness of the wall surface (for example, the back wall) can be reduced, and the volume of the storage chamber can be increased. When the rigid urethane foam is used as an adhesive, the predetermined thickness as an adhesive is about 11 mm or less (for example, it is better to be smaller than 10 mm), more preferably about 6 mm or less, and the adhesive strength as an adhesive. If (adhesive performance) can be satisfied, the thinner the better, the better the predetermined thickness (for example, 1 mm or more, preferably 3 mm) or more. For example, if it is thinner than 1 mm, the surface roughness of the vacuum heat insulating material 400 (unevenness of the outer packaging material) cannot be absorbed by the thickness of the adhesive, and the convex portion of the surface of the vacuum heat insulating material 400 comes into direct contact with the inner box 750 and adheres. When hard urethane foam is used as an adhesive, the adhesive strength may decrease if it is too thin, so it is better to make it thicker than the specified thickness.

もちろん、硬質ウレタンフォームを接着剤として使用した場合、断熱性能が得られないわけではなく、真空断熱材400よりは劣るが断熱材としての断熱性能も得ることができる。すなわち、真空断熱材400をたとえば外箱710あるいは内箱750に接着する場合に、接着剤として硬質ウレタンフォームを使用すれば、真空断熱材400による断熱効果に加えてウレタンによる断熱効果も得られる。また、内箱750と外箱710の間に真空断熱材400が設けられていない部分については、真空断熱材400が設けられない分だけ硬質ウレタンフォームの厚さを大きくできるので、断熱性能が向上する。また、自己接着性を有する硬質ウレタンフォームを内箱750と外箱710の間の接着剤として使用できる。したがって、断熱箱体700の箱体強度が向上し、また、断熱性能も向上する。 Of course, when the rigid urethane foam is used as the adhesive, the heat insulating performance is not not obtained, and the heat insulating performance as the heat insulating material can be obtained although it is inferior to the vacuum heat insulating material 400. That is, when the vacuum heat insulating material 400 is adhered to, for example, the outer box 710 or the inner box 750, if a rigid urethane foam is used as the adhesive, the heat insulating effect of urethane can be obtained in addition to the heat insulating effect of the vacuum heat insulating material 400. Further, in the portion where the vacuum heat insulating material 400 is not provided between the inner box 750 and the outer box 710, the thickness of the rigid urethane foam can be increased by the amount that the vacuum heat insulating material 400 is not provided, so that the heat insulating performance is improved. To do. Further, a hard urethane foam having self-adhesiveness can be used as an adhesive between the inner box 750 and the outer box 710. Therefore, the box body strength of the heat insulating box body 700 is improved, and the heat insulating performance is also improved.

冷却器室131内に配置された冷却器13で生成された冷気は、冷気循環用ファン14により冷気風路16、風量調整手段である冷蔵室ダンパ55、第2風路部品に形成される冷蔵室用冷気風路760を介して第1の風路部品762に設けられた冷気供給口768より冷蔵室2内(略密閉容器2X、2Yを含む)に供給される。貯蔵室である冷蔵室2内を冷却した冷気は、冷蔵室戻り風路410を通って冷却器室131に戻るが、冷蔵室戻り風路410内の冷気の一部を野菜室5に供給するようにしても良い。この場合は、野菜室5内を冷却した冷気は野菜室戻り風430を通って冷却器室131に戻される。野菜室5への冷気の供給については、冷蔵室2や切替室4等、他の貯蔵室を冷却して温度が上昇した戻り冷気で冷却するようにしてもよいが、冷却器室131の冷却器13にて生成された冷気で直接冷却しても良い。 The cold air generated by the cooler 13 arranged in the cooler chamber 131 is refrigerated formed in the cold air air passage 16, the refrigerating chamber damper 55 as an air volume adjusting means, and the second air passage component by the cold air circulation fan 14. It is supplied into the refrigerating chamber 2 (including substantially closed containers 2X and 2Y) from the cold air supply port 768 provided in the first air passage component 762 via the cold air passage 760 for the chamber. The cold air cooled in the refrigerating chamber 2 which is the storage chamber returns to the cooler chamber 131 through the refrigerating chamber return air passage 410, but a part of the cold air in the refrigerating chamber return air passage 410 is supplied to the vegetable chamber 5. You may do so. In this case, the cold air that has cooled the inside of the vegetable compartment 5 is returned to the cooler chamber 131 through the vegetable compartment return air 430. Regarding the supply of cold air to the vegetable compartment 5, other storage chambers such as the refrigerator compartment 2 and the switching chamber 4 may be cooled and cooled by the return cold air whose temperature has risen, but the cooler chamber 131 is cooled. It may be cooled directly with the cold air generated in the vessel 13.

製氷室3あるいは切替室4への冷気は、冷気循環用ファン14の動作により冷却器室131内に配置された冷却器13より冷気風路16、風量調整装置である切替室ダンパ15、切替室用冷気風路17を介して供給され、製氷室用戻り風路(図示せず)あるいは切替室用戻り風路(図示せず)を介して冷却器室131に戻る。冷凍室6への冷気は、冷却器室131内に配置された冷却器13より冷気風路16、冷凍室用冷気風路18を介して供給され、冷凍室用戻り風路420を介して冷却器室131に戻される。 The cold air to the ice making chamber 3 or the switching chamber 4 is supplied to the cold air passage 16 from the cooler 13 arranged in the cooler chamber 131 by the operation of the cold air circulation fan 14, the switching chamber damper 15 which is an air volume adjusting device, and the switching chamber. It is supplied through the cold air passage 17 and returns to the cooler chamber 131 via the return air passage for the ice making chamber (not shown) or the return air passage for the switching chamber (not shown). The cold air to the freezing chamber 6 is supplied from the cooler 13 arranged in the cooler chamber 131 through the cold air passage 16 and the cold air passage 18 for the freezing chamber, and is cooled through the return air passage 420 for the freezing chamber. It is returned to the vessel room 131.

ここで、貯蔵室へのミストの供給は、冷気循環用ファン14のオンまたはオフと同時、あるいは時間をずらしてあるいは連動してミスト装置200に通電または停止するようにしても良い。また、ミストを複数の貯蔵室に供給する場合には、第1の貯蔵室(たとえば野菜室5や冷蔵室2)と第2の貯蔵室(たとえば冷蔵室2や冷凍室6や野菜室5や切替室4など)のミスト供給の切替にダンパ装置(たとえば切替室ダンパ15や冷蔵室ダンパ55や野菜室ダンパや冷凍室ダンパなど)を使用しても良い。たとえば、ミスト装置200が第1の貯蔵室(たとえば野菜室)の上部の仕切壁の凹部に少なくとも一部が収納されるように設けられている場合で、この凹部と連通するミスト供給用の風路を仕切壁内に有している場合、野菜室ダンパを開にした時には、凹部内のミストは仕切壁内のミスト供給用の風路を通って第1の冷気風路(たとえば野菜室戻り風路など)、冷却器室、第2の冷気風路を介して第2の貯蔵室(たとえば冷蔵室)に供給されるようにし、野菜室ダンパを閉にした時には、野菜室には冷気が供給されないので、凹部内のミストは重力で第1の貯蔵室(たとえば野菜室)内に供給されるようにすれば良い。この時、第2の冷気風路を冷蔵室2の背面に設けられる冷気風路760としても良い。また、ダンパ装置の開閉で第1の貯蔵室へのミストの供給と第2の貯蔵室へのミストの供給を切り替えても良い。また、ダンパ装置の代わりに冷気循環用ファン14のオン、オフで行っても良い。 Here, the supply of the mist to the storage chamber may be such that the mist device 200 is energized or stopped at the same time as the on or off of the cold air circulation fan 14, or at a time lag or in conjunction with the on / off. When the mist is supplied to a plurality of storage chambers, the first storage chamber (for example, the vegetable compartment 5 or the refrigerator compartment 2) and the second storage chamber (for example, the refrigerator compartment 2, the freezer compartment 6 or the vegetable compartment 5) A damper device (for example, a switching room damper 15, a refrigerating room damper 55, a vegetable room damper, a freezing room damper, etc.) may be used to switch the mist supply of the switching room 4 or the like. For example, when the mist device 200 is provided so as to store at least a part in a recess of the partition wall at the upper part of the first storage chamber (for example, a vegetable compartment), a wind for supplying mist communicating with the recess. When the path is provided in the partition wall, when the vegetable compartment damper is opened, the mist in the recess passes through the mist supply air passage in the partition wall and the first cold air passage (for example, the vegetable compartment returns). It is supplied to the second storage room (for example, the refrigerating room) through the air passage, the cooler room, and the second cold air passage, and when the vegetable room damper is closed, the cold air is in the vegetable room. Since it is not supplied, the mist in the recess may be supplied by gravity into the first storage chamber (for example, the vegetable compartment). At this time, the second cold air passage may be a cold air passage 760 provided on the back surface of the refrigerating chamber 2. Further, the supply of mist to the first storage chamber and the supply of mist to the second storage chamber may be switched by opening and closing the damper device. Further, instead of the damper device, the cold air circulation fan 14 may be turned on or off.

また、凹部内で冷気と混合されてミストを含んだ冷気を第1の貯蔵室に供給し、第1の貯蔵室に供給されたミストを含んだ冷気の一部を仕切壁(たとえば上面仕切壁や側面仕切壁)に設けられた風路(たとえば冷却器室への戻り風路)を介して冷却器室に戻し、冷却器室を介して第2の貯蔵室にミストを含んだ冷気を供給するようにしてもよい。)仕切壁に設けられる風路は、ミスト装置200(霧化装置)の少なくと一部あるいは全部が収納される凹部を覆うように設けられるカバーで形成しても良いし、別部品で形成しても良いし、仕切壁の内部に設けても良い。ここで、カバーには冷気入口や冷気出口の少なくと1つを設ければ良い。 Further, cold air mixed with cold air in the recess and containing mist is supplied to the first storage chamber, and a part of the cold air containing mist supplied to the first storage chamber is divided into a partition wall (for example, an upper partition wall). It is returned to the cooler chamber through an air passage (for example, a return air passage to the cooler chamber) provided in the side partition wall), and cold air containing mist is supplied to the second storage chamber through the cooler chamber. You may try to do it. ) The air passage provided in the partition wall may be formed by a cover provided so as to cover at least a part or all of the recess of the mist device 200 (atomization device), or may be formed by a separate part. It may be provided inside the partition wall. Here, the cover may be provided with at least one cold air inlet and one cold air outlet.

(ワイドギャップ半導体)
制御基板室31内には、制御装置30が設けられており、スイッチング素子やダイオード素子などの半導体部品が設けられており、インバータ駆動回路などの少なくとも一部の半導体部品にワイドバンドギャップ半導体が使用されている。また、制御装置30には、半導体部品のみ(ワイドバンドギャップ半導体のみでも良い)搭載しても良いし、たとえば制御関連部品(たとえばトランスやリレーやコンバータや電源リアクタやコンデンサや電流検出部品などのうちの少なくとも1つ)などを半導体部品と一緒に搭載しても良い。
(Wide gap semiconductor)
A control device 30 is provided in the control board chamber 31, semiconductor components such as switching elements and diode elements are provided, and wide bandgap semiconductors are used for at least some semiconductor components such as inverter drive circuits. Has been done. Further, the control device 30 may be equipped with only semiconductor parts (may be only wide bandgap semiconductors), or among control-related parts (for example, transformers, relays, converters, power reactors, capacitors, current detection parts, etc.). At least one of) and the like may be mounted together with the semiconductor component.

本実施の形態では、制御装置30に搭載される半導体部品(たとえば圧縮機12や圧縮機冷却ファンや冷気循環用ファン14などの駆動制御用のインバータ駆動回路用半導体など)としてワイドバンドギャップ半導体を使用している。従来は制御装置30に搭載されるたとえばインバータ駆動回路部品などの半導体部品には一般的にシリコン(Si)をベースとした半導体が用いられてきたが、本実施の形態ではワイドバンドギャップ半導体を使用しており、ワイドバンドギャップ半導体としては、たとえば炭化ケイ素(SiC)、窒化ガリウム(GaN)、ダイヤモンド、窒化アルミニウムガリウム(AlGaN)などを使用している。 In the present embodiment, a wide bandgap semiconductor is used as a semiconductor component mounted on the control device 30 (for example, a semiconductor for an inverter drive circuit for drive control of a compressor 12, a compressor cooling fan, a cold air circulation fan 14, etc.). I'm using it. Conventionally, silicon (Si) -based semiconductors have generally been used for semiconductor parts such as inverter drive circuit parts mounted on the control device 30, but in this embodiment, a wide bandgap semiconductor is used. As the wide bandgap semiconductor, for example, silicon carbide (SiC), gallium nitride (GaN), diamond, gallium nitride (AlGaN), or the like is used.

シリコン(Si)半導体に対するワイドバンドギャップ半導体(たとえば炭化珪素SiCや窒化ガリウム、ガリウムナイトライド(GaN)など)の優位点としては、以下の2点があげられる。1つ目のメリットとしては、素子の損失が小さく、高温動作が可能である点である。Siは発熱量が多く、また約100℃〜200℃で半導体性能が低下して動作困難になるため放熱用のフィン(放熱器)を設け、更に空気を介して放熱させる必要があり、フィンを搭載するための収納容積と放熱のための空間が必要になる。これに対し、ワイドバンドギャップ半導体(たとえばSiC)は素子でのスイッチング損失が小さく、省エネルギーでありながら、また、300℃程度までは性能の低下が起こりにくいため、機械室1Aなど高温雰囲気中での使用が可能となる。また、300℃程度までは性能の低下が起こりにくいため、放熱用のフィンが不要、あるいは放熱用のフィンをかなり小さく(高さや大きさを小さく低背化、小形化)できるというメリットがある。 The advantages of wide bandgap semiconductors (for example, silicon carbide SiC, gallium nitride, gallium nitride (GaN), etc.) over silicon (Si) semiconductors are as follows. The first merit is that the loss of the element is small and high temperature operation is possible. Si has a large amount of heat generation, and semiconductor performance deteriorates at about 100 ° C to 200 ° C, making it difficult to operate. A storage capacity for mounting and a space for heat dissipation are required. On the other hand, wide bandgap semiconductors (for example, SiC) have a small switching loss in the element and save energy, and their performance is unlikely to deteriorate up to about 300 ° C. Therefore, in a high temperature atmosphere such as a machine room 1A. It can be used. Further, since the performance is unlikely to deteriorate up to about 300 ° C., there is an advantage that the heat dissipation fins are unnecessary, or the heat dissipation fins can be made considerably smaller (height and size are reduced, the height is reduced, and the size is reduced).

2つ目のメリットとしては、半導体構成部品であるデバイスの厚さを小さくできる点である。ワイドバンドギャップ半導体(たとえばSiCやGaN)は、絶縁破壊電界強度が大きいので、半導体の耐圧が大きい(シリコン(Si)の約10倍の耐圧を持っている)ため、半導体デバイスの厚さを1/10程度にまで小さく(薄く)できる。本実施の形態では、このような特性を持つワイドバンドギャップ半導体を用いることで、インバータ駆動回路部品の大幅な小型化、低背化や、放熱環境を気にしなくて良い構造などが実現できるため、設計の自由度の大きな小形で高温環境下での品質良好な冷蔵庫が得られる。 The second merit is that the thickness of the device, which is a semiconductor component, can be reduced. Wide bandgap semiconductors (for example, SiC and GaN) have a large dielectric breakdown electric field strength, and therefore have a large withstand voltage (having a withstand voltage about 10 times that of silicon (Si)). Therefore, the thickness of the semiconductor device is reduced to 1. It can be made as small as / 10 (thin). In the present embodiment, by using a wide bandgap semiconductor having such characteristics, it is possible to realize a structure in which the inverter drive circuit components are significantly reduced in size and height, and the heat dissipation environment is not a concern. A small refrigerator with a large degree of freedom in design and good quality in a high temperature environment can be obtained.

制御装置30に搭載されるインバータ駆動回路部品などの半導体部品には、ワイドバンドギャップ半導体が使用されているため、絶縁破壊電解強度が大きく、耐圧が大きいため厚さや大きさが小さくできる(シリコンに比べ約1/10)。また、300℃の高温でも動作可能なので半導体部品の冷却用の放熱フィン(放熱器)も極端に小さくできる。したがって、従来は、制御装置30に搭載された状態で他の制御関連部品などよりも極端に高さが高かった放熱器が設けられたインバータ駆動回路部品である半導体部品に、本実施の形態ではワイドバンドギャップ半導体を使用することにより放熱器とインバータ駆動回路部品を合わせた高さや大きさ(縦や横の幅)を極端に小さく(低背化や小形化)できるため、制御装置30に搭載した状態で他の制御関連部品(たとえば電源リアクタやコンデンサやトランスや電流検出部品など)の高さと同等程度、あるいは同等程度以下の高さにまで低くすることが可能である。 Since wide bandgap semiconductors are used for semiconductor parts such as inverter drive circuit parts mounted on the control device 30, the dielectric breakdown electrolytic strength is large and the withstand voltage is large, so that the thickness and size can be reduced (for silicon). Compared to about 1/10). Further, since it can be operated even at a high temperature of 300 ° C., the heat radiation fin (radiator) for cooling the semiconductor component can be made extremely small. Therefore, in the present embodiment, the semiconductor component, which is an inverter drive circuit component provided with a radiator which is extremely taller than other control-related components when mounted on the control device 30, is conventionally used in the present embodiment. By using a wide band gap semiconductor, the combined height and size (length and width) of the radiator and inverter drive circuit components can be made extremely small (shortening or miniaturization), so it is mounted on the control device 30. In this state, the height can be lowered to the same level as or less than the height of other control-related parts (for example, power reactor, capacitor, transformer, current detection part, etc.).

ここで、制御基板室31が配置されている部分においても、真空断熱材400を外箱710あるいは制御基板室31に接着剤にて直接貼り付け、真空断熱材400と内箱750との間には接着剤として硬質ウレタンフォームを所定厚さ(たとえば、1mm以上、好ましくは3mm以上、また11mm以下好ましくは6mm以下)になるように設定して充填すれば良い。 Here, even in the portion where the control board chamber 31 is arranged, the vacuum heat insulating material 400 is directly attached to the outer box 710 or the control board chamber 31 with an adhesive, and between the vacuum heat insulating material 400 and the inner box 750. The adhesive may be filled with a rigid urethane foam set to a predetermined thickness (for example, 1 mm or more, preferably 3 mm or more, and 11 mm or less, preferably 6 mm or less).

また、本実施の形態では、制御基板室31を冷蔵庫1の上面に設けて真空断熱材400で周囲を断熱する構成であるが、インバータ駆動回路部品などの半導体部品にワイドバンドギャップ半導体を使用するようにすれば、制御基板室31の周囲を真空断熱材400やウレタン断熱材で覆って制御基板室31内が高温環境下となっても問題ない。また、インバータ駆動回路部品などの半導体部品にワイドバンドギャップ半導体を使用するようにすれば、制御基板室31を高温環境下となる機械室1A内に配置しても良い。ワイドバンドギャップ半導体は、従来のSi半導体に比べて高温度環境下であっても故障しにくく動作可能なので、制御基板室31を断熱材で覆っても問題ない。また、制御基板室31を高温環境下となる機械室1A内に配置する場合であっても制御基板室31の周囲に断熱材などを設けて制御基板室31内の温度が高温とならないように断熱する必要がないので、制御基板室の仕様を簡素化でき、低コストの圧縮機や機器を得ることができる。また、制御基板室31を断熱する必要がないため、制御基板室31の大きさを断熱材の厚さ分だけ高さを薄く(あるいは幅や奥行きを小さく)小形化できるので、真空断熱材400と制御基板室31、真空断熱材400と内箱750を直接、接着剤で接着するようにすれば、断熱材としてのウレタンを充填する必要がなくなるので、制御基板室31が設けられる壁面(たとえば上面壁や背面壁など)の壁面厚さを小さくすることが可能となり、その分、貯蔵室内容積(庫内容積)を大きくできる。 Further, in the present embodiment, the control board chamber 31 is provided on the upper surface of the refrigerator 1 and the surroundings are insulated by the vacuum heat insulating material 400, but a wide band gap semiconductor is used for semiconductor parts such as inverter drive circuit parts. By doing so, there is no problem even if the control board chamber 31 is covered with the vacuum heat insulating material 400 or the urethane heat insulating material and the inside of the control board chamber 31 is in a high temperature environment. Further, if a wide bandgap semiconductor is used for a semiconductor component such as an inverter drive circuit component, the control board chamber 31 may be arranged in the machine room 1A in a high temperature environment. Since the wide bandgap semiconductor is less likely to break down and can operate even in a high temperature environment than the conventional Si semiconductor, there is no problem even if the control substrate chamber 31 is covered with a heat insulating material. Further, even when the control board chamber 31 is arranged in the machine room 1A in a high temperature environment, a heat insulating material or the like is provided around the control board chamber 31 so that the temperature inside the control board chamber 31 does not become high. Since there is no need to insulate, the specifications of the control board room can be simplified, and low-cost compressors and equipment can be obtained. Further, since it is not necessary to insulate the control board chamber 31, the size of the control board chamber 31 can be reduced by the thickness of the heat insulating material (or the width and depth can be reduced), so that the vacuum heat insulating material 400 can be reduced. If the control board chamber 31, the vacuum heat insulating material 400 and the inner box 750 are directly bonded with an adhesive, it is not necessary to fill the urethane as the heat insulating material, so that the wall surface on which the control board room 31 is provided (for example). The wall thickness of the upper wall, the back wall, etc.) can be reduced, and the storage chamber volume (internal volume) can be increased accordingly.

また、制御基板室31がスペースの関係で従来では設置できなかった圧縮機12の周囲空間(たとえば圧縮機12の端子箱の上部空間や側面空間(あるいは周囲空間)など)に設置できるようになるので、制御基板室31の設置の自由度(設計の自由度)が向上し、たとえば機械室1A内のスペースの有効利用のできる冷蔵庫や空調機などの機器が得られる。 Further, the control board room 31 can be installed in the surrounding space of the compressor 12 (for example, the upper space or the side space (or the surrounding space) of the terminal box of the compressor 12), which could not be installed in the past due to the space. Therefore, the degree of freedom in installation (degree of freedom in design) of the control board room 31 is improved, and for example, a device such as a refrigerator or an air conditioner that can effectively use the space in the machine room 1A can be obtained.

(除霜用ヒータ、除霜水利用)
冷蔵庫1の背面最下部(あるいは背面最上部)に設けられている機械室1Aには圧縮機12が配されている。冷蔵庫1は、冷凍サイクルを備えており、圧縮機12は冷凍サイクルを構成する1部品であり機械室1Aに配置されており、冷凍サイクル内の冷媒を圧縮する作用を有する。圧縮機12で圧縮された冷媒は凝縮器(図示せず)において凝縮される。凝縮された状態の冷媒は減圧装置である毛細管(図示せず)や膨張弁(図示せず)において減圧される。冷却器13は、冷蔵庫の冷凍サイクルを構成する1部品で冷却器室131に配置されている。減圧装置にて減圧された冷媒は、冷却器13において蒸発し、この蒸発時の吸熱作用により冷却器13周辺の気体は冷却される。冷気循環用ファン14は冷却器室131内で冷却器13の近傍に配置されており、冷却器13周辺で冷却された冷気を冷気風路(例えば、切替室冷気風路16や冷蔵室冷気風路50など)を介して冷蔵庫1の貯蔵室である各室(冷蔵室2、製氷室3、切替室4、野菜室5、冷凍室6)へと送風するためのものである。
(Use of defrost heater and defrost water)
A compressor 12 is arranged in a machine room 1A provided at the lowermost part of the back surface (or the uppermost part of the back surface) of the refrigerator 1. The refrigerator 1 includes a refrigerating cycle, and the compressor 12 is a component constituting the refrigerating cycle and is arranged in the machine room 1A, and has an action of compressing the refrigerant in the refrigerating cycle. The refrigerant compressed by the compressor 12 is condensed in a condenser (not shown). The condensed refrigerant is decompressed in a capillary tube (not shown) or an expansion valve (not shown), which are decompression devices. The cooler 13 is a component that constitutes the refrigeration cycle of the refrigerator and is arranged in the cooler chamber 131. The refrigerant decompressed by the decompression device evaporates in the cooler 13, and the gas around the cooler 13 is cooled by the heat absorbing action at the time of evaporation. The cold air circulation fan 14 is arranged in the cooler chamber 131 in the vicinity of the cooler 13, and the cold air cooled around the cooler 13 is passed through the cold air passage (for example, the switching chamber cold air passage 16 or the refrigerating chamber cold air). It is for blowing air to each room (refrigerator room 2, ice making room 3, switching room 4, vegetable room 5, freezing room 6) which is a storage room of the refrigerator 1 via a road 50 or the like.

冷却器室131内に設けられている冷却器13の下方には冷却器13の除霜を行う除霜手段である除霜用ヒータ150(除霜用のガラス管ヒータで、例えば、石英ガラス管内に石英ガラス管を透過する波長0.2μm〜4μmの光を出すカーボン繊維が用いられたカーボンヒータなど)が設けられている。冷却器13と除霜用ヒータ150の間で除霜用ヒータ150の上部には、冷却器13より落下してきた除霜水が直接除霜用ヒータ150に当たらない様に、ヒータルーフ151が設けられている。除霜用ヒータ150にカーボンヒータなどの黒色媒体のヒータを使用すれば、輻射伝熱により冷却器13の霜を効率的に溶かすことができるため表面温度を低温度(約70℃〜80℃)にすることが可能となり、冷凍サイクルに使用される冷媒に可燃性冷媒(例えば、炭化水素冷媒であるイソブタンなど)を使用している場合に冷媒漏れなどが発生しても着火の危険性が低減できる。また、ニクロム線ヒータに比べて輻射伝熱により冷却器13の霜を効率的に溶かすことができるため冷却器13に着霜した霜が除々に溶けるようになり霜が塊となってどさっと落下しにくくなるので、ヒータルーフ151に落下したときの落下音が低減できるので、低騒音で除霜効率の良い冷蔵庫が提供できる。 Below the cooler 13 provided in the cooler chamber 131 is a defrosting heater 150 (a glass tube heater for defrosting, for example, in a quartz glass tube) which is a defrosting means for defrosting the cooler 13. Is provided with a carbon heater or the like using carbon fiber that emits light having a wavelength of 0.2 μm to 4 μm that passes through a quartz glass tube. A heater roof 151 is provided above the defrosting heater 150 between the cooler 13 and the defrosting heater 150 so that the defrosting water that has fallen from the cooler 13 does not directly hit the defrosting heater 150. ing. If a black medium heater such as a carbon heater is used for the defrosting heater 150, the frost of the cooler 13 can be efficiently melted by radiant heat transfer, so that the surface temperature can be lowered (about 70 ° C to 80 ° C). When a flammable refrigerant (for example, isobutane which is a hydrocarbon refrigerant) is used as the refrigerant used in the refrigeration cycle, the risk of ignition is reduced even if a refrigerant leak occurs. it can. In addition, compared to the Nichrome wire heater, the frost in the cooler 13 can be melted more efficiently by radiant heat transfer, so the frost that has settled on the cooler 13 gradually melts, and the frost drops quickly as a lump. Since it becomes difficult to do so, the falling noise when the heater roof 151 is dropped can be reduced, so that a refrigerator with low noise and good defrosting efficiency can be provided.

ここで、除霜用ヒータ150は、冷却器13に一体に組み込まれたかち込みタイプのヒータであっても良い。また、ガラス管タイプヒータとかち込みタイプヒータを併用しても良い。冷却器13で生成される除霜水あるいはヒータルーフ151に落下した除霜水は、冷却器室内で落下して冷却器室131の下方に設けられている除霜水受け部154を介して除霜水排出口155より冷蔵庫外部(たとえば機械室1Aに設けられている蒸発皿等)に排出される。 Here, the defrosting heater 150 may be a built-in type heater integrally incorporated in the cooler 13. Further, a glass tube type heater and a built-in type heater may be used in combination. The defrost water generated by the cooler 13 or the defrost water that has fallen on the heater roof 151 falls in the cooler room and is defrosted via the defrost water receiving portion 154 provided below the cooler room 131. It is discharged from the water discharge port 155 to the outside of the refrigerator (for example, an evaporating dish provided in the machine room 1A).

ここで、冷凍室用冷却器と冷蔵室用冷却器の2つの冷却器(蒸発器)が設けられている場合には、冷蔵室用冷却器においては、冷凍室用冷却器に比べて蒸発温度を比較的高く設定できるので、冷却器への霜の付着が少ない。したがって、除霜用ヒータ150が不要となるので、ヒータルーフ151も不要となる。したがって、冷却器13で生成される除霜水は、冷却器室内で冷却器室131の下部に設けられている除霜水受け部154に直接落下して除霜水排出口155より冷蔵庫外部(たとえば機械室1Aに設けられている蒸発皿等)に排出される。 Here, when two coolers (evaporators), a freezer room cooler and a refrigerating room cooler, are provided, the evaporation temperature of the refrigerating room cooler is higher than that of the freezer room cooler. Can be set relatively high, so there is little frost adhering to the cooler. Therefore, since the defrosting heater 150 is not required, the heater roof 151 is also unnecessary. Therefore, the defrosted water generated by the cooler 13 directly falls into the defrosted water receiving portion 154 provided in the lower part of the cooler room 131 in the cooler room, and is outside the refrigerator from the defrosted water discharge port 155 ( For example, it is discharged to an evaporating dish or the like provided in the machine room 1A.

冷凍室用冷却器と冷蔵室用冷却器の2つの冷却器(蒸発器)が設けられている場合には、冷蔵室2の下部(略密閉容器2X、2Y)の後方の貯蔵室背面あるいは野菜室5の背面に冷蔵室用冷却器が設けられるので、ミスト装置200を冷蔵室2の貯蔵品収納空間の背面壁あるいは略密閉容器2X、2Yの背面の後方の貯蔵室背面壁あるいは野菜室5の背面壁などに設ければ良い。ミスト装置200の水供給手段として冷蔵室用冷却器で生成される除霜水を使用することが可能であり、冷却器室131内で冷却器13の下方に配置されるヒータルーフ151の代わりに冷蔵室用冷却器で生成される除霜水を受けて溜める容器を配置すれば良い。この場合、容器の上部に設けられる水排出口容器より水があふれた場合にあふれた水を除霜水排出口155より冷蔵庫外部に排出させれば、容器上部に設けられる水排出口より溢れた水の処理が不要になる。したがって、容器を冷却器室131内に設け、容器は冷蔵室用冷却器の下方で、除霜水排出口155よりも上方に設ける方が良い。また、ミスト装置200の放電電極は、容器よりも上方位置であって冷蔵室用冷却器と同等高さ位置(冷却器の前面側位置)あるいは冷蔵室用冷却器と容器の間の位置に設ける方が容器内の水を放電電極に毛細管現象などで供給する場合に水の供給経路が短くできるので良い。 When two coolers (evaporators), a freezer cooler and a refrigerator cooler, are provided, the back of the storage room behind the lower part of the refrigerator 2 (substantially closed containers 2X, 2Y) or vegetables. Since a refrigerator for the refrigerator compartment is provided on the back surface of the chamber 5, the mist device 200 can be mounted on the back wall of the storage space for the storage of the refrigerator compartment 2 or the back wall of the storage chamber or the vegetable compartment 5 behind the substantially closed containers 2X and 2Y. It may be provided on the back wall of the. It is possible to use the defrosted water generated by the cooler for the refrigerating chamber as the water supply means of the mist device 200, and refrigerate in place of the heater roof 151 arranged below the cooler 13 in the cooler chamber 131. A container that receives and stores the defrosted water generated by the indoor cooler may be arranged. In this case, if the overflowed water is discharged from the defrost water discharge port 155 to the outside of the refrigerator when the water overflows from the water discharge port provided at the top of the container, the water overflows from the water discharge port provided at the top of the container. Eliminates the need for water treatment. Therefore, it is better to provide the container in the cooler chamber 131, and to provide the container below the cooler for the refrigerator chamber and above the defrost water discharge port 155. Further, the discharge electrode of the mist device 200 is provided at a position above the container and at the same height as the refrigerator for the refrigerating room (position on the front side of the cooler) or at a position between the cooler for the refrigerating room and the container. This is better because the water supply path can be shortened when the water in the container is supplied to the discharge electrode by a capillary phenomenon or the like.

ミスト装置200は、図に示すように冷凍室6の下方に隣接して設けられる野菜室5の上面壁(上面の仕切壁24)の凹部内に少なくとも一部が収納されるように設けられており、ミスト装置200が設けられる貯蔵室(野菜室5)の上部に隣接して設けられる他の貯蔵室(冷凍室6)内の冷気を利用して放熱部に結露水を発生させてこの結露水を使用して放電電極に電圧を印加することで放電電極にミストを発生させるようにしても良い。 As shown in the figure, the mist device 200 is provided so that at least a part of the mist device 200 is housed in a recess of the upper surface wall (upper surface partition wall 24) of the vegetable compartment 5 provided adjacent to the lower part of the freezing chamber 6. The cold air in the other storage chamber (freezing chamber 6) provided adjacent to the upper part of the storage chamber (vegetable chamber 5) in which the mist device 200 is provided is used to generate dew condensation water in the heat radiating portion. Mist may be generated in the discharge electrode by applying a voltage to the discharge electrode using water.

図9、図10において、貯蔵室内照明装置900は、たとえば貯蔵室である冷蔵室2の内壁の天井壁(上面壁)740に設けられており、複数のLEDにより構成されている。ここで、照明装置900を貯蔵室内の側壁790や底面壁780や仕切壁24に設けても良い。照明装置900の複数のLEDは、棚80の前縁よりも冷蔵庫1の前面側に設けられており、貯蔵室内を棚80にさえぎられること無く上方から下方まで満遍なく照射できる。また、照明装置900の複数のLEDのうち、少なくとも1つは、貯蔵室扉(例えば冷蔵室扉7)が開放された時に貯蔵室扉(例えば冷蔵室扉7)に設けられる扉ポケットを照射できるように光軸が配置されているので、夜間など冷蔵庫1の周囲が薄暗い場合であっても、貯蔵室内だけでなく、扉ポケットも照射できるので、ユーザにとって使い勝手の良い冷蔵庫が得られる。 In FIGS. 9 and 10, the storage room lighting device 900 is provided on the ceiling wall (upper surface wall) 740 of the inner wall of the refrigerating room 2 which is a storage room, and is composed of a plurality of LEDs. Here, the lighting device 900 may be provided on the side wall 790, the bottom wall 780, or the partition wall 24 in the storage chamber. The plurality of LEDs of the lighting device 900 are provided on the front side of the refrigerator 1 with respect to the front edge of the shelf 80, and can evenly irradiate the storage room from above to below without being blocked by the shelf 80. Further, at least one of the plurality of LEDs of the lighting device 900 can illuminate the door pocket provided in the storage room door (for example, the refrigerating room door 7) when the storage room door (for example, the refrigerating room door 7) is opened. Since the optical axes are arranged as described above, even when the surroundings of the refrigerator 1 are dim, such as at night, not only the storage room but also the door pocket can be illuminated, so that a refrigerator that is convenient for the user can be obtained.

以上は、貯蔵室の背面壁730に設けられる冷気風路760が、凹部440を形成する内箱750に対して別部品(たとえば、第1風路部品762)で形成されている例であるが、第1風路部品762を内箱750で一体に成形あるいは形成しても良い。この場合、背面壁730を形成する内箱750に形成される凹部440の幅方向(左右方向)の略中央部位置の内箱を上下方向にわたって断面円弧状(あるいはアーチ形状、あるいはU字形状)の突出部を形成してにこの突出部が貯蔵室内側に突出するように成形して第1風路部品762の代用とすれば良い。そして、この内箱で形成された円弧形状(あるいはアーチ形状、あるいはU字形状)の突出部と真空断熱材400との間の空間を冷気風路760として使用しても良い。この円弧形状の突出部と真空断熱材400だけで冷気風路760を形成するのが困難な場合には、突出部と真空断熱材400との間の空間に断面楕円形状などの第2風路部品764を設ければ良い。このように内箱750で第1風路部品762を代用するようにすれば、第1風路部品762が不要になり、第1風路部品を内箱750などに組付ける必要がなくなり組立性も改善できるので、部品点数が少なく低コストで意匠性の良い断熱箱体、冷蔵庫、機器が得られる。 The above is an example in which the cold air passage 760 provided on the back wall 730 of the storage chamber is formed of a separate part (for example, the first air passage part 762) from the inner box 750 forming the recess 440. , The first air passage component 762 may be integrally molded or formed in the inner box 750. In this case, the inner box at a substantially central position in the width direction (horizontal direction) of the recess 440 formed in the inner box 750 forming the back wall 730 is vertically arcuate (or arched or U-shaped). The projecting portion may be formed so that the projecting portion projects toward the storage chamber side to substitute for the first air passage component 762. Then, the space between the arc-shaped (or arch-shaped or U-shaped) protruding portion formed by the inner box and the vacuum heat insulating material 400 may be used as the cold air passage 760. When it is difficult to form the cold air passage 760 only with the arc-shaped protrusion and the vacuum heat insulating material 400, a second air passage having an elliptical cross section or the like is formed in the space between the protruding portion and the vacuum heat insulating material 400. The component 764 may be provided. By substituting the first air passage part 762 for the inner box 750 in this way, the first air passage part 762 becomes unnecessary, and it is not necessary to assemble the first air passage part to the inner box 750 or the like, and the assembling property is eliminated. Insulation boxes, refrigerators, and equipment with a small number of parts and low cost and good design can be obtained.

(別の断熱箱体、冷蔵庫)
図11は、本発明の実施の形態1に係る断熱箱体の正面断面図である。図12は、この断熱箱体の背面図である。また、図13は、この断熱箱体の前面側から見た斜視図である。図14は、断熱箱体を背面側(後ろ側)から見た斜視図である。また、図22は別の断熱箱体の背面図である。図1〜図10と同等部分は、同一の符号を付して説明は省略する。なお、真空断熱材400は、実際には外箱710と内箱750との間に形成される壁内空間315に配置されるものである。しかしながら、図12では、冷蔵庫1の背面壁に配置された真空断熱材400の形状の理解を容易とするため、外箱710の背面を透過して真空断熱材400を示している(つまり、真空断熱材400を実線で示している)。また、図13では、レール755の図示を省略している。
(Another insulation box, refrigerator)
FIG. 11 is a front sectional view of the heat insulating box body according to the first embodiment of the present invention. FIG. 12 is a rear view of the heat insulating box body. Further, FIG. 13 is a perspective view seen from the front side of the heat insulating box body. FIG. 14 is a perspective view of the heat insulating box body as viewed from the back side (rear side). Further, FIG. 22 is a rear view of another heat insulating box. The same parts as those in FIGS. 1 to 10 are designated by the same reference numerals, and the description thereof will be omitted. The vacuum heat insulating material 400 is actually arranged in the wall inner space 315 formed between the outer box 710 and the inner box 750. However, in FIG. 12, in order to facilitate understanding of the shape of the vacuum heat insulating material 400 arranged on the back wall of the refrigerator 1, the vacuum heat insulating material 400 is shown through the back surface of the outer box 710 (that is, vacuum). The heat insulating material 400 is shown by a solid line). Further, in FIG. 13, the rail 755 is not shown.

冷蔵庫1は、例えば金属からなる外箱710と、例えば樹脂からなる内箱750とから構成される断熱箱体700を備えている。そして、外箱710と内箱750との間に形成される壁内空間315(たとえば冷蔵庫1あるいは断熱箱体700の天面、左右側面、背面及び底面部)に断熱材としての硬質ウレタンフォーム及び/または真空断熱材400が配設(充填)されている。 The refrigerator 1 includes a heat insulating box body 700 composed of, for example, an outer box 710 made of metal and an inner box 750 made of resin, for example. Then, a hard urethane foam as a heat insulating material and a hard urethane foam as a heat insulating material are formed in the wall inner space 315 (for example, the top surface, the left and right side surfaces, the back surface and the bottom surface of the refrigerator 1 or the heat insulating box body 700) formed between the outer box 710 and the inner box 750. / Or the vacuum heat insulating material 400 is arranged (filled).

本実施の形態1に係る冷蔵庫1を構成する断熱箱体700は、天面及び底面及び側面が閉塞された有底角筒形状(略直方体形状)に形成され、前面部が開口した開口部を有する形状となっている。そして、断熱箱体700は、例えば複数(図では2枚)の仕切壁24によって、複数の貯蔵室(たとえば冷蔵室2、製氷室3、切替室4、野菜室5、冷凍室6など)に区画されている。これら仕切壁24には、前面側に板金により成形された板金カバー34(例えば、厚さ0.5mm以上)がネジ等の固定部材によって取り付けられている。この板金カバー34をネジ等で断熱箱体700に締結することにより、仕切壁24が断熱箱体700に取り付けられる構成となっている。このように、板金カバー34を用いて仕切壁24を断熱箱体700に取り付けることにより、断熱箱体700の強度を向上させることができる。 The heat insulating box 700 constituting the refrigerator 1 according to the first embodiment is formed in a bottomed rectangular parallelepiped shape (substantially rectangular parallelepiped shape) in which the top surface, the bottom surface and the side surfaces are closed, and has an opening having an open front portion. It has a shape to have. Then, the heat insulating box 700 is divided into a plurality of storage rooms (for example, a refrigerating room 2, an ice making room 3, a switching room 4, a vegetable room 5, a freezing room 6, etc.) by means of a plurality of partition walls 24 (two in the figure). It is partitioned. A sheet metal cover 34 (for example, a thickness of 0.5 mm or more) formed of sheet metal is attached to the front surface side of these partition walls 24 by a fixing member such as a screw. By fastening the sheet metal cover 34 to the heat insulating box 700 with screws or the like, the partition wall 24 is attached to the heat insulating box 700. In this way, the strength of the heat insulating box 700 can be improved by attaching the partition wall 24 to the heat insulating box 700 using the sheet metal cover 34.

また、本実施の形態に係る冷蔵庫1あるいは断熱箱体700には、たとえば冷蔵室2や野菜室5や冷凍室6などの貯蔵室に、貯蔵室の中に設置される棚80あるいは引き出し式の貯蔵室(たとえば引き出し式の扉あるいは引き出しケース等)を支えるためのレール部(たとえばレールあるいはレール保持部)755が側壁790に形成されている。 Further, in the refrigerator 1 or the heat insulating box 700 according to the present embodiment, for example, in a storage room such as a refrigerator room 2, a vegetable room 5, or a freezing room 6, a shelf 80 or a drawer type is installed in the storage room. A rail portion (for example, a rail or a rail holding portion) 755 for supporting a storage chamber (for example, a pull-out door or a drawer case) is formed on the side wall 790.

このような構成の断熱箱体700は、例えば次のように製造される。まず、真空断熱材400をあらかじめ外箱710に第2の接着剤により接着固定する。そして、外箱710と内箱750とを例えば壁内空間(外箱710と内箱750との間に形成される空間)315を設けた状態で治具や接着などにより固定する。その後、図14に示すように、断熱箱体700の背面側を上にした状態で、背面側の幅方向端部に複数形成されたウレタンなどの注入口703、704より液体状の硬質ウレタンフォームの原料(原液)を注入して空間315内で一体発泡を行わせることにより、壁内空間315内を硬質ウレタンフォームで充填する。 The heat insulating box 700 having such a structure is manufactured as follows, for example. First, the vacuum heat insulating material 400 is previously adhered and fixed to the outer box 710 with a second adhesive. Then, the outer box 710 and the inner box 750 are fixed by a jig or an adhesive in a state where, for example, a wall inner space (a space formed between the outer box 710 and the inner box 750) 315 is provided. After that, as shown in FIG. 14, with the back side of the heat insulating box 700 facing up, a liquid hard urethane foam from the injection ports 703 and 704 of urethane or the like formed at the widthwise end portions on the back side. By injecting the raw material (undiluted solution) of No. 1 and causing integral foaming in the space 315, the inside of the wall space 315 is filled with hard urethane foam.

本実施の形態では、真空断熱材400が配設されている部位(たとえば凹部440あるいは第2の凹部441あるいは側壁790あるいは扉(7、8、9、10、11)等)においては、ウレタンを断熱材として使用するのが主目的でなく、接着剤としての使用を主目的としている。すなわち、真空断熱材400が配設されている部位においては、断熱性能の確保は、真空断熱材400の被覆率あるいは充填率を所定値以上とすることで対応するようにしている。たとえば凹部440の一部範囲あるいは全範囲では、真空断熱材400と内箱750との間の空間に塗布あるいは充填される、たとえば硬質ウレタンを接着機能を主目的とした接着剤として使用するようにしているため、壁(冷蔵庫1の背面壁730)内の真空断熱材400と内箱750(あるいは外箱710)との間の空間315に塗布、あるいは充填される接着剤は、接着剤としての接着力(接着強度、接着性能)を満足できれば良く、また製品適用時に接着材に起因する接着不良(剥がれや変形)などの品質不良を起こさなければ良いので、接着剤としての所定厚さは薄い方が良く、11mm以下程度(たとえば10mmより小さい方がよい)、好ましくは6mm以下程度が良い。 In the present embodiment, urethane is used in the portion where the vacuum heat insulating material 400 is arranged (for example, the recess 440 or the second recess 441 or the side wall 790 or the door (7, 8, 9, 10, 11)). The main purpose is not to use it as a heat insulating material, but to use it as an adhesive. That is, in the portion where the vacuum heat insulating material 400 is arranged, the heat insulating performance is ensured by setting the coverage or filling rate of the vacuum heat insulating material 400 to a predetermined value or more. For example, in a part or the whole range of the recess 440, the space between the vacuum heat insulating material 400 and the inner box 750 is coated or filled, for example, hard urethane is used as an adhesive whose main purpose is an adhesive function. Therefore, the adhesive applied or filled in the space 315 between the vacuum heat insulating material 400 and the inner box 750 (or the outer box 710) in the wall (back wall 730 of the refrigerator 1) can be used as an adhesive. The predetermined thickness as an adhesive is thin because it is sufficient if the adhesive strength (adhesive strength, adhesive performance) can be satisfied, and quality defects such as adhesive defects (peeling and deformation) due to the adhesive material do not occur when the product is applied. It is better, about 11 mm or less (for example, it is better to be smaller than 10 mm), preferably about 6 mm or less.

また、接着剤としての接着力(接着性能)を満足し、接着時の箱体強度を所定値以上確保するためには、接着剤の接着厚さが所定の厚さ以上である必要があり、1mm以上が望ましい。ここで、真空断熱材400の表面の凹凸や内箱750(あるいは外箱710)の表面の凹凸があっても真空断熱材400と内箱(あるいは外箱)との間の空間の略全面に接着剤が塗布されるかあるいは充填されるなどして真空断熱材400と内箱750(あるいは外箱710)との間の空間315の凹凸のある部分も含めて略全面に接着剤が行き渡る方がよいので、好ましくは3mm以上程度が良い。 Further, in order to satisfy the adhesive strength (adhesive performance) as an adhesive and secure the box body strength at the time of adhesion to a predetermined value or more, the adhesive thickness of the adhesive must be a predetermined thickness or more. 1 mm or more is desirable. Here, even if there is unevenness on the surface of the vacuum heat insulating material 400 or unevenness on the surface of the inner box 750 (or outer box 710), the entire space between the vacuum heat insulating material 400 and the inner box (or outer box) is substantially covered. Those who have the adhesive spread over almost the entire surface including the uneven part of the space 315 between the vacuum heat insulating material 400 and the inner box 750 (or the outer box 710) by applying or filling the adhesive. Therefore, it is preferably about 3 mm or more.

ここで、背面壁に設けられている凹部440に限らず、背面壁730の他の部分や側壁790や天面壁740や底面壁780や仕切壁24などにおいても、真空断熱材400が設けられている場合には真空断熱材400と対向する部位は、凹部440と同様に真空断熱材400と壁面(内箱750あるいは外箱710あるいは仕切壁)とが直接接着するようにしても良く、壁内空間315は接着剤としての所定厚さが確保できれば良い。したがって、接着剤としての所定厚さは、11mm以下程度(たとえば10mmより小さい方が良い)、好ましくは6mm以下程度が良く、また、1mm以上程度、好ましくは3mm以上程度が良い。 Here, the vacuum heat insulating material 400 is provided not only in the recess 440 provided in the back wall but also in other parts of the back wall 730, the side wall 790, the top wall 740, the bottom wall 780, the partition wall 24, and the like. If so, the portion facing the vacuum heat insulating material 400 may be such that the vacuum heat insulating material 400 and the wall surface (inner box 750 or outer box 710 or partition wall) are directly adhered to each other in the same manner as the recess 440. The space 315 may have a predetermined thickness as an adhesive. Therefore, the predetermined thickness of the adhesive is preferably about 11 mm or less (for example, it is better to be smaller than 10 mm), preferably about 6 mm or less, and about 1 mm or more, preferably about 3 mm or more.

ここで、断熱箱体700の背面側においては、ウレタンなどの発泡断熱材の原液を充填する注入口703、704が設けられているので、注入口703、704と対向する位置の断熱箱体700の内部の空間(外箱710と内箱750の間の空間)315には、注入口703、704より硬質ウレタンフォームを充填する必要があるため真空断熱材400を配置することが難しい。(注入口703、704に真空断熱材400が干渉するとウレタンの原液の注入が困難になる。)そこで、本実施の形態では、断熱箱体700の背面側においては、図12に示すように、注入口703、704と対向する部位を除いて真空断熱材400を配設している(注入口703、704に真空断熱材400が干渉しないように真空断熱材400の注入口703、704と対向する部位に切欠き部(開口あるいは切り欠き)33を設けている)。たとえば、注入口703、704と対向する部位が切り欠かれた真空断熱材400を使用するようにして注入口703、704と対向する部位には切欠き部33がくるように真空断熱材400を配置してウレタンの充填、流動を妨げないようしている。 Here, on the back side of the heat insulating box 700, injection ports 703 and 704 filled with the stock solution of the foam heat insulating material such as urethane are provided, so that the heat insulating box 700 at a position facing the injection ports 703 and 704 is provided. It is difficult to arrange the vacuum heat insulating material 400 in the internal space (space between the outer box 710 and the inner box 750) 315 because it is necessary to fill the hard urethane foam from the injection ports 703 and 704. (If the vacuum heat insulating material 400 interferes with the injection ports 703 and 704, it becomes difficult to inject the urethane stock solution.) Therefore, in the present embodiment, on the back side of the heat insulating box 700, as shown in FIG. The vacuum heat insulating material 400 is arranged except for the portion facing the injection ports 703 and 704 (opposing the injection ports 703 and 704 of the vacuum heat insulating material 400 so that the vacuum heat insulating material 400 does not interfere with the injection ports 703 and 704). A notch (opening or notch) 33 is provided in the portion to be used). For example, the vacuum heat insulating material 400 is used so that the portion facing the injection ports 703 and 704 is cut out, and the vacuum heat insulating material 400 is provided so that the cutout portion 33 comes to the portion facing the injection ports 703 and 704. It is arranged so as not to interfere with urethane filling and flow.

また、断熱箱体700の背面側に配設される真空断熱材400は、たとえば、一体物ではなく、複数(例えば2個〜3個)に分割して並設し、注入口703、704と対向する部位に注入口703、704の大きさと略同等かそれ以上の切欠きや開口などの切欠き部33を有する真空断熱材400を配設するようにすれば良い。ここで、真空断熱材400は分割する必要はなく、1枚の真空断熱材400であっても良い。真空断熱材400に切欠きや開口を設けるなどして注入口703、704から充填されるウレタンが断熱箱体700内の必要な部位に充填あるいは流動するのを抑制あるいは邪魔しなければ1枚の真空断熱材400であっても良い。 Further, the vacuum heat insulating material 400 arranged on the back side of the heat insulating box 700 is not an integral body, but is divided into a plurality of (for example, 2 to 3) and arranged side by side with the injection ports 703 and 704. The vacuum heat insulating material 400 having a notch 33 such as a notch or an opening that is substantially equal to or larger than the size of the injection ports 703 and 704 may be arranged at the opposite portion. Here, the vacuum heat insulating material 400 does not need to be divided, and may be one vacuum heat insulating material 400. If the vacuum heat insulating material 400 is provided with a notch or an opening to prevent or prevent the urethane filled from the injection ports 703 and 704 from filling or flowing into the required portion in the heat insulating box 700, one sheet is used. The vacuum heat insulating material 400 may be used.

真空断熱材400は、本実施の形態では、略長方形状の4つの角部のうちの少なくとも1つの角部に切欠き部33を有し、この切欠き部33が注入口703、704に対向するように配置されている。真空断熱材400は、断熱箱体700に設置された状態では、注入口703、704と対向する位置の角部に切欠き部33が形成されており、注入口703、704と対向する部位には真空断熱材400の角部に形成された切欠き部33を配置して、注入口703、704と真空断熱材400が干渉しないように配置することで、真空断熱材400の配設面積を大きくでき、かつ注入口703、704を避けて、真空断熱材400を配置することができる(硬質ウレタンフォームの原液を真空断熱材400に邪魔されることなく注入することができる)。したがって、断熱箱体あるいは断熱箱体の背面壁の外表面積に対する真空断熱材の配置面積の比率(被覆率)を大きくすることができ、また、箱体を形成する外箱と内箱との間の空間の容積に対する真空断熱材の容積の割合(真空断熱材の充填率)も大きくできるので、冷蔵庫あるいは断熱箱体の断熱性能を向上させることが可能となる。このような構成で真空断熱材400を配設することにより、断熱性能に優れ、箱体強度を確保できる断熱箱体700あるいは冷蔵庫1を提供することができる。ここで、真空断熱材400に切欠き部33を設けない場合には、真空断熱材400を注入口703、704を避けて配置すれば良い。(真空断熱材400が注入口703、704と干渉しない位置に配置すれば良い。) In the present embodiment, the vacuum heat insulating material 400 has a notch 33 at at least one of the four substantially rectangular corners, and the notch 33 faces the injection ports 703 and 704. It is arranged to do. When the vacuum heat insulating material 400 is installed in the heat insulating box 700, the cutouts 33 are formed at the corners of the positions facing the injection ports 703 and 704, and the vacuum heat insulating material 400 is located at the portions facing the injection ports 703 and 704. By arranging the notch 33 formed at the corner of the vacuum heat insulating material 400 so that the injection ports 703 and 704 do not interfere with the vacuum heat insulating material 400, the arrangement area of the vacuum heat insulating material 400 is increased. The vacuum heat insulating material 400 can be arranged so as to be large and avoiding the injection ports 703 and 704 (the stock solution of the rigid urethane foam can be injected without being disturbed by the vacuum heat insulating material 400). Therefore, the ratio (coverage ratio) of the arranged area of the vacuum heat insulating material to the outer surface area of the heat insulating box or the back wall of the heat insulating box can be increased, and between the outer box and the inner box forming the box. Since the ratio of the volume of the vacuum heat insulating material to the volume of the space (filling rate of the vacuum heat insulating material) can be increased, it is possible to improve the heat insulating performance of the refrigerator or the heat insulating box. By disposing the vacuum heat insulating material 400 with such a configuration, it is possible to provide the heat insulating box body 700 or the refrigerator 1 which is excellent in heat insulating performance and can secure the box body strength. Here, when the notch 33 is not provided in the vacuum heat insulating material 400, the vacuum heat insulating material 400 may be arranged so as to avoid the injection ports 703 and 704. (The vacuum heat insulating material 400 may be arranged at a position where it does not interfere with the injection ports 703 and 704.)

ここで、注入口703、704は、側壁790を形成する外箱710と内箱750との間に位置するようにした方が望ましい。 Here, it is desirable that the injection ports 703 and 704 are located between the outer box 710 and the inner box 750 forming the side wall 790.

なお、注入口703、704の形成位置はあくまでも一例であり、断熱箱体700の形状、つまり外箱710と内箱750との間に形成される壁内空間315の形状に応じて、適宜形成すればよい。したがって、注入口703、704が設けられる位置は、断熱箱体700あるいは冷蔵庫1の形状に応じて、任意の一側面(左側側面、右側側面、正面、背面、天面、底面等)に形成すればよい。 The formation positions of the injection ports 703 and 704 are merely examples, and are appropriately formed according to the shape of the heat insulating box 700, that is, the shape of the wall inner space 315 formed between the outer box 710 and the inner box 750. do it. Therefore, the positions where the injection ports 703 and 704 are provided may be formed on any one side surface (left side surface, right side surface, front surface, back surface, top surface, bottom surface, etc.) depending on the shape of the heat insulating box body 700 or the refrigerator 1. Just do it.

図22は本発明の実施の形態を表す別の断熱箱体700の背面図である。図1〜図14と同等部分は同一の符号を付して説明は省略する。図22では、図12と同様、冷蔵庫1の背面壁730に配置された真空断熱材400の形状の理解を容易とするため、外箱710の背面を透過して真空断熱材400を示している(つまり、真空断熱材400を実線で示している)。 FIG. 22 is a rear view of another heat insulating box 700 showing an embodiment of the present invention. The same parts as those in FIGS. 1 to 14 are designated by the same reference numerals, and the description thereof will be omitted. In FIG. 22, as in FIG. 12, the vacuum heat insulating material 400 is shown through the back surface of the outer box 710 in order to facilitate understanding of the shape of the vacuum heat insulating material 400 arranged on the back wall 730 of the refrigerator 1. (That is, the vacuum heat insulating material 400 is shown by a solid line).

図22では、断熱箱体700の背面側に配設される硬質ウレタンフォームなどを充填あるいは注入する充填口(注入口)703、704は、断熱箱体700の背面下部あるいは背面上部に設けられる機械室1Aを除く背面壁部分の四隅近傍(4つの角部近傍)に4箇所設けられている。充填口(注入口)703、704の配置位置は、幅方向では箱体700の左端あるいは右端から所定距離(幅方向内側端部位置)Y1、上下方向では、上端あるいは下端あるいは機械室1Aの端部から所定距離(上下方向内側端部位置)Y2だけ離れた位置に設けられている。ここで、側壁790の厚さ(壁厚さ)をT1mm、充填口の幅方向長さ(円の場合は直径)をr1としたとき、注入口703、704の幅方向の所定距離(幅方向内側端部位置)Y1は、充填口(注入口)703、704からウレタンなどの充填材を充填したときに側壁790内にウレタンなどの充填材がスムーズに流れるようにT1+r1以下が好ましい。たとえば側壁790の厚さが20mm〜50mm程度、充填口703、704の直径r1は25mm〜50mm程度とした場合、充填口703、704を側壁790の端部から所定距離T01mm(たとえば10mm)以上離して配置するとすれば、所定距離Y1はT01+r1以上T1+r1以下となるので、35mm以上80mm以下程度が好ましい。 In FIG. 22, the filling ports (injection ports) 703 and 704 for filling or injecting hard urethane foam or the like arranged on the back side of the heat insulating box body 700 are machines provided on the lower back surface or the upper back surface of the heat insulating box body 700. Four locations are provided near the four corners (near the four corners) of the back wall portion excluding the chamber 1A. The filling ports (injection ports) 703 and 704 are arranged at a predetermined distance (inner end position in the width direction) Y1 from the left end or the right end of the box 700 in the width direction, and at the upper end or the lower end or the end of the machine room 1A in the vertical direction. It is provided at a position separated by a predetermined distance (position of the inner end in the vertical direction) Y2 from the portion. Here, when the thickness (wall thickness) of the side wall 790 is T1 mm and the width direction length (diameter in the case of a circle) of the filling port is r1, a predetermined distance (width direction) in the width direction of the injection ports 703 and 704. The inner end position) Y1 is preferably T1 + r1 or less so that the filler such as urethane flows smoothly into the side wall 790 when the filler such as urethane is filled from the filling ports (injection ports) 703 and 704. For example, when the thickness of the side wall 790 is about 20 mm to 50 mm and the diameter r1 of the filling ports 703 and 704 is about 25 mm to 50 mm, the filling ports 703 and 704 are separated from the end of the side wall 790 by a predetermined distance T01 mm (for example, 10 mm) or more. Since the predetermined distance Y1 is T01 + r1 or more and T1 + r1 or less, it is preferably about 35 mm or more and 80 mm or less.

また、注入口703、704の上下方向の所定距離(上下方向内側端部位置)Y2は、充填口(注入口)703、704からウレタンなどの充填材を充填したときに天井壁あるいは底面壁あるいは機械室と貯蔵室間を仕切る断熱仕切壁の厚さ(壁厚さ)をT2mm、充填口の上下方向長さ(円の場合は直径)をr2としたとき、天井壁内あるいは底面壁内あるいは仕切壁内にウレタンなどの充填材がスムーズに流れるようにT2+r2以下が好ましく、天井壁あるいは底面壁あるいは仕切壁の厚さが20mm〜50mm程度、充填口703、704の直径r2は25mm〜50mm程度であるので、充填口703、704を壁面の端部から所定距離T02mm(たとえば10mm)以上離して配置するとすれば、所定距離Y2はT02+r2以上T2+r2以下となるので、35m以上80mm以下程度が好ましい。
ここで、所定距離T01(あるいはT02)は、外箱710に注入口703、704の穴加工を行うにあたって、注入口703、704が加工可能な距離(たとえば注入口が側壁790の外壁を形成する外板に干渉せず、また、注入口703、704の加工時に注入口703、704が破断や変形などを起こさない距離)、あるいはウレタン等の断熱材や接着剤の流動が阻害されない距離(たとえば、ウレタンなどの原液の流動が側壁790の外壁を形成する外板に邪魔されない距離、またはウレタンなどの原液の流動が側壁790内の外壁側に配置される真空断熱材に邪魔されない距離)である。所定距離T01、T02は、たとえば側壁790の外壁を形成する外板の板厚が0.6〜3mm程度、側壁790内で外壁側に配置される真空断熱材の厚さが11mm以下(たとえば10mmより小さい方が好ましいので9.5mm)を想定すると、真空断熱材の厚さ(9.5mm)の方が板厚(0.6〜3mm)よりも大きいので、所定距離T01(あるいはT02)は、真空断熱材の厚さである9.5mm以上であれば良く、この場合には9.5mm以上であれば良いが、余裕代を考慮して10mmあるいは10mm以上が好ましい。
Further, the predetermined distance (position of the inner end in the vertical direction) Y2 of the injection ports 703 and 704 in the vertical direction is a ceiling wall or a bottom wall or a bottom wall when a filler such as urethane is filled from the filling ports (injection ports) 703 and 704. When the thickness (wall thickness) of the heat insulating partition wall that separates the machine room and the storage room is T2 mm and the vertical length of the filling port (diameter in the case of a circle) is r2, the inside of the ceiling wall or the bottom wall or T2 + r2 or less is preferable so that the filler such as urethane flows smoothly in the partition wall, the thickness of the ceiling wall, the bottom wall or the partition wall is about 20 mm to 50 mm, and the diameter r2 of the filling ports 703 and 704 is about 25 mm to 50 mm. Therefore, if the filling ports 703 and 704 are arranged at a predetermined distance T02 mm (for example, 10 mm) or more from the end of the wall surface, the predetermined distance Y2 is T02 + r2 or more and T2 + r2 or less, so that it is preferably about 35 m or more and 80 mm or less.
Here, the predetermined distance T01 (or T02) is a distance that the injection ports 703 and 704 can process (for example, the injection port forms the outer wall of the side wall 790) when the injection ports 703 and 704 are drilled in the outer box 710. A distance that does not interfere with the outer panel and that does not cause breakage or deformation of the injection ports 703 and 704 during processing of the injection ports 703 and 704, or a distance that does not hinder the flow of the heat insulating material such as urethane or the adhesive (for example). , The distance at which the flow of the undiluted solution such as urethane is not obstructed by the outer plate forming the outer wall of the side wall 790, or the distance at which the flow of the undiluted solution such as urethane is not obstructed by the vacuum heat insulating material arranged on the outer wall side in the side wall 790). .. For the predetermined distances T01 and T02, for example, the thickness of the outer plate forming the outer wall of the side wall 790 is about 0.6 to 3 mm, and the thickness of the vacuum heat insulating material arranged on the outer wall side in the side wall 790 is 11 mm or less (for example, 10 mm). Assuming that the vacuum heat insulating material is thinner (9.5 mm), the thickness of the vacuum heat insulating material (9.5 mm) is larger than the plate thickness (0.6 to 3 mm), so that the predetermined distance T01 (or T02) is The thickness of the vacuum heat insulating material may be 9.5 mm or more. In this case, the thickness may be 9.5 mm or more, but 10 mm or 10 mm or more is preferable in consideration of the margin.

ここで、図8に示すように室内(貯蔵室内)側に突出する凸部450が設けられている場合には、充填口703、704を凸部450の設けられている範囲(凸部450の略三角形の斜辺456が背面壁730あるいは側壁790と接続される所定部位797、798の範囲)であればスムーズに充填されるので、所定距離Y1は、凸部450の幅方向長さをA(幅方向凸部長さA)とすれば、T01+r1以上T1+A以下が好ましく、所定距離Y2は、凸部450の上下方向長さをB(上下方向凸部長さB)とすれば、T02+r2以上T2+B以下が好ましい。したがって、所定距離Y1は、凸部450の長さAをたとえば180mm〜200mmとすれば、250mm以下(好ましくは230mm以下程度)までは、充填されたウレタンなどの充填材が凸部450の斜辺部(円弧状であっても良い)456にぶつかっても斜辺部が傾斜しているためスムーズに側壁790内や天井壁740内などに注入できるので問題ない。
以上より、本実施の形態では、外箱710と内箱750とから形成され、少なくとも背面壁730、側壁790を有する箱体と、該箱体に設けられ、前面に開口部を有する貯蔵室2、3、4、5、6、7と、背面壁730内の外箱側に設けられる真空断熱材400と、背面壁730の幅方向端部あるいは上下方向端部に設けられ、背面壁730内に介在部材である断熱材の原液を注入する注入口703、704と、を備え、前記注入口703、704は箱体の背面の上部あるいは下部の機械室1Aを除いた背面壁(図22では機械室1Aを除いた背面壁の4隅、図12では、機械室1Aを除いた背面壁の左右端側)に設けられており、真空断熱材400は、注入口703、704と対向する部位に注入口703、704と干渉しないように切り欠きまたは開口などの切り欠き部33が設けられており、断熱材の厚さを11mm以下(ばらつきや真空断熱材の表面の凹凸などを考慮すると10mmよりも小さい方が良い)にすれば、断熱箱体あるいは断熱箱体の背面壁の外表面積に対する真空断熱材の配置面積の比率(被覆率)を大きくすることができ、また、箱体を形成する外箱と内箱との間の空間の容積に対する真空断熱材の容積の割合(真空断熱材の充填率)も大きくできるので、冷蔵庫あるいは断熱箱体の断熱性能を向上させることが可能となる。
また、断熱材の密度を60Kg/mより大きくすることにより箱体の強度(剛性)が向上し、信頼性の高い冷蔵庫が得られる。ただし、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度は大きくなりすぎると、(1)ウレタンの注入量増加によるコストUP、(2)ウレタンの注入圧力増加によるウレタン漏れの発生、(3)ウレタン発泡時の発泡圧力増加による箱体変形抑制用金型や箱体押さえ部材などとウレタンとの密着力、接着力増加のため箱体変形抑制用金型や箱体押さえ部材などが箱体から抜けにくくなる(箱体から取り外しにくくなる)、(4)ウレタンの密度増による断熱性能の急激な悪化など、品質悪化、性能悪化、コストUP等の問題が発生するので、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度(発泡断熱材の場合は発泡後の密度)は100kg/m以下(好ましくは90kg/m以下)にした方が良い。
また、断熱材の厚さ/(前記断熱材の厚さ+前記真空断熱材の厚さ)が0.3以下にすることにより、箱体の壁厚さを低減でき、しかも箱体強度、断熱性能とも向上できるので、室(たとえば貯蔵室)内の容積が大きく、高強度で断熱性能の良好な断熱箱体、冷蔵庫、機器が得られる。また、硬質ウレタンフォームの曲げ弾性率を大きくすることができるので、硬質ウレタンフォームの厚さが小さくなっても強度を向上させることができる。したがって、壁厚さを小さくしても箱体強度を向上できる。また、真空断熱材400と硬質ウレタンフォームを備えた複合部材から形成される壁の複合熱伝導率を小さくできるので、壁厚さを小さくしても断熱性能を向上させることができる。
また、断熱材が硬質ウレタンフォームであり、硬質ウレタンフォームの曲げ弾性率を15MPa以上、150MPa以下、真空断熱材400の曲げ弾性率を20MPa以上にすることにより、介在部材である硬質ウレタンフォームの曲げ弾性率を大きくすることができるので、硬質ウレタンフォームの厚さが小さくなっても強度を向上させることができる。また、真空断熱材の剛性が向上するので、箱体強度が向上する。
また、真空断熱材は、少なくとも側壁790内及び背面壁730内に配置され、背面壁730と側壁790の外表面積に対する真空断熱材400の配置面積の比率を70%以上にすることにより、箱体変形量が小さく、高強度で剛性の高く、断熱性能が良好な断熱箱体、冷蔵庫、機器が得られる。
また、箱体を形成する前記外箱と前記内箱との間の空間の容積に対する前記真空断熱材の占める容積の割合が40%以上にすることにより、箱体変形量が小さく、高強度で剛性の高く、断熱性能が良好な断熱箱体、冷蔵庫、機器が得られる。
また、真空断熱材は略四角形の板状であって、切り欠き部33は、注入口703、704と対向する部位に注入口703、704と干渉しないように略四角形の4つの角部(4隅)のうちの少なくとも注入口703、704が設けられている角部に設けられているので、充填口(注入口)703、704からウレタンなどの充填材を充填したときに側天井壁内あるいは底面壁内あるいは仕切壁内にウレタンなどの充填材がスムーズに流れるようになる。注入口703、704が機械室1Aを除く背面壁の4隅に設けられている場合には、真空断熱材400の切り欠き部33も注入口703、704と対向する4隅(略四角形状の真空断熱材400の4つの角部)に設ければ良い。
Here, when the convex portion 450 projecting toward the indoor (storage chamber) side is provided as shown in FIG. 8, the filling ports 703 and 704 are provided in the range where the convex portion 450 is provided (the convex portion 450). If the hypotenuse 456 of the substantially triangular shape is in the range of predetermined portions 797 and 798 connected to the back wall 730 or the side wall 790), the predetermined distance Y1 is set to A (the length in the width direction of the convex portion 450). If the width direction convex portion length A), T01 + r1 or more and T1 + A or less are preferable, and if the vertical length of the convex portion 450 is B (vertical convex portion length B), the predetermined distance Y2 is T02 + r2 or more and T2 + B or less. preferable. Therefore, for the predetermined distance Y1, if the length A of the convex portion 450 is, for example, 180 mm to 200 mm, the filling material such as urethane filled up to 250 mm or less (preferably about 230 mm or less) is the hypotenuse portion of the convex portion 450. Even if it hits 456 (it may be arcuate), since the hypotenuse is inclined, it can be smoothly injected into the side wall 790 or the ceiling wall 740, so that there is no problem.
From the above, in the present embodiment, the box body formed from the outer box 710 and the inner box 750 and having at least the back wall 730 and the side wall 790, and the storage chamber 2 provided in the box body and having an opening in the front surface. 3, 4, 5, 6, 7, and the vacuum heat insulating material 400 provided on the outer box side inside the back wall 730, and the vacuum heat insulating material 400 provided at the widthwise end or the vertical end of the back wall 730, inside the back wall 730. Is provided with injection ports 703 and 704 for injecting the stock solution of the heat insulating material which is an intervening member, and the injection ports 703 and 704 are back walls excluding the machine chamber 1A at the upper or lower part of the back surface of the box body (in FIG. 22). The four corners of the back wall excluding the machine chamber 1A, in FIG. 12, the left and right end sides of the back wall excluding the machine chamber 1A), the vacuum heat insulating material 400 is a portion facing the injection ports 703 and 704. A notch 33 such as a notch or an opening is provided so as not to interfere with the injection ports 703 and 704, and the thickness of the heat insulating material is 11 mm or less (10 mm in consideration of variation and surface unevenness of the vacuum heat insulating material). If it is set to (smaller is better), the ratio (coverage ratio) of the arranged area of the vacuum heat insulating material to the outer surface area of the heat insulating box or the back wall of the heat insulating box can be increased, and the box is formed. Since the ratio of the volume of the vacuum heat insulating material to the volume of the space between the outer box and the inner box (filling rate of the vacuum heat insulating material) can be increased, it is possible to improve the heat insulating performance of the refrigerator or the heat insulating box. ..
Further, by increasing the density of the heat insulating material to more than 60 kg / m 3 , the strength (rigidity) of the box body is improved, and a highly reliable refrigerator can be obtained. However, if the density of the heat insulating material (for example, rigid urethane foam) such as urethane, which is an intervening member, becomes too high, (1) the cost increases due to the increase in the injection amount of urethane, and (2) urethane leakage occurs due to the increase in the injection pressure of urethane. , (3) Mold for suppressing deformation of the box due to the increase in foaming pressure during urethane foaming, the mold for suppressing the deformation of the box, the holding member for the box, etc. However, problems such as quality deterioration, performance deterioration, and cost increase occur, such as difficulty in removing from the box (difficult to remove from the box) and (4) rapid deterioration of heat insulation performance due to increased urethane density. The density of the heat insulating material (for example, hard urethane foam) such as urethane (in the case of the foamed heat insulating material, the density after foaming) should be 100 kg / m 3 or less (preferably 90 kg / m 3 or less).
Further, by setting the thickness of the heat insulating material / (thickness of the heat insulating material + thickness of the vacuum heat insulating material) to 0.3 or less, the wall thickness of the box body can be reduced, and the strength and heat insulation of the box body can be reduced. Since the performance can be improved, a heat insulating box, a refrigerator, and a device having a large volume in a room (for example, a storage room), high strength, and good heat insulating performance can be obtained. Further, since the flexural modulus of the rigid urethane foam can be increased, the strength can be improved even if the thickness of the rigid urethane foam is reduced. Therefore, the strength of the box can be improved even if the wall thickness is reduced. Further, since the composite thermal conductivity of the wall formed of the composite member provided with the vacuum heat insulating material 400 and the rigid urethane foam can be reduced, the heat insulating performance can be improved even if the wall thickness is reduced.
Further, the heat insulating material is a rigid urethane foam, and the flexural modulus of the rigid urethane foam is set to 15 MPa or more and 150 MPa or less, and the flexural modulus of the vacuum heat insulating material 400 is set to 20 MPa or more to bend the rigid urethane foam as an intervening member. Since the elastic modulus can be increased, the strength can be improved even if the thickness of the rigid urethane foam is reduced. Further, since the rigidity of the vacuum heat insulating material is improved, the strength of the box body is improved.
Further, the vacuum heat insulating material is arranged at least in the side wall 790 and the back wall 730, and the ratio of the arranged area of the vacuum heat insulating material 400 to the outer surface area of the back wall 730 and the side wall 790 is 70% or more. A heat insulating box, a refrigerator, and a device having a small amount of deformation, high strength, high rigidity, and good heat insulating performance can be obtained.
Further, by setting the ratio of the volume occupied by the vacuum heat insulating material to the volume of the space between the outer box and the inner box forming the box body to 40% or more, the amount of deformation of the box body is small and the strength is high. A heat insulating box, refrigerator, and equipment with high rigidity and good heat insulating performance can be obtained.
Further, the vacuum heat insulating material has a substantially quadrangular plate shape, and the notch 33 has four substantially quadrangular corners (4) so as not to interfere with the injection ports 703 and 704 at the portions facing the injection ports 703 and 704. Since it is provided at least in the corner where the injection ports 703 and 704 are provided in the corners), the inside of the side ceiling wall or when the filler such as urethane is filled from the filling ports (injection ports) 703 and 704. Fillers such as urethane can flow smoothly into the bottom wall or the partition wall. When the injection ports 703 and 704 are provided at the four corners of the back wall excluding the machine room 1A, the cutouts 33 of the vacuum heat insulating material 400 also face the injection ports 703 and 704 at the four corners (approximately square shape). It may be provided at the four corners of the vacuum heat insulating material 400).

(側壁にレール部材)
ここで、側壁790に棚80あるいは引き出し式の貯蔵室(たとえば引き出し式の扉あるいは引き出しケース等)を支えるためのレール部(たとえばレールあるいはレール取り付け部)755が形成される場合について説明する。
(Rail member on the side wall)
Here, a case where a rail portion (for example, a rail or a rail mounting portion) 755 for supporting a shelf 80 or a drawer type storage chamber (for example, a drawer type door or a drawer case) is formed on the side wall 790 will be described.

図24は、本発明の実施の形態を表す冷蔵庫のレール取り付け部近傍の要部断面図である。図25は、本発明の実施の形態を表す別の冷蔵庫のレール取り付け部近傍の要部断面図である。図26は、本発明の実施の形態を表す別の冷蔵庫のレール取り付け部近傍の要部断面図である。図27は、本発明の実施の形態を表す別の冷蔵庫のレール取り付け部近傍の要部断面図である。図24〜図27において、図1〜図14と同等部分には同一の符号を付して説明は省略する。また、図24〜図27においては、同等部分は同一の符号を付しているので、1つの図で説明し他の図での説明は省略する。 FIG. 24 is a cross-sectional view of a main part in the vicinity of the rail mounting portion of the refrigerator showing the embodiment of the present invention. FIG. 25 is a cross-sectional view of a main part in the vicinity of the rail mounting portion of another refrigerator showing the embodiment of the present invention. FIG. 26 is a cross-sectional view of a main part in the vicinity of the rail mounting portion of another refrigerator showing the embodiment of the present invention. FIG. 27 is a cross-sectional view of a main part in the vicinity of the rail mounting portion of another refrigerator showing the embodiment of the present invention. In FIGS. 24 to 27, the same parts as those in FIGS. 1 to 14 are designated by the same reference numerals, and the description thereof will be omitted. Further, in FIGS. 24 to 27, since the equivalent parts have the same reference numerals, the description will be described in one figure and the description in the other figures will be omitted.

図24において、側壁790の壁厚さは局所的な突起や凹みを除いた平均的な厚さが20mm以上40mm以下であって、たとえば冷蔵室2や野菜室5や冷凍室6などの貯蔵室に、貯蔵室の中に設置される棚80あるいは引き出し式の貯蔵室(たとえば引き出し式の扉あるいは引き出しケース等)を支えるためのレール部(たとえばレール部材取り付け部あるいはレール保持部)755が内箱750に凹形状の内箱凹部717あるいは凸形状の内箱凸部等で形成され、レール部材810のレール支持部820がネジなどのレール固定部材735により内箱750あるいは補強部材731あるいはウレタン等の断熱材701に固定される。したがって、側壁790において、真空断熱材400と内箱750との間に充填される第3の介在部材である硬質ウレタンフォームなどの断熱材701の厚さを所定厚さ(11mm程度以下、好ましくは10mmより小さくより好ましくは6mm程度以下)以下に設定して壁厚さを薄くして貯蔵室内容積を大きくしようとすると、レール部材あるいは補強部材を固定あるいは保持するためのネジなどの固定部材が真空断熱材400の外包材を傷つけたり破損したりする恐れがある。 In FIG. 24, the wall thickness of the side wall 790 is an average thickness of 20 mm or more and 40 mm or less excluding local protrusions and dents, and is, for example, a storage room such as a refrigerating room 2, a vegetable room 5, or a freezing room 6. In addition, a rail portion (for example, a rail member mounting portion or a rail holding portion) 755 for supporting a shelf 80 installed in the storage chamber or a drawer-type storage chamber (for example, a drawer-type door or a drawer case) is provided as an inner box. The 750 is formed of a concave inner box recess 717 or a convex inner box convex portion, and the rail support portion 820 of the rail member 810 is formed by a rail fixing member 735 such as a screw to form an inner box 750, a reinforcing member 731, urethane, or the like. It is fixed to the heat insulating material 701. Therefore, in the side wall 790, the thickness of the heat insulating material 701 such as the hard urethane foam, which is the third intervening member filled between the vacuum heat insulating material 400 and the inner box 750, is set to a predetermined thickness (about 11 mm or less, preferably about 11 mm or less). If the wall thickness is set to be smaller than 10 mm and more preferably about 6 mm or less to increase the storage chamber volume, the fixing member such as a screw for fixing or holding the rail member or the reinforcing member is evacuated. The outer packaging material of the heat insulating material 400 may be damaged or damaged.

ここで、真空断熱材400を傷つけないようにネジなどの固定部材735の長さを短くするとレール部材810を固定あるいは保持するため固定強度あるいは保持強度が弱くなり、レール部材810にケース520や棚80などを設置した場合に貯蔵品が収納あるいは載置された場合に貯蔵品やケース520や棚80などの重みにより固定部材735が内箱750からはずれる恐れがある。また、2段レール構成の引出式ケースの場合などケース520を引き出した時の引き出し量が大きくなる場合には、レール部材810にケース520などを設置した場合に貯蔵品やケース520などの重みによりレール部材810あるいは補強部材731と対向する位置の内箱750の取付部分でレール部755が変形して引き出し式ケース520がスムーズに引き出せない状況になる恐れがある。ここで、ウレタン等の断熱材701内に挿入されて固定されるネジなどの固定部材735の長さ(ネジ部の長さ)は強度確保上10mm程度よりも短くすることが困難であり、通常は15mm程度以上確保しており、真空断熱材400と内箱750との間の第3の介在部材である硬質ウレタンフォーム701の厚さを15mm程度以下(好ましくは11mm以下(たとえば10mmより小さい方が良い))にすることは困難であった。特に従来使用のウレタンは、断熱性能確保のため、密度が60kg/m以下と小さい範囲で使用しているため、ウレタン内に空隙が多く、ネジなどの固定部材を保持する強度が小さいため、ネジ等の固定部材の長さが長く必要となっていた。 Here, if the length of the fixing member 735 such as a screw is shortened so as not to damage the vacuum heat insulating material 400, the fixing strength or the holding strength becomes weak because the rail member 810 is fixed or held, and the case 520 or the shelf is attached to the rail member 810. When the stored item is stored or placed when the 80 or the like is installed, the fixing member 735 may come off from the inner box 750 due to the weight of the stored item, the case 520, the shelf 80, or the like. Further, when the pull-out amount when the case 520 is pulled out becomes large, such as in the case of a pull-out type case having a two-stage rail configuration, when the case 520 or the like is installed on the rail member 810, the weight of the stored items or the case 520 or the like is used. The rail portion 755 may be deformed at the mounting portion of the inner box 750 at a position facing the rail member 810 or the reinforcing member 731, and the pull-out case 520 may not be able to be pulled out smoothly. Here, it is difficult to make the length (length of the screw portion) of the fixing member 735 such as a screw inserted and fixed in the heat insulating material 701 such as urethane shorter than about 10 mm in order to secure the strength, and is usually used. Is secured about 15 mm or more, and the thickness of the rigid urethane foam 701, which is the third intervening member between the vacuum heat insulating material 400 and the inner box 750, is about 15 mm or less (preferably 11 mm or less (for example, smaller than 10 mm)). It was difficult to do)). In particular, the urethane used in the past is used in a small range of 60 kg / m 3 or less in order to ensure heat insulation performance, so there are many voids in the urethane and the strength to hold fixing members such as screws is small. The length of the fixing member such as a screw has been required to be long.

本発明の実施の形態では、断熱箱体700あるいは冷蔵庫1の側壁790において、室内(貯蔵室など)に設置される棚80あるいは引き出し式のケース(たとえば引き出し式の貯蔵室あるいは貯蔵室の扉あるいは引き出しケース等)520を支えるためのレール部(たとえばレール取り付け部あるいはレール保持部)755が内箱750に形成されているが、この内箱750のレール部755と対向する部位の内箱750と外箱710との間に真空断熱材400が配設されている。ここで、内箱750のレール部755と対向する部位の内箱750と外箱710との間に真空断熱材400が配設される場合には、ネジなどの固定部材735を側壁790ではなく室を形成する下面の仕切壁24あるいは室を形成する上面の仕切壁(上面壁)24あるいは天井壁740、あるいは底面壁780に設けるようにすれば良い。この場合には、固定部材は、側壁790の近傍の底面壁780あるいは下面の仕切壁24あるいは上面の仕切壁24あるいは天井壁740に設けられることになるため、底面壁780あるいは下面の仕切壁24あるいは天井壁740あるいは上面の仕切壁24にも真空断熱材を配設する場合には、固定部材735を設ける部位を避けるか切り欠くなどして真空断熱材400を配設するようにすれば良い。このようにすることで、側壁790に真空断熱材400を配設することができるとともに、壁厚さを薄くすることができる。 In the embodiment of the present invention, in the heat insulating box 700 or the side wall 790 of the refrigerator 1, the shelf 80 or the drawer type case (for example, the drawer type storage room or the door of the storage room) installed in the room (storage room or the like) or the door of the storage room or A rail portion (for example, a rail mounting portion or a rail holding portion) 755 for supporting the 520 (drawer case, etc.) is formed in the inner box 750, and the inner box 750 of the portion facing the rail portion 755 of the inner box 750 The vacuum heat insulating material 400 is arranged between the outer box 710 and the outer box 710. Here, when the vacuum heat insulating material 400 is arranged between the inner box 750 and the outer box 710 at the portion facing the rail portion 755 of the inner box 750, the fixing member 735 such as a screw is not attached to the side wall 790. The partition wall 24 on the lower surface forming the chamber, the partition wall (upper surface wall) 24 on the upper surface forming the chamber, the ceiling wall 740, or the bottom wall 780 may be provided. In this case, since the fixing member is provided on the bottom wall 780 near the side wall 790, the bottom partition wall 24, the top partition wall 24, or the ceiling wall 740, the bottom wall 780 or the bottom partition wall 24 Alternatively, when the vacuum heat insulating material is also arranged on the ceiling wall 740 or the partition wall 24 on the upper surface, the vacuum heat insulating material 400 may be arranged by avoiding or notching the portion where the fixing member 735 is provided. .. By doing so, the vacuum heat insulating material 400 can be arranged on the side wall 790, and the wall thickness can be reduced.

また、本発明の実施の形態では、第3の介在部材として使用されるウレタン等の断熱材701内に挿入されるネジなどの固定部材735の長さ(ネジ部の長さ)を10mm程度より小さくしても、第3の介在部材であるウレタンの密度が60kg/mより大きな範囲で使用するようにすれば、ウレタン内の空隙が密度60kg/mよりも小さい場合に比べて少なくなり、ネジなどの固定部材735を保持するウレタンの強度が大きくなるので、固定部材735の保持強度が向上する。この場合、樹脂製あるいは金属製の板状補強部材(ネジ固定部)731を真空断熱材400と内箱750の間に形成して固定部材735をネジ固定部731に挿入するなどして固定しても良い。補強部材731の厚さはネジなどの固定部材735を保持あるいは固定できる厚さであればよく、2mm以上10mm以下程度に設定されている。この場合でも、第3の介在部材であるウレタンの密度を60kg/mより大きくすれば、補強部材(ネジ固定部)731のウレタン等の断熱材701内での保持強度を大きくできるので、内箱750のレール部755や固定部材735の変形などが抑制され、また、補強部材731のウレタン等の断熱材701内での位置ズレなども抑制できる。特に2段階で引き出される2段レール構造の場合には、固定部材の固定あるいは保持強度が大きく必要になるが、ウレタンの密度を60kg/mより大きくすれば、問題なく使用できる。また、ウレタンなどの断熱材701の厚さが11mm以下(たとえば10mmよりも小さく)好ましくは6mm以下にして、ネジなどの固定部材735のネジ部長さを10mm以下にしてもネジ735を固定する部分(レール部755)の内箱750の厚さ(たとえば1〜2mm)分、あるいは補強部材731の厚さ(たとえば1mm〜8mm程度)分だけネジ部のウレタン等の断熱材701への突出長さが短くなるので、真空断熱材400をネジ735が傷つけたり破袋したりすることはない。 Further, in the embodiment of the present invention, the length (length of the screw portion) of the fixing member 735 such as a screw inserted into the heat insulating material 701 such as urethane used as the third intervening member is set to about 10 mm. Even if it is made smaller, if the density of urethane, which is the third intervening member, is used in a range larger than 60 kg / m 3 , the voids in the urethane will be smaller than when the density is smaller than 60 kg / m 3. , Since the strength of urethane that holds the fixing member 735 such as a screw is increased, the holding strength of the fixing member 735 is improved. In this case, a resin or metal plate-shaped reinforcing member (screw fixing portion) 731 is formed between the vacuum heat insulating material 400 and the inner box 750, and the fixing member 735 is fixed by inserting it into the screw fixing portion 731. May be. The thickness of the reinforcing member 731 may be any thickness as long as it can hold or fix the fixing member 735 such as a screw, and is set to about 2 mm or more and 10 mm or less. Even in this case, if the density of urethane, which is the third intervening member, is made larger than 60 kg / m 3 , the holding strength of the reinforcing member (screw fixing portion) 731 in the heat insulating material 701 such as urethane can be increased. Deformation of the rail portion 755 and the fixing member 735 of the box 750 can be suppressed, and misalignment of the reinforcing member 731 in the heat insulating material 701 such as urethane can also be suppressed. In particular, in the case of a two-stage rail structure that is pulled out in two stages, a large fixing or holding strength of the fixing member is required, but if the urethane density is made larger than 60 kg / m 3 , it can be used without problems. Further, the portion for fixing the screw 735 even if the thickness of the heat insulating material 701 such as urethane is 11 mm or less (for example, smaller than 10 mm), preferably 6 mm or less, and the screw portion length of the fixing member 735 such as a screw is 10 mm or less. The protruding length of the screw portion to the heat insulating material 701 such as urethane by the thickness of the inner box 750 (for example, 1 to 2 mm) of the (rail portion 755) or the thickness of the reinforcing member 731 (for example, about 1 mm to 8 mm). Is shortened, so that the screw 735 does not damage or break the vacuum heat insulating material 400.

すなわち、内箱750と外箱710の間に真空断熱材400が設けられ、引き出し式貯蔵室用のレール部材810が設けられる側壁790において、側壁790の厚さが40mm以下、レール部材810が取り付けられるレール部(レール取り付け部)755と対向する部位の発泡断熱材(たとえば硬質ウレタンフォーム)701の厚さが11mm以下(ばらつきや真空断熱材の表面の凹凸などを考慮すると10mm未満が良い)であって、発泡断熱材の厚さ/(発泡断熱材の厚さ+真空断熱材の厚さ)が0.3以下であって、硬質ウレタンフォームの密度を60kg/mより大きくすることで、ネジなどの固定部材735の外れが抑制され、あるいはネジなどの固定部材735の保持強度あるいは固定強度が増加し、レール部755が変形したりしないのでケース520などの出し入れがスムーズに行える。また、ネジなどの固定部材735を取り付けるレール部(レール取り付け部)755あるいは内箱750が破損することもなくなり、信頼性が向上する。 That is, in the side wall 790 in which the vacuum heat insulating material 400 is provided between the inner box 750 and the outer box 710 and the rail member 810 for the pull-out storage chamber is provided, the thickness of the side wall 790 is 40 mm or less, and the rail member 810 is attached. The thickness of the foamed heat insulating material (for example, hard urethane foam) 701 of the part facing the rail part (rail mounting part) 755 is 11 mm or less (less than 10 mm is preferable in consideration of variation and surface unevenness of the vacuum heat insulating material). there are, thickness / (thickness of the foam insulation thickness + vacuum heat insulator) of foam insulation is not more than 0.3, the density of the rigid urethane foam to be larger than 60 kg / m 3, Since the detachment of the fixing member 735 such as a screw is suppressed, the holding strength or the fixing strength of the fixing member 735 such as a screw is increased, and the rail portion 755 is not deformed, the case 520 and the like can be smoothly taken in and out. Further, the rail portion (rail mounting portion) 755 or the inner box 750 to which the fixing member 735 such as a screw is attached is not damaged, and the reliability is improved.

レール部材810は、貯蔵室2、3、4、5、6の開閉扉7、8、9、10、11に固定あるいは保持され、開閉扉の開とともに引き出される移動レールである上レール811、貯蔵室の側壁790に固定された固定レールである下レール812、上レール811と下レール812の間に設けられた中間レール813、下レール812にネジあるいは溶接などのレール支持部固定部材836で固定されたレール支持部820、上レール811にネジあるいは溶接などのケース支持部固定部材835で固定されたケース支持部830、中間レール813と上レール811及び下レール812との係合を支持する回転支持部材である複数のベアリング815、とから構成されている。レール支持部820は、貯蔵室2、3、4、5、6の側壁790を形成する内箱750のレール部755にネジなどのレール固定部材735にて固定されている。また、ケース支持部830は、貯蔵室2、3、4、5、6に設けられているケース520を支持しており、移動レールである上レール811の前後方向の移動に伴ってケース520が前後方向に移動する(上レール811の移動に伴ってケース520が前後方向に移動することでケース520が前後方向に出し入れされる)。また、中間レール813は、上レール811の前後方向への移動に伴って前後方向に移動する。したがって、各貯蔵室2、3、4、5、6のケース520は、各貯蔵室扉7、8、9、10、11を冷蔵庫1に対して前後方向に引き出すのと同期して上レール811と共に前後に移動し、各貯蔵室扉が全開した時にはケース520は上方向に着脱自在になっている。 The rail member 810 is a moving rail that is fixed or held to the opening / closing doors 7, 8, 9, 10, 11 of the storage chambers 2, 3, 4, 5, and 6 and is pulled out when the opening / closing door is opened. Fixed to the lower rail 812, which is a fixed rail fixed to the side wall 790 of the chamber, the intermediate rail 813 provided between the upper rail 811 and the lower rail 812, and the lower rail 812 with rail support fixing members 836 such as screws or welds. Rotation to support the engagement of the rail support portion 820, the case support portion 830 fixed to the upper rail 811 by the case support portion fixing member 835 such as a screw or welding, the intermediate rail 813, and the upper rail 811 and the lower rail 812. It is composed of a plurality of rails 815, which are support members. The rail support portion 820 is fixed to the rail portion 755 of the inner box 750 forming the side walls 790 of the storage chambers 2, 3, 4, 5, and 6 by a rail fixing member 735 such as a screw. Further, the case support portion 830 supports the case 520 provided in the storage chambers 2, 3, 4, 5, and 6, and the case 520 moves with the movement of the upper rail 811 which is a moving rail in the front-rear direction. It moves in the front-rear direction (the case 520 moves in the front-rear direction as the upper rail 811 moves, so that the case 520 is moved in and out in the front-rear direction). Further, the intermediate rail 813 moves in the front-rear direction as the upper rail 811 moves in the front-rear direction. Therefore, the case 520 of each storage chamber 2, 3, 4, 5, 6 has an upper rail 811 in synchronization with pulling out the storage chamber doors 7, 8, 9, 10, and 11 in the front-rear direction with respect to the refrigerator 1. The case 520 is detachable in the upward direction when the storage chamber doors are fully opened.

ここで、下レール812とレール支持部820を一体に形成しても良い。すなわち、下レール812とレール支持部820を予め溶接などで一体に固定しておいても良い。この場合には、レール支持部固定部材836であるネジが不要になり、組立性が改善される。また、下レール812の一部をレール支持部820として使用しても良く、この場合には、溶接やネジなどが不要になるので、低コストで組立性が良好なレール部材、冷蔵庫が得られる。 Here, the lower rail 812 and the rail support portion 820 may be integrally formed. That is, the lower rail 812 and the rail support portion 820 may be integrally fixed by welding or the like in advance. In this case, the screw which is the rail support portion fixing member 836 becomes unnecessary, and the assembling property is improved. Further, a part of the lower rail 812 may be used as the rail support portion 820. In this case, welding and screws are not required, so that a rail member and a refrigerator having good assembleability at low cost can be obtained. ..

レール部材810のレール支持部820は、各貯蔵室の側壁790を構成する内箱750のレール部755にレール固定部材735によって固定あるいは保持されている。ここで、レール部材810はある程度の大きさを有するため、レール部755の貯蔵室側に取り付けられた状態では貯蔵室側に出っ張る(突出する)ため、貯蔵室内への出っ張り量(突出量)を小さくするため、レール部755は、貯蔵室側からみて外箱710方向に凹ませた方が良い。よって、内箱750のレール部755は外箱710方向に凹んだ形状をしており、内箱凹部717が形成されている。このようにレール部755を外箱710側へ凹ませた内箱凹部717に貯蔵室側からレール部材810を取り付けることにより、貯蔵室内の容積及びケース520の容積を大きくできる。 The rail support portion 820 of the rail member 810 is fixed or held by the rail fixing member 735 to the rail portion 755 of the inner box 750 constituting the side wall 790 of each storage chamber. Here, since the rail member 810 has a certain size, it protrudes (protrudes) toward the storage chamber when the rail portion 755 is attached to the storage chamber side, so that the amount of protrusion (protruding amount) into the storage chamber can be determined. In order to reduce the size, the rail portion 755 should be recessed in the outer box 710 direction when viewed from the storage chamber side. Therefore, the rail portion 755 of the inner box 750 has a shape recessed in the outer box 710 direction, and the inner box recess 717 is formed. By attaching the rail member 810 from the storage chamber side to the inner box recess 717 in which the rail portion 755 is recessed toward the outer box 710 side in this way, the volume of the storage chamber and the volume of the case 520 can be increased.

内箱750のレール部755の外箱710側(貯蔵室側とは反対側)には、真空断熱材400との間に補強部材731が設けられており、補強部材731と真空断熱材400との間には第3の介在部材としてウレタン等の断熱材701が充填されており、補強部材731は、ウレタン等の断熱材701によりレール部755に略密着するように固定または保持されている。内箱750のレール部755と外箱710の間は、内箱750側からレール部755、補強部材731、ウレタン等の断熱材701、真空断熱材400、外箱710の順に設けられている。ここで、本実施の形態では、内箱750と真空断熱材400との間にウレタンなどの断熱材701を充填するようにしているが、断熱性能及び箱体強度は真空断熱材400でまかなわれるため、断熱材701の代わりに第3の介在部材として接着剤を使用しても良く、この場合は接着剤として自己接着性を有する発泡断熱材である硬質ウレタンフォームを使用しても良い。なお、外箱710と真空断熱材400とは、ホットメルトや両面テープなどの第2の介在部材である第2の接着剤で固定されている。 On the outer box 710 side (the side opposite to the storage chamber side) of the rail portion 755 of the inner box 750, a reinforcing member 731 is provided between the reinforcing member 731 and the vacuum heat insulating material 400. A heat insulating material 701 such as urethane is filled between the spaces as a third intervening member, and the reinforcing member 731 is fixed or held by the heat insulating material 701 such as urethane so as to be substantially in close contact with the rail portion 755. Between the rail portion 755 of the inner box 750 and the outer box 710, the rail portion 755, the reinforcing member 731, the heat insulating material 701 such as urethane, the vacuum heat insulating material 400, and the outer box 710 are provided in this order from the inner box 750 side. Here, in the present embodiment, the heat insulating material 701 such as urethane is filled between the inner box 750 and the vacuum heat insulating material 400, but the heat insulating performance and the box body strength are covered by the vacuum heat insulating material 400. Therefore, instead of the heat insulating material 701, an adhesive may be used as the third intervening member, and in this case, a rigid urethane foam which is a foam heat insulating material having self-adhesiveness may be used as the adhesive. The outer box 710 and the vacuum heat insulating material 400 are fixed with a second adhesive which is a second intervening member such as hot melt or double-sided tape.

ここで、真空断熱材400と内箱750の間に充填されるウレタンなどの断熱材701の厚さQは、15mm程度以上(好ましくは13mm以上)に設定すれば良いが11mm以下にした方が良い。また、真空断熱材400と内箱750のレール部755との間に充填されるウレタンなどの断熱材701の厚さPは、11mm以下(ばらつきや真空断熱材表面の凹凸など考慮して10mmよりも小さい方が良い)に設定されているので、ウレタンなどの断熱材701の曲げ弾性率を大きくでき箱体700あるいは冷蔵庫1の強度向上が図れる。また、補強部材731と真空断熱材400との間に充填されるウレタンなどの断熱材701の厚さRは、所定厚さPよりも補強部材の厚さ分だけ小さく、たとえば補強部材の厚さが2mmとすれば8mm以下、補強部材の厚さを4mmとすれば6mm程度以下に設定されているので、更なる強度向上が図れる。また、ウレタンなどの断熱材701の密度は、60kg/mよりも大きく設定されているため、ネジなどの固定部材735の保持強度あるいは固定強度が向上し、ネジの緩みや外れや抜けが抑制される。また、補強部材731の保持強度あるいは固定強度が向上し、補強部材731の位置ズレの発生や、位置ズレによるネジの変形や内箱750のレール部755の変形が抑制でき、信頼性の高い冷蔵庫や機器が得られる。ただし、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度は大きくなりすぎると、(1)ウレタンの注入量増加によるコストUP、(2)ウレタンの注入圧力増加による箱体等からのウレタン漏れの発生、(3)ウレタン発泡時の発泡圧力増加による箱体変形抑制用金型や箱体押さえ部材などとウレタンとの密着力、接着力増加のため箱体変形抑制用金型や箱体押さえ部材などが箱体から抜けにくくなる(箱体から取り外しにくくなる)、(4)ウレタンの密度増による断熱性能の急激な悪化など、品質悪化、性能低下、コストUPなどの問題が発生するので、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度を100kg/m以下(好ましくは90kg/m以下)にした方が良い。 Here, the thickness Q of the heat insulating material 701 such as urethane filled between the vacuum heat insulating material 400 and the inner box 750 may be set to about 15 mm or more (preferably 13 mm or more), but it is better to set it to 11 mm or less. good. Further, the thickness P of the heat insulating material 701 such as urethane filled between the vacuum heat insulating material 400 and the rail portion 755 of the inner box 750 is 11 mm or less (from 10 mm in consideration of variations and irregularities on the surface of the vacuum heat insulating material). Since it is set to be smaller, the flexural modulus of the heat insulating material 701 such as urethane can be increased, and the strength of the box body 700 or the refrigerator 1 can be improved. Further, the thickness R of the heat insulating material 701 such as urethane filled between the reinforcing member 731 and the vacuum heat insulating material 400 is smaller than the predetermined thickness P by the thickness of the reinforcing member, for example, the thickness of the reinforcing member. If it is 2 mm, it is set to 8 mm or less, and if the thickness of the reinforcing member is 4 mm, it is set to about 6 mm or less, so that the strength can be further improved. Further, since the density of the heat insulating material 701 such as urethane is set to be higher than 60 kg / m 3 , the holding strength or fixing strength of the fixing member 735 such as the screw is improved, and the loosening, coming off or coming off of the screw is suppressed. Will be done. In addition, the holding strength or fixing strength of the reinforcing member 731 is improved, and the occurrence of misalignment of the reinforcing member 731, deformation of screws due to misalignment, and deformation of the rail portion 755 of the inner box 750 can be suppressed, resulting in a highly reliable refrigerator. And equipment can be obtained. However, if the density of the heat insulating material (for example, rigid urethane foam) such as urethane, which is an intervening member, becomes too high, (1) the cost will increase due to the increase in the injection amount of urethane, and (2) the box body due to the increase in the injection pressure of urethane, etc. Urethane leakage, (3) Mold for suppressing box deformation due to increase in foaming pressure during urethane foaming, mold for suppressing box deformation due to increased adhesion and adhesive force between urethane and box holding member, etc. Problems such as quality deterioration, performance deterioration, and cost increase occur, such as difficulty in removing the box holding member from the box (difficult to remove from the box), (4) rapid deterioration of heat insulation performance due to increased urethane density. Therefore, it is preferable that the density of the heat insulating material (for example, rigid urethane foam) such as urethane, which is an intervening member, is 100 kg / m 3 or less (preferably 90 kg / m 3 or less).

図25において、補強部材731は、金属性あるいは樹脂製であり、固定部材735が固定される板状の補強部材本体部734、補強部材本体部734の上端あるいは上部に設けられて略水平方向に延出した板状の補強部材延出部上732、補強部材本体部734の下端あるいは下部に設けられて略水平方向に延出した板状の補強部材延出部下733とから構成され、補強部材本体部734、補強部材延出部上732、補強部材延出部下733が一体に形成(一体に組立てられている)あるいは一体成形されている。 In FIG. 25, the reinforcing member 731 is made of metal or resin, and is provided at the upper end or the upper end of the plate-shaped reinforcing member main body portion 734 to which the fixing member 735 is fixed and the reinforcing member main body portion 734 in a substantially horizontal direction. It is composed of an extended plate-shaped reinforcing member upper portion 732 and a plate-shaped reinforcing member extending portion lower 733 provided at the lower end or lower portion of the reinforcing member main body portion 734 and extending in a substantially horizontal direction. The main body 734, the reinforcing member extending portion upper 732, and the reinforcing member extending portion lower 733 are integrally formed (integrally assembled) or integrally molded.

補強部材731は、内箱750のレール部755に形成されている内箱凹部717の外箱710側に両面テープやホットメルトなどの第2の接着剤で接着されたあと、ウレタンなどの断熱材701が充填されることで内箱750のレール部755に固定あるいは保持される。補強部材731は、補強部材延出部上732と補強部材延出部下733が補強部材本体部734の端面から同方向に延出した断面U字状をしており、補強部材本体部734が内箱凹部717の底面部(凹み部)に設けられ、補強部材延出部上732が内箱凹部717を形成する凹部段部上718と対向するように載置される位置関係で補強部材731が内箱凹部717の外箱710側に設けられる。また、補強部材延出部下733は内箱凹部717を形成する凹部段部下719と対向するように設けられる。よって、補強部材731は、補強部材延出部上732あるいは補強部材延出部733下が内箱750に対して位置決めを容易に行うことができる。また、補強部材731を内箱凹部717に外箱710側から覆うように取り付けることが可能になるので、補強部材731の内箱750への位置決めあるいは取り付けが容易となり、また、内箱凹部717の強度も向上する。ここで、補強部材731は、補強部材延出部上732あるいは補強部材延出部下733のどちらか一方が形成あるいは成形されていれば補強部材延出部上732あるいは補強部材延出部下733と凹部段部上718あるいは凹部段部下719とによって位置決め可能なので、どちらか一方を省略しても良い(どちらか一方を設ければ良い)。 The reinforcing member 731 is bonded to the outer box 710 side of the inner box recess 717 formed in the rail portion 755 of the inner box 750 with a second adhesive such as double-sided tape or hot melt, and then a heat insulating material such as urethane. By filling 701, it is fixed or held to the rail portion 755 of the inner box 750. The reinforcing member 731 has a U-shaped cross section in which the upper 732 of the reinforcing member extending portion and the lower 733 of the reinforcing member extending portion extend in the same direction from the end face of the reinforcing member main body portion 734, and the reinforcing member main body portion 734 is inside. The reinforcing member 731 is provided on the bottom surface (recessed portion) of the box recess 717 and is placed so that the reinforcing member extending portion upper 732 faces the concave step portion upper 718 forming the inner box recess 717. It is provided on the outer box 710 side of the inner box recess 717. Further, the reinforcing member extending portion lower 733 is provided so as to face the concave step portion lower 719 forming the inner box recess 717. Therefore, the reinforcing member 731 can be easily positioned with respect to the inner box 750 with the reinforcing member extending portion 732 above or the reinforcing member extending portion 733 below. Further, since the reinforcing member 731 can be attached to the inner box recess 717 so as to cover from the outer box 710 side, the reinforcing member 731 can be easily positioned or attached to the inner box 750, and the inner box recess 717 can be easily positioned or attached. The strength is also improved. Here, if either the reinforcing member extending portion upper 732 or the reinforcing member extending portion lower 733 is formed or molded, the reinforcing member 731 is recessed with the reinforcing member extending portion upper 732 or the reinforcing member extending portion lower 733. Since positioning can be performed by the step portion upper 718 or the concave step portion lower 719, either one may be omitted (either one may be provided).

また、図25では、レール支持部820はレール部材810の固定レールである下レール812に溶接により一体に形成されているので、レール部材810の内箱750のレール部755への組み付けが容易である。また、レール部材810がレール支持部820あるいは固定レールである下レール812を介して内箱凹部717のレール部材載置部である凹部段部下719に載置されており、レール部材810が下方へ移動しないように位置決めされ、また、凹部段部下719の上面側には、レール支持部820をネジなどで固定あるいは保持する固定部が設けられており、レール支持部820あるいはレール部材810の上方あるいは横方向への移動が抑制されるように固定部(移動抑制部)に固定あるいは保持されている。 Further, in FIG. 25, since the rail support portion 820 is integrally formed with the lower rail 812, which is a fixed rail of the rail member 810, by welding, it is easy to assemble the inner box 750 of the rail member 810 to the rail portion 755. is there. Further, the rail member 810 is mounted on the rail member mounting portion 719 of the inner box recess 717 via the rail support portion 820 or the lower rail 812 which is a fixed rail, and the rail member 810 is mounted downward. Positioned so as not to move, a fixing portion for fixing or holding the rail support portion 820 with a screw or the like is provided on the upper surface side of the recessed step portion lower 719, above the rail support portion 820 or the rail member 810, or on the upper surface side. It is fixed or held in the fixed portion (movement suppressing portion) so that the movement in the lateral direction is suppressed.

レール部材810が、レール部材載置部である凹部段部下719に載置されているため、レール部材810を支持するレール支持部820がケース520の重みで下方に変形することが抑制されるので、扉あるいはケース520の出し入れがスムーズに行える。ここで、ケース520は、ケース底面壁、4つのケース側壁から構成され、上面が開口した容器であり、製造上抜き勾配が設けられるため、ケース520を形成するケース側壁は、上方から下方に向かってケース520の中心軸方向へ傾斜している。すなわち、ケース520の幅は、上端よりも下端の方が狭くなるように形成されている。 Since the rail member 810 is mounted on the lower 719 of the recessed step portion which is the rail member mounting portion, the rail support portion 820 supporting the rail member 810 is suppressed from being deformed downward by the weight of the case 520. , The door or case 520 can be taken in and out smoothly. Here, the case 520 is a container composed of a case bottom wall and four case side walls, and the upper surface is open, and a draft is provided in manufacturing. Therefore, the case side wall forming the case 520 faces downward from above. It is inclined toward the central axis of the case 520. That is, the width of the case 520 is formed so that the lower end is narrower than the upper end.

したがって、ケース520と側壁790との間のすきま(長さ)は、ケース520の上端よりも下端の方が大きい。よって、ケース520をレール部材810で支持する場合には、レール部材810は、ケース520の高さ方向の下方で支持するほうがケース520の容積を大きくできるので良い。ケース520の高さの1/2以下好ましくは1/3以下の位置でケース520をレール部材810(たとえばケース支持部830)で支持したほうがケースの幅を大きくできるので、ケース520の容積を大きくできる。この場合、ケース520のケース側壁にケース段差部525を設け、レール部材810のケース支持部830がケース段差部525を支持するようにしても良い。このようにすることで、容易にケース520を支持できる。また、ケース520の高さ方向の下端近傍(たとえばケース520の高さの1/2以下好ましくは1/3以下の位置)で支持しても良いが、最下端であるケース底面壁の裏面を支持すれば、ケース520にケース段差部525を設ける必要がなくなり、ケース520の製造が容易になる。 Therefore, the clearance (length) between the case 520 and the side wall 790 is larger at the lower end than at the upper end of the case 520. Therefore, when the case 520 is supported by the rail member 810, it is preferable that the rail member 810 is supported below the case 520 in the height direction because the volume of the case 520 can be increased. Since the width of the case can be increased by supporting the case 520 with the rail member 810 (for example, the case support portion 830) at a position of 1/2 or less, preferably 1/3 or less of the height of the case 520, the volume of the case 520 is increased. it can. In this case, the case step portion 525 may be provided on the case side wall of the case 520, and the case support portion 830 of the rail member 810 may support the case step portion 525. By doing so, the case 520 can be easily supported. Further, it may be supported near the lower end of the case 520 in the height direction (for example, at a position of 1/2 or less preferably 1/3 or less of the height of the case 520), but the back surface of the case bottom wall which is the lowermost end may be supported. If it is supported, it is not necessary to provide the case step portion 525 in the case 520, and the case 520 can be easily manufactured.

レール部材載置部である凹部段部下719が形成される内箱750と真空断熱材400(あるいは外箱710)との間に充填されるウレタンなどの断熱材701(たとえば硬質ウレタンフォーム)の密度は60kg/mより大きくした方が、レール部材載置部である凹部段部下719の強度が向上するので、ケース520に重量物を収納してもレール部材810を載置するレール部材載置部である凹部段部下719が変形したりしないので、安定してケース520の出し入れが可能となり、信頼性の高い冷蔵庫や機器が得られる。 Density of heat insulating material 701 (for example, hard urethane foam) such as urethane filled between the inner box 750 and the vacuum heat insulating material 400 (or outer box 710) on which the lower step portion 719 of the recessed step portion which is the rail member mounting portion is formed. Since the strength of the recessed step lower 719, which is the rail member mounting portion, is improved when the weight is larger than 60 kg / m 3, the rail member mounting on which the rail member 810 is mounted even if a heavy object is stored in the case 520. Since the recessed step lower portion 719, which is a portion, is not deformed, the case 520 can be stably taken in and out, and a highly reliable refrigerator and equipment can be obtained.

また、図24、図25においては、内箱凹部717は、レール部材810の少なくとも一部(たとえばレール支持部820など)あるいは全部を収納することが可能なので、レール部材810の貯蔵室側への突出量を小さくでき、したがって、貯蔵室内の容積を大きくでき、また、ケース520の容積も大きくできる。 Further, in FIGS. 24 and 25, since the inner box recess 717 can store at least a part or all of the rail member 810 (for example, the rail support portion 820), the rail member 810 can be moved to the storage chamber side. The amount of protrusion can be reduced, and therefore the volume of the storage chamber can be increased, and the volume of the case 520 can also be increased.

図24、図25では、内箱750を貯蔵室側からみて凹んだ内箱凹部717の外箱710側に補強部材731が設けられている例を説明したが、図26は、内箱750を貯蔵室側からみて突出した内箱凸部727の外箱710側に補強部材731が設けられている例である。図において、側壁790を形成する内箱750は、レール部755が貯蔵室側に突出しており、内箱凸部727を形成している。内箱凸部727は、凸部段部上728、凸部段部下729を有しており、凸部段部上728、凸部段部下729により凸形状が形成されている。 In FIGS. 24 and 25, an example in which the reinforcing member 731 is provided on the outer box 710 side of the inner box recess 717 in which the inner box 750 is recessed when viewed from the storage chamber side has been described. However, FIG. 26 shows the inner box 750. This is an example in which the reinforcing member 731 is provided on the outer box 710 side of the inner box convex portion 727 protruding from the storage chamber side. In the figure, in the inner box 750 forming the side wall 790, the rail portion 755 projects toward the storage chamber side, and the inner box convex portion 727 is formed. The inner box convex portion 727 has a convex portion stepped upper portion 728 and a convex portion stepped portion lower 729, and a convex shape is formed by the convex portion stepped portion upper 728 and the convex portion stepped portion lower 729.

図26において、内箱凸部727は、外箱710側からみると凹んだ凹部形状をなしており、この内箱凸部727の外箱710側に形成される凹部に補強部材731が収納(少なくとも一部あるいは全部が収納)されており、凸部段部下にて補強部材731の上下方向あるいは横方向の位置決めが行われている。また、内箱凸部727の外箱710側に形成される凹部に補強部材731の少なくとも一部あるいは全部を収納することにより、補強部材731の外箱710側への突出量を小さくできるので、真空断熱材400(あるいは外箱710)と内箱750との間にウレタン等の断熱材701を充填する場合に、ウレタンが流れる流路の幅(真空断熱材400と補強部材731の間のウレタンなどの断熱材701の厚さ)Rが狭くなってウレタンが流れにくくなるのを抑制できる。したがって、ウレタンなどの断熱材701の流れが阻害されないので、補強部材731と真空断熱材400との間にウレタンなどの断熱材701の厚さRを11mm以下(ばらつきや真空断熱材の表面の凹凸などを考慮すると10mmより小さい方が良い)に設定できるため、補強部材731と真空断熱材400との間にウレタンなどの断熱材701の厚さRを充分に確保できるので、補強部材731の保持強度の低下、あるいは、ネジなどのレール固定部材735の固定あるいは保持強度の低下を抑制できる。 In FIG. 26, the inner box convex portion 727 has a concave concave shape when viewed from the outer box 710 side, and the reinforcing member 731 is housed in the concave portion formed on the outer box 710 side of the inner box convex portion 727. At least a part or all of the reinforcing member 731 is housed), and the reinforcing member 731 is positioned in the vertical direction or the horizontal direction under the convex step portion. Further, by storing at least a part or all of the reinforcing member 731 in the concave portion formed on the outer box 710 side of the inner box convex portion 727, the amount of protrusion of the reinforcing member 731 toward the outer box 710 side can be reduced. When the heat insulating material 701 such as urethane is filled between the vacuum heat insulating material 400 (or the outer box 710) and the inner box 750, the width of the flow path through which urethane flows (urethane between the vacuum heat insulating material 400 and the reinforcing member 731). (Thickness of heat insulating material 701 such as) R becomes narrow and urethane can be suppressed from becoming difficult to flow. Therefore, since the flow of the heat insulating material 701 such as urethane is not obstructed, the thickness R of the heat insulating material 701 such as urethane is 11 mm or less (variation and unevenness of the surface of the vacuum heat insulating material) between the reinforcing member 731 and the vacuum heat insulating material 400. Since it can be set to smaller than 10 mm in consideration of such factors), a sufficient thickness R of the heat insulating material 701 such as urethane can be secured between the reinforcing member 731 and the vacuum heat insulating material 400, so that the reinforcing member 731 is held. It is possible to suppress a decrease in strength or a decrease in fixing or holding strength of a rail fixing member 735 such as a screw.

また、レール支持部820はレール部材810の固定レールである下レール812に溶接などにより一体に形成されているので、レール部材810の内箱750のレール部755への組み付けが容易である。また、レール支持部820は、貯蔵室間に設けられる仕切壁24、あるいは、底面部780に載置されており、レール部材810が下方へ移動しないように位置決めされており、また、仕切壁24あるいは底面部780には、レール支持部820をネジなどで固定あるいは保持する固定部が設けられており、レール支持部820あるいはレール部材810の上方あるいは横方向への移動が抑制されるように固定部(移動抑制部)に固定あるいは保持されている。ここで、仕切壁24、あるいは底面部780には、真空断熱材400が設けられている。 Further, since the rail support portion 820 is integrally formed with the lower rail 812, which is a fixed rail of the rail member 810, by welding or the like, the inner box 750 of the rail member 810 can be easily assembled to the rail portion 755. Further, the rail support portion 820 is placed on the partition wall 24 provided between the storage chambers or the bottom surface portion 780, and is positioned so that the rail member 810 does not move downward, and the partition wall 24 is also provided. Alternatively, the bottom surface portion 780 is provided with a fixing portion for fixing or holding the rail support portion 820 with screws or the like, and is fixed so as to suppress the movement of the rail support portion 820 or the rail member 810 in the upward or lateral direction. It is fixed or held in a part (movement suppressing part). Here, the vacuum heat insulating material 400 is provided on the partition wall 24 or the bottom surface portion 780.

レール部材810は、図24、図25では、内箱750の内箱凹部717の外箱710側に設けられ、図26では、内箱凸部727の外箱710側に設けられているが、レール部材810は、内箱凹部717あるいは内箱凸部727に設ける必要はなく、図27のように内箱750の平坦部に設けても良い。 In FIGS. 24 and 25, the rail member 810 is provided on the outer box 710 side of the inner box recess 717 of the inner box 750, and in FIG. 26, it is provided on the outer box 710 side of the inner box convex portion 727. The rail member 810 does not need to be provided in the inner box concave portion 717 or the inner box convex portion 727, and may be provided in the flat portion of the inner box 750 as shown in FIG. 27.

図27において、レール部材810は、内箱750のレール部755に設けられるが、レール部755は、内箱750の平坦面にネジなどの固定部材735により固定されている。また、レール部755の外箱710側の面には補強部材731が設けられており、補強部材731は、真空断熱材400との間に充填されるウレタン等の断熱材701によって固定あるいは保持される。このとき、補強部材731は、内箱750にホットメルトや両面テープなどの第2の接着材で接着あるいは固定された状態で断熱材701が充填されることによって内箱750の外箱710側の面に保持あるいは固定される。 In FIG. 27, the rail member 810 is provided on the rail portion 755 of the inner box 750, and the rail portion 755 is fixed to the flat surface of the inner box 750 by a fixing member 735 such as a screw. Further, a reinforcing member 731 is provided on the surface of the rail portion 755 on the outer box 710 side, and the reinforcing member 731 is fixed or held by a heat insulating material 701 such as urethane filled between the rail portion 755 and the vacuum heat insulating material 400. The rail. At this time, the reinforcing member 731 is filled with the heat insulating material 701 in a state where the inner box 750 is adhered or fixed with a second adhesive such as hot melt or double-sided tape, so that the inner box 750 is on the outer box 710 side. It is held or fixed to the surface.

図27においては、図24〜図26と同様に、ウレタン等の断熱材701の密度は60kg/mより大きくしているため、ネジなどの固定部材735の保持強度あるいは固定強度が向上し、ネジの緩みや外れや抜けが抑制される。また、補強部材731の保持強度あるいは固定強度が向上し、補強部材731の位置ズレの発生や、位置ズレによるネジの変形や内箱750のレール部755の変形が抑制でき、信頼性の高い冷蔵庫や機器が得られる。 In FIG. 27, as in FIGS. 24 to 26, since the density of the heat insulating material 701 such as urethane is larger than 60 kg / m 3 , the holding strength or fixing strength of the fixing member 735 such as a screw is improved. Looseness, disengagement and removal of screws are suppressed. In addition, the holding strength or fixing strength of the reinforcing member 731 is improved, and the occurrence of misalignment of the reinforcing member 731, deformation of screws due to misalignment, and deformation of the rail portion 755 of the inner box 750 can be suppressed, resulting in a highly reliable refrigerator. And equipment can be obtained.

また、真空断熱材400と内箱750のレール部755との間に充填されるウレタンなどの断熱材701の厚さPは、11mm以下(ばらつきや真空断熱材の表面の凹凸などを考慮すると10mmよりも小さい方が良い)、好ましくは6mm以下に設定されているので、ウレタンなどの断熱材701の曲げ弾性率を大きくでき箱体700あるいは冷蔵庫1の強度向上が図れる。また、補強部材731と真空断熱材400との間に充填されるウレタンなどの断熱材701の厚さRは、所定厚さPよりも補強部材731の厚さ分だけ小さくたとえば補強部材731の厚さが2mmとすれば8mm以下、補強部材731の厚さを4mmとすれば6mm程度以下に設定できるので、更なる強度向上が図れる。 Further, the thickness P of the heat insulating material 701 such as urethane filled between the vacuum heat insulating material 400 and the rail portion 755 of the inner box 750 is 11 mm or less (10 mm in consideration of variations and surface irregularities of the vacuum heat insulating material). Since it is set to 6 mm or less, the flexural modulus of the heat insulating material 701 such as urethane can be increased, and the strength of the box body 700 or the refrigerator 1 can be improved. Further, the thickness R of the heat insulating material 701 such as urethane filled between the reinforcing member 731 and the vacuum heat insulating material 400 is smaller than the predetermined thickness P by the thickness of the reinforcing member 731, for example, the thickness of the reinforcing member 731. If the thickness is 2 mm, it can be set to 8 mm or less, and if the thickness of the reinforcing member 731 is 4 mm, it can be set to about 6 mm or less, so that the strength can be further improved.

また、図27においては、内箱750のレール部755の端部(たとえば下端)は、内箱750が貯蔵室側に突出した突出部757を形成しており、この突出部757の上面にレール部材810のレール支持部820が載置されている。この突出部757の貯蔵室側への幅方向の突出長さは、レール部材810の幅方向への突出長さよりの小さく設定されており、レール部材810よりも貯蔵室内に突出しないようにすることで貯蔵室容積やケース容積の容積が小さくなることを抑制している。 Further, in FIG. 27, the end portion (for example, the lower end) of the rail portion 755 of the inner box 750 forms a protruding portion 757 in which the inner box 750 protrudes toward the storage chamber, and a rail is formed on the upper surface of the protruding portion 757. The rail support portion 820 of the member 810 is mounted. The protrusion length of the protrusion 757 in the width direction toward the storage chamber is set to be smaller than the protrusion length of the rail member 810 in the width direction so as not to protrude into the storage chamber from the rail member 810. It suppresses the decrease in the volume of the storage room and the volume of the case.

また、レール支持部820はレール部材810の固定レールである下レール812に溶接などにより一体に形成されているので、レール部材810を内箱750のレール部755に組み付けるのが容易である。また、レール支持部820は、レール部755の端部(下端)に形成された突出部757の上面側に載置されており、レール部材810が下方へ移動しないように位置決めされており、また、突出部757の上面側には、レール支持部820をネジなどで固定あるいは保持する固定部が設けられており、レール支持部820あるいはレール部材810の上方あるいは横方向への移動が抑制されるように固定部(移動抑制部)に固定あるいは保持されている。 Further, since the rail support portion 820 is integrally formed with the lower rail 812, which is a fixed rail of the rail member 810, by welding or the like, it is easy to assemble the rail member 810 to the rail portion 755 of the inner box 750. Further, the rail support portion 820 is placed on the upper surface side of the protrusion 757 formed at the end (lower end) of the rail portion 755, and is positioned so that the rail member 810 does not move downward. On the upper surface side of the protruding portion 757, a fixing portion for fixing or holding the rail supporting portion 820 with a screw or the like is provided, and the movement of the rail supporting portion 820 or the rail member 810 in the upward or lateral direction is suppressed. As described above, it is fixed or held in the fixed portion (movement suppressing portion).

ここで、図24、図26では、レール部755が仕切壁24あるいは底面壁780の近傍に設けられているため、レール部材810が仕切壁24あるいは底面壁780の近傍に取り付けられることになり、ケース520が高さ方向の下方位置で支持されることになるのでレール部材810の載置強度が向上するので良いが、図25、図27では、レール部755が仕切壁24あるいは底面壁780と所定距離Gを有しているため、レール部材810が仕切壁24あるいは底面壁780に対して所定距離Gだけ上部に取り付けることが可能となるので、ケース520の支持位置を上部にすることが可能となり、ケースの出し入れがスムーズに行える。また、レール部材810のケース支持部830の長さを短くできるので、強度の向上が図れ、しかも低コストなレール部材、冷蔵庫が得られる。 Here, in FIGS. 24 and 26, since the rail portion 755 is provided in the vicinity of the partition wall 24 or the bottom wall 780, the rail member 810 is attached in the vicinity of the partition wall 24 or the bottom wall 780. Since the case 520 is supported at a lower position in the height direction, the mounting strength of the rail member 810 is improved, which is good. However, in FIGS. Since the rail member 810 has a predetermined distance G, the rail member 810 can be attached to the partition wall 24 or the bottom wall 780 by a predetermined distance G, so that the support position of the case 520 can be set to the upper part. Therefore, the case can be taken in and out smoothly. Further, since the length of the case support portion 830 of the rail member 810 can be shortened, the strength can be improved, and a low-cost rail member and a refrigerator can be obtained.

ここで、ケース520のケース側壁にケース段差部525を設け、レール部材810のケース支持部830がケース段差部525を支持するようにしても良い。このようにすることで、容易にケース520を支持できる。また、ケース520の高さ方向の下方あるいは下端近傍(たとえばケース520の高さの1/2以下好ましくは1/3以下の位置)で支持しても良いが、最下端であるケース底面壁の裏面を支持すれば、ケース520に段差部525を設ける必要がなくなり、ケース520の製造が容易になる。 Here, the case step portion 525 may be provided on the case side wall of the case 520, and the case support portion 830 of the rail member 810 may support the case step portion 525. By doing so, the case 520 can be easily supported. Further, it may be supported below or near the lower end of the case 520 in the height direction (for example, at a position of 1/2 or less preferably 1/3 or less of the height of the case 520), but the bottom wall of the case which is the lowermost end If the back surface is supported, it is not necessary to provide the step portion 525 on the case 520, and the case 520 can be easily manufactured.

レール載置部である貯蔵室側に突出したレール部端部(レール部突出部)757が形成される内箱750と真空断熱材400(あるいは外箱710)との間に充填されるウレタンなどの断熱材701(たとえば硬質ウレタンフォーム)の密度は60kg/mより大きくした方が、レール部材載置部であるレール部端部757の強度が向上するので、ケース520に重量物を収納してもレール部材810を載置するレール部材載置部であるレール部突出部757が変形したりしないので、安定してケース520の出し入れが可能となり、信頼性の高い冷蔵庫や機器が得られる。 Urethane or the like filled between the inner box 750 and the vacuum heat insulating material 400 (or the outer box 710) in which the rail portion end portion (rail portion projecting portion) 757 protruding toward the storage chamber side, which is the rail mounting portion, is formed. If the density of the heat insulating material 701 (for example, hard urethane foam) is larger than 60 kg / m 3 , the strength of the rail end end 757, which is the rail member mounting portion, is improved. Therefore, a heavy object is stored in the case 520. However, since the rail portion projecting portion 757, which is the rail member mounting portion on which the rail member 810 is mounted, is not deformed, the case 520 can be stably taken in and out, and a highly reliable refrigerator or device can be obtained.

ここで、レール部材810は、側壁790に設けなくても良く、レール部材810が配置される貯蔵室の仕切壁(貯蔵室と貯蔵室との間に設けられる仕切壁であって貯蔵室の底面あるいは上面を形成する仕切壁24、あるいは底面壁780、あるいは天井壁740を含む)に設けても良い。すなわち、レール部材810を支持するレール支持部820を仕切壁(仕切壁24あるいは天井壁740あるいは底面壁780を含む)に設けても良い(載置しても良い)。このように、レール部材810を支持するレール支持部820を貯蔵室の仕切壁24に設けるようにすれば、側壁790に固定部材735を設ける必要がなくなるので、側壁に配置される真空断熱材400の厚さを大きくでき、また、側壁790内の真空断熱材400と内箱750との間に充填されるウレタンなどの断熱材701の厚さを小さくできる。したがって、貯蔵室内の容積、あるいはケース520の容積を大きくできる。 Here, the rail member 810 does not have to be provided on the side wall 790, and is a partition wall of the storage chamber in which the rail member 810 is arranged (a partition wall provided between the storage chamber and the bottom surface of the storage chamber). Alternatively, it may be provided on the partition wall 24 forming the upper surface, the bottom wall 780, or the ceiling wall 740). That is, the rail support portion 820 that supports the rail member 810 may be provided on the partition wall (including the partition wall 24, the ceiling wall 740, or the bottom wall 780) (may be placed). In this way, if the rail support portion 820 that supports the rail member 810 is provided on the partition wall 24 of the storage chamber, it is not necessary to provide the fixing member 735 on the side wall 790. Therefore, the vacuum heat insulating material 400 arranged on the side wall The thickness of the heat insulating material 701 such as urethane filled between the vacuum heat insulating material 400 in the side wall 790 and the inner box 750 can be reduced. Therefore, the volume of the storage chamber or the volume of the case 520 can be increased.

ここで、レール支持部820を仕切壁に設ける場合には、仕切壁24あるいは底面壁780あるいは天井壁740において、レール固定部材735が設けられる位置には、真空断熱材400を配置しないようにすれば良い。また、レール固定部材735が設けられる位置には、ネジなどの固定部材が固定される補強部材を設けるようにすれば、固定部材の固定強度あるいは保持強度が向上する。また、真空断熱材400と仕切壁24を形成する外郭部材との間に硬質ウレタンフォームあるいは発泡スチロールなどの断熱材を充填あるいは塗布あるいは配置する場合には、断熱材701の密度を60kg/mよりも大きくすれば、レール部材810を固定あるいは保持する固定部材あるいは補強部材の保持あるいは固定強度が向上するので、信頼性が向上する。なお、断熱材701の厚さは、先に説明した理由により10mmより小さくするのが良い。 Here, when the rail support portion 820 is provided on the partition wall, the vacuum heat insulating material 400 should not be arranged at the position where the rail fixing member 735 is provided on the partition wall 24, the bottom wall 780, or the ceiling wall 740. It should be good. Further, if a reinforcing member for fixing the fixing member such as a screw is provided at the position where the rail fixing member 735 is provided, the fixing strength or the holding strength of the fixing member is improved. Further, when the heat insulating material such as rigid urethane foam or styrofoam is filled, applied or arranged between the vacuum heat insulating material 400 and the outer member forming the partition wall 24, the density of the heat insulating material 701 is 60 kg / m 3 or more. If it is also increased, the holding or fixing strength of the fixing member or the reinforcing member for fixing or holding the rail member 810 is improved, so that the reliability is improved. The thickness of the heat insulating material 701 is preferably smaller than 10 mm for the reason described above.

以上は内箱750のレール部755を貯蔵室内側からネジなどで固定する場合(固定部材735であるネジのネジ頭が貯蔵室2、3、4、5、6側に設けられ、固定部材735のネジ部が内箱750のレール部755と真空断熱材400の間に設けられている場合)について説明したが、固定部材のネジ735を側壁790の内部側から貯蔵室2、3、4、5、6内に突出させて固定させても良く、その場合には、ネジ頭が真空断熱材400と内箱750のレール部755間に設けられる(ネジ部はレール部755あるいはレール補強部材731あるいはウレタン等の断熱材701に固定される)ことになるが、この場合でも、ウレタンの密度が60kg/mより大きいので、ウレタン等の断熱材701の強度が増加し、ネジなどの固定部材735とウレタンなどの断熱材701、内箱750とウレタンなどの断熱材701の固定強度あるいは保持強度が増加するので、内箱などの変形や補強部材731の位置ズレやネジの緩み等が抑制され、ケース520などがスムーズに引き出せる(スムーズに出し入れできる)。 The above is the case where the rail portion 755 of the inner box 750 is fixed from the storage chamber side with screws or the like (screw heads of screws which are fixing members 735 are provided on the storage chambers 2, 3, 4, 5, and 6 sides, and the fixing member 735. The screw portion of the fixing member is provided between the rail portion 755 of the inner box 750 and the vacuum heat insulating material 400), but the screw 735 of the fixing member is inserted from the inside of the side wall 790 to the storage chambers 2, 3, 4, and It may be fixed by protruding into 5 or 6 in which a screw head is provided between the vacuum heat insulating material 400 and the rail portion 755 of the inner box 750 (the screw portion is the rail portion 755 or the rail reinforcing member 731). Alternatively, it is fixed to a heat insulating material 701 such as urethane), but even in this case, since the density of urethane is larger than 60 kg / m 3 , the strength of the heat insulating material 701 such as urethane increases, and a fixing member such as a screw is used. Since the fixing strength or holding strength of the heat insulating material 701 such as 735 and urethane and the heat insulating material 701 such as inner box 750 and urethane is increased, deformation of the inner box or the like, misalignment of the reinforcing member 731, loosening of screws, etc. are suppressed. , Case 520, etc. can be pulled out smoothly (can be taken in and out smoothly).

本発明の実施の形態では、側壁790のレール部材が設けられる部位と対向する位置の内箱750と真空断熱材400との間の発泡断熱材(たとえば硬質ウレタンフォーム)の厚さを11mm以下(好ましくは10mm未満)に設定することで、ウレタンの曲げ弾性率を大きくできるので、壁の強度を維持した上で壁厚を薄くすることができる。また、側壁790のレール部材が設けられる部位と対向する位置の内箱750と真空断熱材400との間の発泡断熱材(たとえば硬質ウレタンフォーム)の厚さを6mm以下に設定すれば、ウレタンの曲げ弾性率をさらに大きくできるので、壁の強度を維持した上で壁厚を薄くすることができる。 In the embodiment of the present invention, the thickness of the foam heat insulating material (for example, hard urethane foam) between the inner box 750 and the vacuum heat insulating material 400 at a position facing the portion where the rail member of the side wall 790 is provided is 11 mm or less (for example, hard urethane foam). By setting it to (preferably less than 10 mm), the flexural modulus of urethane can be increased, so that the wall thickness can be reduced while maintaining the strength of the wall. Further, if the thickness of the foam heat insulating material (for example, hard urethane foam) between the inner box 750 and the vacuum heat insulating material 400 at a position facing the portion where the rail member of the side wall 790 is provided is set to 6 mm or less, urethane can be used. Since the flexural modulus can be further increased, the wall thickness can be reduced while maintaining the strength of the wall.

また、発泡断熱材の厚さ/(発泡断熱材の厚さ+真空断熱材の厚さ)を0.3以下に設定することで、発泡断熱材と真空断熱材を組み合わせた複合部材の複合熱伝導率を小さくできるので、壁厚さを薄くしても断熱性能が向上する。 In addition, by setting the thickness of the foam heat insulating material / (thickness of the foam heat insulating material + thickness of the vacuum heat insulating material) to 0.3 or less, the composite heat of the composite member combining the foam heat insulating material and the vacuum heat insulating material is set. Since the conductivity can be reduced, the heat insulating performance is improved even if the wall thickness is reduced.

また、ウレタンの発泡後の密度を60kg/mより大きくすることで壁の強度を維持した上で壁厚を薄くすることができる。 Further, by increasing the density of urethane after foaming to more than 60 kg / m 3 , the wall thickness can be reduced while maintaining the strength of the wall.

以上より、本発明の実施の形態では、側壁790のレール部材が設けられる部位と対向する位置の内箱750と真空断熱材400との間の発泡断熱材(たとえば硬質ウレタンフォーム)の厚さが11mm以下(好ましくは10mmより小さい)であって、発泡断熱材の厚さ/(発泡断熱材の厚さ+真空断熱材の厚さ)を0.3以下に設定し、ウレタンの発泡後の密度を60kg/mより大きくすれば、更に壁の強度を維持した上で壁厚を薄くすることができる。ここで、上式における発泡断熱材の厚さはウレタンの厚さであるので、発泡断熱材の厚さとしては、真空断熱材400と内箱750のレール部755との間に充填されるウレタンなどの断熱材701の厚さP、あるいは真空断熱材400と内箱750の間に充填されるウレタンなどの断熱材701の厚さQ、あるいは真空断熱材400と補強部材731の間のウレタンなどの断熱材701の厚さRであっても良い。たとえば、発泡断熱材の厚さを真空断熱材400と補強部材731の間のウレタンなどの断熱材701の厚さRとした場合には、発泡断熱材の厚さR/(発泡断熱材の厚さR+真空断熱材の厚さ)を0.3以下に設定すれば良い。同様に厚さをPあるいはQとした場合には、厚さRをPまたはQに置き換えれば良い。また、図17、図18、図19に示されているウレタンの厚さも、同様に真空断熱材400と内箱750のレール部755との間に充填されるウレタンなどの断熱材701の厚さP、真空断熱材400と内箱750の間に充填されるウレタンなどの断熱材701の厚さQ、真空断熱材400と補強部材731の間のウレタンなどの断熱材701の厚さRであっても良い。
また、外箱750と内箱710とから形成され、背面壁730、側壁790を有する箱体と、箱体内が仕切壁24により区画されて形成された前面に開口部を有する貯蔵室2、3、4、5、6と、貯蔵室に収納され、貯蔵室の側壁に設けられたレール部材810を介して引き出される引き出し式のケースと、芯材が無機繊維または有機繊維からなる繊維系材料で形成され、レール部材810が設けられた側壁を形成する内箱と外箱との間に配設された真空断熱材400と、レール部材と対向する位置の内箱と真空断熱材との間の内箱側に設けられ、レール部材を支持あるいは保持する補強部材731と、レール部材と対向する位置の補強部材と真空断熱材との間に充填される断熱材701と、を備え、レール部材と対向する位置の断熱材の厚さが10mmよりより小さく、レール部の内箱と真空断熱材との間に充填される断熱材の密度を60kg/mよりも大きくすれば、壁の強度を維持した上で壁厚を薄くすることができ、断熱性能も向上させることができる。ただし、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度は大きくなりすぎると、(1)ウレタンの注入量増加によるコストUP、(2)ウレタンの注入圧力増加による箱体等からのウレタン漏れの発生、(3)ウレタン発泡時の発泡圧力増加による箱体変形抑制用金型や箱体押さえ部材などとウレタンとの密着力、接着力増加のため箱体変形抑制用金型や箱体押さえ部材などが箱体から抜けにくくなる(箱体から取り外しにくくなる)、(4)ウレタンの密度増による断熱性能の急激な悪化など、品質悪化、性能低下、コストUPなどの問題が発生するので、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度(発泡断熱材の場合は発泡後の密度)を100kg/m以下(好ましくは90kg/m以下)にした方が良い。
From the above, in the embodiment of the present invention, the thickness of the foam heat insulating material (for example, hard urethane foam) between the inner box 750 and the vacuum heat insulating material 400 at a position facing the portion where the rail member of the side wall 790 is provided is It is 11 mm or less (preferably smaller than 10 mm), and the thickness of the foamed heat insulating material / (thickness of the foamed heat insulating material + the thickness of the vacuum heat insulating material) is set to 0.3 or less, and the density of urethane after foaming. If it is made larger than 60 kg / m 3 , the wall thickness can be further reduced while maintaining the strength of the wall. Here, since the thickness of the foam heat insulating material in the above formula is the thickness of urethane, the thickness of the foam heat insulating material is the urethane filled between the vacuum heat insulating material 400 and the rail portion 755 of the inner box 750. The thickness P of the heat insulating material 701 such as, or the thickness Q of the heat insulating material 701 such as urethane filled between the vacuum heat insulating material 400 and the inner box 750, or the urethane between the vacuum heat insulating material 400 and the reinforcing member 731, etc. The thickness R of the heat insulating material 701 of the above may be used. For example, when the thickness of the foam heat insulating material is the thickness R of the heat insulating material 701 such as urethane between the vacuum heat insulating material 400 and the reinforcing member 731, the thickness R of the foam heat insulating material R / (thickness of the foam heat insulating material). R + thickness of vacuum heat insulating material) may be set to 0.3 or less. Similarly, when the thickness is P or Q, the thickness R may be replaced with P or Q. Further, the thickness of the urethane shown in FIGS. 17, 18 and 19 is also the thickness of the heat insulating material 701 such as urethane filled between the vacuum heat insulating material 400 and the rail portion 755 of the inner box 750. P, the thickness Q of the heat insulating material 701 such as urethane filled between the vacuum heat insulating material 400 and the inner box 750, and the thickness R of the heat insulating material 701 such as urethane between the vacuum heat insulating material 400 and the reinforcing member 731. May be.
Further, a box body formed of an outer box 750 and an inner box 710 and having a back wall 730 and a side wall 790, and a storage chamber 2 and 3 having an opening on the front surface formed by partitioning the inside of the box by a partition wall 24. A pull-out case that is stored in the storage chamber and pulled out via a rail member 810 provided on the side wall of the storage chamber, and a fiber-based material whose core material is an inorganic fiber or an organic fiber. The vacuum heat insulating material 400 formed between the inner box and the outer box forming the side wall on which the rail member 810 is provided, and between the inner box and the vacuum heat insulating material at a position facing the rail member. The rail member includes a reinforcing member 731 provided on the inner box side and supporting or holding the rail member, and a heat insulating material 701 filled between the reinforcing member at a position facing the rail member and the vacuum heat insulating material. If the thickness of the heat insulating material at the opposite position is smaller than 10 mm and the density of the heat insulating material filled between the inner box of the rail portion and the vacuum heat insulating material is made larger than 60 kg / m 3 , the strength of the wall can be increased. The wall thickness can be reduced while maintaining it, and the heat insulating performance can be improved. However, if the density of the heat insulating material (for example, rigid urethane foam) such as urethane, which is an intervening member, becomes too high, (1) the cost will increase due to the increase in the injection amount of urethane, and (2) the box body due to the increase in the injection pressure of urethane, etc. Urethane leakage, (3) Mold for suppressing box deformation due to increase in foaming pressure during urethane foaming, mold for suppressing box deformation due to increased adhesion and adhesion between urethane and box holding member, etc. Problems such as quality deterioration, performance deterioration, and cost increase occur, such as difficulty in removing the box holding member from the box (difficult to remove from the box), (4) rapid deterioration of heat insulation performance due to increased urethane density. Therefore, the density of the heat insulating material (for example, rigid urethane foam) such as urethane, which is an intervening member, (in the case of foamed heat insulating material, the density after foaming) should be 100 kg / m 3 or less (preferably 90 kg / m 3 or less). Is good.

また、真空断熱材400の曲げ弾性率を20MPa以上にすれば更に壁厚さを薄くできる。ここで、レール部材を側壁790に固定するのではなく、側壁790の近傍の底面壁780あるいは底面の仕切壁24あるいは上面壁(天井壁)740あるいは上面の仕切壁24に固定するようにすれば良い。ここで、ネジなどの固定部材を設ける部位と対向する内箱750と外箱710との間に真空断熱材400を配置しない場合には、固定部材を設ける底面壁780あるいは下面の仕切壁24あるいは天井壁740あるいは上面の仕切壁24は、外気と接触しない壁あるいは仕切壁の方が良い。外気と接する壁(例えば側壁790、天井壁740、背面壁730、底面壁780など)には真空断熱材400を設けない部位を極力少なくした方が熱漏洩により損失を低減できるので、高性能な断熱箱体、冷蔵庫、機器が得られる。このようにすることで、背面壁730、側壁790の真空断熱材400の配設面積を大きくできるので、断熱箱体700における真空断熱材400の被覆率あるいは充填率を大きくすることができる。 Further, if the flexural modulus of the vacuum heat insulating material 400 is set to 20 MPa or more, the wall thickness can be further reduced. Here, instead of fixing the rail member to the side wall 790, if the rail member is fixed to the bottom wall 780 in the vicinity of the side wall 790, the bottom partition wall 24, the top wall (ceiling wall) 740, or the top partition wall 24. good. Here, when the vacuum heat insulating material 400 is not arranged between the inner box 750 and the outer box 710 facing the portion where the fixing member such as a screw is provided, the bottom wall 780 or the lower partition wall 24 on which the fixing member is provided is provided. The ceiling wall 740 or the partition wall 24 on the upper surface is preferably a wall or a partition wall that does not come into contact with the outside air. It is better to minimize the number of parts where the vacuum heat insulating material 400 is not provided on the walls in contact with the outside air (for example, the side wall 790, the ceiling wall 740, the back wall 730, the bottom wall 780, etc.) because the loss due to heat leakage can be reduced. Insulated boxes, refrigerators and equipment can be obtained. By doing so, the area of the vacuum heat insulating material 400 on the back wall 730 and the side wall 790 can be increased, so that the coverage or filling rate of the vacuum heat insulating material 400 in the heat insulating box 700 can be increased.

ここで、本実施の形態1に係る断熱箱体700は、断熱箱体700内の硬質ウレタンフォームが主に断熱機能を担うという従来の技術思想とは異なり真空断熱材400が配設されている部分では、真空断熱材400が断熱性能と箱体強度を担うという新たな技術思想に基づいている。このため、本実施の形態1に係る断熱箱体700は、外箱710と内箱750との間に形成される壁内空間315内の真空断熱材400の充填率(外箱710と内箱750との間に形成される壁内空間315の総体積に対する真空断熱材400の体積の占める割合)を所定値以上(たとえば40%以上(好ましくは45%以上))としている。ここで、真空断熱材400の充填率は、扉の外郭を形成する扉外板と扉内板との間の扉内空間の体積に対する真空断熱材400の体積の占める割合である扉の充填率も含めている。 Here, in the heat insulating box body 700 according to the first embodiment, the vacuum heat insulating material 400 is arranged unlike the conventional technical idea that the rigid urethane foam in the heat insulating box body 700 mainly bears the heat insulating function. The part is based on a new technical idea that the vacuum heat insulating material 400 is responsible for the heat insulating performance and the strength of the box body. Therefore, the heat insulating box body 700 according to the first embodiment has a filling rate of the vacuum heat insulating material 400 in the wall inner space 315 formed between the outer box 710 and the inner box 750 (outer box 710 and inner box). The ratio of the volume of the vacuum heat insulating material 400 to the total volume of the wall space 315 formed between the 750 and the 750 is set to a predetermined value or more (for example, 40% or more (preferably 45% or more)). Here, the filling rate of the vacuum heat insulating material 400 is the filling rate of the door, which is the ratio of the volume of the vacuum heat insulating material 400 to the volume of the space inside the door between the door outer plate forming the outer shell of the door and the door inner plate. Is also included.

従来は、外箱710あるいは内箱750の表面積に対する真空断熱材の占める面積の割合(被覆率)が所定の範囲に入るように真空断熱材を配置されており、真空断熱材400の厚さの影響が考慮されないため、真空断熱材400の厚さよりも硬質ウレタンフォームの厚さを大きくして断熱箱体の強度を硬質ウレタンでもたせようとしていた。従来は真空断熱材400の被覆率を大きくして箱体の断熱性能を向上させようとしているが、真空断熱材400の充填率を大きくして断熱性能と箱体強度の両方を向上させようとしていないため、真空断熱材400の充填率は小さく(たとえば従来の冷蔵庫における充填率は20%程度)、断熱性能が向上しない場合があり、また箱体強度は硬質ウレタンフォームにたよっていた。本実施の形態では、真空断熱材400の厚さを考慮した充填率の考え方で真空断熱材400を配置するようにしたので、従来のように断熱性能が向上しないということが無くなる。真空断熱材400の充填率を所定値以上(たとえば40%以上)にすることで、断熱性能が向上し、しかも、箱体強度、断熱性能を満足した上で壁厚さを薄くできるので、貯蔵室内容積を大きくでき、製品に要求される貯蔵室内容積を所定の容量以上に設定することができる。すなわち、真空断熱材400の長さ、幅、厚さ、配置箇所を適切に設定できるので、壁厚さを低減でき、その分だけ貯蔵室内容積を大きくできる。 Conventionally, the vacuum heat insulating material is arranged so that the ratio (coverage ratio) of the area occupied by the vacuum heat insulating material to the surface area of the outer box 710 or the inner box 750 falls within a predetermined range, and the thickness of the vacuum heat insulating material 400 is increased. Since the influence is not taken into consideration, the thickness of the hard urethane foam is made larger than the thickness of the vacuum heat insulating material 400 to increase the strength of the heat insulating box with the hard urethane. Conventionally, the coverage of the vacuum heat insulating material 400 is increased to improve the heat insulating performance of the box body, but the filling rate of the vacuum heat insulating material 400 is increased to improve both the heat insulating performance and the strength of the box body. Therefore, the filling rate of the vacuum heat insulating material 400 is small (for example, the filling rate in a conventional refrigerator is about 20%), the heat insulating performance may not be improved, and the box body strength depends on the rigid urethane foam. In the present embodiment, since the vacuum heat insulating material 400 is arranged in consideration of the filling rate in consideration of the thickness of the vacuum heat insulating material 400, the heat insulating performance is not improved as in the conventional case. By setting the filling rate of the vacuum heat insulating material 400 to a predetermined value or more (for example, 40% or more), the heat insulating performance can be improved, and the wall thickness can be reduced while satisfying the box body strength and the heat insulating performance. The indoor volume can be increased, and the storage chamber volume required for the product can be set to a predetermined capacity or more. That is, since the length, width, thickness, and arrangement location of the vacuum heat insulating material 400 can be appropriately set, the wall thickness can be reduced, and the storage chamber volume can be increased accordingly.

このように、空間315内における真空断熱材400の充填率を従来よりも増大させることにより、断熱性能が従来よりも向上するので、従来よりも断熱箱体700の壁厚を薄くしても、断熱性能を従来と同程度以上に確保することが可能となる。 In this way, by increasing the filling rate of the vacuum heat insulating material 400 in the space 315 as compared with the conventional one, the heat insulating performance is improved as compared with the conventional one. It is possible to secure the heat insulating performance to the same level or higher than the conventional one.

(第1風路部品の他の構成)
以上説明したように、本発明の実施の形態では、たとえば図4、図5、図6、図8などに示した冷気風路760の一部を形成する第1風路部品762の幅方向長さは、凹部440の幅よりも小さくなっており、凸部450、または第2の凹部441、または第2の凹部441を形成する突起部910などにネジなどの固定部材あるいは引っ掛け構造あるいは嵌合構造などにより固定あるいは保持される。ここで、冷気風路760の一部を形成する第1風路部品762の幅方向長さを背面壁730あるいは側壁790の一部を覆うように側壁790の内面まで延出させて第1風路部品762を側壁790の内面にネジなどの固定部材あるいは引っ掛け構造あるいは嵌合構造などにより固定あるいは保持しても良い。もちろん、第1風路部品762を側壁790の内面だけでなく突起部910、凹部440、凸部450などに固定部材あるいは引っ掛け構造あるいは嵌合構造などにより固定あるいは保持しても良い。
(Other configurations of the first air passage parts)
As described above, in the embodiment of the present invention, for example, the width direction length of the first air passage component 762 forming a part of the cold air passage 760 shown in FIGS. 4, 5, 6, 8, and the like. The width of the recess is smaller than the width of the recess 440, and a fixing member such as a screw, a hook structure, or a hooking structure or fitting is formed on the protrusion 450, the second recess 441, or the protrusion 910 forming the second recess 441. It is fixed or held by the structure. Here, the width direction length of the first air passage component 762 forming a part of the cold air passage 760 is extended to the inner surface of the side wall 790 so as to cover a part of the back wall 730 or the side wall 790, and the first wind The road component 762 may be fixed or held on the inner surface of the side wall 790 by a fixing member such as a screw, a hook structure, a fitting structure, or the like. Of course, the first air passage component 762 may be fixed or held not only on the inner surface of the side wall 790 but also on the protrusion 910, the recess 440, the protrusion 450, etc. by a fixing member, a hook structure, a fitting structure, or the like.

また、冷気風路760の一部を形成する第1風路部品762の幅方向長さを側壁790の内面まで延出させて第2の凹部441だけでなく凹部440、凸部450の少なくとも一部あるいは全部を覆うようにすれば、第1風路部品762が意匠パネルと兼用でき、室(たとえば貯蔵室)の背面壁730、あるいは側壁790の内面の少なくとも一部あるいは全部を覆うことが可能となり、第1風路部品762を背面あるいは側面の一部を覆うカバー部材として使用できる。したがって、冷気風路760からの冷気を室内に供給する供給口を第1風路部品762に設ける場合に配置の自由度が向上し、室内の収納物を効率よく冷却でき、また、第1風路部品762に内箱750とは異なる別部材が使用できるので、形状や色を変更したり、種々の加工やペイントや文字記載などが容易にできるので、機能性や意匠性が向上する。第1風路部品を意匠パネルと兼用してカバー部材として使用する場合には、略U字形状に形成して、室を形成する背面壁730及び側壁790の内面の少なくとも一部、あるいは壁面の内面全部を覆うようにすれば良い。この場合、照明装置(庫内照明)900は、室を形成する天井壁740あるいは底面壁780に配置するようにすれば、カバー部材である第1風路部品762を側壁790まで延出させる場合に、照明装置900を側壁790内面に設ける場合に比べての照明装置900の設置される部分の第1風路部品762を切り欠いたり開口を設けたりする必要がなくなるので、カバー部材である意匠パネル(第1風路部品762)の形状が容易になり、低コストな断熱箱体、冷蔵庫、機器が得られる。ここで、カバー部材である意匠パネルは、室を形成する天井壁740と背面壁730の少なくとも一部、あるいは壁面の内面側全部を覆うように形成しても良い。 Further, the width direction length of the first air passage component 762 forming a part of the cold air passage 760 is extended to the inner surface of the side wall 790 so that not only the second concave portion 441 but also the concave portion 440 and the convex portion 450 are at least one. By covering a part or the whole, the first air passage part 762 can also be used as a design panel, and can cover at least a part or all of the inner surface of the back wall 730 of the chamber (for example, the storage chamber) or the side wall 790. Therefore, the first air passage component 762 can be used as a cover member for covering a part of the back surface or the side surface. Therefore, when the supply port for supplying the cold air from the cold air passage 760 to the room is provided in the first air passage component 762, the degree of freedom of arrangement is improved, the stored items in the room can be efficiently cooled, and the first wind can be cooled. Since a different member different from the inner box 750 can be used for the road component 762, the shape and color can be changed, and various processing, painting, character writing, etc. can be easily performed, so that the functionality and design are improved. When the first air passage component is also used as a cover member as a design panel, it is formed in a substantially U shape to form a chamber, and at least a part of the inner surface of the back wall 730 and the side wall 790, or the wall surface. All you have to do is cover the entire inner surface. In this case, if the lighting device (internal lighting) 900 is arranged on the ceiling wall 740 or the bottom wall 780 forming the room, the first air passage component 762, which is a cover member, extends to the side wall 790. In addition, as compared with the case where the lighting device 900 is provided on the inner surface of the side wall 790, it is not necessary to cut out or provide an opening for the first air passage component 762 of the portion where the lighting device 900 is installed, so that the design is a cover member. The shape of the panel (first air passage component 762) becomes easy, and a low-cost heat insulating box, refrigerator, and equipment can be obtained. Here, the design panel as a cover member may be formed so as to cover at least a part of the ceiling wall 740 and the back wall 730 forming the chamber, or the entire inner surface side of the wall surface.

(ウレタンの厚さ、真空断熱材の充填率)
ここで、真空断熱材400の充填率と箱体の強度の関係について説明する。図15は硬質ウレタンフォームの密度と熱伝導率の関係を示す図、図16は硬質ウレタンフォームの密度と曲げ弾性率を示す図、図17は硬質ウレタンを充填したときのウレタンの流路厚さとウレタンの熱伝導率の関係を示す図、図18は硬質ウレタンを充填したときのウレタンの流路厚さとウレタンの曲げ弾性率の関係を示す図である。図15〜図18は、所定隙間(流路)を有する2つの面の間に硬質ウレタンを充填させて発泡させた模擬構造体での試験結果であり、流路の一方の面は第1の部材である鋼板(たとえば真空断熱材あるいは冷蔵庫1の断熱箱体700の外郭である外箱710を形成する塗装鋼板)であり、流路の他方の面は第2の部材である樹脂(たとえば、内箱750に使用されるABS(アクリロニトリル、ブタジエン、スチレンの共重合合成樹脂)やEPS(発泡プラスチック)などの樹脂)である。
(Urethane thickness, vacuum heat insulating material filling rate)
Here, the relationship between the filling rate of the vacuum heat insulating material 400 and the strength of the box body will be described. FIG. 15 is a diagram showing the relationship between the density of the rigid urethane foam and the thermal conductivity, FIG. 16 is a diagram showing the density of the rigid urethane foam and the bending elasticity, and FIG. 17 is the flow path thickness of the urethane when the rigid urethane is filled. FIG. 18 is a diagram showing the relationship between the thermal conductivity of urethane and FIG. 18 is a diagram showing the relationship between the flow path thickness of urethane when filled with hard urethane and the bending elasticity of urethane. 15 to 18 are test results of a simulated structure in which rigid urethane is filled and foamed between two surfaces having a predetermined gap (flow path), and one surface of the flow path is the first surface. A steel plate that is a member (for example, a vacuum heat insulating material or a painted steel plate that forms an outer box 710 that is the outer shell of the heat insulating box body 700 of the refrigerator 1), and the other surface of the flow path is a resin that is a second member (for example, ABS (resin such as acrylonitrile, butadiene, styrene copolymer synthetic resin) and EPS (foamed plastic) used for the inner box 750).

図15は、横軸が硬質ウレタンフォームの密度(kg/m)を表し、縦軸が硬質ウレタンフォームの熱伝導率〔W/(m・K)〕を表している。また、図16は、横軸が硬質ウレタンフォームの密度(kg/m)を表し、縦軸が硬質ウレタンフォームの曲げ弾性率(MPa)を表している。図17は、横軸が硬質ウレタンフォームが充填される流路厚さ(mm)を表し、縦軸が硬質ウレタンフォームの熱伝導率〔W/(m・K)〕を表している。図18は、横軸が硬質ウレタンフォームが充填される流路厚さ(mm)を表し、縦軸が硬質ウレタンフォームの曲げ弾性率(MPa)を表している。ここで、硬質ウレタンフォームが充填される流路厚さは、流路内に硬質ウレタンフォームが充填されて発泡した状態の硬質ウレタンフォームの厚さを表す。 In FIG. 15, the horizontal axis represents the density of the rigid urethane foam (kg / m 3 ), and the vertical axis represents the thermal conductivity [W / (m · K)] of the rigid urethane foam. Further, in FIG. 16, the horizontal axis represents the density of the rigid urethane foam (kg / m 3 ), and the vertical axis represents the flexural modulus (MPa) of the rigid urethane foam. In FIG. 17, the horizontal axis represents the flow path thickness (mm) filled with the rigid urethane foam, and the vertical axis represents the thermal conductivity [W / (m · K)] of the rigid urethane foam. In FIG. 18, the horizontal axis represents the flow path thickness (mm) filled with the rigid urethane foam, and the vertical axis represents the flexural modulus (MPa) of the rigid urethane foam. Here, the flow path thickness in which the hard urethane foam is filled represents the thickness of the hard urethane foam in a state where the hard urethane foam is filled in the flow path and foamed.

図15、図16より、硬質ウレタンフォームは、密度が大きくなると熱伝導率、曲げ弾性率が大きくなり、密度が小さくなると熱伝導率、曲げ弾性率が小さくなる。すなわち、密度と熱伝導率あるいは密度と曲げ弾性率はほぼ比例関係になっている。 From FIGS. 15 and 16, in the rigid urethane foam, the thermal conductivity and flexural modulus increase as the density increases, and the thermal conductivity and flexural modulus decrease as the density decreases. That is, the density and the thermal conductivity or the density and the flexural modulus are almost proportional to each other.

図17、図18より、硬質ウレタンフォームは、ウレタンが充填される流路厚さ(あるいは、流路内に硬質ウレタンフォームが充填されて発泡した状態のウレタンの厚さ)が狭くなると熱伝導率が大きくなり、また、曲げ弾性率も大きくなる。したがって、流路内で発泡後のウレタンの厚さは厚いほど熱伝導率が小さくなり断熱性能は向上するが、曲げ弾性率は小さくなり強度が低下する。したがって、ウレタンの厚さを小さくして壁厚さを薄くしようとした場合には、曲げ弾性率が大きくなるので強度上は問題なかったが、熱伝導率が大きくなりすぎて断熱性能が悪化するためウレタンの厚さをある程度(たとえば15mm)よりも小さくすることができなかった。 From FIGS. 17 and 18, the rigid urethane foam has a thermal conductivity when the flow path thickness in which urethane is filled (or the thickness of urethane in a foamed state in which the rigid urethane foam is filled in the flow path) becomes narrow. Also, the flexural modulus also increases. Therefore, the thicker the urethane after foaming in the flow path, the smaller the thermal conductivity and the better the heat insulating performance, but the smaller the flexural modulus and the lower the strength. Therefore, when trying to reduce the wall thickness by reducing the thickness of urethane, there is no problem in terms of strength because the flexural modulus increases, but the thermal conductivity becomes too large and the heat insulation performance deteriorates. Therefore, the thickness of urethane could not be made smaller than a certain level (for example, 15 mm).

ここで、図17、図18において、ウレタンが充填される流路厚さ(あるいは流路内で発泡した後のウレタンの厚さ)が狭くなると密度が大きくなり、密度が大きくなると図15に示したように熱伝導率が大きくなり断熱性能が悪くなる。ここで、図17に示すようにウレタンが充填される流路厚さ(あるいは流路内で発泡した後のウレタンの厚さ)が所定の厚さ(たとえば11mm)以下になると急激に熱伝導率が大きくなり断熱性能が悪化する。硬質ウレタンフォームは、ウレタン流路を形成する第1の部材と第2の部材の間で発泡して第1の部材と第2の部材に接着した状態で固まるが、このときウレタンは、コア層と、このコア層の両側(第1の部材側と第2の部材側)にスキン層といわれる境界層が形成される。 Here, in FIGS. 17 and 18, the density increases as the thickness of the flow path filled with urethane (or the thickness of urethane after foaming in the flow path) decreases, and FIG. 15 shows that the density increases. As a result, the thermal conductivity increases and the heat insulation performance deteriorates. Here, as shown in FIG. 17, when the flow path thickness (or the thickness of urethane after foaming in the flow path) filled with urethane becomes a predetermined thickness (for example, 11 mm) or less, the thermal conductivity suddenly becomes low. Will increase and the heat insulation performance will deteriorate. The rigid urethane foam foams between the first member and the second member forming the urethane flow path and hardens in a state of being adhered to the first member and the second member. At this time, the urethane is formed in the core layer. Then, a boundary layer called a skin layer is formed on both sides of the core layer (first member side and second member side).

図23Aと図23Bは、硬質ウレタンフォームが発泡した後の断面形状の模式図であり、図23Aは、第1部材(内箱750)と第2部材(外箱710)の間に硬質ウレタンフォーム701Aが充填された場合の断面を表した模式図、図23Bは、第1部材(内箱750)と第2部材(外箱710)の間に第3部材(真空断熱材400)が介在した場合に第1部材と第3部材の間に硬質ウレタンフォーム701Aが充填された場合の断面を表した模式図である。 23A and 23B are schematic views of the cross-sectional shape after the rigid urethane foam is foamed, and FIG. 23A shows the rigid urethane foam between the first member (inner box 750) and the second member (outer box 710). In FIG. 23B, which is a schematic view showing a cross section when 701A is filled, a third member (vacuum heat insulating material 400) is interposed between the first member (inner box 750) and the second member (outer box 710). It is a schematic diagram showing the cross section in the case where the rigid urethane foam 701A is filled between the first member and the third member.

図23Aにおいて、第1の部材と第2の部材との間に発泡充填されたウレタンを備えた断熱壁は、第1の部材(たとえば内箱750)、第1のスキン層701B、コア層701C、第2のスキン層701D、第2の部材(たとえば外箱710)の順で構成される。一方、図23Bに示すように第1の部材(内箱750)と第2の部材(外箱710)の間に、第3の部材として真空断熱材400が配設される場合には、断熱壁は、第1の部材(内箱750)、第1のスキン層701B、コア層701C、第2のスキン層701D、第3の部材(真空断熱材400)、第2の接着剤715、第2の部材(外箱710)の順で構成される。なお、第1のスキン層701B、コア層701C、及び第2のスキン層701Dが、硬質ウレタンフォーム701Aを構成している。 In FIG. 23A, the heat insulating wall provided with urethane foam-filled between the first member and the second member includes a first member (for example, an inner box 750), a first skin layer 701B, and a core layer 701C. , The second skin layer 701D, and the second member (for example, the outer box 710) in this order. On the other hand, when the vacuum heat insulating material 400 is arranged as the third member between the first member (inner box 750) and the second member (outer box 710) as shown in FIG. 23B, the heat insulating material is insulated. The wall has a first member (inner box 750), a first skin layer 701B, a core layer 701C, a second skin layer 701D, a third member (vacuum heat insulating material 400), a second adhesive 715, and a second member. It is composed of two members (outer box 710) in this order. The first skin layer 701B, the core layer 701C, and the second skin layer 701D constitute the rigid urethane foam 701A.

スキン層は、第1の部材近傍あるいは第2の部材近傍あるいは第3の部材近傍に形成され、ウレタンの流路厚さ(ウレタンの厚さ)が従来使用される範囲である20mm〜30mm程度ではスキン層の厚さはコア層の厚さに対して十分小さく、密度、熱伝導率などへの影響は小さいが、ウレタンの厚さが所定厚さ(たとえば11mm)以下になると、コア層の厚さに対するスキン層の厚さの占める割合が大きくなり、ウレタンの密度、熱伝導率、曲げ弾性率に対する影響が急激に大きくなり、密度、熱伝導率、曲げ弾性率が急激に大きくなる。したがって、断熱性能が急激に悪化する。また、図18に示すように、ウレタンの密度が上昇することによりウレタンの曲げ弾性率も急激に上昇する。 The skin layer is formed in the vicinity of the first member, the vicinity of the second member, or the vicinity of the third member, and the urethane flow path thickness (urethane thickness) is about 20 mm to 30 mm, which is the range conventionally used. The thickness of the skin layer is sufficiently small with respect to the thickness of the core layer, and the influence on the density, thermal conductivity, etc. is small, but when the thickness of urethane becomes a predetermined thickness (for example, 11 mm) or less, the thickness of the core layer The ratio of the thickness of the skin layer to the shavings increases, the effects on urethane density, thermal conductivity, and flexural modulus sharply increase, and the density, thermal conductivity, and flexural modulus sharply increase. Therefore, the heat insulating performance deteriorates sharply. Further, as shown in FIG. 18, as the density of urethane increases, the flexural modulus of urethane also increases sharply.

したがって、従来は、ウレタンの厚さを小さくすると曲げ弾性率は大きくなり強度は向上するが、ウレタンの熱伝導率が上昇して断熱性能が悪化するため、ウレタンの厚さを小さくできず15mm〜30mm程度の範囲で使用していた。従来は、ウレタンが主断熱材で真空断熱材が補助断熱材という考え方で配設しているため、ウレタン断熱材の断熱性能が悪化しない範囲でウレタンの厚さを決めており、狭い部分でも15mm〜20mm程度を確保していた。 Therefore, conventionally, if the thickness of urethane is reduced, the flexural modulus increases and the strength is improved, but since the thermal conductivity of urethane increases and the heat insulating performance deteriorates, the thickness of urethane cannot be reduced to 15 mm or more. It was used in a range of about 30 mm. Conventionally, urethane is the main heat insulating material and the vacuum heat insulating material is the auxiliary heat insulating material. Therefore, the thickness of urethane is determined within the range where the heat insulating performance of the urethane heat insulating material is not deteriorated. About 20 mm was secured.

しかしながら、本実施の形態では、真空断熱材が主断熱材であり、しかも真空断熱材で箱体の強度を持たせるという考え方で断熱壁を形成しているので、真空断熱材が配設されている部分の硬質ウレタンは、断熱性能を要求されないので、所定の厚さ(たとえば11mm好ましくは6mm)以下であっても問題なく、薄ければ薄い方が曲げ弾性率が上昇し箱体強度が向上するので良い。所定の厚さが11mm以下になるとコア層に対するスキン層の厚さの影響が大きくなり、熱伝導率が急激に大きくなり断熱性能が急激に低下するので、従来は硬質ウレタンフォームの厚さを11mm以下にすることが困難であった。従来は、硬質ウレタンフォームの厚さについて、局所的に小さな範囲では所定値を11mm以下にすることができたとしても平均的な厚さを11mm以下にすることは困難であった。さらに所定の厚さが6mm以下になるとコア層に対するスキン層の厚さの影響がさらに大きくなり、断熱性能がさらに悪化するので、従来は使用困難であったが、本実施の形態では、真空断熱材400に断熱箱体700の断熱性能を持たせるため、ウレタンの厚さを薄くして使用しても問題ない。したがって、本実施の形態では、硬質ウレタンフォームの厚さを11mm以下(好ましくは10mmより小さく)に設定することで、硬質ウレタンフォームの曲げ弾性率を大きくして箱体700の強度(剛性)を向上させることができる。また、硬質ウレタンフォームの厚さを6mm以下に設定すれば、硬質ウレタンフォームの曲げ弾性率をさらに大きくできるので、箱体700の強度(剛性)がさらに向する。 However, in the present embodiment, the vacuum heat insulating material is the main heat insulating material, and the heat insulating wall is formed based on the idea that the vacuum heat insulating material gives the strength of the box body, so that the vacuum heat insulating material is arranged. Since the hard urethane in the part is not required to have heat insulating performance, there is no problem even if the thickness is less than a predetermined thickness (for example, 11 mm, preferably 6 mm). It is good because it does. When the predetermined thickness is 11 mm or less, the influence of the thickness of the skin layer on the core layer becomes large, the thermal conductivity sharply increases, and the heat insulating performance sharply deteriorates. Therefore, conventionally, the thickness of the rigid urethane foam is 11 mm. It was difficult to: Conventionally, it has been difficult to reduce the average thickness of the rigid urethane foam to 11 mm or less even if the predetermined value can be set to 11 mm or less in a locally small range. Further, when the predetermined thickness is 6 mm or less, the influence of the thickness of the skin layer on the core layer becomes larger and the heat insulating performance is further deteriorated. Therefore, it has been difficult to use in the past, but in the present embodiment, vacuum heat insulating is performed. Since the material 400 has the heat insulating performance of the heat insulating box 700, there is no problem even if the urethane is used with a thin thickness. Therefore, in the present embodiment, by setting the thickness of the rigid urethane foam to 11 mm or less (preferably smaller than 10 mm), the flexural modulus of the rigid urethane foam is increased to increase the strength (rigidity) of the box body 700. Can be improved. Further, if the thickness of the rigid urethane foam is set to 6 mm or less, the flexural modulus of the rigid urethane foam can be further increased, so that the strength (rigidity) of the box body 700 is further improved.

なお、真空断熱材400が配設されていない部分では、ウレタンの厚さは、真空断熱材の厚さ(たとえば、15mm〜30mm程度)分だけ厚く形成できるので、ウレタンの厚さは20mm〜40mm程度を確保できるようになり、ウレタンの熱伝導率が急激に上昇する範囲(ウレタンの厚さ11mm以下)で使用しなくて良くなり、ウレタンの熱伝導率の上昇度合い(傾き)が小さな範囲(たとえばウレタンの厚さがたとえば15mm以上の範囲)で使用できるので、ウレタンの厚さのばらつきを考慮してもウレタンの断熱性能を所定値以下となるように確保可能となる。したがって、断熱箱体700の強度及び断熱箱体700の断熱性能の両方を満足することが可能となる。 In the portion where the vacuum heat insulating material 400 is not arranged, the urethane can be formed as thick as the thickness of the vacuum heat insulating material (for example, about 15 mm to 30 mm), so that the urethane thickness is 20 mm to 40 mm. It becomes possible to secure the degree, it is not necessary to use it in the range where the thermal conductivity of urethane rises sharply (urethane thickness 11 mm or less), and the degree of increase (inclination) of urethane thermal conductivity is small (inclination). For example, since the urethane can be used in a range of, for example, 15 mm or more), it is possible to ensure that the heat insulating performance of urethane is equal to or less than a predetermined value even when the variation in urethane thickness is taken into consideration. Therefore, it is possible to satisfy both the strength of the heat insulating box 700 and the heat insulating performance of the heat insulating box 700.

ここで、ウレタン流路の一方の面に使用される第1部材は、樹脂(たとえば、内箱750に使用されるABS(アクリロニトリル、ブタジエン、スチレンの共重合合成樹脂)あるいはEPS(発泡プラスチックなどの樹脂))が使用される。流路の他方の面は真空断熱材の外包材であるアルミ蒸着フィルムや外箱710を形成する塗装鋼板(PCM)などの鋼板が使用される。 Here, the first member used for one surface of the urethane flow path is a resin (for example, ABS (copolymerized synthetic resin of acrylonitrile, butadiene, styrene) used for the inner box 750) or EPS (foamed plastic, etc.). Resin)) is used. For the other surface of the flow path, a steel plate such as an aluminum vapor deposition film which is an outer packaging material of the vacuum heat insulating material or a coated steel plate (PCM) forming the outer box 710 is used.

次に真空断熱材400が配設されている部分(たとえば凹部440あるいは第2の凹部441など)において、発泡ウレタンと真空断熱材400を備えた断熱壁の厚さ(真空断熱材の厚さ+ウレタンの厚さ)に対するウレタンの厚さの比率(=ウレタンの厚さ/(ウレタンの厚さ+真空断熱材厚さ))と複合熱伝導率(真空断熱材とウレタンを合わせた断熱壁の熱伝導率)の関係について説明する。 Next, in the portion where the vacuum heat insulating material 400 is arranged (for example, the recess 440 or the second recess 441), the thickness of the heat insulating wall provided with the urethane foam and the vacuum heat insulating material 400 (thickness of the vacuum heat insulating material + Ratio of urethane thickness to urethane thickness) (= urethane thickness / (urethane thickness + vacuum heat insulating material thickness)) and composite thermal conductivity (heat of the heat insulating wall that combines the vacuum heat insulating material and urethane) The relationship of (conductivity) will be described.

図19は、壁厚さ(壁の内壁間厚さ)を27mmで一定にしたときの真空断熱材とウレタンを合わせた断熱材の厚さに対するウレタンの厚さの比率と複合熱伝導率の関係を示す図である。図19において、横軸は真空断熱材とウレタンを合わせた断熱材の厚さに対するウレタンの厚さの比率、すなわちウレタンの厚さ/(ウレタンの厚さ+真空断熱材厚さ)を表し、縦軸は複合熱伝導率(真空断熱材とウレタンを合わせた熱伝導率)を表している。ここでは、ウレタンの厚さと真空断熱材の厚さの合計、すなわち、ウレタンの厚さ+真空断熱材の厚さを壁内厚さとしている。 FIG. 19 shows the relationship between the ratio of the urethane thickness to the total thickness of the vacuum heat insulating material and the urethane heat insulating material and the composite thermal conductivity when the wall thickness (thickness between the inner walls of the wall) is constant at 27 mm. It is a figure which shows. In FIG. 19, the horizontal axis represents the ratio of the thickness of urethane to the thickness of the heat insulating material including the vacuum heat insulating material and urethane, that is, the thickness of urethane / (thickness of urethane + thickness of vacuum heat insulating material). The shaft represents the composite thermal conductivity (the combined thermal conductivity of the vacuum heat insulating material and urethane). Here, the sum of the thickness of the urethane and the thickness of the vacuum heat insulating material, that is, the thickness of urethane + the thickness of the vacuum heat insulating material is defined as the wall thickness.

図19より壁内厚さに対してウレタンの厚さが小さくなると複合熱伝導率が小さくなり断熱性能が向上することが分かる。ここで、複合熱伝導率とは、ウレタンと真空断熱材を合わせた複合部材の熱伝導率を表す。図において、ウレタンの厚さ/壁内厚さが0.3を堺にして傾きが変化しており、ウレタンの厚さ/壁内厚さが0.3よりも大きい場合に比べて、ウレタンの厚さ/壁内厚さが0.3程度以下の方が傾きが小さく複合熱伝導率の低下の割合が小さい。図は壁内厚さ一定での試験確認であるので、ウレタンの厚さ/壁内厚さの比が小さくなればなるほど、ウレタンの厚さが小さくなり逆に真空断熱材の厚さが大きくなるので、壁内厚さに対する真空断熱材の厚さの占める割合は大きくなる。すなわち、壁内厚さに対してウレタンの厚さが小さくなれば、ウレタンの厚さに対する真空断熱材の厚さの割合が増加することになる。図において、ウレタンの厚さ/壁内厚さが約0.6では、ウレタンの厚さの方が真空断熱材の厚さよりも大きいので、ウレタンの熱伝導率が複合熱伝導率(真空断熱材とウレタンを合わせた熱伝導率)に与える影響が大きく複合熱伝導率も大きい(断熱性能が悪い)。ウレタンの厚さ/壁内厚さを小さくしていくと、ウレタンの厚さに対する真空断熱材の厚さの割合が増加していくので、ウレタンの熱伝導率よりも真空断熱材の熱伝導率の影響の方が複合熱伝導率に与える影響が大きくなり、その結果、ウレタンの厚さ/(ウレタンの厚さ+真空断熱材の厚さ)が小さくなるにつれてウレタンと真空断熱材を合わせた複合部材の熱伝導率(複合熱伝導率)が低下していく。ここで、ウレタンの厚さ/(ウレタンの厚さ+真空断熱材の厚さ)が0.3程度までは、ウレタンの熱伝導率よりも真空断熱材の熱伝導率の影響の方が複合熱伝導率に与える影響が大きいので、複合熱伝導率の低下割合も大きく、ウレタンの厚さ/(ウレタンの厚さ+真空断熱材の厚さ)が小さくなればなるほど複合熱伝導率が小さくなり断熱性能が大きく向上する。 From FIG. 19, it can be seen that when the thickness of urethane is smaller than the thickness inside the wall, the composite thermal conductivity is reduced and the heat insulating performance is improved. Here, the composite thermal conductivity represents the thermal conductivity of the composite member in which urethane and the vacuum heat insulating material are combined. In the figure, the inclination changes with the urethane thickness / wall thickness of 0.3 as Sakai, and the urethane thickness / wall thickness of urethane is larger than 0.3. When the thickness / wall thickness is about 0.3 or less, the inclination is small and the rate of decrease in composite thermal conductivity is small. Since the figure is a test confirmation with a constant wall thickness, the smaller the urethane thickness / wall thickness ratio, the smaller the urethane thickness and conversely the larger the vacuum heat insulating material. Therefore, the ratio of the thickness of the vacuum heat insulating material to the thickness inside the wall becomes large. That is, if the thickness of the urethane becomes smaller than the thickness inside the wall, the ratio of the thickness of the vacuum heat insulating material to the thickness of the urethane increases. In the figure, when the thickness of urethane / the thickness inside the wall is about 0.6, the thickness of urethane is larger than the thickness of the vacuum heat insulating material, so that the thermal conductivity of urethane is the composite thermal conductivity (vacuum heat insulating material). It has a large effect on the combined thermal conductivity of urethane and urethane), and the combined thermal conductivity is also large (insulation performance is poor). As the thickness of the urethane / the thickness inside the wall is reduced, the ratio of the thickness of the vacuum heat insulating material to the thickness of the urethane increases, so the thermal conductivity of the vacuum heat insulating material is higher than the thermal conductivity of the urethane. The effect of is greater on the composite thermal conductivity, and as a result, as the urethane thickness / (urethane thickness + vacuum heat insulating material thickness) decreases, the composite of urethane and vacuum heat insulating material is combined. The thermal conductivity (composite thermal conductivity) of the member decreases. Here, until the thickness of urethane / (thickness of urethane + thickness of vacuum heat insulating material) is about 0.3, the influence of the thermal conductivity of the vacuum heat insulating material is more compound heat than the thermal conductivity of urethane. Since the effect on the conductivity is large, the rate of decrease in the composite thermal conductivity is also large, and the smaller the urethane thickness / (urethane thickness + vacuum heat insulating material thickness), the smaller the composite thermal conductivity and the heat insulation. Greatly improved performance.

しかし、壁内厚さに対するウレタンの厚さの比率、すなわちウレタンの厚さ/(ウレタンの厚さ+真空断熱材の厚さ)が0.3程度よりも小さくなるところから複合熱伝導率の低下の傾きが変化し、複合熱伝導率の低下の傾きが小さくなる(複合熱伝導率の低下の割合が小さくなる)。これは、壁内厚さに対するウレタンの厚さの比率、すなわちウレタンの厚さ/壁内厚さが小さくなったため、複合部材(ウレタンと真空断熱材を合わせた部材)の断熱性能に対し、真空断熱材の断熱性能が支配的となり、ウレタンの断熱性能が複合部材の断熱性能へ与える影響が小さくなったためと考えられる。したがって、本実施の形態では、複合部材(ウレタンと真空断熱材の両方が隣接して形成された断熱部材)により形成される断熱壁では、ウレタンの厚さ/壁内厚さを0.3以下となるようにウレタンの厚さを設定すれば、断熱性能の低下の割合が小さくなるので、ウレタンの厚さあるいは真空断熱材の厚さにバラツキが生じても断熱性能のバラツキが小さくできるので良い。逆に真空断熱材の厚さ/壁内厚さを0.7以上に設定しても良い。 However, the ratio of the urethane thickness to the wall thickness, that is, the urethane thickness / (urethane thickness + vacuum heat insulating material thickness) becomes smaller than about 0.3, so that the composite thermal conductivity decreases. The slope of the compound heat conductivity changes, and the slope of the decrease in the composite thermal conductivity becomes smaller (the rate of decrease in the composite thermal conductivity becomes smaller). This is because the ratio of the urethane thickness to the wall thickness, that is, the urethane thickness / wall thickness has become smaller, the vacuum has been compared to the heat insulation performance of the composite member (a member that combines urethane and the vacuum heat insulating material). It is considered that the heat insulating performance of the heat insulating material became dominant, and the influence of the heat insulating performance of urethane on the heat insulating performance of the composite member became small. Therefore, in the present embodiment, in the heat insulating wall formed by the composite member (the heat insulating member formed by adjoining both the urethane and the vacuum heat insulating material), the urethane thickness / wall thickness is 0.3 or less. If the urethane thickness is set so as to be, the rate of deterioration of the heat insulating performance is reduced, so that even if the urethane thickness or the vacuum heat insulating material is uneven, the heat insulating performance can be reduced. .. On the contrary, the thickness of the vacuum heat insulating material / the thickness inside the wall may be set to 0.7 or more.

したがって、ウレタンの厚さ/壁内厚さが0.3程度以下となるようにウレタンの厚さを設定すれば、複合熱伝導率を小さくでき、複合部材の断熱性能が大幅に向上する。また、ウレタンの厚さのバラツキ(あるいは真空断熱材の厚さのバラツキ)を考慮してウレタンの厚さ/壁内厚さを0.3以下の範囲内になるように設定すれば、ウレタンの厚さや真空断熱材の厚さがばらついたとしても複合部材の断熱性能の低下を抑制でき、しかも複合部材の複合熱伝導率のバラツキを抑制できるので、信頼性が高く、高性能な断熱壁、断熱箱体、冷蔵庫、機器などが得られる。 Therefore, if the urethane thickness is set so that the urethane thickness / wall thickness is about 0.3 or less, the composite thermal conductivity can be reduced and the heat insulating performance of the composite member is significantly improved. In addition, if the urethane thickness / wall thickness is set within the range of 0.3 or less in consideration of the urethane thickness variation (or the thickness variation of the vacuum heat insulating material), the urethane heat insulating material can be used. Even if the thickness and the thickness of the vacuum heat insulating material vary, the deterioration of the heat insulating performance of the composite member can be suppressed, and the variation of the composite thermal conductivity of the composite member can be suppressed. Insulated boxes, refrigerators, equipment, etc. can be obtained.

図20は壁内空間315の容積に対する真空断熱材400の容積の占める割合である真空断熱材の充填率と、断熱箱体700に負荷(荷重)を与えた時の断熱箱体の変形量の関係を示した図である。図20において、横軸は、真空断熱材の充填率を表し、縦軸は断熱箱体の変形量を表す。ここで、真空断熱材の充填率は、壁内の空間315の容積に対して真空断熱材400の占める容積の比率(割合)であり、断熱箱体の変形量は、たとえば冷蔵庫1などの断熱箱体において、扉のある状態で箱体の側面の上から約1/4程度の高さ位置に略水平方向(横方向、前面開口部を正面に見て左右方向)に所定の荷重を加えた時の箱体700の側壁790の上端位置の左右方向(横方向)の変形量の計算結果であり、真空断熱材400の充填率が20%のときの変形量を1としている。図20は、真空断熱材の被覆率(たとえば65%)、ウレタン密度(たとえば60kg/m)、ウレタンの曲げ弾性率(たとえば9MPa)、真空断熱材の曲げ弾性率(たとえば15MPa)、複合部材の厚さ(たとえば28mm)、外箱と内箱の厚さを加えた壁厚さ(たとえば30mm)などは一定とし、真空断熱材の厚さを変化させて真空断熱材の充填率を変更した場合の結果である。 FIG. 20 shows the filling ratio of the vacuum heat insulating material, which is the ratio of the volume of the vacuum heat insulating material 400 to the volume of the space inside the wall 315, and the amount of deformation of the heat insulating box when a load is applied to the heat insulating box 700. It is a figure which showed the relationship. In FIG. 20, the horizontal axis represents the filling rate of the vacuum heat insulating material, and the vertical axis represents the amount of deformation of the heat insulating box. Here, the filling rate of the vacuum heat insulating material is the ratio (ratio) of the volume occupied by the vacuum heat insulating material 400 to the volume of the space 315 in the wall, and the amount of deformation of the heat insulating box is the heat insulation of, for example, the refrigerator 1. In the box body, a predetermined load is applied in a substantially horizontal direction (horizontal direction, left and right direction when the front opening is viewed from the front) at a height position of about 1/4 from the top of the side surface of the box body with the door. It is a calculation result of the deformation amount in the left-right direction (horizontal direction) of the upper end position of the side wall 790 of the box body 700 at the time, and the deformation amount when the filling rate of the vacuum heat insulating material 400 is 20% is set to 1. FIG. 20 shows the coverage of the vacuum heat insulating material (for example, 65%), the urethane density (for example, 60 kg / m 3 ), the flexural modulus of urethane (for example, 9 MPa), the bending elastic modulus of the vacuum heat insulating material (for example, 15 MPa), and the composite member. The thickness of the vacuum heat insulating material (for example, 28 mm), the wall thickness including the thickness of the outer box and the inner box (for example, 30 mm), etc. were kept constant, and the filling rate of the vacuum heat insulating material was changed by changing the thickness of the vacuum heat insulating material. The result of the case.

図20において、真空断熱材の充填率が大きくなれば、箱体変形量が小さくなる。これは、真空断熱材の曲げ弾性率がウレタンの曲げ弾性率よりも大きいため、断熱箱体内のウレタン容積に対する真空断熱材の容積の比率が増加するに伴って真空断熱材の曲げ弾性率の影響が大きくなり箱体700の剛性が増加したためであると考えられる。真空断熱材400の充填率が40%以上になると箱体の変形量の低下割合が極端に小さくなり、真空断熱材の充填率を大きくしても箱体変形量がほとんど変化しなくなっている。これは、箱体強度(箱体の変形)に対する真空断熱材400の影響度合いがほぼ飽和に近づいたためと考えられる。 In FIG. 20, the larger the filling rate of the vacuum heat insulating material, the smaller the amount of deformation of the box body. This is because the bending elastic modulus of the vacuum heat insulating material is larger than the bending elastic modulus of urethane, so that the influence of the bending elastic modulus of the vacuum heat insulating material as the ratio of the volume of the vacuum heat insulating material to the urethane volume in the heat insulating box increases. It is considered that this is because the box body 700 has increased in rigidity. When the filling rate of the vacuum heat insulating material 400 is 40% or more, the rate of decrease in the amount of deformation of the box body becomes extremely small, and even if the filling rate of the vacuum heat insulating material is increased, the amount of deformation of the box body hardly changes. It is considered that this is because the degree of influence of the vacuum heat insulating material 400 on the box body strength (deformation of the box body) is almost saturated.

真空断熱材400は硬質ウレタンフォームよりも曲げ弾性率が大きいため、空間315内の容積に対する真空断熱材400の容積の占める比率(割合)を大きくする(真空断熱材の充填率を大きくする)ことで断熱箱体700の変形量を小さくできるので、断熱箱体700の断熱性能が向上し、断熱箱体700あるいは冷蔵庫1あるいは機器の箱体強度を大きくすることができる。この際、真空断熱材400の厚みを増して充填率を大きくすれば箱体の強度UPの効果とともに断熱性能も向上できる。ここで、真空断熱材の厚さを大きくすることで真空断熱材の充填率を大きくしても良いが、箱体700の表面積に対する真空断熱材400の表面積の割合(真空断熱材の被覆率)を大きくすることで真空断熱材の充填率を大きくしてもよく、この場合でも箱体の強度を大きくすることが可能であり、しかも、真空断熱材400の被覆率を大きくすることで真空断熱材の充填率を大きくできる。また、真空断熱材400の被覆率を大きくすれば、真空断熱材の配設範囲(配設部位)が増え、断熱箱体700の壁厚を薄くすることができるので、壁厚が薄く出来る分だけ貯蔵室内容積を大きくできる。 Since the vacuum heat insulating material 400 has a higher flexural modulus than the rigid urethane foam, the ratio (ratio) of the volume of the vacuum heat insulating material 400 to the volume in the space 315 should be increased (the filling rate of the vacuum heat insulating material should be increased). Since the amount of deformation of the heat insulating box 700 can be reduced, the heat insulating performance of the heat insulating box 700 can be improved, and the strength of the heat insulating box 700 or the refrigerator 1 or the box of the device can be increased. At this time, if the thickness of the vacuum heat insulating material 400 is increased to increase the filling rate, the heat insulating performance can be improved as well as the effect of increasing the strength of the box body. Here, the filling rate of the vacuum heat insulating material may be increased by increasing the thickness of the vacuum heat insulating material, but the ratio of the surface area of the vacuum heat insulating material 400 to the surface surface of the box body 700 (coverage of the vacuum heat insulating material). The filling rate of the vacuum heat insulating material may be increased by increasing the amount, and even in this case, the strength of the box body can be increased, and the vacuum heat insulating material 400 is increased in coverage to increase the vacuum heat insulating material. The filling rate of the material can be increased. Further, if the coverage of the vacuum heat insulating material 400 is increased, the arrangement range (arrangement portion) of the vacuum heat insulating material is increased, and the wall thickness of the heat insulating box 700 can be reduced, so that the wall thickness can be reduced. Only the storage chamber volume can be increased.

本実施の形態では、たとえば、断熱箱体の外郭を形成する外箱710と断熱箱体の貯蔵室の内壁の一部を形成する内箱750との間の空間315の少なくとも一部に真空断熱材400を備え、空間315内の真空断熱材400の充填率を40%以上とし、外箱710の表面積に対する真空断熱材400の面積比率(被覆率)を60%以上とすることで、断熱性能が高く箱体強度も大きく信頼性の高い断熱箱体、冷蔵庫、機器などが得られる。ここで、本実施の形態では、従来の断熱箱体に用いられていた硬質ウレタンフォームよりも曲げ弾性率の高い真空断熱材400にて断熱箱体700の壁面強度を担う構成としているので、箱体強度と断熱性能の両方を満足させることができ、しかも壁厚さを薄くできるので、貯蔵室内容積も大きくできる。 In the present embodiment, for example, vacuum heat insulating is provided in at least a part of the space 315 between the outer box 710 forming the outer shell of the heat insulating box body and the inner box 750 forming a part of the inner wall of the storage chamber of the heat insulating box body. The material 400 is provided, the filling rate of the vacuum heat insulating material 400 in the space 315 is 40% or more, and the area ratio (coverage) of the vacuum heat insulating material 400 to the surface area of the outer box 710 is 60% or more. It is possible to obtain highly reliable heat-insulated boxes, refrigerators, equipment, etc., which have high box strength and high reliability. Here, in the present embodiment, the vacuum heat insulating material 400 having a higher flexural modulus than the rigid urethane foam used for the conventional heat insulating box body is configured to bear the wall strength of the heat insulating box body 700. Both body strength and heat insulating performance can be satisfied, and the wall thickness can be reduced, so that the storage chamber volume can be increased.

本実施の形態に係る断熱箱体700は、硬質ウレタンに比べ曲げ強度の高い真空断熱材400の充填率を所定値以上(あるいは所定範囲内)に設定するか、あるいは真空断熱材400の充填率と被覆率の両方を所定値以上(あるいは所定範囲内)に設定することで、断熱性能と箱体強度の両方を満足した上で断熱箱体700の壁厚を薄くすることができる。したがって、断熱箱体700や冷蔵庫1の外形サイズを変更せずに貯蔵室内の内容積を拡大でき、断熱箱体700あるいは冷蔵庫1あるいは機器の内部に貯蔵できる収納物や貯蔵物を増やすことが可能となる。なお、壁強度が低下すると断熱箱体700が歪み、例えば内部に設置されている棚80がレール部よりはずれて落下したり、引き出し式の貯蔵室(あるいは引き出し式の扉あるいはケース、または開閉扉など)の摺動性が悪くなるといった不具合が発生するが、本実施の形態では、真空断熱材400の充填率または/及び被覆率を所定値以上(所定範囲内)に設定するようにしているため、断熱箱体700の壁厚を薄くすることができ、しかも箱体強度と断熱性能を向上させることができるので、棚80がレール部よりはずれて落下したり、引き出し式の貯蔵室(あるいは扉あるいはケース、または開閉扉など)の摺動性が悪くなって信頼性が低下するのを抑制できる。 In the heat insulating box 700 according to the present embodiment, the filling rate of the vacuum heat insulating material 400, which has higher bending strength than that of hard urethane, is set to a predetermined value or more (or within a predetermined range), or the filling rate of the vacuum heat insulating material 400 is set. By setting both the heat insulating box and the covering ratio to a predetermined value or more (or within a predetermined range), the wall thickness of the heat insulating box 700 can be reduced while satisfying both the heat insulating performance and the strength of the box. Therefore, the internal volume of the storage chamber can be expanded without changing the external size of the heat insulating box 700 or the refrigerator 1, and it is possible to increase the number of stored items and stored items that can be stored inside the heat insulating box 700 or the refrigerator 1 or the device. It becomes. When the wall strength decreases, the heat insulating box 700 is distorted, for example, the shelf 80 installed inside may fall off the rail portion, or a drawer-type storage room (or a drawer-type door or case, or an opening / closing door) may be opened. In this embodiment, the filling rate and / and the covering rate of the vacuum heat insulating material 400 are set to a predetermined value or more (within a predetermined range). Therefore, the wall thickness of the heat insulating box 700 can be reduced, and the strength and heat insulating performance of the box can be improved. Therefore, the shelf 80 may fall off the rail portion or be pulled out from the storage chamber (or a pull-out storage room). It is possible to prevent the slidability of the door, the case, the opening / closing door, etc.) from being deteriorated and the reliability from being lowered.

また、本実施の形態1に係る断熱箱体700は、空間315内の真空断熱材400の充填率を90%以下としている。上述したような本実施の形態に係る技術思想によれば、空間315内を全て真空断熱材400とするのが理想的である。しかしながら、図11などでも説明したように、背面壁730には凸部450あるいは突起部910がもうけられており、また内箱750に形成されるレール部755が空間315内に突出して設けられており、また、断熱箱体700を例えば冷蔵庫1に用いる場合、壁内空間315内には、断熱箱体700の機械室1Aに搭載される圧縮機12や制御基板室31に収納される制御装置30(たとえば圧縮機の回転数等を制御するもの)等を接続する配線類をまとめたハーネスを収納するパイプ720も配設されることとなるので、真空断熱材400の充填率を90%よりも大きくすることは困難である。また、断熱箱体700を例えば冷蔵庫1に適用する場合、空間315内には、冷媒配管725等も配設されることとなる。このため、空間315内に90%を越えて真空断熱材400を配設しようとすると、真空断熱材400で配線類720や冷媒配管725やレール部755などの形状に合わせた真空断熱材400が必要となり、真空断熱材400の形状が複雑となるので、真空断熱材400の成形(あるいは形成)が困難となるので、真空断熱材400の充填率を90%以下に設定している。 Further, in the heat insulating box body 700 according to the first embodiment, the filling rate of the vacuum heat insulating material 400 in the space 315 is 90% or less. According to the technical idea according to the present embodiment as described above, it is ideal that the entire space 315 is the vacuum heat insulating material 400. However, as described with reference to FIG. 11 and the like, the back wall 730 is provided with a convex portion 450 or a protruding portion 910, and a rail portion 755 formed on the inner box 750 is provided so as to project into the space 315. When the heat insulating box 700 is used for the refrigerator 1, for example, the space inside the wall 315 is a control device housed in the compressor 12 mounted in the machine room 1A of the heat insulating box 700 or the control board room 31. Since a pipe 720 for accommodating a harness for connecting wirings for connecting 30 (for example, one that controls the number of revolutions of a compressor) and the like will also be arranged, the filling rate of the vacuum heat insulating material 400 will be 90% or more. Is also difficult to increase. Further, when the heat insulating box 700 is applied to, for example, the refrigerator 1, a refrigerant pipe 725 or the like is also arranged in the space 315. Therefore, when the vacuum heat insulating material 400 is to be arranged in the space 315 in excess of 90%, the vacuum heat insulating material 400 is used to match the shapes of the wirings 720, the refrigerant pipe 725, the rail portion 755, and the like. Since it is necessary and the shape of the vacuum heat insulating material 400 becomes complicated, it becomes difficult to form (or form) the vacuum heat insulating material 400. Therefore, the filling rate of the vacuum heat insulating material 400 is set to 90% or less.

また、断熱箱体700の強度が低下して歪みが発生するのを抑えるためには外箱710と内箱750を真空断熱材400と接着して接着強度を持たせる必要があるが、内箱750には貯蔵室(たとえば冷蔵室2)内に設置された棚80を保持するためのレール部755やその他部品(たとえば照明装置900あるいはミスト装置200あるいは仕切壁24など)が取り付けられていることが多く形状が複雑である。したがって、真空断熱材400を外箱710側にホットメルトや両面テープなどの第2の接着剤で接着させることは容易でも、真空断熱材400を形状が複雑な内箱750側に接着させて接着強度を得ることは困難である。 Further, in order to suppress the decrease in strength of the heat insulating box 700 and the occurrence of distortion, it is necessary to bond the outer box 710 and the inner box 750 to the vacuum heat insulating material 400 to provide adhesive strength. The 750 is equipped with a rail portion 755 for holding the shelf 80 installed in the storage room (for example, the refrigerating room 2) and other parts (for example, the lighting device 900, the mist device 200, the partition wall 24, etc.). The shape is complicated. Therefore, although it is easy to bond the vacuum heat insulating material 400 to the outer box 710 side with a second adhesive such as hot melt or double-sided tape, the vacuum heat insulating material 400 is bonded to the inner box 750 side having a complicated shape. It is difficult to obtain strength.

しかしながら、硬質ウレタンフォームを内箱750と真空断熱材400との間の接着剤として使用すれば、空間315内に二相状態で流動させながら充填させて発泡させることが可能なので、空間315内に凸部450や突起部910やレール部755やその他の部品が存在する場合でも問題なく内箱750と真空断熱材400とをウレタンにより接着させることが可能となる。もちろん、外箱710と真空断熱材400の間、あるいは外箱710と内箱750の間に接着剤として硬質ウレタンフォームを充填しても良い。このとき、断熱箱体700内に硬質ウレタンフォームが充填されない未充填部(つまり、空隙)が生じると、断熱箱体700の断熱性能が低下してしまう。したがって、本実施の形態に係る断熱箱体700においては、硬質ウレタンフォームを充填するために必要なある程度の所定隙間(例えば1mm程度以上、好ましく3mm程度以上)の確保が必要となるので、空間315内の真空断熱材400の充填率は90%以下が良く、好ましくは80%以下が良い。 However, if the rigid urethane foam is used as an adhesive between the inner box 750 and the vacuum heat insulating material 400, the space 315 can be filled and foamed while flowing in a two-phase state, so that the space 315 can be filled. Even when the convex portion 450, the convex portion 910, the rail portion 755, and other parts are present, the inner box 750 and the vacuum heat insulating material 400 can be bonded to each other by urethane without any problem. Of course, hard urethane foam may be filled as an adhesive between the outer box 710 and the vacuum heat insulating material 400, or between the outer box 710 and the inner box 750. At this time, if an unfilled portion (that is, a gap) in which the rigid urethane foam is not filled is generated in the heat insulating box 700, the heat insulating performance of the heat insulating box 700 is deteriorated. Therefore, in the heat insulating box body 700 according to the present embodiment, it is necessary to secure a certain predetermined gap (for example, about 1 mm or more, preferably about 3 mm or more) necessary for filling the rigid urethane foam, so that the space 315 is required. The filling rate of the vacuum heat insulating material 400 inside is preferably 90% or less, preferably 80% or less.

ところで、空間315内における真空断熱材400の充填率を増大させれば、空間315内における硬質ウレタンフォームの充填率は低下する。このため、外箱710と内箱750との間のウレタンの厚さが低減し断熱箱体700の箱体強度が低下してしまうことが懸念されるようにも思われる。しかしながら、本実施の形態に係る断熱箱体700は、ウレタンよりも断熱性能、曲げ剛性とも優れた真空断熱材400を使用することで、箱体強度の低下が抑制できる。また、本実施の形態では、熱伝導率が小さな真空断熱材400によって主に断熱機能と強度を担うという技術思想によってもたらされているため、図20に示したように真空断熱材の充填率を40%以上にすることで硬質ウレタンの充填量が少なくなっても箱体700の強度を向上させることができる。また、図19に示したように真空断熱材400の厚さを厚くする(すなわち、真空断熱材の充填率を大きくする)ことで、真空断熱材と硬質ウレタンフォームを合わせた複合断熱材の複合熱伝導率を小さくできるので、箱体700の断熱性能も向上する。 By the way, if the filling rate of the vacuum heat insulating material 400 in the space 315 is increased, the filling rate of the rigid urethane foam in the space 315 decreases. Therefore, it seems that there is a concern that the thickness of urethane between the outer box 710 and the inner box 750 will be reduced and the strength of the heat insulating box 700 will be reduced. However, the heat insulating box body 700 according to the present embodiment can suppress a decrease in the box body strength by using the vacuum heat insulating material 400 which is superior in heat insulating performance and bending rigidity to urethane. Further, in the present embodiment, since it is brought about by the technical idea that the vacuum heat insulating material 400 having a small thermal conductivity mainly bears the heat insulating function and the strength, the filling rate of the vacuum heat insulating material is as shown in FIG. By setting the value to 40% or more, the strength of the box body 700 can be improved even if the filling amount of the hard urethane is reduced. Further, as shown in FIG. 19, by increasing the thickness of the vacuum heat insulating material 400 (that is, increasing the filling rate of the vacuum heat insulating material), the composite of the vacuum heat insulating material and the rigid urethane foam is combined. Since the thermal conductivity can be reduced, the heat insulating performance of the box body 700 is also improved.

ここで、硬質ウレタンフォームの密度を大きくして曲げ弾性率(曲げ剛性)を増大させると、硬質ウレタンフォーム自体の断熱性能は低下するが、真空断熱材400の被覆率と充填率を所定値以上とすることで、ウレタンの断熱性能の低下の影響は小さく問題にならない。本実施の形態に係る断熱箱体700においては、図16に示したように硬質ウレタンフォームの密度を従来よりも大きく、例えば60kg/mより大きくすることで、硬質ウレタンフォームの曲げ弾性率を、従来の断熱箱体に用いられていた硬質ウレタンフォームの曲げ弾性率(たとえば6〜10MPa程度)よりも大きな15MPa以上とすることができ、真空断熱材400が配置されていない部分の箱体強度も向上させることが可能となる。したがって、本実施の形態に係る断熱箱体700、冷蔵庫1、ショーケース、給湯機などの機器は、真空断熱材400の充填率を40%以上、真空断熱材の側背面の被覆率を70%以上に設定することにより、硬質ウレタンフォームの充填率の低下に起因する強度低下を抑制することができ、収納物の重量による歪みに耐え切れず断熱箱体700が変形することも抑制できる。すなわち、真空断熱材400の充填率を大きくすることによって断熱箱体700の強度を向上させることができ、また、優れた断熱性能が得られるので、信頼性が高く省エネルギーな真空断熱材を備えた断熱箱体、真空断熱材を備えた冷蔵庫、真空断熱材を備えたショーケース、真空断熱材を備えた給湯装置、真空断熱材を備えた機器などが得られる。 Here, if the density of the rigid urethane foam is increased to increase the flexural rigidity (flexural rigidity), the heat insulating performance of the rigid urethane foam itself is lowered, but the coverage and filling rate of the vacuum heat insulating material 400 are equal to or higher than a predetermined value. Therefore, the effect of the deterioration of the heat insulating performance of urethane is small and does not pose a problem. In the heat insulating box body 700 according to the present embodiment, as shown in FIG. 16, the flexural modulus of the rigid urethane foam is increased by increasing the density of the rigid urethane foam more than the conventional one, for example, 60 kg / m 3. , The flexural modulus of the rigid urethane foam used for the conventional heat insulating box can be set to 15 MPa or more, which is larger than the bending elastic modulus (for example, about 6 to 10 MPa), and the box body strength of the portion where the vacuum heat insulating material 400 is not arranged. Can also be improved. Therefore, in the equipment such as the heat insulating box 700, the refrigerator 1, the showcase, and the water heater according to the present embodiment, the filling rate of the vacuum heat insulating material 400 is 40% or more, and the coverage of the side back surface of the vacuum heat insulating material is 70%. By setting the above, it is possible to suppress a decrease in strength due to a decrease in the filling rate of the rigid urethane foam, and it is also possible to suppress deformation of the heat insulating box 700 because it cannot withstand the distortion due to the weight of the stored items. That is, the strength of the heat insulating box 700 can be improved by increasing the filling rate of the vacuum heat insulating material 400, and excellent heat insulating performance can be obtained, so that a highly reliable and energy-saving vacuum heat insulating material is provided. A heat insulating box, a refrigerator equipped with the vacuum heat insulating material, a showcase equipped with the vacuum heat insulating material, a hot water supply device equipped with the vacuum heat insulating material, a device equipped with the vacuum heat insulating material, and the like can be obtained.

なお、硬質ウレタンフォームの密度調整は、例えば空間315内に注入する硬質ウレタンフォームの原液の量を従来よりも多く充填する(注入時間を長くしたり、あるいは注入圧力を大きくする)ことにより、密度を大きくしたり小さくしたり調整することができる。また、硬質ウレタンフォームの曲げ弾性率は、図16で示したように密度の大きさにほぼ比例して大きくなるので、密度を大きくすれば大きくでき、曲げ弾性率が大きい方が箱体剛性が大きくなるので良いが、ウレタンの曲げ弾性率は150MPa以下とした方が良い。硬質ウレタンフォームは、曲げ弾性率が150MPaよりも大きくなると、硬質ウレタンフォームの密度が大きくなりすぎてスポンジ状に発泡できずに固まってしまい、断熱性能が急激に低下するので、硬質ウレタンフォームの曲げ弾性率は150MPa以下にした方が、断熱性能の低下が抑制できるので良く、高性能な断熱箱体が得られる。また、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度は大きくなりすぎると、(1)ウレタンの注入量増加によるコストUP、(2)ウレタンの注入圧力増加による箱体等からのウレタン漏れの発生、(3)ウレタン発泡時の発泡圧力増加による箱体変形抑制用金型や箱体押さえ部材などとウレタンとの密着力、接着力増加のため箱体変形抑制用金型や箱体押さえ部材などが箱体から抜けにくくなる(箱体から取り外しにくくなる)、(4)ウレタンの密度増による断熱性能の急激な悪化など、品質悪化、性能低下、コストUPなどの問題が発生するので、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度(発泡断熱材の場合は発泡後の密度)を100kg/m以下(好ましくは90kg/m以下)にした方が良い。 The density of the rigid urethane foam is adjusted by, for example, filling the space 315 with a larger amount of the stock solution of the rigid urethane foam than before (increasing the injection time or increasing the injection pressure). Can be adjusted to be larger or smaller. Further, since the flexural modulus of the rigid urethane foam increases almost in proportion to the magnitude of the density as shown in FIG. 16, it can be increased by increasing the density, and the larger the flexural modulus, the higher the rigidity of the box. It is good because it becomes large, but it is better that the flexural modulus of urethane is 150 MPa or less. When the flexural modulus of the rigid urethane foam is larger than 150 MPa, the density of the rigid urethane foam becomes too high and it cannot be foamed like a sponge and hardens, and the heat insulating performance is sharply lowered. It is better that the elastic modulus is 150 MPa or less because the deterioration of the heat insulating performance can be suppressed, and a high-performance heat insulating box can be obtained. In addition, if the density of the heat insulating material (for example, rigid urethane foam) such as urethane, which is an intervening member, becomes too high, (1) the cost increases due to the increase in the urethane injection amount, and (2) the box body due to the increase in the urethane injection pressure Urethane leakage, (3) Mold for suppressing box deformation due to increase in foaming pressure during urethane foaming, mold for suppressing box deformation due to increased adhesion and adhesive force between urethane and box holding member, etc. Problems such as quality deterioration, performance deterioration, and cost increase occur, such as difficulty in removing the box holding member from the box (difficult to remove from the box), (4) rapid deterioration of heat insulation performance due to increased urethane density. Therefore, the density of the heat insulating material (for example, rigid urethane foam) such as urethane, which is an intervening member, (in the case of foamed heat insulating material, the density after foaming) should be 100 kg / m 3 or less (preferably 90 kg / m 3 or less). Is good.

本実施の形態では、断熱箱体700を、たとえば、以下のような仕様の冷蔵庫に適用している。
(1)外箱710及び内箱750の合計板厚が2mm程度以下で、外箱710の板厚と内箱750板厚を含む断熱箱体700の平均壁厚が20mm程度以上40mm程度以下の断熱箱体を使用(ここで、背面壁730、側壁790、天井壁740、底面壁780、仕切り壁24等の板厚を含む壁厚さが20mm以上40mm以下程度が好ましく、また、外箱710と内箱750の板厚を除いた空間315の壁厚方向の平均距離(壁内厚さ)は18mm程度〜38mm程度)。
(2)真空断熱材400の厚みが10mm程度〜30mm程度であり、真空断熱材の配設されている部分(たとえば凹部440あるいは第2の凹部441)の壁内の空間315における硬質ウレタンフォームの壁厚方向の平均流路幅(ウレタン流路厚さ)が1mm以上(好ましくは3mm以上)であり、また、11mm以下(ばらつきや真空断熱材400の表面の凹凸等を考慮すると10mm未満が良く好ましくは6mm以下)。
(3)硬質ウレタンフォームの熱伝導率は、0.018W/(m・K)〜0.026W/(m・K)。
(4)真空断熱材400の熱伝導率は、0.0019W/(m・K)〜0.0025W/(m・K)。
(5)内容積が200L〜600Lクラスで、所定の条件下での消費電力が60W程度以下程度。
In the present embodiment, the heat insulating box 700 is applied to, for example, a refrigerator having the following specifications.
(1) The total thickness of the outer box 710 and the inner box 750 is about 2 mm or less, and the average wall thickness of the heat insulating box 700 including the outer box 710 and the inner box 750 is about 20 mm or more and 40 mm or less. A heat insulating box is used (here, the wall thickness including the thickness of the back wall 730, the side wall 790, the ceiling wall 740, the bottom wall 780, the partition wall 24, etc. is preferably about 20 mm or more and 40 mm or less, and the outer box 710. The average distance (thickness inside the wall) in the wall thickness direction of the space 315 excluding the plate thickness of the inner box 750 is about 18 mm to 38 mm).
(2) The thickness of the vacuum heat insulating material 400 is about 10 mm to 30 mm, and the rigid urethane foam in the space 315 in the wall of the portion where the vacuum heat insulating material is arranged (for example, the recess 440 or the second recess 441). The average flow path width (urethane flow path thickness) in the wall thickness direction is 1 mm or more (preferably 3 mm or more), and 11 mm or less (less than 10 mm is preferable in consideration of variation and surface unevenness of the vacuum heat insulating material 400). Preferably 6 mm or less).
(3) The thermal conductivity of the rigid urethane foam is 0.018 W / (m · K) to 0.026 W / (m · K).
(4) The thermal conductivity of the vacuum heat insulating material 400 is 0.0019 W / (m · K) to 0.0025 W / (m · K).
(5) The internal volume is in the 200L to 600L class, and the power consumption under predetermined conditions is about 60W or less.

このような冷蔵庫1における断熱性能は、真空断熱材400の充填率と被覆率が所定の範囲内になるように設定して真空断熱材400の大きさや厚さを選定することによって、真空断熱材400が断熱箱体の断熱性能、断熱箱体の箱体強度に対して支配的となるので、真空断熱材400の熱伝導率は小さい方が断熱箱体の複合熱伝導率を小さくできるので良く、0.0030W/(m・K)以下が好ましい。真空断熱材400の熱伝導率が0.0030W/mKを超えると、壁厚低減による断熱性能への影響が大きくなり、断熱性能が悪化し、消費電力量が大きくなる。このため、本実施の形態では、真空断熱材400の熱伝導率を0.0030W/(m・K)以下とすることにより、壁厚を薄くすることに対しての断熱性能低下の影響を抑制している。また、真空断熱材400の熱伝導率は小さければ小さい方が良いが、熱伝導率を0.001W/(m・K)低減するためにかかるコストが大幅に増大するため、真空断熱材400の熱伝導率は0.0012W/(m・K)以上のものを使用するようにしている。真空断熱材400の熱伝導率は0.0019W/(m・K)以上0.0025W/(m・K)以下であれば硬質ウレタンフォームの熱伝導率よりも約10倍小さいので、断熱箱体700の断熱性能は従来よりも格段に良くなり、製品仕様を満足できる。したがって、真空断熱材400は、熱伝導率が0.0012W/(m・K)以上0.0030W/(m・K)以下程度(好ましくは0.0019W/(m・K)以上0.0025W/(m・K)以下程度)のものを使用すれば良い。 The heat insulating performance in such a refrigerator 1 is determined by setting the filling rate and the covering rate of the vacuum heat insulating material 400 within a predetermined range and selecting the size and thickness of the vacuum heat insulating material 400. Since 400 is dominant in the heat insulating performance of the heat insulating box and the strength of the heat insulating box, the smaller the heat conductivity of the vacuum heat insulating material 400 is, the smaller the composite thermal conductivity of the heat insulating box is. , 0.0030 W / (m · K) or less is preferable. When the thermal conductivity of the vacuum heat insulating material 400 exceeds 0.0030 W / mK, the effect of reducing the wall thickness on the heat insulating performance becomes large, the heat insulating performance deteriorates, and the power consumption becomes large. Therefore, in the present embodiment, by setting the thermal conductivity of the vacuum heat insulating material 400 to 0.0030 W / (m · K) or less, the influence of deterioration of heat insulating performance on reducing the wall thickness is suppressed. doing. Further, the smaller the thermal conductivity of the vacuum heat insulating material 400, the better, but since the cost required to reduce the thermal conductivity by 0.001 W / (m · K) increases significantly, the vacuum heat insulating material 400 is used. The thermal conductivity of 0.0012 W / (m · K) or more is used. If the thermal conductivity of the vacuum heat insulating material 400 is 0.0019 W / (m · K) or more and 0.0025 W / (m · K) or less, it is about 10 times smaller than the thermal conductivity of the rigid urethane foam. The heat insulating performance of 700 is much better than before, and the product specifications can be satisfied. Therefore, the vacuum heat insulating material 400 has a thermal conductivity of 0.0012 W / (m · K) or more and 0.0030 W / (m · K) or less (preferably 0.0019 W / (m · K) or more and 0.0025 W / /. (M · K) or less) may be used.

本発明の実施の形態に係る断熱箱体700の一例として、壁厚さと真空断熱材400の充填率、硬質ウレタンフォームの曲げ弾性率、断熱箱体700の箱体変形量の関係を表1に示す。表1の項1は、従来の仕様であり、壁厚さ40mm、真空断熱材400の充填率が20%、内箱750と真空断熱材400の間に充填されるウレタンの曲げ弾性率が9MPaのときの結果である。ここで、真空断熱材400の曲げ弾性率は20MPaのものを使用している。表1の項1と項2より真空断熱材400の充填率が20%、ウレタンの曲げ弾性率9MPaの場合は、断熱箱体700の壁厚を40mmから30mmに薄くすると箱体強度が低下する。したがって、項3に示すように壁厚さを30mmまで低減させる場合には、真空断熱材400の充填率を40%以上まで大きくすれば、箱体変形量が項1(従来)より若干大きいが項1(従来)と同等レベルまで低下することが分かる。 As an example of the heat insulating box 700 according to the embodiment of the present invention, Table 1 shows the relationship between the wall thickness and the filling ratio of the vacuum heat insulating material 400, the flexural modulus of the rigid urethane foam, and the amount of deformation of the heat insulating box 700. Shown. Item 1 of Table 1 is a conventional specification, in which the wall thickness is 40 mm, the filling rate of the vacuum heat insulating material 400 is 20%, and the flexural modulus of urethane filled between the inner box 750 and the vacuum heat insulating material 400 is 9 MPa. It is the result at the time of. Here, the vacuum heat insulating material 400 used has a flexural modulus of 20 MPa. From Items 1 and 2 of Table 1, when the filling rate of the vacuum heat insulating material 400 is 20% and the flexural modulus of urethane is 9 MPa, if the wall thickness of the heat insulating box 700 is reduced from 40 mm to 30 mm, the strength of the box decreases. .. Therefore, when the wall thickness is reduced to 30 mm as shown in Item 3, if the filling rate of the vacuum heat insulating material 400 is increased to 40% or more, the amount of deformation of the box is slightly larger than that of Item 1 (conventional). It can be seen that the level is reduced to the same level as in Item 1 (conventional).

表1の項4に示すように、断熱箱体700の壁厚を従来の40mm(表1の項1)から30mmに薄くしても真空断熱材400の充填率を40%以上とし、かつウレタンの曲げ弾性率を15Mpa以上(表1の項4)とすれば、箱体変形量が従来(項1)よりも小さくできるので、断熱箱体700の箱体強度を従来品(項1)以上にすることが可能となる。すなわち、壁厚さを低減(たとえば40mmから30mmに低減)させても真空断熱材400の充填率とウレタンの曲げ弾性率を所定値以上に設定すれば、箱体強度が低下することなく、断熱性能も向上させることができる。したがって、本実施の形態では、真空断熱材400としては、曲げ弾性率20MPa以上のものを使用し、真空断熱材400の充填率を40%以上、硬質ウレタンフォームの曲げ弾性率を15MPa以上に設定することで、断熱箱体の壁厚さを薄く(例えば40mmから30mmに薄く)しても断熱箱体700の強度を従来よりも向上させることが可能となる。 As shown in Item 4 of Table 1, even if the wall thickness of the heat insulating box 700 is reduced from the conventional 40 mm (Item 1 of Table 1) to 30 mm, the filling rate of the vacuum heat insulating material 400 is 40% or more, and urethane. If the flexural modulus of the box is 15 Mpa or more (Item 4 in Table 1), the amount of deformation of the box can be made smaller than that of the conventional product (Item 1), so that the box strength of the heat insulating box 700 is equal to or more than the conventional product (Item 1). It becomes possible to. That is, even if the wall thickness is reduced (for example, reduced from 40 mm to 30 mm), if the filling rate of the vacuum heat insulating material 400 and the flexural modulus of urethane are set to a predetermined value or more, the box body strength does not decrease and heat insulation is performed. Performance can also be improved. Therefore, in the present embodiment, the vacuum heat insulating material 400 is used with a bending elastic modulus of 20 MPa or more, the filling rate of the vacuum heat insulating material 400 is set to 40% or more, and the bending elastic modulus of the rigid urethane foam is set to 15 MPa or more. By doing so, the strength of the heat insulating box 700 can be improved as compared with the conventional case even if the wall thickness of the heat insulating box is made thin (for example, from 40 mm to 30 mm).

Figure 0006854789
Figure 0006854789

また、真空断熱材400の外郭を形成する外包材(外装フィルム)には、アルミ箔フィルムよりもアルミ蒸着フィルムを使用するようにした方が良い。真空断熱材400の外包材を伝って発生する熱漏洩(真空断熱材400の外包材を介して、真空断熱材400の表面から裏面へ熱が伝導して漏洩する所謂ヒートブリッジ)を抑制するために、真空断熱材400の外包材として、アルミ箔フィルムよりもヒートブリッジが生じにくいアルミ蒸着フィルムを外包材(外装フィル)として使用した方が良い。 Further, it is better to use an aluminum vapor-deposited film rather than an aluminum foil film for the outer packaging material (exterior film) forming the outer shell of the vacuum heat insulating material 400. To suppress heat leakage (so-called heat bridge that heat is conducted from the front surface to the back surface of the vacuum heat insulating material 400 and leaks through the outer packaging material of the vacuum heat insulating material 400) generated through the outer packaging material of the vacuum heat insulating material 400. In addition, as the outer packaging material of the vacuum heat insulating material 400, it is better to use an aluminum vapor deposition film as an outer packaging material (exterior fill), which is less likely to cause heat bridge than an aluminum foil film.

なお、本実施の形態1における硬質ウレタンフォームの曲げ弾性率、熱伝導率、密度の測定は、たとえば、所定の大きさ(たとえば100×100×5mm以上)の硬質ウレタンフォームを切り出して測定すれば良い。真空断熱材400の配設されている部分においては、左右側面、背面、天面、底面の5つの各面ごとに真空断熱材が配設されている部分より複数切り出し、その平均値を算出すれば良い。(1箇所しか切り出せない場合は1箇所で複数箇所測定するなどして代用すれば良い)。扉にも真空断熱材が配設されている場合には、扉についてもウレタンの密度、曲げ弾性率、熱伝導率を測定すれば良い。また、真空断熱材400が配設されていない部分においても左右側面、背面、天面、底面の5つの各面ごとに複数切り出し、その平均値を算出すれば良い。本実施の形態では、いずれの場合も密度あるいは曲げ弾性率が大きいと推測できる場所よりも切り出して測定するようにしている。なお、冷媒配管725やリード線などの配線部品720などがある場合など硬質ウレタンフォームを所定の大きさに切り出せない場合には、中心位置に近い位置で所定の大きさの硬質ウレタンフォームが切り出せる位置にすれば良い。 The flexural modulus, thermal conductivity, and density of the rigid urethane foam in the first embodiment can be measured by cutting out a rigid urethane foam having a predetermined size (for example, 100 × 100 × 5 mm or more). good. In the portion where the vacuum heat insulating material 400 is arranged, cut out a plurality of parts from the portion where the vacuum heat insulating material is arranged for each of the five surfaces of the left and right side surfaces, the back surface, the top surface, and the bottom surface, and calculate the average value. It should be good. (If only one point can be cut out, it may be substituted by measuring multiple points at one point). When the vacuum heat insulating material is also provided on the door, the urethane density, flexural modulus, and thermal conductivity may be measured on the door as well. Further, even in the portion where the vacuum heat insulating material 400 is not arranged, a plurality of cutouts may be made for each of the five surfaces of the left and right side surfaces, the back surface, the top surface, and the bottom surface, and the average value thereof may be calculated. In the present embodiment, in each case, the measurement is performed by cutting out from a place where the density or flexural modulus can be estimated to be large. If the rigid urethane foam cannot be cut out to a predetermined size, such as when there are wiring parts 720 such as a refrigerant pipe 725 and lead wires, a rigid urethane foam of a predetermined size can be cut out at a position close to the center position. It should be in the position.

本実施の形態では、左側面、右側面、背面、天面、底面あるいは扉の6つの面ごとに真空断熱材400が配設されている部分と配設されていない部分のウレタンの密度あるいは曲げ弾性率を測定し、ウレタンの密度あるいは曲げ弾性率が所定値以上になるようにしている。ウレタンのフリーフォーム密度、真空断熱材の厚さ、壁厚さなどを調整することで、真空断熱材400と内箱750との間、あるいは真空断熱材400と外箱710との間、あるいは外箱710と内箱750との間に介在するウレタンの密度、あるいは曲げ弾性率を所定値以上に設定できる。 In the present embodiment, the density or bending of urethane in the portion where the vacuum heat insulating material 400 is arranged and the portion where the vacuum heat insulating material 400 is not arranged for each of the six surfaces of the left side surface, the right side surface, the back surface, the top surface, the bottom surface or the door. The elastic modulus is measured so that the urethane density or the bending elastic modulus becomes equal to or higher than a predetermined value. By adjusting the free foam density of urethane, the thickness of the vacuum heat insulating material, the wall thickness, etc., between the vacuum heat insulating material 400 and the inner box 750, or between the vacuum heat insulating material 400 and the outer box 710, or outside. The density of the urethane interposed between the box 710 and the inner box 750 or the bending elasticity can be set to a predetermined value or more.

ここで、本実施の形態では、左右側面、背面、天面、底面あるいは扉の6つの面において、各面ごとに少なくとも真空断熱材400が配設されている部分のウレタンの密度、曲げ弾性率を所定値以上に設定するようにしており、加えて各面ごとに少なくとも真空断熱材400が配設されていない部分のウレタンの密度、曲げ弾性率を所定値以上に設定するようにしても良い。ここで、左右側面、背面、天面、底面あるいは扉の6つの面において、各面ごとにウレタン密度、曲げ弾性率が所定値以上になるように設定すれば、真空断熱材400が配設されていない部分においても強度が向上する。また、個別の面ごとに強度が得られるので、必要な部分だけ高強度に設定でき低コストで信頼性の高い良い断熱箱体、冷蔵庫、機器が得られる。また、左右側面、背面、天面、底面あるいは扉の6つの面の密度、あるいは曲げ弾性率の平均値が第1の所定値以上(密度60kg/m以上、曲げ弾性率15MPa以上)、第2の所定値以下(密度100kg/m以下、曲げ弾性率150MPa以下)になるように設定するようにすれば、箱体全体での強度確保が行えるので、断熱性能が高く信頼性の高い断熱箱体、冷蔵庫、機器が得られる。 Here, in the present embodiment, the urethane density and flexural modulus of the portion where at least the vacuum heat insulating material 400 is arranged on each of the six surfaces of the left and right side surfaces, the back surface, the top surface, the bottom surface, and the door. Is set to a predetermined value or more, and in addition, the urethane density and flexural modulus of at least the portion where the vacuum heat insulating material 400 is not arranged may be set to a predetermined value or more on each surface. .. Here, if the urethane density and flexural modulus are set to be equal to or higher than the predetermined values on each of the six surfaces of the left and right side surfaces, the back surface, the top surface, the bottom surface, and the door, the vacuum heat insulating material 400 is arranged. The strength is improved even in the part that is not. In addition, since strength can be obtained for each individual surface, it is possible to set high strength only in the necessary parts, and a good heat insulating box, refrigerator, and equipment with high reliability at low cost can be obtained. Further, the density of the six surfaces of the left and right side surfaces, the back surface, the top surface, the bottom surface or the door, or the average value of the flexural modulus is equal to or higher than the first predetermined value (density 60 kg / m 3 or higher, bending elastic modulus 15 MPa or higher), the first. By setting the value to be less than or equal to the predetermined value of 2 (density 100 kg / m 3 or less, flexural modulus 150 MPa or less), the strength of the entire box can be ensured, so that the heat insulation performance is high and the heat insulation is highly reliable. You can get a box, a refrigerator, and equipment.

また、真空断熱材400の被覆率、充填率についても、左右側面、背面、天面、底面あるいは扉の6つの面において、各面ごとあるいは複数の面を合わせた被覆率、充填率が所定値以上になるように設定すれば、個別の面ごとに強度、断熱性能が得られるので、必要な部分だけ高強度に設定でき低コストで高断熱で信頼性の高い断熱箱体、冷蔵庫、機器が得られる。また、左右側面、背面、天面、底面あるいは扉の6つの面全体が所定値以上になるように設定するようにすれば、箱体全体での強度確保、断熱性能の向上が行えるので、断熱性能が高く信頼性の高い断熱箱体、冷蔵庫、機器が得られる。 Regarding the coverage and filling rate of the vacuum heat insulating material 400, the coverage and filling rate of each of the six surfaces of the left and right side surfaces, the back surface, the top surface, the bottom surface, and the door, or a combination of the plurality of surfaces, are predetermined values. If the above settings are made, the strength and heat insulation performance can be obtained for each individual surface, so only the necessary parts can be set to high strength, and the heat insulation box, refrigerator, and equipment with low cost, high heat insulation, and high reliability can be installed. can get. Further, if the entire six surfaces of the left and right side surfaces, the back surface, the top surface, the bottom surface, and the door are set to be equal to or higher than the predetermined values, the strength of the entire box body can be ensured and the heat insulation performance can be improved. High-performance and highly reliable insulation boxes, refrigerators, and equipment can be obtained.

以上、本実施の形態に係る断熱箱体700においては、真空断熱材400の被覆率を所定値(60%)より大きく(真空断熱材400の側背面の被覆率を70%以上)している。また、真空断熱材400の充填率も所定値(40%)以上にして硬質ウレタンフォームの充填量を少なくしているので、断熱箱体の断熱性能と箱体強度を確保した上で断熱箱体700の壁厚を従来よりも薄くすることができる。したがって、断熱性能が向上するため、省エネルギーであり、しかも壁厚が薄く出来る分だけ従来よりも貯蔵室内の内容積を大きくできるので、内容積効率の優れた断熱箱体700、冷蔵庫1、ショーケース、機器を提供することができる。すなわち、本発明の実施の形態によれば、断熱箱体700あるいは冷蔵庫1あるいはショーケースなどの機器の外形サイズを変更せずに内容積(たとえば貯蔵室2〜6の内容積)を従来よりも大きくできるので、断熱箱体700あるいは冷蔵庫1の内部に貯蔵できる収納物を従来よりも増やすことができる。よって、ユーザにとって使い勝手のよく、省エネルギーな断熱箱体700、冷蔵庫1、ショーケースなどの機器が得られる。逆に内容積(たとえば貯蔵室2〜6の内容積)を従来と同等にすれば、外形サイズを小さくできるので、省エネルギーでコンパクトな断熱箱体700、冷蔵庫1、ショーケース、給湯装置などの機器が得られる。 As described above, in the heat insulating box 700 according to the present embodiment, the coverage of the vacuum heat insulating material 400 is larger than a predetermined value (60%) (the covering rate of the side back surface of the vacuum heat insulating material 400 is 70% or more). .. Further, since the filling rate of the vacuum heat insulating material 400 is also set to a predetermined value (40%) or more to reduce the filling amount of the rigid urethane foam, the heat insulating box body is ensured the heat insulating performance and the box body strength. The wall thickness of 700 can be made thinner than before. Therefore, since the heat insulating performance is improved, the internal volume of the storage chamber can be made larger than before by the amount that can save energy and the wall thickness can be made thinner. Therefore, the heat insulating box 700, the refrigerator 1, and the showcase have excellent internal volume efficiency. , Equipment can be provided. That is, according to the embodiment of the present invention, the internal volume (for example, the internal volume of the storage chambers 2 to 6) is made larger than before without changing the outer size of the device such as the heat insulating box 700, the refrigerator 1, or the showcase. Since it can be made larger, the number of stored items that can be stored inside the heat insulating box 700 or the refrigerator 1 can be increased as compared with the conventional case. Therefore, equipment such as an energy-saving heat insulating box 700, a refrigerator 1, and a showcase that is easy for the user to use can be obtained. On the contrary, if the internal volume (for example, the internal volume of the storage chambers 2 to 6) is made the same as the conventional one, the external size can be reduced. Is obtained.

なお、本実施の形態で示した断熱箱体700や冷蔵庫1の形態や形状はあくまでも一例である。例えば、断熱箱体700の貯蔵品収納空間を3枚の横仕切り板で区画して上下方向に4つの収納空間(貯蔵室)を形成しても良い。また、例えば、断熱箱体700の貯蔵品収納空間を3枚の横仕切り板で区画してさらに縦仕切り板によって区画することで5つの収納空間(貯蔵室)を形成してもよい。仕切り板の数を増やすことにより、断熱箱体700の強度をより向上させることができる。すなわち、仕切り板の数を増やして収納室や貯蔵室の数を多くするほど、仕切り板による箱体強度向上の効果が得られるので、真空断熱材400で覆っている部分の硬質ウレタンフォーム(真空断熱材400と内箱750との間の空間315)の平均厚さを薄くしても(例えば11mm以下、好ましくは10mm未満、より好ましくは6mm以下)、十分な箱体強度を確保することができる。このため、断熱箱体700の外形サイズを変更せずに貯蔵室の内容積をさらに大きくでき、断熱箱体700の内部に貯蔵できる収納物をさらに増やすことが可能となる。 The form and shape of the heat insulating box 700 and the refrigerator 1 shown in the present embodiment are merely examples. For example, the storage space for the stored items of the heat insulating box 700 may be divided by three horizontal partition plates to form four storage spaces (storage rooms) in the vertical direction. Further, for example, five storage spaces (storage chambers) may be formed by partitioning the storage space for the stored items of the heat insulating box 700 by three horizontal partition plates and further partitioning the storage space by the vertical partition plate. By increasing the number of partition plates, the strength of the heat insulating box 700 can be further improved. That is, as the number of partition plates is increased and the number of storage chambers and storage chambers is increased, the effect of improving the strength of the box body by the partition plates can be obtained. Therefore, the rigid urethane foam (vacuum) of the portion covered with the vacuum heat insulating material 400. Even if the average thickness of the space 315) between the heat insulating material 400 and the inner box 750 is reduced (for example, 11 mm or less, preferably less than 10 mm, more preferably 6 mm or less), sufficient box body strength can be ensured. it can. Therefore, the internal volume of the storage chamber can be further increased without changing the outer size of the heat insulating box 700, and the amount of stored items that can be stored inside the heat insulating box 700 can be further increased.

また、本実施の形態においては、仕切壁24の内部構造については、断熱箱体700と同様の構成にしてもよい。すなわち、仕切壁24の内部空間に真空断熱材400を配置して硬質ウレタンフォームを充填するが、硬質ウレタンフォームは接着剤として使用できれば良いので薄くても良く、例えば11mm程度以下(好ましくはばらつきや真空断熱材の表面の凹凸等を考慮すると10mm未満)が良く、より好ましくは6mm程度以下が良い。ここで、仕切壁24内には、断熱箱体700のように配管725や配線720等が配置されない場合が多いので、そのような場合には、仕切壁24に対しての真空断熱材400の充填率は断熱箱体700と同等の40%以上90%以下に設定しても良いが、仕切壁24に関しては、仕切壁24の大きさ(仕切壁24内の空間)のほぼ全面に真空断熱材400を配置することが可能となるので、真空断熱材400の充填率を40%以上95%以下程度まで充填率を高めることが可能である。また、硬質ウレタンフォームの曲げ弾性率は15MPa以上、密度は60kg/mよりも大きくすればよい。このように仕切壁24内にも真空断熱材400を配置して充填率を所定範囲に設定することにより、断熱箱体700の断熱性能をより向上させることができる。 Further, in the present embodiment, the internal structure of the partition wall 24 may have the same configuration as that of the heat insulating box 700. That is, the vacuum heat insulating material 400 is arranged in the internal space of the partition wall 24 to fill the rigid urethane foam, but the rigid urethane foam may be thin as long as it can be used as an adhesive. Considering the unevenness of the surface of the vacuum heat insulating material, it is preferably less than 10 mm), and more preferably about 6 mm or less. Here, in many cases, the pipe 725, the wiring 720, etc. are not arranged in the partition wall 24 as in the heat insulating box body 700. In such a case, the vacuum heat insulating material 400 for the partition wall 24 is used. The filling rate may be set to 40% or more and 90% or less, which is the same as that of the heat insulating box 700, but with respect to the partition wall 24, vacuum heat insulating is provided on almost the entire size of the partition wall 24 (the space inside the partition wall 24). Since the material 400 can be arranged, the filling rate of the vacuum heat insulating material 400 can be increased to about 40% or more and 95% or less. Further, the flexural modulus of the rigid urethane foam may be 15 MPa or more, and the density may be larger than 60 kg / m 3. By arranging the vacuum heat insulating material 400 also in the partition wall 24 and setting the filling rate within a predetermined range in this way, the heat insulating performance of the heat insulating box 700 can be further improved.

本実施の形態では、真空断熱材を備えた断熱箱体あるいは断熱壁の場合、組立性を考慮して真空断熱材400を外箱710にホットメルトや両面テープなどの発泡ウレタンとは異なる第2の接着剤で直接貼り付け、真空断熱材400と内箱750との間には接着を主目的とする接着剤として硬質ウレタンフォームを充填するようにしているが、真空断熱材400を外箱710と内箱750との間に形成される空間315内にEPSなどの樹脂によるスペーサなどを配置して真空断熱材400を内箱750と外箱710との間に浮かせて配置するようにして、真空断熱材400と外箱710との間、及び、真空断熱材400と内箱750との間に硬質ウレタンフォームを充填するようにしても良い。また、真空断熱材400を内箱750にホットメルトや両面テープなどの第2の接着剤で直接貼り付けて真空断熱材400と外箱710との間にウレタンフォームを充填するようにしても良い。 In the present embodiment, in the case of a heat insulating box body or a heat insulating wall provided with a vacuum heat insulating material, the vacuum heat insulating material 400 is placed in the outer box 710 in consideration of assembling property, which is different from urethane foam such as hot melt or double-sided tape. The vacuum heat insulating material 400 and the inner box 750 are filled with a hard urethane foam as an adhesive whose main purpose is adhesion, but the vacuum heat insulating material 400 is attached to the outer box 710. A spacer made of a resin such as EPS is arranged in the space 315 formed between the inner box 750 and the inner box 750 so that the vacuum heat insulating material 400 is floated between the inner box 750 and the outer box 710. Hard urethane foam may be filled between the vacuum heat insulating material 400 and the outer box 710, and between the vacuum heat insulating material 400 and the inner box 750. Further, the vacuum heat insulating material 400 may be directly attached to the inner box 750 with a second adhesive such as hot melt or double-sided tape, and urethane foam may be filled between the vacuum heat insulating material 400 and the outer box 710. ..

ここで、真空断熱材400を外箱710と内箱750との間にスペーサなどで浮かせて配置する場合には、外箱710の内面側(外箱710と真空断熱材400との間の空間)にスペーサを設けてスペーサ空間に冷媒配管725(たとえば凝縮配管)を設けるようにすれば良い。冷媒配管725は、機械室1A内に配置されている圧縮機12から吐出された高温高圧の冷媒が流れる凝縮配管でもあり、冷媒配管725の管壁及び外箱710を介して熱伝導などによって、配管725内を流れる冷媒を配管725の周囲の空気によって冷却して冷媒を凝縮させることで凝縮配管として使用される。また、本実施の形態に係る断熱箱体700は、冷媒配管725と重ならない位置(対向しない位置)の外箱710の内壁に、冷媒配管725の直径以上の厚みを有する樹脂製のスペーサを設けて、真空断熱材400をスペーサに貼り付けるようにすれば、冷媒配管725を外箱710に這わせてから真空断熱材400が貼り付けられたスペーサを冷媒配管725を覆うように外箱710に直接両面テープなどで貼り付けることができ製造が容易になる。本実施の形態に係る断熱箱体700は、真空断熱材400が内箱750と所定の間隔を介して配置され、また真空断熱材400が外箱710と所定の間隔を介して配置されているので、真空断熱材400が硬質ウレタンフォーム内に埋設された構成となり、断熱性能が向上する。 Here, when the vacuum heat insulating material 400 is placed floating between the outer box 710 and the inner box 750 with a spacer or the like, the space on the inner surface side of the outer box 710 (the space between the outer box 710 and the vacuum heat insulating material 400). ), And a refrigerant pipe 725 (for example, a condensed pipe) may be provided in the spacer space. The refrigerant pipe 725 is also a condensing pipe through which high-temperature and high-pressure refrigerant discharged from the compressor 12 arranged in the machine chamber 1A flows, and is provided by heat conduction through the pipe wall of the refrigerant pipe 725 and the outer box 710. It is used as a condensing pipe by cooling the refrigerant flowing in the pipe 725 with the air around the pipe 725 and condensing the refrigerant. Further, in the heat insulating box 700 according to the present embodiment, a resin spacer having a thickness equal to or larger than the diameter of the refrigerant pipe 725 is provided on the inner wall of the outer box 710 at a position not overlapping with the refrigerant pipe 725 (position not facing each other). If the vacuum heat insulating material 400 is attached to the spacer, the refrigerant pipe 725 is laid on the outer box 710, and then the spacer to which the vacuum heat insulating material 400 is attached is attached to the outer box 710 so as to cover the refrigerant pipe 725. It can be directly attached with double-sided tape or the like, facilitating manufacturing. In the heat insulating box 700 according to the present embodiment, the vacuum heat insulating material 400 is arranged with the inner box 750 at a predetermined interval, and the vacuum heat insulating material 400 is arranged with the outer box 710 with a predetermined interval. Therefore, the vacuum heat insulating material 400 is embedded in the rigid urethane foam, and the heat insulating performance is improved.

以上のように、本実施の形態では、断熱箱体700は、外箱710と内箱750との間の空間315内において、硬質ウレタンフォーム内に真空断熱材400を埋設させるようにして発泡充填しても良く、この場合には外箱710と真空断熱材400との間に凝縮配管725が存在する場合が多いが、EPSなどの樹脂製のスペーサなどで真空断熱材400を外箱710と所定の距離を持たせる構成とすることで真空断熱材400を配設することができる。 As described above, in the present embodiment, the heat insulating box body 700 is foam-filled so that the vacuum heat insulating material 400 is embedded in the hard urethane foam in the space 315 between the outer box 710 and the inner box 750. In this case, the condensed pipe 725 is often present between the outer box 710 and the vacuum heat insulating material 400, but the vacuum heat insulating material 400 is used as the outer box 710 with a resin spacer such as EPS. The vacuum heat insulating material 400 can be arranged by providing a predetermined distance.

また、真空断熱材400は、高温になるほど周囲のガスを吸収しやすく内部の真空度が低下し熱伝導率が悪化することがある。夏場など外気温度が高い場合には外箱710の周囲温度(周囲の空気温度)が高くなり外箱710自体の温度も高くなる可能性があり、また、凝縮配管として使用される配管725も高温になるので、真空断熱材400の信頼性確保の観点から考えると真空断熱材400を外箱710や冷媒配管(凝縮配管)725から遠ざけることが望ましい。真空断熱材400を外箱710や冷媒配管(凝縮配管)725から遠ざけることで真空断熱材400の温度上昇による劣化を抑制することができるので、真空断熱材400をスペーサなどで外箱710の壁面あるいは冷媒配管725から遠ざけるように浮かせる構造とすれば、断熱性能の低下を抑制でき長期的に信頼性の高い断熱箱体700、冷蔵庫1を提供することが可能となる。 Further, the higher the temperature of the vacuum heat insulating material 400, the easier it is to absorb the surrounding gas, the degree of internal vacuum decreases, and the thermal conductivity may deteriorate. When the outside air temperature is high such as in summer, the ambient temperature (ambient air temperature) of the outer box 710 may rise and the temperature of the outer box 710 itself may rise, and the pipe 725 used as the condensed pipe also has a high temperature. Therefore, from the viewpoint of ensuring the reliability of the vacuum heat insulating material 400, it is desirable to keep the vacuum heat insulating material 400 away from the outer box 710 and the refrigerant pipe (condensation pipe) 725. By keeping the vacuum heat insulating material 400 away from the outer box 710 and the refrigerant pipe (condensation pipe) 725, deterioration of the vacuum heat insulating material 400 due to temperature rise can be suppressed. Therefore, the vacuum heat insulating material 400 is attached to the wall surface of the outer box 710 with a spacer or the like. Alternatively, if the structure is such that the heat insulating box is floated away from the refrigerant pipe 725, it is possible to provide the heat insulating box body 700 and the refrigerator 1 which are highly reliable in the long term because the deterioration of the heat insulating performance can be suppressed.

また、真空断熱材400は周囲のガス(空気など)を吸収することで内部の真空度が下がり、熱伝導率が悪化することがあるが、EPSなど樹脂製のスペースを外箱710に貼り付けるなどして硬質ウレタンフォーム内に真空断熱材400を埋設させる構成にすれば、真空断熱材400の周囲のガス(空気など)の存在量を減らすことができるので、真空断熱材400が周囲のガス(空気など)を吸収することが抑制でき、真空度の低下による真空断熱材400の劣化を抑制でき、長期的に高断熱性能を維持でき、しかも信頼性の高い断熱箱体700、冷蔵庫1、機器などを提供することが可能となる。 Further, the vacuum heat insulating material 400 absorbs ambient gas (air, etc.) to lower the internal vacuum degree and deteriorate the thermal conductivity. However, a resin space such as EPS is attached to the outer box 710. If the vacuum heat insulating material 400 is embedded in the rigid urethane foam, the amount of gas (air, etc.) around the vacuum heat insulating material 400 can be reduced, so that the vacuum heat insulating material 400 is the surrounding gas. Absorption of (air, etc.) can be suppressed, deterioration of the vacuum heat insulating material 400 due to a decrease in the degree of vacuum can be suppressed, high heat insulating performance can be maintained for a long period of time, and a highly reliable heat insulating box 700, refrigerator 1, It becomes possible to provide equipment and the like.

特に、本実施の形態に係る断熱箱体700においては、硬質ウレタンフォームの密度が従来の断熱箱体に用いられていた硬質ウレタンフォームよりも密度の高いもの(密度が60Kg/mより大きなもの)を使用するので、密度が大きい分だけ硬質ウレタンフォーム内の気泡が少なくなり、気泡内のガスの量(空気量)を減らすことが可能である。したがって、真空断熱材400の周囲を硬質ウレタンフォームで埋設あるいは覆うように充填あるいは配設すれば、真空断熱材400の周囲のガス(空気など)の存在量を減らすことができるので、真空断熱材400の真空度の低下を抑制できる(ウレタンの密度が大きくなればなるほど、ウレタン内の空隙数が減り、ウレタン内の空気量が減る)。特にウレタンの厚さが薄い場合(たとえば11mm以下の場合)には、真空断熱材400はウレタン周囲などからの空気などのガスの進入を受けやすいので、ウレタンの密度を大きくして真空断熱材400の周囲のガス量を減らすことによる真空断熱材400の劣化抑制に対する効果が大きい。したがって、真空断熱材400の劣化をより抑制でき、長期的に信頼性の高い断熱箱体700、冷蔵庫1、機器を提供することが可能となる。 In particular, in the heat insulating box body 700 according to the present embodiment, the density of the hard urethane foam is higher than that of the hard urethane foam used in the conventional heat insulating box body (the density is higher than 60 kg / m 3). ) Is used, the number of bubbles in the rigid urethane foam is reduced as the density is high, and the amount of gas (air amount) in the bubbles can be reduced. Therefore, if the circumference of the vacuum heat insulating material 400 is filled or arranged so as to be buried or covered with hard urethane foam, the abundance of gas (air or the like) around the vacuum heat insulating material 400 can be reduced, so that the vacuum heat insulating material The decrease in the degree of vacuum of 400 can be suppressed (the higher the density of urethane, the smaller the number of voids in the urethane and the smaller the amount of air in the urethane). Especially when the thickness of urethane is thin (for example, when it is 11 mm or less), the vacuum heat insulating material 400 is susceptible to the ingress of gas such as air from around the urethane, so the density of urethane is increased to increase the vacuum heat insulating material 400. The effect of reducing the amount of gas around the vacuum heat insulating material 400 is great for suppressing deterioration of the vacuum heat insulating material 400. Therefore, the deterioration of the vacuum heat insulating material 400 can be further suppressed, and it becomes possible to provide the heat insulating box 700, the refrigerator 1, and the equipment which are highly reliable in the long term.

なお、本実施の形態では凝縮配管725を空間315内に配置した断熱箱体700を例に説明したが、凝縮配管725が空間315内に設けられていない断熱箱体700においても、硬質ウレタンフォーム内に真空断熱材400を埋設させても勿論よい。真空断熱材400の周囲のガスの存在量を減らすことができるので、真空断熱材400の劣化を抑制でき、長期的に信頼性の高い断熱箱体700を提供することが可能となる。 In the present embodiment, the heat insulating box 700 in which the condensed pipe 725 is arranged in the space 315 has been described as an example, but even in the heat insulating box 700 in which the condensed pipe 725 is not provided in the space 315, the rigid urethane foam is used. Of course, the vacuum heat insulating material 400 may be embedded therein. Since the abundance of gas around the vacuum heat insulating material 400 can be reduced, deterioration of the vacuum heat insulating material 400 can be suppressed, and a highly reliable heat insulating box 700 can be provided in the long term.

ここで、内箱750にレール部(引き出し式貯蔵室の引き出し用のレールあるいは凹部など)755が形成されていない構成の断熱箱体700、冷蔵庫1の場合など、内箱750が真空断熱材400を直接、接着剤や両面テープなどで貼り付けやすい形状となっている場合には、真空断熱材400の全てまたは一部を内箱750側に配設してもよい。 Here, in the case of the heat insulating box body 700 having a structure in which the rail portion (rail or recess for pulling out the drawer type storage chamber) 755 is not formed in the inner box 750, the case of the refrigerator 1, the inner box 750 is the vacuum heat insulating material 400. If the shape is such that the vacuum heat insulating material 400 can be easily attached directly with an adhesive or double-sided tape, all or part of the vacuum heat insulating material 400 may be arranged on the inner box 750 side.

ここで、本実施の形態のように真空断熱材400を内箱750側にホットメルトや両面テープなどで直接貼り付ける構成の断熱箱体700の場合には、より少ない量の真空断熱材400で、省エネルギーで、かつ従来よりも貯蔵室の内容積効率の優れた断熱箱体700、冷蔵庫1を提供することができる。すなわち、略直方体状あるいは円筒状の断熱箱体700の場合、内箱750の表面積よりも外箱710の表面積の方が大きいため、真空断熱材400を貼り付ける場合、内箱750の表面に張った方が外箱710の表面に張るよりも小さくて済むので、低コストで断熱性能の良い断熱箱体、冷蔵庫、ショーケース、給湯機、機器が得られる。また、たとえば、同じ大きさの真空断熱材400を貼り付ける場合には、直方体状の断熱箱体700の角部(たとえば断熱箱体700の背面と側面との接続部である角部あるいは天面と側面の角部あるいは天面と背面の角部等)において、角部における隣り合う壁面の真空断熱材400間の隙間(たとえば天面の真空断熱材400と隣り合う側面の真空断熱材400との間の隙間あるいは距離)が、真空断熱材400を外箱710側に配設した場合は、真空断熱材400を内箱750側に配設した場合と比較して大きくなってしまう。すなわち、真空断熱材400を内箱750に配設することにより、同じ大きさの真空断熱材400を外箱710に配設した場合と比べ、隣り合う真空断熱材400同士の間に形成される隙間を小さくでき、隙間が小さくなる分だけ熱漏洩による熱ロスが小さくなり、断熱効率の良い断熱箱体700、冷蔵庫1、給湯機、ショーケース、機器を提供することができる。 Here, in the case of the heat insulating box body 700 having a structure in which the vacuum heat insulating material 400 is directly attached to the inner box 750 side with hot melt or double-sided tape as in the present embodiment, a smaller amount of the vacuum heat insulating material 400 is used. It is possible to provide the heat insulating box body 700 and the refrigerator 1 which are energy-saving and have excellent internal volume efficiency of the storage chamber as compared with the conventional case. That is, in the case of the substantially rectangular parallelepiped or cylindrical heat insulating box 700, the surface area of the outer box 710 is larger than the surface area of the inner box 750. Therefore, when the vacuum heat insulating material 400 is attached, the heat insulating material 400 is stretched on the surface of the inner box 750. Since the size of the outer box is smaller than that of the outer box 710, a heat insulating box body, a refrigerator, a showcase, a water heater, and equipment having good heat insulating performance can be obtained at low cost. Further, for example, when the vacuum heat insulating material 400 of the same size is attached, the corner portion of the rectangular heat insulating box body 700 (for example, the corner portion or the top surface which is the connecting portion between the back surface and the side surface of the heat insulating box body 700). At the corners of the side surface or the corners of the top surface and the back surface, etc.), the gap between the vacuum heat insulating materials 400 on the adjacent wall surface at the corners (for example, the vacuum heat insulating material 400 on the top surface and the vacuum heat insulating material 400 on the adjacent side surface). When the vacuum heat insulating material 400 is arranged on the outer box 710 side, the gap or distance between them becomes larger than when the vacuum heat insulating material 400 is arranged on the inner box 750 side. That is, by arranging the vacuum heat insulating material 400 in the inner box 750, the vacuum heat insulating material 400 of the same size is formed between the adjacent vacuum heat insulating materials 400 as compared with the case where the vacuum heat insulating material 400 is arranged in the outer box 710. The gap can be made smaller, and the heat loss due to heat leakage becomes smaller as the gap becomes smaller, so that the heat insulating box 700, the refrigerator 1, the water heater, the showcase, and the equipment having good heat insulating efficiency can be provided.

また、本実施の形態に係る断熱箱体700は、内部に仕切壁24などで区画形成された複数の貯蔵室2、3、4、5、6の開口部を開閉するためのヒンジ式あるいは引き出し式の開閉扉を備えている。この扉は、例えば金属からなる外郭部材(外板)と、例えば樹脂からなる内側部材(内板)と、を備えている。そして、外郭部材と内側部材との間に形成される扉内部空間に、硬質ウレタンフォームと真空断熱材400が配設(充填)されている。扉も本実施の形態で説明した断熱箱体に対する真空断熱材の充填率を所定範囲に設定し、また真空断熱材400で断熱機能のほとんどを持たせるという技術思想に基づいて形成されたものであり、扉内部空間の真空断熱材400の充填率を40%〜90%、被覆率を70%以上にしている。 Further, the heat insulating box body 700 according to the present embodiment is a hinge type or a drawer for opening and closing the openings of a plurality of storage chambers 2, 3, 4, 5, and 6 formed by partition walls 24 or the like inside. It has a type opening and closing door. This door includes, for example, an outer member (outer plate) made of metal and an inner member (inner plate) made of, for example, resin. Then, the rigid urethane foam and the vacuum heat insulating material 400 are arranged (filled) in the door internal space formed between the outer member and the inner member. The door is also formed based on the technical idea that the filling rate of the vacuum heat insulating material for the heat insulating box described in the present embodiment is set within a predetermined range, and the vacuum heat insulating material 400 has most of the heat insulating functions. Yes, the filling rate of the vacuum heat insulating material 400 in the space inside the door is 40% to 90%, and the covering rate is 70% or more.

このような開閉扉の製造にあたっては、真空断熱材400をあらかじめ外郭部材に第2の接着剤などで接着固定し、液体状の硬質ウレタンフォームの原料を真空断熱材と内側部材の間の空間、外側部材と内側部材の間の空間に注入して外郭部材、真空断熱材400、内側部材を一体に形成できるように発泡させることにより、扉内部空間内に発泡断熱材である硬質ウレタンフォームを充填することができる。この場合も、硬質ウレタンフォームの厚さは、接着剤としての強度を有すれば良いので、1mm以上好ましくは3mm以上がよく、また11mm以下(好ましくは10mmより小さく、より好ましくは6mm以下)であれば良い。 In manufacturing such an opening / closing door, the vacuum heat insulating material 400 is previously adhered and fixed to the outer member with a second adhesive or the like, and the raw material of the liquid hard urethane foam is used as the space between the vacuum heat insulating material and the inner member. The space inside the door is filled with rigid urethane foam, which is a foamed heat insulating material, by injecting it into the space between the outer member and the inner member and foaming it so that the outer member, the vacuum heat insulating material 400, and the inner member can be integrally formed. can do. In this case as well, the thickness of the rigid urethane foam may be 1 mm or more, preferably 3 mm or more, and 11 mm or less (preferably smaller than 10 mm, more preferably 6 mm or less), as long as it has strength as an adhesive. All you need is.

なお、開閉扉には、貯蔵室2、3、4、5、6には、収納箱(収納ケース520)を支持するためのフレームあるいは、扉ポケットあるいは、棚80等が取り付けられる場合があり、フレームの固定ネジ、扉ポケットの固定部材、棚80の取り付け部材などを開閉扉の内側(庫内側)にネジなどの締結部材や固定部材や保持部材で締結あるいは保持することが必要になる場合がある。このような場合には、締結部材や固定部材や保持部材が扉内部空間に突出する場合があり、真空断熱材400に接触すると真空断熱材の外包材を傷つけてしまう恐れがあるので、開閉扉の内側には真空断熱材400を傷つけない厚さだけウレタンフォームを配設あるいは充填した方が好ましい。但し、開閉扉の貯蔵室内側(内板側)に取り付ける取付部品(たとえば締結部材や固定部材や保持部材など)が特に必要い場合には、内板に真空断熱材400を貼り付けても良い。なお、取付部品を避けて真空断熱材を設ける場合には、内板に真空断熱材を貼り付けても良い。 A frame for supporting a storage box (storage case 520), a door pocket, a shelf 80, or the like may be attached to the opening / closing doors of the storage chambers 2, 3, 4, 5, and 6. It may be necessary to fasten or hold the frame fixing screw, the door pocket fixing member, the shelf 80 mounting member, etc. to the inside (inside the cabinet) of the opening / closing door with a fastening member such as a screw, a fixing member, or a holding member. is there. In such a case, the fastening member, the fixing member, and the holding member may protrude into the space inside the door, and if they come into contact with the vacuum heat insulating material 400, the outer packaging material of the vacuum heat insulating material may be damaged. It is preferable that urethane foam is arranged or filled inside the vacuum heat insulating material 400 to a thickness that does not damage the vacuum heat insulating material 400. However, if the mounting parts (for example, fastening member, fixing member, holding member, etc.) to be attached to the storage chamber side (inner plate side) of the opening / closing door are particularly required, the vacuum heat insulating material 400 may be attached to the inner plate. .. When the vacuum heat insulating material is provided while avoiding the mounting parts, the vacuum heat insulating material may be attached to the inner plate.

また、外郭部材(外板)と内側部材(内板)とを有し、外郭部材と内側部材との間に形成される扉内部空間に真空断熱材400が配設され、外郭部材あるいは内側部材と真空断熱材400との間に発泡断熱材である硬質ウレタンフォームが充填される場合には、発泡断熱材の密度を60kg/mよりも大きくすれば、収納箱(収納ケース520)を支持するためのフレームを固定するための固定部材であるネジなどの保持強度または固定強度が向上するので、ケース520に重量物を収納しても扉が変形しにくくなり、安定してケース520の出し入れが可能となり、信頼性の高い冷蔵庫や機器が得られる。また、ハンドルなどの別部材を固定するための固定部材であるネジなどの保持強度または固定強度が向上するので、別部材であるハンドルなどの扉取り付け部材を扉に取り付ける場合に、扉取り付け部材の扉への取り付け強度が向上するので、扉が変形しにくくなり、安定して扉の開閉が可能となり、信頼性の高い冷蔵庫や機器が得られる。また、外郭部材あるいは内側部材と真空断熱材400との間に発泡断熱材である硬質ウレタンフォームを60kg/mよりも大きくすれば、発泡断熱材の曲げ弾性率が向上し、扉の強度も向上する。 Further, the vacuum heat insulating material 400 is arranged in the door internal space formed between the outer member (outer plate) and the inner member (inner plate) and formed between the outer member and the inner member, and the outer member or the inner member is provided. When the rigid urethane foam, which is a foam heat insulating material, is filled between the vacuum heat insulating material 400 and the vacuum heat insulating material 400, if the density of the foam heat insulating material is made larger than 60 kg / m 3 , the storage box (storage case 520) is supported. Since the holding strength or fixing strength of the screws, which are the fixing members for fixing the frame for fixing the frame, is improved, the door is less likely to be deformed even if a heavy object is stored in the case 520, and the case 520 can be taken in and out stably. This makes it possible to obtain highly reliable refrigerators and equipment. In addition, since the holding strength or fixing strength of screws, which are fixing members for fixing another member such as a handle, is improved, when a door mounting member such as a handle, which is a separate member, is attached to the door, the door mounting member Since the mounting strength to the door is improved, the door is less likely to be deformed, the door can be opened and closed stably, and a highly reliable refrigerator and equipment can be obtained. Further, if the rigid urethane foam, which is a foam heat insulating material, is made larger than 60 kg / m 3 between the outer member or the inner member and the vacuum heat insulating material 400, the flexural modulus of the foam heat insulating material is improved and the strength of the door is also increased. improves.

ここで、真空断熱材400は、全ての開閉扉または一部の開閉扉に配設してもよい。例えば、外気と断熱箱体700内(たとえば、貯蔵室内)の温度差が比較的小さい場合(たとえば冷蔵室2や野菜室5など冷蔵温度帯の貯蔵室)には、真空断熱材400を開閉扉に配設しても断熱性能改善の効果が小さい。このような場合、真空断熱材400を開閉扉に配設しなくても十分な断熱性能を確保できる。真空断熱材400は、外気と断熱箱体700内(たとえば、貯蔵室内)の温度差が比較的大きな場合(たとえば製氷室3や切替室4や冷凍室6などの冷凍温度帯の貯蔵室)には、真空断熱材400を開閉扉に配設すると断熱性能改善の効果が大きい。したがって、外気と断熱箱体700内(たとえば、貯蔵室内)の温度差が比較的大きな冷凍温度帯の貯蔵室の場合には、真空断熱材400を開閉扉に配設することで十分な断熱性能を確保できる。
また、扉外板にガラス面材を使用しても良く、その場合には、枠部と庫内側面部とを有し前面側が開口した樹脂製の内側部材の枠部の前面側(庫内側面部とは反対側)の開口部に外板の代わりにガラス面材を両面テープなどで貼り付けて扉内部空間を形成し、この扉内部空間に硬質ウレタンフォームと真空断熱材400を配設(充填)すれば良い。また、真空断熱材400は、内側部材の庫内側面部に両面テープなどの第2の接着剤で接着された状態で扉内部空間に介在部材である接着剤(たとえば硬質ウレタンフォーム)が充填あるいは塗布あるいは封入される。ここで、介在部材である接着剤(たとえば硬質ウレタンフォーム)の密度を60kg/mよりも大きくすることで、介在部材である硬質ウレタンフォームが密に形成され、曲げ弾性率が大きくなるため、ガラス面材を使用した場合でもガラス面材の保持あるいは接着強度が向上し、また、扉内部空間の介在部材である硬質ウレタンフォームの強度(剛性)が向上するので、扉の強度(剛性)も向上する。また、介在部材の厚さを11mm以下(たとえば10mmより小さい方が良い)にしたので、ウレタンフォームの曲げ弾性率を大きくすることができるため、ウレタンフォームの厚さが小さくなっても強度を向上させることができる。したがって、扉厚さを小さくでき、しかも箱体強度を向上できる。また、介在部材(接着剤)として自己接着性を有する硬質ウレタンフォームを使用し、〔(介在部材の厚さ)/(介在部材の厚さ+真空断熱材の厚さ)〕を0.3以下に設定すれば、真空断熱材400と硬質ウレタンフォームを備えた複合部材から形成される扉の複合熱伝導率を小さくできるので、扉厚さを小さくしても断熱性能を向上させることができる。
Here, the vacuum heat insulating material 400 may be arranged on all the opening / closing doors or some opening / closing doors. For example, when the temperature difference between the outside air and the inside of the heat insulating box 700 (for example, the storage room) is relatively small (for example, the storage room in the refrigerating temperature zone such as the refrigerating room 2 and the vegetable room 5), the vacuum heat insulating material 400 is opened and closed. Even if it is arranged in, the effect of improving the heat insulating performance is small. In such a case, sufficient heat insulating performance can be ensured without disposing the vacuum heat insulating material 400 on the opening / closing door. The vacuum heat insulating material 400 is used when the temperature difference between the outside air and the inside of the heat insulating box 700 (for example, the storage chamber) is relatively large (for example, a storage chamber in a freezing temperature zone such as an ice making chamber 3, a switching chamber 4, or a freezing chamber 6). When the vacuum heat insulating material 400 is arranged on the opening / closing door, the effect of improving the heat insulating performance is great. Therefore, in the case of a storage room in the freezing temperature zone where the temperature difference between the outside air and the inside of the heat insulating box 700 (for example, the storage room) is relatively large, the vacuum heat insulating material 400 is provided on the opening / closing door to provide sufficient heat insulating performance. Can be secured.
Further, a glass surface material may be used for the door outer plate, and in that case, the front side (inner side surface portion) of the frame portion of the resin inner member having the frame portion and the inner side surface portion and opening the front side side. A glass surface material is attached to the opening on the opposite side of the door with double-sided tape instead of the outer plate to form a space inside the door, and hard urethane foam and the vacuum heat insulating material 400 are arranged (filled) in this space inside the door. ). Further, the vacuum heat insulating material 400 is filled or coated with an adhesive (for example, hard urethane foam) which is an intervening member in the interior space of the door in a state where the inner side surface of the inner member is adhered with a second adhesive such as double-sided tape. Alternatively, it is enclosed. Here, by increasing the density of the adhesive (for example, rigid urethane foam) which is an intervening member to more than 60 kg / m 3 , the rigid urethane foam which is an intervening member is densely formed and the flexural modulus increases. Even when a glass surface material is used, the holding or adhesive strength of the glass surface material is improved, and the strength (rigidity) of the rigid urethane foam, which is an intervening member of the door internal space, is improved, so that the strength (rigidity) of the door is also improved. improves. Further, since the thickness of the intervening member is 11 mm or less (for example, it is better to be smaller than 10 mm), the flexural modulus of the urethane foam can be increased, so that the strength is improved even if the thickness of the urethane foam is reduced. Can be made to. Therefore, the door thickness can be reduced and the box body strength can be improved. In addition, a hard urethane foam having self-adhesiveness is used as the intervening member (adhesive), and [(thickness of the intervening member) / (thickness of the intervening member + thickness of the vacuum heat insulating material)] is 0.3 or less. When set to, the composite thermal conductivity of the door formed of the composite member provided with the vacuum heat insulating material 400 and the rigid urethane foam can be reduced, so that the heat insulating performance can be improved even if the door thickness is reduced.

以上、本実施の形態の断熱箱体700あるいは冷蔵庫1あるいは機器においては、外箱710と内箱750との間に形成された空間315と、開閉扉の内部空間である扉内部空間と、を合わせた空間体積に対して、真空断熱材400の占める体積比率である真空断熱材400の充填率が所定の範囲内(たとえば40%以上80%以下)に入るようにするようにしている。このため、断熱箱体700の壁厚(たとえば、外箱710と内箱750との間の距離、及び、開閉扉の厚み)を従来よりも薄くすることができるため、省エネルギーで、かつ貯蔵室内の内容積効率の優れた断熱箱体700、冷蔵庫1、機器を提供することができる。したがって、断熱箱体700あるいは冷蔵庫1の外形サイズを変更しなくても貯蔵室内の内容積を従来よりも大きくできるので、断熱箱体700の内部に収納できる収納物を従来よりも増やすことができる。したがって、従来よりも省エネルギーで断熱性能の優れた、商品価値の高い断熱箱体700、冷蔵庫1、給湯機、ショーケース、機器を提供することができる。 As described above, in the heat insulating box body 700 or the refrigerator 1 or the device of the present embodiment, the space 315 formed between the outer box 710 and the inner box 750 and the door internal space which is the internal space of the opening / closing door are provided. The filling ratio of the vacuum heat insulating material 400, which is the volume ratio occupied by the vacuum heat insulating material 400, is set to be within a predetermined range (for example, 40% or more and 80% or less) with respect to the total space volume. Therefore, the wall thickness of the heat insulating box 700 (for example, the distance between the outer box 710 and the inner box 750 and the thickness of the opening / closing door) can be made thinner than before, which saves energy and saves energy in the storage chamber. It is possible to provide a heat insulating box body 700, a refrigerator 1, and equipment having excellent internal volume efficiency. Therefore, since the internal volume of the storage chamber can be made larger than before without changing the outer size of the heat insulating box 700 or the refrigerator 1, the number of stored items that can be stored inside the heat insulating box 700 can be increased more than before. .. Therefore, it is possible to provide a heat insulating box 700, a refrigerator 1, a water heater, a showcase, and equipment having high commercial value, which are energy-saving and have excellent heat insulating performance as compared with the conventional case.

なお、空間315内における真空断熱材400の充填率を増大させることにより、空間315内における硬質ウレタンフォームの充填率が低下する。本実施の形態に係る断熱箱体700においては、硬質ウレタンフォームの密度を従来よりも大きく(例えば60kg/mより大きく)して、硬質ウレタンフォームの曲げ弾性率を、従来の断熱箱体に用いられていた硬質ウレタンフォームの曲げ弾性率(6MPa〜10MPa程度)よりも大きな15.0MPa以上にしている。したがって、本実施の形態に係る断熱箱体700は、硬質ウレタンフォームの充填率の低下に起因する強度低下も抑制することができ、貯蔵品収納空間や貯蔵室内の収納物や開閉扉の重量による歪みに耐え切れず断熱箱体700が変形するなどの問題がなく、信頼性の高い断熱箱体700や冷蔵庫1や機器が得られる。 By increasing the filling rate of the vacuum heat insulating material 400 in the space 315, the filling rate of the rigid urethane foam in the space 315 decreases. In the heat insulating box body 700 according to the present embodiment, the density of the rigid urethane foam is made larger than before (for example, larger than 60 kg / m 3 ), and the flexural modulus of the hard urethane foam is made the conventional heat insulating box body. The flexural modulus (about 6 MPa to 10 MPa) of the hard urethane foam used is set to 15.0 MPa or more, which is larger than that. Therefore, the heat insulating box body 700 according to the present embodiment can also suppress a decrease in strength due to a decrease in the filling rate of the rigid urethane foam, and depends on the weight of the stored items in the storage space, the stored items in the storage room, and the opening / closing door. There is no problem that the heat insulating box 700 cannot withstand the distortion and the heat insulating box 700 is deformed, and a highly reliable heat insulating box 700, a refrigerator 1, and equipment can be obtained.

したがって、本実施の形態の冷蔵庫1あるいは真空断熱材400を有する断熱箱体700を備えた機器においては、断熱箱体700が歪んで開閉扉が傾いたり開閉扉がスムーズに開閉できないということを抑制でき、また、変形による外観の悪化を抑制することができる。また、開閉扉と断熱箱体の開口部をシールするガスケットとガスケットの接触面(シール面)との位置関係がずれて隙間が発生し、貯蔵室内の空気(冷蔵庫の場合は冷気)が断熱箱体外へ流出することも防止できる。よって、真空断熱材400を多量に使用しても断熱箱体700の性能低下や信頼性低下が抑制でき、優れた断熱性能を有するので、省エネルギーで高信頼性の冷蔵庫あるいは真空断熱材を有する断熱箱体あるいは真空断熱材を備えた機器、断熱箱体を備えた機器を得ることができる。
また、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度は大きくなりすぎると、(1)ウレタンの注入量増加によるコストUP、(2)ウレタンの注入圧力増加による箱体等からのウレタン漏れの発生、(3)ウレタン発泡時の発泡圧力増加による箱体変形抑制用金型や箱体押さえ部材などとウレタンとの密着力、接着力増加のため箱体変形抑制用金型や箱体押さえ部材などが箱体から抜けにくくなる(箱体から取り外しにくくなる)、(4)ウレタンの密度増による断熱性能の急激な悪化など、品質悪化、性能低下、コストUPなどの問題が発生するので、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度(発泡断熱材の場合は発泡後の密度)は100kg/m以下(好ましくは90kg/m以下)にした方が良い。
Therefore, in the refrigerator 1 of the present embodiment or the device provided with the heat insulating box 700 having the vacuum heat insulating material 400, it is suppressed that the heat insulating box 700 is distorted and the opening / closing door is tilted or the opening / closing door cannot be opened / closed smoothly. It is possible to suppress deterioration of the appearance due to deformation. In addition, the positional relationship between the gasket that seals the opening / closing door and the opening of the heat insulating box and the contact surface (sealing surface) of the gasket is displaced, creating a gap, and the air in the storage room (cold air in the case of a refrigerator) becomes the heat insulating box. It can also be prevented from flowing out of the body. Therefore, even if a large amount of the vacuum heat insulating material 400 is used, the performance deterioration and reliability deterioration of the heat insulating box 700 can be suppressed, and since it has excellent heat insulating performance, it is an energy-saving and highly reliable refrigerator or heat insulating material having a vacuum heat insulating material. It is possible to obtain a device having a box body or a vacuum heat insulating material, and a device having a heat insulating box body.
In addition, if the density of the heat insulating material (for example, rigid urethane foam) such as urethane, which is an intervening member, becomes too high, (1) the cost increases due to the increase in the injection amount of urethane, and (2) the box body due to the increase in the injection pressure of urethane, etc. Urethane leakage, (3) Mold for suppressing box deformation due to increase in foaming pressure during urethane foaming, mold for suppressing box deformation due to increased adhesion and adhesion between urethane and box holding member, etc. Problems such as quality deterioration, performance deterioration, and cost increase occur, such as difficulty in removing the box holding member from the box (difficult to remove from the box), (4) rapid deterioration of heat insulation performance due to increased urethane density. Therefore, the density of heat insulating material (for example, rigid urethane foam) such as urethane, which is an intervening member, (in the case of foamed heat insulating material, the density after foaming) should be 100 kg / m 3 or less (preferably 90 kg / m 3 or less). Is good.

ここで、断熱箱体700が冷蔵庫に使用される場合のように、上下方向の高さが幅方向の長さよりも大きい細長い直方体形状をしている場合には、略水平に配置される底面部780や天井部740や貯蔵室間の仕切壁24等よりも、略垂直に配置される側壁790や背面壁730の方が細長い形状をしているので、剛性が弱く変形しやすい。そのため、本実施の形態のように真空断熱材400の充填率、被覆率を所定範囲内に設定することで、断熱箱体700の強度(剛性)を向上させることができる。また、凸部450あるいは突起部910を設けることでも箱体強度を向上させることもできる。また、凸部450の一端を凹部440あるいは第2の凹部441に配設される真空断熱材400と所定長さXだけ重なるように設け、他端を側面部790に接続することで真空断熱材400を硬質ウレタンフォームを介して凸部450と一体に形成でき、また、真空断熱材400を硬質ウレタンフォームを介して側壁790と一体に形成できるので、箱体700の強度を向上させることができる。 Here, when the heat insulating box 700 has an elongated rectangular parallelepiped shape in which the height in the vertical direction is larger than the length in the width direction, as in the case where the heat insulating box 700 is used for a refrigerator, the bottom surface portion is arranged substantially horizontally. Since the side wall 790 and the back wall 730 arranged substantially vertically have an elongated shape as compared with the 780, the ceiling portion 740, the partition wall 24 between the storage chambers, etc., the rigidity is weak and the side wall 730 is easily deformed. Therefore, the strength (rigidity) of the heat insulating box 700 can be improved by setting the filling rate and the covering rate of the vacuum heat insulating material 400 within a predetermined range as in the present embodiment. Further, the strength of the box body can be improved by providing the convex portion 450 or the convex portion 910. Further, one end of the convex portion 450 is provided so as to overlap the vacuum heat insulating material 400 arranged in the concave portion 440 or the second concave portion 441 by a predetermined length X, and the other end is connected to the side surface portion 790 to provide the vacuum heat insulating material. Since the 400 can be integrally formed with the convex portion 450 via the hard urethane foam, and the vacuum heat insulating material 400 can be integrally formed with the side wall 790 via the hard urethane foam, the strength of the box body 700 can be improved. ..

図21は、断熱箱体700の側面部790と背面部の表面積に対する真空断熱材400の占める面積比率(側背面被覆率)と箱体変形量の関係を表した図であり、計算結果である。断熱箱体の強度は、側壁790、背面壁730の形状が細長い長方形状であり、天面壁740や底面壁780や仕切壁24などの略正方形状に比べて剛性が弱いので、真空断熱材400の側背面被覆率を所定値以上に設定することで箱体強度を向上させることができる。ここでは、側壁790と背面壁730の表面積に対する真空断熱材400の占める面積比率(側背面被覆率)と箱体強度の関係について説明する。 FIG. 21 is a diagram showing the relationship between the area ratio (side back surface coverage) occupied by the vacuum heat insulating material 400 to the surface area of the side surface portion 790 and the back surface portion of the heat insulating box 700 and the amount of deformation of the box body, which is a calculation result. .. The strength of the heat insulating box is that the side wall 790 and the back wall 730 have an elongated rectangular shape, and the rigidity is weaker than that of a substantially square shape such as a top wall 740, a bottom wall 780, or a partition wall 24. The box body strength can be improved by setting the side back surface coverage of the box to a predetermined value or more. Here, the relationship between the area ratio (side-back coverage ratio) occupied by the vacuum heat insulating material 400 to the surface area of the side wall 790 and the back wall 730 and the box body strength will be described.

図21において、横軸は断熱箱体700の側壁790と背面壁730の表面積に対する真空断熱材400の占める面積比率(側背面被覆率)を表し、縦軸は箱体の変形量を表している。ここで、ウレタンの密度は60kg/m、真空断熱材400の充填率は40%、側背面の面積比率(側背面被覆率)は50%の時の箱体変形量を1としている。計算に使用した真空断熱材400の曲げ弾性率は20MPaであり、実際に使用される真空断熱材の曲げ弾性率の測定結果に基づいており、従来の硬質ウレタンフォームの曲げ弾性率(6MPa〜10MPa程度)よりも大きいものを使用している。ここで、面積比率(側背面被覆率)を変更する場合、真空断熱材の充填率は40%で一定としているので、真空断熱材の面積比率(側背面被覆率)が大きくなれば真空断熱材の厚さが小さくなっている。 In FIG. 21, the horizontal axis represents the area ratio (side-back coverage) occupied by the vacuum heat insulating material 400 to the surface area of the side wall 790 of the heat insulating box 700 and the back wall 730, and the vertical axis represents the amount of deformation of the box. .. Here, the amount of deformation of the box is 1 when the density of urethane is 60 kg / m 3 , the filling rate of the vacuum heat insulating material 400 is 40%, and the area ratio of the side back surface (side back surface coverage rate) is 50%. The flexural modulus of the vacuum heat insulating material 400 used in the calculation is 20 MPa, which is based on the measurement result of the bending elastic modulus of the vacuum heat insulating material actually used, and the flexural modulus of the conventional hard urethane foam (6 MPa to 10 MPa). I am using something larger than the degree). Here, when changing the area ratio (side-back coverage), the filling rate of the vacuum heat insulating material is constant at 40%, so if the area ratio of the vacuum heat insulating material (side-back coverage) increases, the vacuum heat insulating material The thickness of is getting smaller.

なお、計算に使用した冷蔵庫1は、一例であるが、4枚扉以上(たとえば4枚扉あるいは5枚扉あるいは6枚扉仕様)で内容積が500Lクラスで消費電力が40W以下程度の冷蔵庫を想定している。外箱710と内箱750との間の板厚さを含む距離(壁厚さ)は、平均30mmであり、空間315の厚さ(壁内厚さ)は外箱710、内箱750の板厚をそれぞれ1mmと仮定して28mmとした。硬質ウレタンフォームの密度は、60Kg/m、真空断熱材400の熱伝導率は、0.0021(W/mK)、硬質ウレタンフォームの熱伝導率は0.019(W/mK)であり、真空断熱材400が硬質ウレタンフォームよりも約10倍程度、断熱性能が良い。 The refrigerator 1 used in the calculation is an example, but a refrigerator having four or more doors (for example, four-door, five-door, or six-door specifications), an internal volume of 500 L class, and power consumption of about 40 W or less is used. I'm assuming. The distance (wall thickness) including the plate thickness between the outer box 710 and the inner box 750 is 30 mm on average, and the thickness of the space 315 (wall inner thickness) is the plate of the outer box 710 and the inner box 750. The thickness was set to 28 mm assuming that each thickness was 1 mm. The density of the rigid urethane foam is 60 kg / m 3 , the thermal conductivity of the vacuum heat insulating material 400 is 0.0021 (W / mK), and the thermal conductivity of the rigid urethane foam is 0.019 (W / mK). The vacuum heat insulating material 400 has about 10 times better heat insulating performance than the rigid urethane foam.

図21において、横軸が側面壁と背面壁とをあわせた表面積に対する真空断熱材400の占める面積比率(側背面の真空断熱材被覆率)を表し、縦軸が開閉扉を有する断熱箱体700に所定の荷重を加えた場合の箱体変形量(箱体の倒れ量)を表している。ここで、箱体の変形量は、たとえば断熱箱体の一方の側壁の上面から約1/4程度の高さ位置に略水平方向(横方向、前面開口部を正面に見て左右方向)に所定の荷重を加えた場合の断熱箱体の側壁上端の左右方向の変形量を表している。 In FIG. 21, the horizontal axis represents the area ratio of the vacuum heat insulating material 400 to the total surface area of the side wall and the back wall (vacuum heat insulating material coverage on the side back surface), and the vertical axis represents the heat insulating box 700 having an opening / closing door. Indicates the amount of deformation of the box body (the amount of collapse of the box body) when a predetermined load is applied to the box. Here, the amount of deformation of the box body is, for example, substantially horizontal (horizontal direction, left-right direction when the front opening is viewed from the front) at a height position of about 1/4 from the upper surface of one side wall of the heat insulating box body. It represents the amount of deformation of the upper end of the side wall of the heat insulating box in the left-right direction when a predetermined load is applied.

図21において、真空断熱材400の面積比率が大きくなると箱体変形量が小さくなることが分かる。側面・背面の面積比率(側背面の真空断熱材被覆率)が70%以上になると箱体変形量の変化率が小さくなっている。すなわち、側面・背面の面積比率が70%程度までは面積比率が大きくなると箱体変形量が急激に小さくなるが、側面・背面の面積比率が70%以上になると面積比率が大きくなっても箱体変形量はほとんど変化しなくなる。したがって、側面・背面の面積比率(側背面の真空断熱材被覆率)が70%以上になると箱体の変形量の低下割合が極端に小さくなり、真空断熱材の側背面面積比率を大きくしても箱体変形量がほとんど変化しなくなっている。これは、箱体強度に対する真空断熱材の側背面の面積比率の影響度合いがほぼ飽和に近づいたためと考えられる。 In FIG. 21, it can be seen that the amount of deformation of the box body decreases as the area ratio of the vacuum heat insulating material 400 increases. When the area ratio between the side surface and the back surface (vacuum heat insulating material coverage ratio on the side back surface) is 70% or more, the rate of change in the amount of deformation of the box becomes small. That is, when the area ratio between the side surface and the back surface is about 70%, the amount of deformation of the box body sharply decreases as the area ratio increases, but when the area ratio between the side surface and the back surface becomes 70% or more, the box becomes large even if the area ratio increases. The amount of body deformation hardly changes. Therefore, when the area ratio of the side surface and the back surface (vacuum heat insulating material coverage ratio of the side back surface) becomes 70% or more, the reduction rate of the amount of deformation of the box body becomes extremely small, and the side back area ratio of the vacuum heat insulating material is increased. However, the amount of box deformation has hardly changed. It is considered that this is because the degree of influence of the area ratio of the side back surface of the vacuum heat insulating material on the box body strength is almost saturated.

ここで、真空断熱材の充填率を40%で一定として計算しているため、真空断熱材400の配設面積を大きくしていくと、真空断熱材400の厚みが薄くなる。真空断熱材の側面・背面の面積比率が70%程度までは、側面・背面の面積比率を大きくしていくと、真空断熱材の厚さが薄くなることによる箱体変形の増加量よりも真空断熱材の配設面積が大きくなることによる箱体の強度UPによる箱体変形の減少量の方が大きいため、箱体の剛性が向上し、箱体の変形量が減少していく。しかし、真空断熱材の側面・背面の面積比率が70%程度を超えると、真空断熱材の厚さが薄くなることによる箱体の強度低下による箱体変形の増加量と真空断熱材の配設面積が大きくなることによる箱体の強度UPによる箱体変形の減少量とが同程度になり、箱体の変形量の減少度合いが小さくなったと考えられる。 Here, since the filling rate of the vacuum heat insulating material is calculated as constant at 40%, the thickness of the vacuum heat insulating material 400 becomes thinner as the arrangement area of the vacuum heat insulating material 400 is increased. Until the area ratio of the side surface and the back surface of the vacuum heat insulating material is about 70%, if the area ratio of the side surface and the back surface is increased, the vacuum is larger than the increase in the deformation of the box due to the thinning of the vacuum heat insulating material. Since the amount of decrease in the deformation of the box due to the increase in the strength of the box due to the increase in the arranged area of the heat insulating material is larger, the rigidity of the box is improved and the amount of deformation of the box is reduced. However, when the area ratio of the side surface and the back surface of the vacuum heat insulating material exceeds about 70%, the amount of increase in the deformation of the box body due to the decrease in the strength of the box body due to the thinning of the vacuum heat insulating material and the arrangement of the vacuum heat insulating material. It is considered that the amount of decrease in the amount of deformation of the box due to the increase in the strength of the box due to the increase in the area was about the same, and the degree of decrease in the amount of deformation of the box was reduced.

また、真空断熱材の配設面積比率(被覆率)を大きくすることによって真空断熱材の厚さが薄くなるとウレタンフォームの厚さが厚くなる。配設面積比率が70%程度までは、真空断熱材の厚さが所定厚さ以上であるため、真空断熱材の厚さの減少量よりも面積比率の増加量の方が断熱箱体の強度に与える影響が大きく箱体変形量が減少するが、真空断熱材の配設面積比率をさらに増加させていくと真空断熱材の厚さが小さくなり、ウレタンの厚さが大きくなることで、ウレタンの厚さの増加量と真空断熱材の配設面積比率の増加量の断熱箱体の強度に与える影響が同等になり、箱体変形量の減少度合いが小さくなると考えられる。 Further, when the thickness of the vacuum heat insulating material is reduced by increasing the arrangement area ratio (covering ratio) of the vacuum heat insulating material, the thickness of the urethane foam is increased. Since the thickness of the vacuum heat insulating material is equal to or greater than the predetermined thickness up to the arrangement area ratio of about 70%, the increase in the area ratio is the strength of the heat insulating box rather than the decrease in the thickness of the vacuum heat insulating material. Although the amount of deformation of the box body is reduced due to its large effect on the vacuum heat insulating material, the thickness of the vacuum heat insulating material becomes smaller and the thickness of the urethane becomes larger as the arrangement area ratio of the vacuum heat insulating material is further increased. It is considered that the influence of the increase in the thickness of the heat insulating box and the increase in the arrangement area ratio of the vacuum heat insulating material on the strength of the heat insulating box becomes equal, and the degree of decrease in the deformation of the box becomes small.

したがって、真空断熱材400の側面・背面の面積比率(側背面被覆率)を所定値(70%)以上に設定すれば、箱体強度が得られるので信頼性の高い箱体が得られる。また、真空断熱材の側面・背面の面積比率を所定値(70%)以上に設定すれば、箱体変形量がほとんど変化しない領域になるため、真空断熱材の配設面積にバラツキが生じても、箱体の変形量がほとんど変化しないので、高強度で意匠性が良く、信頼性の高い断熱箱体、冷蔵庫、ショーケース、機器が得られる。真空断熱材400の被覆率を所定値以上(60%以上)にして、真空断熱材400の側面・背面の面積比率を第2の所定値(70%)以上に設定すれば、断熱性能が向上し、しかも箱体変形量を低減できるので、断熱性能が大きく信頼性の高い省エネルギーな冷蔵庫、ショーケース、機器が得られる。 Therefore, if the area ratio (side-back coverage ratio) of the side surface and the back surface of the vacuum heat insulating material 400 is set to a predetermined value (70%) or more, the box body strength can be obtained, so that a highly reliable box body can be obtained. Further, if the area ratio of the side surface and the back surface of the vacuum heat insulating material is set to a predetermined value (70%) or more, the amount of deformation of the box becomes almost unchanged, so that the arranged area of the vacuum heat insulating material varies. However, since the amount of deformation of the box body hardly changes, a heat insulating box body, a refrigerator, a showcase, and equipment having high strength, good design, and high reliability can be obtained. If the coverage of the vacuum heat insulating material 400 is set to a predetermined value or more (60% or more) and the area ratio of the side surface and the back surface of the vacuum heat insulating material 400 is set to a second predetermined value (70% or more), the heat insulating performance is improved. Moreover, since the amount of deformation of the box can be reduced, a highly heat-insulating and highly reliable energy-saving refrigerator, showcase, and equipment can be obtained.

ここで、真空断熱材の厚みを一定とし真空断熱材400の配設面積を広げていけば、真空断熱材の被覆率、充填率とも大きくできるが、真空断熱材400の充填率を大きくするとコストが増大するため、充填率を変えずに被覆率を大きくすることで断熱箱体700の強度を上げた方が低コストであり、しかも真空断熱材の配設面積が大きくできるので断熱効率がよくなる。したがって、真空断熱材400の充填率を40%以上、側面・背面の面積比率(側背面の真空断熱材被覆率)を70%以上とすることで低コストで効率よく断熱箱体の強度の確保できる。したがって、真空断熱材の側面・背面の面積比率(側背面の真空断熱材被覆率)を第2の所定値(断熱箱体の変形量の低下割合が小さくなる面積比率であり、たとえば70%程度)以上に設定すれば、断熱箱体700の壁厚を薄く(ウレタンの厚さを薄く)して貯蔵室の内容積を大きくすることが可能となる。側壁790と背面壁730の真空断熱材400の配設面積(側背面の真空断熱材被覆率)が大きくなるほど断熱箱体700の変形量が小さくなるので、断熱箱体700の強度を大きくすることができ、高強度で断熱性能の優れた断熱箱体700、冷蔵庫1、断熱箱体を備えた機器を提供できる。 Here, if the thickness of the vacuum heat insulating material is kept constant and the arrangement area of the vacuum heat insulating material 400 is expanded, both the coverage rate and the filling rate of the vacuum heat insulating material can be increased, but if the filling rate of the vacuum heat insulating material 400 is increased, the cost is increased. Therefore, it is cheaper to increase the strength of the heat insulating box 700 by increasing the coverage without changing the filling rate, and the heat insulating efficiency is improved because the area of the vacuum heat insulating material can be increased. .. Therefore, by setting the filling rate of the vacuum heat insulating material 400 to 40% or more and the area ratio of the side surface to the back surface (vacuum heat insulating material coverage rate on the side back surface) to 70% or more, the strength of the heat insulating box is efficiently secured at low cost. it can. Therefore, the area ratio of the side surface and the back surface of the vacuum heat insulating material (the vacuum heat insulating material coverage ratio on the side back surface) is the second predetermined value (the area ratio in which the reduction rate of the amount of deformation of the heat insulating box is small, for example, about 70%. ) With the above setting, it is possible to reduce the wall thickness of the heat insulating box 700 (thinner the thickness of urethane) and increase the internal volume of the storage chamber. As the arrangement area of the vacuum heat insulating material 400 on the side wall 790 and the back wall 730 (vacuum heat insulating material coverage on the side back surface) increases, the amount of deformation of the heat insulating box 700 decreases, so that the strength of the heat insulating box 700 should be increased. It is possible to provide a device equipped with a heat insulating box body 700 having high strength and excellent heat insulating performance, a refrigerator 1, and a heat insulating box body.

(ウレタン物性)
ここで、断熱箱体700に充填される硬質ウレタンフォームの物性、特性について説明する。硬質ウレタンフォームは、フリーフォーム密度を大きくすることで、発泡したあとの強度が安定して外観の優れた、品質の高い断熱箱体700を提供できる。
(Urethane physical characteristics)
Here, the physical characteristics and characteristics of the rigid urethane foam filled in the heat insulating box 700 will be described. By increasing the free foam density of the rigid urethane foam, it is possible to provide a high-quality heat insulating box body 700 in which the strength after foaming is stable and the appearance is excellent.

ここで、フリーフォーム密度とは、箱体など密閉された空間内でウレタンを発泡させるのではなく、開放された容器内など開放状態でウレタンを発泡させた時の硬質ウレタンフォームの密度である。ただし、実際には、断熱箱体700内の密閉された狭い空間内でウレタンが発泡、膨張するため、断熱箱体700など密閉された狭い空間内で発泡、膨張したウレタンの密度は、開放された状態で発泡、膨脹したウレタンのフリーフォーム密度よりも大きくなる。 Here, the free foam density is the density of hard urethane foam when urethane is foamed in an open state such as in an open container, instead of foaming urethane in a closed space such as a box body. However, in reality, urethane foams and expands in a closed narrow space inside the heat insulating box 700, so that the density of urethane foamed and expanded in a closed narrow space such as the heat insulating box 700 is released. It is higher than the free-form density of urethane that has been foamed and expanded in the state of being foamed.

発泡後の硬質ウレタンフォームの密度を上げることによって図16で説明したように曲げ弾性率を大きくすることが可能であるが、ウレタン原液をそのまま断熱箱体700に流し込んで充填して密度を大きくしようとした場合、従来使用の発泡倍率の小さいウレタンでは、フリーフォーム密度が26〜28kg/mと小さく、発泡倍率が小さいため、ウレタンの流れる部分の流路厚さに大小が存在すると発泡度合いが均一にならず、注入口703、704付近と末端部(注入口から離れた部位)とではウレタン密度にムラができやすく、安定した強度を得ることが困難である。 It is possible to increase the flexural modulus as described in FIG. 16 by increasing the density of the hard urethane foam after foaming, but let's increase the density by pouring the urethane stock solution directly into the heat insulating box 700 and filling it. If a, the smaller urethane expansion ratio of conventional use, a small free-form density and 26~28kg / m 3, since the expansion ratio is small, the foaming degree and magnitude is present in the flow path thickness of a portion of the flow of urethane It is not uniform, and the urethane density tends to be uneven between the vicinity of the injection ports 703 and 704 and the terminal portion (a portion away from the injection port), and it is difficult to obtain stable strength.

本実施の形態では、フリーフォーム密度を従来(たとえば25〜28kg/m程度)よりも大きくした硬質ウレタンフォーム(たとえばフリーフォーム密度が30〜45kg/m程度)を使用することで、ウレタンが流れる部分の流路厚さに多少の大小が存在しても、発泡倍率が大きいため安定して発泡でき、発泡した後の密度のバラツキを小さくすることが可能となる。したがって、発泡後のウレタンの密度を略均一にすることが容易となる。 In this embodiment, the use of conventional (e.g. 25~28kg / m about 3) largely rigid urethane foam than (e.g. free-foam density is 30~45kg / m about 3) a free-foam density, urethane Even if there is some difference in the thickness of the flow path of the flowing portion, stable foaming can be performed because the foaming ratio is large, and it is possible to reduce the variation in density after foaming. Therefore, it becomes easy to make the density of urethane after foaming substantially uniform.

硬質ウレタンフォームのような発泡体は、内部に気泡を有しており、密度が小さい方が気泡が多く断熱の効果が高い。そのため従来は、断熱箱体700には、使用される硬質ウレタンフォームの発泡後の密度が25〜28kg/m程度の密度の小さい物が使用されている。この従来のウレタンフォームを使用して曲げ弾性率を15MPa以上にして断熱箱体700の強度を確保しようとすると、例えば壁内厚さ28mmの場合、真空断熱材の厚さを除いたウレタンの厚さが8mmの断熱箱体では、ウレタンのジャストパック量(対象となる箱体内に硬質ウレタンフォームが無理な負荷などかけずに丁度充填される時のウレタン量であり発泡後の密度が均一になりやすい)よりも多くのウレタンを注入、充填させなければならなくなり、密度にムラができやすい。 A foam such as rigid urethane foam has air bubbles inside, and the smaller the density, the more air bubbles and the higher the heat insulating effect. Therefore conventionally, the heat-insulating main body 700, those density after foaming of the rigid urethane foam used is small density of the order 25~28kg / m 3 is used. When trying to secure the strength of the heat insulating box 700 by increasing the flexural modulus to 15 MPa or more using this conventional urethane foam, for example, when the wall thickness is 28 mm, the thickness of urethane excluding the thickness of the vacuum heat insulating material. In a heat insulating box with a thickness of 8 mm, the amount of urethane is just packed (the amount of urethane when the hard urethane foam is just filled in the target box without applying an excessive load, and the density after foaming becomes uniform. It is necessary to inject and fill more urethane than (easy), and the density tends to be uneven.

さらに、ジャストパック量よりもウレタンを多く注入、充填しなければならないため、ウレタン注入時に加圧するか充填時間を長くする必要が生じるため、断熱箱体700や開閉扉の外郭の接合部などの隙間(例えば外箱710と内箱750との接合部)からウレタンが漏れだし、必要とする所定量のウレタンを注入できず(充填できず)、箱体に充填後の硬質ウレタンフォームの密度を所定値(たとえば60Kg/m)よりも大きい密度に確保することが困難である。また、ウレタンが箱体の外郭から漏れ出すと、漏れ出たウレタンを取り除く作業が必要となり、作業時間あるいは組立時間が多く必要になり、コストアップ、意匠性低下となっていた。したがって、従来は、断熱箱体に充填された後のウレタンの密度は60Kg/mよりも小さく、25〜30Kg/m程度、多くても55Kg/m以下程度のものを使用していた。 Furthermore, since urethane must be injected and filled in a larger amount than the amount of just pack, it is necessary to pressurize or lengthen the filling time when injecting urethane. Urethane leaked from (for example, the joint between the outer box 710 and the inner box 750), and the required predetermined amount of urethane could not be injected (cannot be filled). It is difficult to ensure a density greater than the value (eg 60 kg / m 3). Further, when urethane leaks from the outer shell of the box body, it is necessary to remove the leaked urethane, which requires a lot of work time or assembly time, resulting in an increase in cost and a decrease in design. Therefore, conventionally, the density of the urethane after being filled into the insulating box body is less than 60Kg / m 3, 25~30Kg / m 3 approximately, have used such an extent 55 Kg / m 3 or less at most ..

ここで、本実施の形態では、ウレタン原液に含まれる発泡材などの量を減らすことで、フリーフォーム密度を大きくすることを検討した。例えばウレタンの厚さが8mm(真空断熱材の厚さを除いたウレタン流路厚さが約8mm)の断熱箱体700では、フリーフォーム密度を所定値(30kg/m以上、好ましくは35kg/m以上)に設定することでジャストパック量での密度(無理な負荷などかけずに箱体に充填された後のウレタンの密度)を60kg/mより大きくすることが可能となり、硬質ウレタンフォームの曲げ弾性率を15MPa以上とすることができる。したがって、ウレタンの密度ムラやウレタン漏れといった断熱箱体の不具合を解消でき、信頼性の高い、高強度の断熱箱体700、冷蔵庫1、ショーケース、断熱箱体を備えた機器を得ることができる。 Here, in the present embodiment, it was examined to increase the freeform density by reducing the amount of the foaming material and the like contained in the urethane stock solution. For example, in a heat insulating box 700 having a urethane thickness of 8 mm (a urethane flow path thickness excluding the thickness of the vacuum heat insulating material is about 8 mm), the freeform density is set to a predetermined value (30 kg / m 3 or more, preferably 35 kg / /). By setting it to m 3 or more), the density of the just pack amount (the density of urethane after being filled in the box without applying an unreasonable load) can be made larger than 60 kg / m 3, and hard urethane. The flexural modulus of the foam can be 15 MPa or more. Therefore, problems of the heat insulating box such as uneven urethane density and urethane leakage can be solved, and a highly reliable and high-strength heat insulating box 700, a refrigerator 1, a showcase, and a device equipped with the heat insulating box can be obtained. ..

ここで、硬質ウレタンのフリーフォーム密度を所定値よりも大きくして発泡後のウレタン密度を大きくしたことによる断熱性能への影響が懸念されるが、図17〜図21で説明したように、たとえば真空断熱材400の配設部位のウレタンの厚さを所定値以下(11mm以下、あるいは6mm以下)に設定したり、ウレタンの厚さ/壁内厚さを所定値(0.3)以下に設定したり、真空断熱材400の充填率を所定範囲(40%以上90%以下)に設定したりすれば、断熱箱体の断熱性能に対する影響(断熱箱体700や開閉扉の断熱箱体の断熱性能へ与える影響)を小さくすることができる。なお、ウレタンの厚さを11mm以下にする場合には、フリーフォーム密度を、所定値(たとえば35kg/m)以上にすることでウレタン漏れの起こらないジャストパック量に設定することが可能となる(ジャストパック量を調整することができる)。 Here, there is a concern that the free foam density of the hard urethane may be made larger than a predetermined value to increase the urethane density after foaming, which may affect the heat insulating performance. However, as described in FIGS. 17 to 21, for example. Set the urethane thickness of the location of the vacuum heat insulating material 400 to a predetermined value or less (11 mm or less, or 6 mm or less), or set the urethane thickness / wall thickness to a predetermined value (0.3) or less. Or, if the filling rate of the vacuum heat insulating material 400 is set within a predetermined range (40% or more and 90% or less), the effect on the heat insulating performance of the heat insulating box body (insulation of the heat insulating box body 700 and the heat insulating box body of the opening / closing door). The effect on performance) can be reduced. When the thickness of urethane is 11 mm or less, the freeform density can be set to a predetermined value (for example, 35 kg / m 3 ) or more to set the amount of just pack that does not cause urethane leakage. (The amount of just pack can be adjusted).

本実施の形態に係る断熱箱体700は、断熱箱体700の壁厚を従来よりも薄くすることができ、また、所定の強度を確保しても外郭よりウレタン充填時にウレタンが漏れにくく、必要な品質を満足でき、省エネルギーで、内容積効率の優れた断熱箱体700を提供することができる。すなわち、断熱箱体700あるいは冷蔵庫1あるいは断熱箱体を備えた機器の外形サイズを変更せずに断熱箱体の貯蔵品収納容積(たとえば冷蔵庫の場合には、庫内容積あるいは貯蔵室容積)を従来よりも大きくすることができ、断熱箱体700の内部に貯蔵できる収納物を従来よりも増やすことができる。したがって、ユーザにとって使い勝手がよく、断熱性もよく、しかも高強度で信頼性の高い断熱箱体700あるいは冷蔵庫1あるいは断熱箱体を備えた機器が得られる。また、室内(貯蔵室内)の収納容積を従来と同等に設定する場合は、壁厚さを小さく出来る分だけ、外形寸法を小さくできる。 In the heat insulating box 700 according to the present embodiment, the wall thickness of the heat insulating box 700 can be made thinner than before, and even if a predetermined strength is secured, urethane is less likely to leak from the outer shell when filled with urethane, which is necessary. It is possible to provide a heat insulating box body 700 which can satisfy various qualities, saves energy, and has excellent internal volume efficiency. That is, the storage volume of the insulated box (for example, in the case of a refrigerator, the internal volume or the storage chamber volume) of the insulated box 700 or the refrigerator 1 or the device provided with the insulated box is not changed. It can be made larger than before, and the amount of stored items that can be stored inside the heat insulating box 700 can be increased more than before. Therefore, it is possible to obtain a heat insulating box 700, a refrigerator 1, or a device provided with a heat insulating box, which is easy for the user to use, has good heat insulating properties, and has high strength and high reliability. Further, when the storage volume of the room (storage room) is set to be the same as that of the conventional one, the external dimensions can be reduced by the amount that the wall thickness can be reduced.

ここで、冷蔵庫1は、冷蔵室2、冷凍室6、野菜室5などの複数の貯蔵室へ供給する空気(冷気)を冷却するための冷却装置を備えている。この冷却装置は、圧縮機12、冷媒配管(たとえば凝縮配管725)、減圧装置(膨張弁やキャピラリーチューブ等)、冷却器13等で構成されて冷凍サイクルを形成している。この冷凍サイクルを構成する構成要素のうち、圧縮機12、減圧装置は、冷蔵庫1を形成する断熱箱体700の背面下側(背面上側でも良い)に形成された機械室1A内に設けられている。凝縮配管725は、断熱箱体700の例えば側壁790あるいは背面壁730あるいは天面壁740に設けられている。貯蔵室の背面には貯蔵品収納空間を形成するファングリルなどにより背面壁730の貯蔵室側に内箱750とは別部材の背面カバーが設けられており、冷却器13は、内箱750とファングリルなどの背面カバー部材との間に形成された冷却器室131内に設けられている。また、この冷却器室131には、冷却器13で冷却された空気(冷気)を冷蔵室2、冷凍室6、野菜室5などの各貯蔵室に送風するための冷気循環用ファン14も設けられている。また、断熱箱体700の天面壁740あるいは背面壁730の上部(あるいは背面壁730の略中央高さ位置)には制御基板室31が設けられ、制御基板室31内には制御装置30が設けられており、当該制御装置30は、圧縮機12や冷気循環用ファン14の回転数等を運転動作制御、あるいは庫内温度制御などを行う。 Here, the refrigerator 1 is provided with a cooling device for cooling the air (cold air) supplied to a plurality of storage chambers such as the refrigerator compartment 2, the freezer compartment 6, and the vegetable compartment 5. This cooling device is composed of a compressor 12, a refrigerant pipe (for example, a condensing pipe 725), a pressure reducing device (expansion valve, a capillary tube, etc.), a cooler 13, and the like to form a refrigeration cycle. Among the components constituting this refrigeration cycle, the compressor 12 and the decompression device are provided in the machine room 1A formed on the lower back side (or the upper back side may be) of the heat insulating box 700 forming the refrigerator 1. There is. The condensing pipe 725 is provided on, for example, the side wall 790, the back wall 730, or the top wall 740 of the heat insulating box 700. On the back surface of the storage chamber, a back cover of a member different from the inner box 750 is provided on the storage chamber side of the back wall 730 by a fan grill or the like forming a storage space for stored items, and the cooler 13 is the inner box 750. It is provided in the cooler chamber 131 formed between the fan grill and the back cover member. Further, the cooler chamber 131 is also provided with a cold air circulation fan 14 for blowing air (cold air) cooled by the cooler 13 to each storage chamber such as the refrigerator compartment 2, the freezer compartment 6, and the vegetable compartment 5. Has been done. Further, a control board chamber 31 is provided above the top wall 740 or the back wall 730 of the heat insulating box 700 (or a substantially central height position of the back wall 730), and a control device 30 is provided in the control board chamber 31. The control device 30 controls the operation operation, controls the temperature inside the refrigerator, and the like by controlling the rotation speed of the compressor 12 and the cold air circulation fan 14.

このように構成された冷蔵庫1においては、機械室1A内に配置されている圧縮機12によって送り出された高温高圧のガス冷媒は、冷媒配管(たとえば凝縮配管)725を通り凝縮されて低温高圧の液冷媒になり、低温高圧の液冷媒は、減圧装置によって低温低圧の気液二相冷媒に減圧され、冷却器13に到達するときには、例えば−20℃以下の低い温度となっている。この低温低圧の気液二相冷媒が冷却器室131内の空気を冷却し、この冷却された空気を冷気循環用ファン14によって冷蔵室2、冷凍室6、野菜室5などの各貯蔵室へ供給することにより、冷蔵室2、冷凍室6、野菜室5などの貯蔵室(あるいは、これら貯蔵室に収納された収納物)が冷却される。一方、冷却器室131内の空気を冷却した低温低圧の気液二相冷媒は、冷却器室131内の空気によって加熱されて蒸発し、低圧のガス状冷媒となって再び圧縮機12に吸入され、圧縮される。 In the refrigerator 1 configured in this way, the high-temperature and high-pressure gas refrigerant sent out by the compressor 12 arranged in the machine room 1A is condensed through the refrigerant pipe (for example, the condensed pipe) 725 and is low-temperature and high-pressure. It becomes a liquid refrigerant, and the low-temperature and high-pressure liquid refrigerant is decompressed to a low-temperature and low-pressure gas-liquid two-phase refrigerant by a decompressor, and when it reaches the cooler 13, it has a low temperature of, for example, −20 ° C. or lower. The low-temperature and low-pressure gas-liquid two-phase refrigerant cools the air in the cooler chamber 131, and the cooled air is sent to each storage chamber such as the refrigerator compartment 2, the freezer chamber 6, and the vegetable compartment 5 by the cold air circulation fan 14. By supplying, the storage chambers such as the refrigerator compartment 2, the freezer compartment 6, and the vegetable compartment 5 (or the stored items stored in these storage chambers) are cooled. On the other hand, the low-temperature low-pressure gas-liquid two-phase refrigerant that cooled the air in the cooler chamber 131 is heated by the air in the cooler chamber 131 and evaporates to become a low-pressure gaseous refrigerant and is sucked into the compressor 12 again. And compressed.

以上のように、本実施の形態の冷蔵庫1においては、外箱710及び内箱750の間に形成された空間315と開閉扉の扉内部空間との内部容積の合計容積に対する真空断熱材400の占める割合である真空断熱材の充填率を所定値(たとえば40%〜80%)としている。このため、断熱箱体700の壁内厚さ(たとえば外箱710と内箱750間の距離(厚さ)、あるいは、開閉扉の厚さ)を従来よりも薄くしても断熱性能を確保できる。したがって、本実施の形態の冷蔵庫1においては、断熱箱体700の断熱性能が向上しているため、複数の貯蔵室2、3、4、5、6内の冷気や収納物が暖まりにくいので、冷却のための圧縮機12の運転時間を短くできたりファンの風量を小さくできる。したがって、貯蔵室2、3、4、5、6内の冷却に必要な空気(冷気)の風量を小さく抑えることができ、圧縮機12の回転数を下げたり運転OFF時間を長くしたりできるので省エネルギーな運転が可能となる。このため、本実施の形態の冷蔵庫1では、従来に比べて省エネルギー化することができる。また、冷蔵庫1は、外形サイズを変更せずに貯蔵室容積(庫内容積)を従来よりも拡大でき、貯蔵室内に貯蔵できる収納物を従来よりも増やすことができるので、使い勝手の良い冷蔵庫、機器が得られる。 As described above, in the refrigerator 1 of the present embodiment, the vacuum heat insulating material 400 with respect to the total internal volume of the space 315 formed between the outer box 710 and the inner box 750 and the inner space of the opening / closing door. The filling rate of the vacuum heat insulating material, which is the proportion of the vacuum heat insulating material, is set to a predetermined value (for example, 40% to 80%). Therefore, even if the wall thickness of the heat insulating box 700 (for example, the distance (thickness) between the outer box 710 and the inner box 750 or the thickness of the opening / closing door) is made thinner than before, the heat insulating performance can be ensured. .. Therefore, in the refrigerator 1 of the present embodiment, since the heat insulating performance of the heat insulating box 700 is improved, it is difficult for the cold air and the stored items in the plurality of storage chambers 2, 3, 4, 5, and 6 to warm up. The operating time of the compressor 12 for cooling can be shortened, and the air volume of the fan can be reduced. Therefore, the air volume of air (cold air) required for cooling in the storage chambers 2, 3, 4, 5, and 6 can be kept small, the rotation speed of the compressor 12 can be lowered, and the operation OFF time can be lengthened. Energy-saving operation is possible. Therefore, the refrigerator 1 of the present embodiment can save energy as compared with the conventional case. Further, the refrigerator 1 is a convenient refrigerator because the storage chamber volume (internal volume) can be expanded more than before without changing the outer size and the number of stored items that can be stored in the storage chamber can be increased more than before. Equipment is obtained.

また、最も外気との温度差の大きい冷凍室6を上下方向の略中央位置に配置すれば、上面及び下面よりの冷凍室6への外気からの熱進入を抑制できるので、外気から冷凍室6に熱が侵入する熱進入面を4面(前面の開閉扉、左側面、右側面、背面の4面)にすることができる。このため、省エネルギーな冷蔵庫1を得ることができる。 Further, if the freezing chamber 6 having the largest temperature difference from the outside air is arranged at a substantially central position in the vertical direction, heat from the outside air can be suppressed from entering the freezing chamber 6 from the upper surface and the lower surface. The heat entry surface on which heat enters can be four surfaces (the front opening / closing door, the left side surface, the right side surface, and the back surface). Therefore, an energy-saving refrigerator 1 can be obtained.

また、本実施の形態によれば、空間315及び扉内部空間に充填される硬質ウレタンフォームの曲げ弾性率を15.0MPa以上としているので、断熱箱体700の箱体強度が所定の強度を満足でき、したがって収納物の重量による歪みに耐え切れず断熱箱体700が変形することを抑制できる。このため、断熱箱体700が歪んで前面の開閉扉が傾いてしまうことを抑制でき、外観の悪化を防ぐことができる。また、開閉扉と断熱箱体の前面開口部との間をシールするシール部材の位置がずれて隙間が発生し、冷蔵室2、冷凍室6、野菜室5、製氷室3、切替室4内の空気(冷気)が断熱箱体700や冷蔵庫1の外部へ漏れ出ることを抑制できるので、より省エネルギーな冷蔵庫や機器を得ることができる。 Further, according to the present embodiment, since the flexural modulus of the rigid urethane foam filled in the space 315 and the space inside the door is 15.0 MPa or more, the box body strength of the heat insulating box 700 satisfies a predetermined strength. Therefore, it is possible to prevent the heat insulating box 700 from being deformed because it cannot withstand the distortion due to the weight of the stored items. Therefore, it is possible to prevent the heat insulating box 700 from being distorted and the front opening / closing door from being tilted, and it is possible to prevent deterioration of the appearance. In addition, the position of the seal member that seals between the opening / closing door and the front opening of the heat insulating box is displaced, and a gap is generated in the refrigerator compartment 2, the freezer compartment 6, the vegetable compartment 5, the ice making chamber 3, and the switching chamber 4. Since it is possible to prevent the air (cold air) from leaking to the outside of the heat insulating box 700 or the refrigerator 1, it is possible to obtain a refrigerator or equipment that saves more energy.

なお、空間315、あるいは扉内部空間内における真空断熱材400の充填率の分布については、外気と各貯蔵室との温度差に応じて、空間315、あるいは扉内部空間内において、所定の位置毎に真空断熱材400の充填率を変更してもよい。 Regarding the distribution of the filling rate of the vacuum heat insulating material 400 in the space 315 or the space inside the door, depending on the temperature difference between the outside air and each storage room, each predetermined position in the space 315 or the space inside the door. The filling rate of the vacuum heat insulating material 400 may be changed.

例えば、低温室である冷凍室6(あるいは製氷室3、切替室4)は、貯蔵室内の温度と外気との温度差が最も大きくなる。このため、冷凍室6と対向する範囲にある断熱箱体700の左側面、右側面、背面及び前面(開閉扉)における真空断熱材400の充填率を他の貯蔵室(たとえば高温室である冷蔵室2、野菜室5)と対向する範囲の壁面(たとえば左側面、右側面、背面及び前面(開閉扉))よりも大きくしてもよい(例えば60%以上)。このように構成することにより、最も温度の低い低温室である冷凍室6への熱侵入を抑制でき、より省エネルギーな冷蔵庫1、機器を提供できる。 For example, in the freezing chamber 6 (or the ice making chamber 3 and the switching chamber 4), which is a low temperature chamber, the temperature difference between the temperature in the storage chamber and the outside air is the largest. Therefore, the filling rate of the vacuum heat insulating material 400 on the left side surface, the right side surface, the back surface, and the front surface (opening / closing door) of the heat insulating box 700 in the range facing the freezing room 6 is set to another storage room (for example, refrigeration which is a high temperature room). It may be larger than the wall surface (for example, the left side surface, the right side surface, the back surface and the front surface (opening / closing door)) in the range facing the room 2 and the vegetable room 5) (for example, 60% or more). With such a configuration, it is possible to suppress heat intrusion into the freezing chamber 6 which is the lowest temperature chamber, and it is possible to provide a more energy-saving refrigerator 1 and equipment.

また例えば、外気温度が例えば30℃の時、機械室1A内は例えば40℃以上となり、制御基板室31も例えば40℃以上まで温度が上昇する。つまり、機械室1A及び制御基板室31と対向する位置の貯蔵室との間の壁面や仕切壁24は、他の部分の壁面や仕切壁24と比べて貯蔵室内との温度差が大きくなる。このため、機械室1A、制御基板室31の近傍に配置された貯蔵室には熱が侵入しやすくなる。このため、機械室1A、あるいは制御基板室31と貯蔵室との間に配置される壁面や仕切壁24においては真空断熱材400の充填率を他の壁面や仕切壁24よりも大きくして断熱性能を向上させても良い。例えば機械室1A、あるいは制御基板室31と貯蔵室との間に配置される壁面や仕切壁24においては真空断熱材400の充填率を60%以上(真空断熱材400の側背面被覆率を70%以上)にして、他の壁面や仕切壁24の真空断熱材400の充填率を40%以上(90%以下)にすれば良い。このように構成することにより、温度の高い機械室1Aや制御基板室から近傍の貯蔵室へ熱が侵入することを抑制でき、冷蔵庫1をより省エネルギー化できる。 Further, for example, when the outside air temperature is, for example, 30 ° C., the temperature inside the machine room 1A becomes, for example, 40 ° C. or higher, and the temperature of the control board chamber 31 also rises to, for example, 40 ° C. or higher. That is, the temperature difference between the wall surface and the partition wall 24 between the machine room 1A and the storage room at the position facing the control board room 31 is larger than that of the wall surface and the partition wall 24 of other parts. Therefore, heat easily enters the storage room arranged in the vicinity of the machine room 1A and the control board room 31. Therefore, in the machine room 1A or the wall surface or partition wall 24 arranged between the control board room 31 and the storage room, the filling rate of the vacuum heat insulating material 400 is made larger than that of the other wall surface or the partition wall 24 to insulate. The performance may be improved. For example, in the machine room 1A or the wall surface or partition wall 24 arranged between the control board room 31 and the storage room, the filling rate of the vacuum heat insulating material 400 is 60% or more (the side back covering rate of the vacuum heat insulating material 400 is 70). % Or more), and the filling rate of the vacuum heat insulating material 400 of the other wall surface or the partition wall 24 may be 40% or more (90% or less). With such a configuration, it is possible to suppress heat from entering the nearby storage room from the machine room 1A or the control board room having a high temperature, and the refrigerator 1 can be further energy-saving.

本実施の形態に係る断熱箱体700は、例えば、水を加熱する加熱装置、及び該加熱装置で加熱された水を貯留するタンクを備えた貯湯装置にも用いることもできる。断熱箱体700の内部にタンクを配設することにより、従来よりも外形サイズの小さな断熱箱体700によってタンクを断熱することができ、貯湯装置を省スペース化することができる。また、本実施の形態は、真空断熱材を備えた断熱壁を有する機器(たとえば、冷蔵庫、ショーケース、冷凍機、給湯装置、ジャーポット、空調装置など)であれば適用可能である。 The heat insulating box 700 according to the present embodiment can also be used, for example, in a heating device for heating water and a hot water storage device provided with a tank for storing the water heated by the heating device. By arranging the tank inside the heat insulating box 700, the tank can be heat-insulated by the heat insulating box 700 having a smaller outer size than the conventional one, and the space for the hot water storage device can be saved. Further, the present embodiment is applicable to any device having a heat insulating wall provided with a vacuum heat insulating material (for example, a refrigerator, a showcase, a refrigerator, a hot water supply device, a jar pot, an air conditioner, etc.).

本発明の実施の形態では、真空断熱材400に凹凸などを設ける必要がなく、外包材内に封入する芯材を外包材の凹凸形状に沿った形状にする必要もないので、真空断熱材400に平板状のものを使用可能なので、芯材に流動性を有する粒状のものを使用する必要がなく、ガラス繊維などの無機繊維や有機繊維などの繊維系芯材を使用可能であり、しかも外包材に凹凸を設けるなどの複雑な加工が不要となるため、低コストで取り扱い性が良好で断熱性能が向上する断熱箱体、冷蔵庫、機器が得られる。
ここで、本実施の形態では、第3の介在部材は第1の介在部材と同じであってもよい。また、第2の介在部材も第1の介在部材と同じであっても良い。
In the embodiment of the present invention, it is not necessary to provide the vacuum heat insulating material 400 with irregularities or the like, and it is not necessary to shape the core material to be sealed in the outer packaging material so as to follow the uneven shape of the outer packaging material. Since a flat plate can be used for the core material, it is not necessary to use a granular material having fluidity for the core material, and a fiber-based core material such as an inorganic fiber such as glass fiber or an organic fiber can be used. Since complicated processing such as providing unevenness on the material is not required, a heat insulating box, a refrigerator, and equipment can be obtained at low cost, which is easy to handle and has improved heat insulating performance.
Here, in the present embodiment, the third intervening member may be the same as the first intervening member. Further, the second intervening member may be the same as the first intervening member.

(実施形態が奏する効果)
以上説明したように、本実施の形態では、外箱710と内箱750とから形成され、少なくとも側壁790、背面壁730を有し、前面に開口部を有する断熱箱体700において、背面壁730と側壁790とのコーナー部に形成され、背面壁730に対して前面開口部側に突出する凸部450と、背面壁730を形成する内箱750に形成され、凸部450に対して前面側から見て後方側に凹んだ凹部440(第2の凹部441であっても良い)と、少なくとも背面壁730を形成する内箱750と外箱710との間に設けられ、凹部440と対向する位置の内箱750と外箱710との間に配置され、少なくとも幅方向(又は長さ方向)において凹部440の幅(図8では凹部440の範囲Wで表示)よりも大きな平板状の真空断熱材400と、を備え、凸部450は、真空断熱材400と所定長さXだけ重なるように形成されており、真空断熱材400と凹部440を形成する内箱750との間、及び真空断熱材400と凸部450を形成する内箱750との間に介在部材として接着剤を充填するようにすれば、真空断熱材400と内箱750との間の接着剤の厚さが小さくなったとしても凸部450が真空断熱材400と長さXだけ重なっているため重なった長さX分だけ接着剤(たとえば発泡断熱材である硬質ウレタンフォーム)の接着厚さが増え、真空断熱材400が凸部450内の接着剤を介して凹部440を形成する内箱750(あるいは外箱710)と強固に接着できる。また、凹部440を形成する内箱750と側壁790を形成する内箱750も凸部450を介して強固に接着できる。したがって、凹部440における真空断熱材400と内箱750との間の接着剤の厚さを薄くしても接着剤厚さの大きな凸部450を介して凹部440、真空断熱材400、側壁790が一体に形成されるので、真空断熱材が配設される凹部440の壁厚さを薄くでき、しかも箱体あるいは壁の強度を向上させることができる。
(Effect of the embodiment)
As described above, in the present embodiment, in the heat insulating box body 700 formed from the outer box 710 and the inner box 750, having at least a side wall 790 and a back wall 730, and having an opening on the front surface, the back wall 730. The convex portion 450 formed at the corner of the side wall 790 and projecting toward the front opening side with respect to the back wall 730, and the inner box 750 forming the back wall 730, and formed on the front side with respect to the convex portion 450. It is provided between the recess 440 (which may be the second recess 441) recessed rearward when viewed from the viewpoint, and the inner box 750 and the outer box 710 forming at least the back wall 730, and faces the recess 440. A flat plate-shaped vacuum insulation that is arranged between the inner box 750 and the outer box 710 at the position and is larger than the width of the recess 440 (indicated by the range W of the recess 440 in FIG. 8) at least in the width direction (or length direction). The convex portion 450 includes the material 400 and is formed so as to overlap the vacuum heat insulating material 400 by a predetermined length X, and is formed between the vacuum heat insulating material 400 and the inner box 750 forming the concave portion 440, and the vacuum heat insulating material. If an adhesive is filled as an intervening member between the material 400 and the inner box 750 forming the convex portion 450, the thickness of the adhesive between the vacuum heat insulating material 400 and the inner box 750 is reduced. Even so, since the convex portion 450 overlaps the vacuum heat insulating material 400 by the length X, the adhesive thickness of the adhesive (for example, hard urethane foam which is a foamed heat insulating material) increases by the overlapped length X, and the vacuum heat insulating material 400 Can be firmly adhered to the inner box 750 (or outer box 710) forming the concave portion 440 via the adhesive in the convex portion 450. Further, the inner box 750 forming the concave portion 440 and the inner box 750 forming the side wall 790 can also be firmly adhered to each other via the convex portion 450. Therefore, even if the thickness of the adhesive between the vacuum heat insulating material 400 and the inner box 750 in the recess 440 is reduced, the recess 440, the vacuum heat insulating material 400, and the side wall 790 are formed through the convex portion 450 having a large adhesive thickness. Since it is integrally formed, the wall thickness of the recess 440 in which the vacuum heat insulating material is arranged can be reduced, and the strength of the box body or the wall can be improved.

ここで、介在部材である接着剤として、自己接着性を有する発泡断熱材である硬質ウレタンフォームを使用すれば、真空断熱材400と内箱750との間の硬質ウレタンフォームの厚さを所定である11mm以下(厚さのばらつきや真空断熱材400の表面の凹凸等を考慮すると10mm未満が良い)に薄く設定したとしても凸部450が真空断熱材400と長さXだけ重なっているため重なった長さX分だけ真空断熱材400と内箱750との間の硬質ウレタンフォームの厚さを大きくすることができ、真空断熱材400が凸部450内の硬質ウレタンフォームを介して内箱750(あるいは外箱710)と強固に接着できる。また、凹部440と対向する位置の真空断熱材400と内箱750との間の硬質ウレタンフォームの厚さを薄くしても凹部440と対向する位置の真空断熱材400が凸部450内の硬質ウレタンフォームを介して側壁790と一体に形成されるので、凹部440が形成される部分の壁厚さを薄くしても箱体強度あるいは壁の強度を向上させることができる。 Here, if a rigid urethane foam which is a foam heat insulating material having self-adhesiveness is used as the adhesive which is an intervening member, the thickness of the rigid urethane foam between the vacuum heat insulating material 400 and the inner box 750 can be predetermined. Even if it is set thin to a certain 11 mm or less (less than 10 mm is preferable considering the variation in thickness and the unevenness of the surface of the vacuum heat insulating material 400), the convex portion 450 overlaps with the vacuum heat insulating material 400 by the length X, so that it overlaps. The thickness of the hard urethane foam between the vacuum heat insulating material 400 and the inner box 750 can be increased by the length X, and the vacuum heat insulating material 400 passes through the hard urethane foam in the convex portion 450 to increase the thickness of the inner box 750. Can be firmly adhered to (or the outer box 710). Further, even if the thickness of the hard urethane foam between the vacuum heat insulating material 400 at the position facing the concave portion 440 and the inner box 750 is reduced, the vacuum heat insulating material 400 at the position facing the concave portion 440 is hard in the convex portion 450. Since it is integrally formed with the side wall 790 via the urethane foam, the box body strength or the wall strength can be improved even if the wall thickness of the portion where the recess 440 is formed is reduced.

また、外箱710と内箱750とから形成され、背面壁730の周囲に少なくとも1つの周囲壁(たとえば側壁790、天井壁740、底面壁780、仕切壁24)を有し、前面に開口部有する断熱箱体700において、背面壁730は、周囲壁とのコーナー部に形成された凸部450と、凸部450に対して前面側から見て後方側に凹んだ凹部440(あるいは第2の凹部441)と、を有し、凹部440(あるいは第2の凹部441)と対向する位置の内箱750と外箱710との間に配置され、少なくとも幅方向あるいは長さ方向において凹部の幅P(凹部の範囲W)よりも大きな平板状の真空断熱材400と、を備え、凸部450は、真空断熱材400と所定長さXだけ重なるように形成されており、
凹部440と対向する位置の内箱750と真空断熱材400との間、及び凸部450と対向する位置の内箱750と真空断熱材400との間に介在部材として接着剤を充填すれば、真空断熱材400と内箱750との間の接着剤の厚さが小さくなったとしても凸部450が真空断熱材400と長さXだけ重なっているため重なった長さX分だけ接着剤(たとえば発泡断熱材である硬質ウレタンフォーム)の接着厚さが増え、真空断熱材400が凸部450内の接着剤を介して凹部440を形成する内箱750(あるいは外箱710)と強固に接着できる。また、凹部440を形成する内箱750と少なくとも1つの周囲壁(たとえば側壁790、天井壁740、底面壁780、仕切壁24)も凸部450を介して強固に接着できる。したがって、凹部440における真空断熱材400と内箱750との間の接着剤の厚さを薄くしても介在部材厚さ(接着剤厚さ)の大きな凸部を介して凹部440、真空断熱材400、少なくとも1つの周囲壁(たとえば側壁790、天井壁740、底面壁780、仕切壁24)が一体に形成されるので、真空断熱材が配設される凹部440の壁厚さを薄くでき、しかも箱体あるいは壁の強度を向上させることができる。
Further, it is formed of an outer box 710 and an inner box 750, has at least one peripheral wall (for example, side wall 790, ceiling wall 740, bottom wall 780, partition wall 24) around the back wall 730, and has an opening on the front surface. In the heat insulating box body 700 having the heat insulating box body 700, the back wall 730 has a convex portion 450 formed at a corner portion with a peripheral wall and a concave portion 440 (or a second recess 440) recessed rearward with respect to the convex portion 450 when viewed from the front side. It has a recess 441) and is arranged between the inner box 750 and the outer box 710 at a position facing the recess 440 (or the second recess 441), and the width P of the recess is at least in the width direction or the length direction. A flat plate-shaped vacuum heat insulating material 400 larger than (recessed range W) is provided, and the convex portion 450 is formed so as to overlap the vacuum heat insulating material 400 by a predetermined length X.
If an adhesive is filled as an intervening member between the inner box 750 at the position facing the concave portion 440 and the vacuum heat insulating material 400, and between the inner box 750 at the position facing the convex portion 450 and the vacuum heat insulating material 400, Even if the thickness of the adhesive between the vacuum heat insulating material 400 and the inner box 750 is reduced, the convex portion 450 overlaps the vacuum heat insulating material 400 by the length X, so the adhesive (adhesive by the overlapped length X). For example, the adhesive thickness of the hard urethane foam, which is a foam heat insulating material) is increased, and the vacuum heat insulating material 400 is firmly adhered to the inner box 750 (or outer box 710) forming the concave portion 440 via the adhesive in the convex portion 450. it can. Further, the inner box 750 forming the concave portion 440 and at least one peripheral wall (for example, the side wall 790, the ceiling wall 740, the bottom wall 780, and the partition wall 24) can be firmly adhered to each other via the convex portion 450. Therefore, even if the thickness of the adhesive between the vacuum heat insulating material 400 and the inner box 750 in the recess 440 is reduced, the recess 440 and the vacuum heat insulating material are passed through the convex portion having a large intervening member thickness (adhesive thickness). Since 400, at least one peripheral wall (for example, side wall 790, ceiling wall 740, bottom wall 780, partition wall 24) is integrally formed, the wall thickness of the recess 440 in which the vacuum heat insulating material is arranged can be reduced. Moreover, the strength of the box body or the wall can be improved.

また、周囲壁が、背面壁730と接続されて室(たとえば貯蔵室)を形成する側壁790、天井壁740、底面壁780、仕切壁24のいずれかであれば、凹部440における真空断熱材400と内箱750との間の介在部材である接着剤の厚さを薄くしても凹部440に配置される真空断熱材400が凸部の介在部材(接着剤)を介して少なくとも1つの周囲壁(たとえば側壁790、天井壁740、底面壁780、仕切壁24)と一体に形成されるので、凹部が形成される部分の壁厚さを薄くしても、箱体あるいは壁の強度を向上させることができる。また、介在部材(接着剤)として硬質ウレタンフォームを使用すれば、所定の断熱性能も得ることができる。 Further, if the peripheral wall is any one of the side wall 790, the ceiling wall 740, the bottom wall 780, and the partition wall 24 which are connected to the back wall 730 to form a chamber (for example, a storage chamber), the vacuum heat insulating material 400 in the recess 440. Even if the thickness of the adhesive which is the intervening member between the inner box 750 and the inner box 750 is reduced, the vacuum heat insulating material 400 arranged in the recess 440 is provided at least one peripheral wall via the intervening member (adhesive) of the convex portion. Since it is integrally formed with (for example, the side wall 790, the ceiling wall 740, the bottom wall 780, and the partition wall 24), the strength of the box or the wall is improved even if the wall thickness of the portion where the recess is formed is reduced. be able to. Further, if a rigid urethane foam is used as an intervening member (adhesive), a predetermined heat insulating performance can be obtained.

また、介在部材(接着剤)として、充填前は流動性のある液体状あるいは二相状態であり、充填後は発泡して接着剤として機能する自己接着性を有する発泡断熱材を使用すれば、凹部440における真空断熱材400と内箱750との間のすきまを小さくしても、液体状態あるいは二相状態で狭いすきまに流入させることができるので、介在部材(接着剤)をまんべんなく充填することができ、接着強度あるいは固定強度を確保できる。したがって壁厚さを薄くしても箱体の強度を確保できる。また、断熱材としても機能するため、断熱性能も向上する。 Further, as an intervening member (adhesive), if a foamed heat insulating material having self-adhesiveness, which is in a fluid liquid state or a two-phase state before filling and foams after filling and functions as an adhesive, can be used. Even if the gap between the vacuum heat insulating material 400 and the inner box 750 in the recess 440 is made small, it can flow into the narrow gap in a liquid state or a two-phase state, so that the intervening member (adhesive) is evenly filled. It is possible to secure the adhesive strength or the fixing strength. Therefore, the strength of the box can be ensured even if the wall thickness is reduced. In addition, since it also functions as a heat insulating material, the heat insulating performance is also improved.

また、介在部材として接着剤を使用する場合、接着剤が発泡断熱材である硬質ウレタンフォームであれば、ウレタンの厚さの薄くなる部分(例えば凹部440など真空断熱材400が配置されている壁)では、断熱材としての効果が小さくなるが、本実施の形態のように介在部材である硬質ウレタンフォームを接着剤として使用すればよい。また、ウレタンの厚さを厚く確保できる部分(たとえば真空断熱材400が配置されていない壁など)は、断熱材としての効果が得られるため、断熱材として使用できるので、箱体の強度と断熱性能の両方を確保でき、高性能で信頼性の高い断熱箱体、冷蔵庫、機器などが得られる。また、硬質ウレタンフォームには、他の断熱材料にはない自己接着性という優れた特長があるため、他の接着剤を使わなくとも、対象物(内箱750、真空断熱材400、外箱710)の表面に直接発泡することにより、対象物に強く接着した断熱層を形成することができ、接着性と断熱性の両方を得ることができる。 Further, when an adhesive is used as the intervening member, if the adhesive is a rigid urethane foam which is a foam heat insulating material, a wall where the vacuum heat insulating material 400 such as a recess 440 is arranged where the urethane thickness becomes thin (for example, a recess 440). ), The effect as a heat insulating material is reduced, but a rigid urethane foam as an intervening member may be used as an adhesive as in the present embodiment. In addition, the part where the thickness of urethane can be secured (for example, a wall on which the vacuum heat insulating material 400 is not arranged) can be used as a heat insulating material because it can be used as a heat insulating material, so that the strength and heat insulation of the box body can be obtained. Both performance can be ensured, and high-performance and highly reliable heat insulating boxes, refrigerators, equipment, etc. can be obtained. In addition, since the rigid urethane foam has an excellent feature of self-adhesiveness that other heat insulating materials do not have, the objects (inner box 750, vacuum heat insulating material 400, outer box 710) can be used without using other adhesives. ), By foaming directly on the surface, a heat insulating layer strongly adhered to the object can be formed, and both adhesiveness and heat insulating property can be obtained.

また、真空断熱材400と内箱750との間に充填される介在部材である接着剤の厚さを、真空断熱材400の厚さよりも小さくしても、真空断熱材400で壁強度、あるいは箱体強度を確保できるので、真空断熱材400を備えた壁の壁厚さを薄くできる。 Further, even if the thickness of the adhesive, which is an intervening member filled between the vacuum heat insulating material 400 and the inner box 750, is made smaller than the thickness of the vacuum heat insulating material 400, the wall strength of the vacuum heat insulating material 400 or the wall strength or Since the box body strength can be ensured, the wall thickness of the wall provided with the vacuum heat insulating material 400 can be reduced.

また、凹部440と対向する位置の内箱750と真空断熱材400との間に充填される介在部材である接着剤(たとえば硬質ウレタンフォーム)の厚さを11mm以下に設定すれば、硬質ウレタンフォームの曲げ弾性率を大きくすることができるので、硬質ウレタンフォームの厚さが小さくなっても強度を向上させることができる。したがって、壁厚さを小さくしても箱体強度を向上できる。
また、背面壁730と、側壁790と、上面壁24(あるいは天井壁740)と、下面壁24(あるいは底面壁780)と、から形成され、前面が開口した断熱箱体において、背面壁730の内面を形成する内箱750と背面壁730の外面を形成する外箱710との間、あるいは、側壁790の内面を形成する内箱750と側壁790の外面を形成する外箱710との間、に設けられた真空断熱材400と、真空断熱材400と内箱750の間に充填あるいは封入あるいは塗布あるいは設けられ、真空断熱材400と内箱750を接着あるいは固着あるいは固定する介在部材と、を備え、介在部材がウレタンフォームであり、介在部材の厚さが11mm以下であるようにしたので、ウレタンフォームの曲げ弾性率を大きくすることができるため、ウレタンフォームの厚さが小さくなっても強度を向上させることができる。したがって、壁厚さを小さくしても箱体強度を向上できる。
Further, if the thickness of the adhesive (for example, hard urethane foam), which is an intervening member filled between the inner box 750 at the position facing the recess 440 and the vacuum heat insulating material 400, is set to 11 mm or less, the hard urethane foam Since the flexural modulus of the urethane foam can be increased, the strength can be improved even if the thickness of the rigid urethane foam is reduced. Therefore, the strength of the box can be improved even if the wall thickness is reduced.
Further, in a heat insulating box formed of a back wall 730, a side wall 790, an upper surface wall 24 (or ceiling wall 740), and a lower surface wall 24 (or bottom wall 780) and having an open front surface, the back wall 730 Between the inner box 750 forming the inner surface and the outer box 710 forming the outer surface of the back wall 730, or between the inner box 750 forming the inner surface of the side wall 790 and the outer box 710 forming the outer surface of the side wall 790. An interposition member that is filled, sealed, coated, or provided between the vacuum heat insulating material 400 and the inner box 750 to bond, fix, or fix the vacuum heat insulating material 400 and the inner box 750. Since the intervening member is urethane foam and the thickness of the intervening member is 11 mm or less, the bending elasticity of the urethane foam can be increased, so that the strength is strong even if the thickness of the urethane foam is reduced. Can be improved. Therefore, the strength of the box can be improved even if the wall thickness is reduced.

また、介在部材(接着剤)として自己接着性を有する硬質ウレタンフォームを使用し、〔(介在部材の厚さ)/(介在部材の厚さ+真空断熱材の厚さ)〕を0.3以下に設定すれば、真空断熱材400と硬質ウレタンフォームを備えた複合部材から形成される壁の複合熱伝導率を小さくできるので、壁厚さを小さくしても断熱性能を向上させることができる。 In addition, a hard urethane foam having self-adhesiveness is used as the intervening member (adhesive), and [(thickness of the intervening member) / (thickness of the intervening member + thickness of the vacuum heat insulating material)] is 0.3 or less. When set to, the composite thermal conductivity of the wall formed of the composite member provided with the vacuum heat insulating material 400 and the rigid urethane foam can be reduced, so that the heat insulating performance can be improved even if the wall thickness is reduced.

また、真空断熱材400と外箱710との間は、ホットメルトあるいは両面テープなどの発泡断熱材以外の第2の介在部材である第2の接着剤で直接接着し、凹部440(あるいは第2の凹部441)と対向する位置の内箱750と真空断熱材400との間に充填される第1の介在部材である接着剤(たとえば硬質ウレタンフォーム)の厚さを11mm以下であって、第1の介在部材の厚さ/(第1の介在部材の厚さ+真空断熱材の厚さ)を0.3以下に設定すれば、真空断熱材400を外箱710に第2の介在部材である第2の接着剤で直接接着した後に、真空断熱材400と内箱750との間に第1の介在部材である接着剤を充填すればよくなるので、組立性が改善する。また、外箱710と真空断熱材400との間には、ホットメルトあるいは両面テープなどの発泡断熱材以外の第2の接着剤で直接接着すれば、壁厚さを低減できる。また、第1の介在部材である硬質ウレタンフォームの曲げ弾性率を大きくすることができるので、硬質ウレタンフォームの厚さが小さくなっても強度を向上させることができる。したがって、壁厚さを小さくしても箱体強度を向上できる。また、真空断熱材400と硬質ウレタンフォームを備えた複合部材から形成される壁の複合熱伝導率を小さくできるので、壁厚さを小さくしても断熱性能を向上させることができる。 Further, the vacuum heat insulating material 400 and the outer box 710 are directly bonded with a second adhesive which is a second intervening member other than the foamed heat insulating material such as hot melt or double-sided tape, and the recess 440 (or the second) is formed. The thickness of the adhesive (for example, hard urethane foam), which is the first intervening member to be filled between the inner box 750 at the position facing the concave portion 441) and the vacuum heat insulating material 400, is 11 mm or less. If the thickness of the intervening member 1 / (thickness of the first intervening member + thickness of the vacuum heat insulating material) is set to 0.3 or less, the vacuum heat insulating material 400 is attached to the outer box 710 with the second intervening member. After directly adhering with a certain second adhesive, the adhesive which is the first intervening member may be filled between the vacuum heat insulating material 400 and the inner box 750, so that the assembling property is improved. Further, the wall thickness can be reduced by directly adhering the outer box 710 and the vacuum heat insulating material 400 with a second adhesive other than the foam heat insulating material such as hot melt or double-sided tape. Further, since the flexural modulus of the rigid urethane foam, which is the first intervening member, can be increased, the strength can be improved even if the thickness of the rigid urethane foam is reduced. Therefore, the strength of the box can be improved even if the wall thickness is reduced. Further, since the composite thermal conductivity of the wall formed of the composite member provided with the vacuum heat insulating material 400 and the rigid urethane foam can be reduced, the heat insulating performance can be improved even if the wall thickness is reduced.

また、真空断熱材400は、少なくとも背面壁730に配置され、背面壁730と側壁790の表面積に対する背面壁730と側壁790に配置される真空断熱材400の配置面積の比率を70%以上にすれば、箱体強度が向上し、箱体の変形量を低減できる。したがって、高強度で信頼性の高い断熱箱体、冷蔵庫、給湯機、機器などが得られる。
すなわち、真空断熱材400は、少なくとも背面壁730に配置され、背面壁730あるいは側壁790に配置された真空断熱材400の背面壁730あるいは側壁790への投影面積の合計が、背面壁730と側壁790を合わせた合計表面積に対して70%以上の割合となるように真空断熱材400を配置したので、箱体強度が向上し、箱体の変形量を低減できる。したがって、高強度で信頼性の高い断熱箱体、冷蔵庫、給湯機、機器などが得られる。
Further, the vacuum heat insulating material 400 is arranged at least on the back wall 730, and the ratio of the arranged area of the vacuum heat insulating material 400 arranged on the back wall 730 and the side wall 790 to the surface area of the back wall 730 and the side wall 790 should be 70% or more. For example, the strength of the box body can be improved and the amount of deformation of the box body can be reduced. Therefore, a high-strength and highly reliable heat-insulating box, refrigerator, water heater, equipment, and the like can be obtained.
That is, the vacuum heat insulating material 400 is arranged at least on the back wall 730, and the total projected area of the vacuum heat insulating material 400 arranged on the back wall 730 or the side wall 790 on the back wall 730 or the side wall 790 is the back wall 730 and the side wall. Since the vacuum heat insulating material 400 is arranged so as to be 70% or more of the total surface area including the 790, the strength of the box body can be improved and the amount of deformation of the box body can be reduced. Therefore, a high-strength and highly reliable heat-insulating box, refrigerator, water heater, equipment, and the like can be obtained.

また、外箱710と内箱750とを有した断熱箱体700において、外箱710と内箱750との間に形成される空間315の容積に対する真空断熱材400の占める容積が40%以上にすれば、箱体強度が向上し、箱体の変形量を低減できる。したがって、高強度で信頼性の高い断熱箱体、冷蔵庫、給湯機、機器などが得られる。 Further, in the heat insulating box body 700 having the outer box 710 and the inner box 750, the volume occupied by the vacuum heat insulating material 400 with respect to the volume of the space 315 formed between the outer box 710 and the inner box 750 is 40% or more. By doing so, the strength of the box body can be improved and the amount of deformation of the box body can be reduced. Therefore, a high-strength and highly reliable heat-insulating box, a refrigerator, a water heater, equipment, and the like can be obtained.

また、側壁790と背面壁730とのコーナー部に凸部450を設けて外箱710と内箱750との間に真空断熱材400を配置したことにより箱体強度が向上するため、真空断熱材400に凹凸などを設ける必要がなく、また、外包材内に封入する芯材を凹凸形状に形成する必要もないので、真空断熱材400に平板状のものを使用可能であるため、真空断熱材400の芯材として、有機繊維または無機繊維などの繊維径芯材を使用可能であり、したがって、真空断熱材400の芯材として、有機繊維または無機繊維などの繊維径芯材を使用可能なので、芯材に流動性を有する粒状のものを使用して凹凸などの複雑な形状に形成する必要がなく、しかも外包材も凹凸を設けるなどの複雑な加工が不要となるため、低コストで取り扱い性が良好で断熱性能が向上する断熱箱体、冷蔵庫、機器が得られる。
また、外箱710と内箱750との間に真空断熱材400を配置し、真空断熱材400と内箱750との間の介在部材である硬質ウレタンフォームの厚さを11mm以下(好ましくは10mmより小さく)したことにより箱体強度が向上するため、真空断熱材400に凹凸などを設ける必要がなく、また、外包材内に封入する芯材を凹凸形状に形成する必要もないので、真空断熱材400に平板状のものを使用可能であるため、真空断熱材400の芯材として、有機繊維または無機繊維などの繊維径芯材を使用可能であり、したがって、真空断熱材400の芯材として、有機繊維または無機繊維などの繊維径芯材を使用可能なので、芯材に流動性を有する粒状のものを使用して凹凸などの複雑な形状に形成する必要がなく、しかも外包材も凹凸を設けるなどの複雑な加工が不要となるため、低コストで取り扱い性が良好で断熱性能が向上する断熱箱体、冷蔵庫、機器が得られる。
Further, since the box body strength is improved by providing the convex portion 450 at the corner between the side wall 790 and the back wall 730 and arranging the vacuum heat insulating material 400 between the outer box 710 and the inner box 750, the vacuum heat insulating material. Since it is not necessary to provide unevenness on the 400 and it is not necessary to form the core material to be sealed in the outer packaging material in an uneven shape, a flat plate-shaped vacuum heat insulating material 400 can be used. Since a fiber diameter core material such as an organic fiber or an inorganic fiber can be used as the core material of the 400, and therefore a fiber diameter core material such as an organic fiber or an inorganic fiber can be used as the core material of the vacuum heat insulating material 400. It is not necessary to use a granular material with fluidity for the core material to form it into a complicated shape such as unevenness, and it is not necessary to perform complicated processing such as providing unevenness on the outer packaging material, so it is easy to handle at low cost. A heat insulating box, a refrigerator, and equipment with good heat insulation performance can be obtained.
Further, the vacuum heat insulating material 400 is arranged between the outer box 710 and the inner box 750, and the thickness of the hard urethane foam which is an intervening member between the vacuum heat insulating material 400 and the inner box 750 is 11 mm or less (preferably 10 mm). Since the box body strength is improved by making it smaller), it is not necessary to provide the vacuum heat insulating material 400 with unevenness or the like, and it is not necessary to form the core material to be sealed in the outer packaging material in an uneven shape. Since a flat plate can be used for the material 400, a fiber diameter core material such as an organic fiber or an inorganic fiber can be used as the core material of the vacuum heat insulating material 400, and therefore, as the core material of the vacuum heat insulating material 400. Since a fiber diameter core material such as an organic fiber or an inorganic fiber can be used, it is not necessary to use a granular material having fluidity for the core material to form a complicated shape such as unevenness, and the outer packaging material also has unevenness. Since complicated processing such as provision is not required, a heat insulating box, a refrigerator, and equipment can be obtained at low cost, which are easy to handle and have improved heat insulating performance.

また、断熱箱体700と、貯蔵品を収納する貯蔵室2、3、4、5、6と、貯蔵室を冷却する冷気を生成する冷却器13と、を備え、凹部440あるいは第2の凹部441が上下方向に設けられており、凹部440あるいは第2の凹部441を冷却器13により生成された冷気が流れる冷気風路760に使用することができるので、凹部の部分の壁厚を薄くできるため貯蔵室内容積を大きくでき、しかも凹部を冷気風路760に使用できるので、別途冷気風路を設ける必要がなくなる。 Further, a heat insulating box 700, storage chambers 2, 3, 4, 5, 6 for storing stored items, and a cooler 13 for generating cold air for cooling the storage chamber are provided, and a recess 440 or a second recess is provided. Since 441 is provided in the vertical direction and the recess 440 or the second recess 441 can be used for the cold air passage 760 through which the cold air generated by the cooler 13 flows, the wall thickness of the recess can be reduced. Therefore, the volume of the storage chamber can be increased, and the recess can be used for the cold air passage 760, so that it is not necessary to separately provide the cold air passage.

また、断熱箱体700と、貯蔵品を収納する貯蔵室2、3、4、5、6と、貯蔵室を冷却する冷気を生成する冷却器13と、を備え、凹部440あるいは第2の凹部441が上下方向に設けられており、凹部440あるいは第2の凹部441をミスト装置200により生成されたミストが流れる風路に使用することができる。したがって、凹部の部分の壁厚を薄くできるため貯蔵室内容積を大きくでき、しかも凹部をミスト風路に使用できるので、別途ミスト風路を設ける必要がなくなる。 Further, a heat insulating box 700, storage chambers 2, 3, 4, 5, 6 for storing stored items, and a cooler 13 for generating cold air for cooling the storage chamber are provided, and a recess 440 or a second recess is provided. The 441 is provided in the vertical direction, and the recess 440 or the second recess 441 can be used for the air passage through which the mist generated by the mist device 200 flows. Therefore, since the wall thickness of the recessed portion can be reduced, the volume of the storage chamber can be increased, and the recessed portion can be used for the mist air passage, so that it is not necessary to separately provide the mist air passage.

また、冷却器13が配置される冷却器室131を備え、凹部440あるいは第2の凹部441が冷却器室131と連通しているので、凹部を冷気風路として使用できる。 Further, since the cooler chamber 131 in which the cooler 13 is arranged is provided and the recess 440 or the second recess 441 communicates with the cooler chamber 131, the recess can be used as a cold air passage.

また、凸部450内をミスト装置200で生成されたミストを供給するミスト風路に使用するようにすれば、凸部が箱体の強度UPになるとともに、別途ミストを供給する風路を設けるが必要がなくなり、低コストで加湿、除菌などが行なえ、意匠性の良い断熱箱体、及びその断熱箱体を有した冷蔵庫などの機器が得られる。 Further, if the inside of the convex portion 450 is used as a mist air passage for supplying the mist generated by the mist device 200, the convex portion increases the strength of the box body and a separate air passage for supplying the mist is provided. Humidification, sterilization, etc. can be performed at low cost, and a heat-insulating box with good design and equipment such as a refrigerator having the heat-insulating box can be obtained.

また、凹部440あるいは第2の凹部441が貯蔵室(たとえば冷蔵室2)の背面に設けられ、貯蔵室内を照射する照明装置900を貯蔵室を形成する上面壁、あるいは下面壁、あるいは側面壁、あるいは仕切壁24に設けるようにしたので、冷気風路760と照明装置900を異なる壁面に設けることができ、同じ壁面に設ける場合に比べて風路の構成、配置位置や照明装置の構成、配置位置の自由度が向上する。 Further, a recess 440 or a second recess 441 is provided on the back surface of the storage chamber (for example, the refrigerating chamber 2), and the lighting device 900 that irradiates the storage chamber is provided on the upper surface wall, the lower surface wall, or the side wall forming the storage chamber. Alternatively, since it is provided on the partition wall 24, the cold air passage 760 and the lighting device 900 can be provided on different wall surfaces, and the air passage configuration, arrangement position, and lighting device configuration and arrangement are as compared with the case where they are provided on the same wall surface. The degree of freedom of position is improved.

また、冷凍サイクルを備え、冷凍サイクルを形成する配管725を凸部450に配置するようにすれば、箱体の強度UPになるとともに、別途配管725を設ける場所が必要がなくなり、低コストで意匠性の良い断熱箱体、冷蔵庫、機器が得られる。 Further, if the refrigerating cycle is provided and the pipe 725 forming the refrigerating cycle is arranged on the convex portion 450, the strength of the box is increased and a place where a separate pipe 725 is provided is not required, so that the design can be performed at low cost. Good insulation boxes, refrigerators and equipment can be obtained.

また、冷凍サイクルと、凹部440あるいは第2の凹部441に前面側(前面開口側)に突出するように形成された突起部910と、を備え、冷凍サイクルを形成する配管725を突起部910に配置するようにすれば、箱体の強度UPになるとともに、別途配管725を設ける場所が必要なくなり、低コストで意匠性の良い断熱箱体、冷蔵庫、機器が得られる。 Further, a refrigerating cycle and a protrusion 910 formed in the recess 440 or the second recess 441 so as to project to the front side (front opening side) are provided, and a pipe 725 forming the refrigeration cycle is provided in the protrusion 910. If they are arranged, the strength of the box body is increased, and a place where a separate pipe 725 is provided is not required, so that a heat insulating box body, a refrigerator, and equipment having a good design can be obtained at low cost.

また、圧縮機駆動制御用リード線あるいは温度制御用のリード線などの制御用リード線あるいは制御用リード線を内部に配置したパイプ720を凸部450に配置するようにすれば、箱体の強度UPになるとともに、別途制御用リード線あるいはパイプ720等を設ける場所が必要なくなり、低コストで意匠性の良い断熱箱体、冷蔵庫、機器が得られる。 Further, if the control lead wire such as the compressor drive control lead wire or the temperature control lead wire or the pipe 720 in which the control lead wire is arranged inside is arranged in the convex portion 450, the strength of the box body can be obtained. Along with the increase, a place where a control lead wire or a pipe 720 or the like is separately provided becomes unnecessary, and a heat insulating box, a refrigerator, and equipment having a good design can be obtained at low cost.

また、冷凍サイクルと、凹部440あるいは第2の凹部441に前面側に突出するように形成された突起部910と、を備え、圧縮機駆動制御用リード線あるいは温度制御用のリード線などの制御用リード線あるいは制御用リード線などを内部に配置するパイプ720等を突起部910に配置するようにすれば、箱体の強度UPになるとともに、別途制御用リード線あるいはパイプ720等を設ける場所が必要なくなり、低コストで意匠性の良い断熱箱体、冷蔵庫、機器が得られる。 Further, a refrigerating cycle and a protrusion 910 formed in the recess 440 or the second recess 441 so as to project to the front side are provided to control a lead wire for compressor drive control or a lead wire for temperature control. By arranging the pipe 720 or the like for arranging the control lead wire or the control lead wire inside in the protrusion 910, the strength of the box body is increased and the control lead wire or the pipe 720 or the like is separately provided. It is possible to obtain a heat insulating box, a refrigerator, and equipment with good design at low cost.

また、外箱710に発泡断熱材の充填口703、704を設け、真空断熱材400が充填口を塞がないように真空断熱材を配置するようにすれば、発泡断熱材を充填する場合に、真空断熱材で発泡断熱材が充填されるのを邪魔されないので、箱体全域に満遍なく充填できる。したがって、高強度で信頼性の高い断熱箱体、冷蔵庫、機器などが得られる。 Further, if the outer box 710 is provided with the foam heat insulating material filling ports 703 and 704 and the vacuum heat insulating material is arranged so that the vacuum heat insulating material 400 does not block the filling port, the foam heat insulating material can be filled. Since the vacuum heat insulating material does not prevent the foam heat insulating material from being filled, the entire box body can be filled evenly. Therefore, a high-strength and highly reliable heat-insulating box, refrigerator, equipment, and the like can be obtained.

また、外箱710と内箱750とにより形成され、天井壁740、背面壁730、側壁790、底面壁780を有する断熱箱体700の外郭と、断熱箱体700に設けられ、前面に開口部を有する貯蔵室2、3、4、5、6と、貯蔵室の背面壁730に形成され、貯蔵室の背面壁の幅方向略中央位置に設けられた凹部440(あるいは第2の凹部441)と、凹部440と対向する位置の内箱750と外箱710との間に配置され、少なくとも幅方向において凹部440の幅よりも大きな平板状の真空断熱材400と、凹部440と対向する位置の内箱750と真空断熱材400との間に充填される介在部材である発泡断熱材(たとえば硬質ウレタンフォーム)と、を備え、真空断熱材400の曲げ弾性率が20MPa以上であり、凹部440と対向する位置の介在部材である発泡断熱材の厚さが11mm以下であって、発泡断熱材の厚さ/(発泡断熱材の厚さ+真空断熱材の厚さ)が0.3以下、すなわち、下記(1)(2)(3)の条件のうち少なくとも1つの条件
(1)真空断熱材の曲げ弾性率>=20MPa、
(2)発泡断熱材の厚さ/(発泡断熱材の厚さ+真空断熱材の厚さ)<=0.3、
(3)発泡断熱材の厚さ<=11mm(好ましくは発泡断熱材の厚さ<10mm)、
を満足すれば、箱体の壁厚さを低減でき、しかも箱体強度、断熱性能とも向上できるので、室(たとえば貯蔵室)内の容積が大きく、高強度で断熱性能の良好な断熱箱体、冷蔵庫、機器が得られる。また、硬質ウレタンフォームの曲げ弾性率を大きくすることができるので、硬質ウレタンフォームの厚さが小さくなっても強度を向上させることができる。したがって、壁厚さを小さくしても箱体強度を向上できる。また、真空断熱材400と硬質ウレタンフォームを備えた複合部材から形成される壁の複合熱伝導率を小さくできるので、壁厚さを小さくしても断熱性能を向上させることができる。
また、外箱710と内箱750とにより形成され、天井壁740、背面壁730、側壁790、底面壁780を有する断熱箱体700の外郭と、断熱箱体700に設けられ、前面に開口部を有する貯蔵室2、3、4、5、6と、断熱箱体700の背面壁730の外面に設けられ、背面壁730の外面の幅方向端部あるいは上下方向端部に設けられた注入口703、704と、外箱710と内箱750とから形成される空間315内に注入口から注入されるウレタン等の発泡断熱材と、を備え、真空断熱材400の曲げ弾性率が20MPa以上であり、介在部材である発泡断熱材の厚さが11mm以下であって、発泡断熱材の厚さ/(発泡断熱材の厚さ+真空断熱材の厚さ)が0.3以下、すなわち、下記(1)(2)(3)の条件のうち少なくとも1つの条件
(1)真空断熱材の曲げ弾性率>=20MPa、
(2)発泡断熱材の厚さ/(発泡断熱材の厚さ+真空断熱材の厚さ)<=0.3、
(3)発泡断熱材の厚さ<=11mm(好ましくは発泡断熱材の厚さ<10mm)、
を満足し、
真空断熱材400の注入口703、704と対向する部位には、注入口703、704と干渉しないように切欠き部33が設けるようにすれば、箱体の壁厚さを低減でき、しかも箱体強度、断熱性能とも向上できるので、室(たとえば貯蔵室)内の容積が大きく、高強度で断熱性能の良好な断熱箱体、冷蔵庫、機器が得られる。また、硬質ウレタンフォームの曲げ弾性率を大きくすることができるので、硬質ウレタンフォームの厚さが小さくなっても強度を向上させることができる。したがって、壁厚さを小さくしても箱体強度を向上できる。また、真空断熱材400と硬質ウレタンフォームを備えた複合部材から形成される壁の複合熱伝導率を小さくできるので、壁厚さを小さくしても断熱性能を向上させることができる。また、真空断熱材400を注入口703、704と干渉せずに被覆面積を大きくで設けることができるので、断熱性能の大きな断熱箱体、冷蔵庫、機器が得られる。
また、外箱710と内箱750とにより形成され、天井壁740、背面壁730、側壁790、底面壁780を有する断熱箱体700の外郭と、断熱箱体700に設けられ、前面に開口部を有する貯蔵室2、3、4、5、6と、断熱箱体700の背面壁730の外面に設けられ、背面壁730の外面の幅方向端部あるいは上下方向端部に設けられた注入口703、704と、外箱710と内箱750とから形成される空間315内に注入口から注入されるウレタン等の発泡断熱材と、を備え、真空断熱材400の曲げ弾性率が20MPa以上であり、介在部材である発泡断熱材の厚さを11mm以下(好ましくは発泡断熱材の厚さが10mm未満)、発泡断熱材の密度を60Kg/mより大きくしているので、断熱性能および壁強度を確保しながら壁厚さを小さくできる。
また、真空断熱材400の注入口703、704と対向する部位には、注入口703、704と干渉しないように切欠き部33を設けるようにすれば、箱体の壁厚さを低減でき、しかも箱体強度、断熱性能とも向上できるので、室(たとえば貯蔵室)内の容積が大きく、高強度で断熱性能の良好な断熱箱体、冷蔵庫、機器が得られる。また、硬質ウレタンフォームの曲げ弾性率を大きくすることができるので、硬質ウレタンフォームの厚さが小さくなっても強度を向上させることができる。したがって、壁厚さを小さくしても箱体強度を向上できる。また、真空断熱材400と硬質ウレタンフォームを備えた複合部材から形成される壁の複合熱伝導率を小さくできるので、壁厚さを小さくしても断熱性能を向上させることができる。また、真空断熱材400を注入口703、704と干渉せずに被覆面積を大きくで設けることができるので、断熱性能の大きな断熱箱体、冷蔵庫、機器が得られる。ここで、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度は大きくなりすぎると、(1)ウレタンの注入量増加によるコストUP、(2)ウレタンの注入圧力増加による箱体等からのウレタン漏れの発生、(3)ウレタン発泡時の発泡圧力増加による箱体変形抑制用金型や箱体押さえ部材などとウレタンとの密着力、接着力増加のため箱体変形抑制用金型や箱体押さえ部材などが箱体から抜けにくくなる(箱体から取り外しにくくなる)、(4)ウレタンの密度増による断熱性能の急激な悪化など、品質悪化、性能低下、コストUPなどの問題が発生するので、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度(発泡断熱材の場合は発泡後の密度)は100kg/m以下(好ましくは90kg/m以下)にした方が良い。
Further, it is formed by the outer box 710 and the inner box 750, and is provided on the outer shell of the heat insulating box 700 having a ceiling wall 740, a back wall 730, a side wall 790, and a bottom wall 780, and an opening on the front surface of the heat insulating box 700. A recess 440 (or a second recess 441) formed in the storage chambers 2, 3, 4, 5, 6 and the back wall 730 of the storage chamber and provided at a substantially central position in the width direction of the back wall of the storage chamber. The flat vacuum heat insulating material 400, which is arranged between the inner box 750 and the outer box 710 at a position facing the recess 440 and is larger than the width of the recess 440 at least in the width direction, and the position facing the recess 440. A foam heat insulating material (for example, hard urethane foam) which is an intervening member filled between the inner box 750 and the vacuum heat insulating material 400 is provided, and the bending elastic coefficient of the vacuum heat insulating material 400 is 20 MPa or more, and the recess 440 The thickness of the foam heat insulating material, which is the intervening member at the opposite position, is 11 mm or less, and the thickness of the foam heat insulating material / (thickness of the foam heat insulating material + the thickness of the vacuum heat insulating material) is 0.3 or less, that is. , At least one of the following conditions (1), (2) and (3) (1) Bending elastic coefficient of vacuum heat insulating material> = 20 MPa,
(2) Thickness of foam heat insulating material / (thickness of foam heat insulating material + thickness of vacuum heat insulating material) <= 0.3,
(3) Thickness of foam insulation material <= 11 mm (preferably thickness of foam insulation material <10 mm),
If the above is satisfied, the wall thickness of the box body can be reduced, and both the box body strength and the heat insulating performance can be improved. Therefore, the volume inside the room (for example, the storage room) is large, and the heat insulating box body has high strength and good heat insulating performance. , Refrigerator, equipment can be obtained. Further, since the flexural modulus of the rigid urethane foam can be increased, the strength can be improved even if the thickness of the rigid urethane foam is reduced. Therefore, the strength of the box can be improved even if the wall thickness is reduced. Further, since the composite thermal conductivity of the wall formed of the composite member provided with the vacuum heat insulating material 400 and the rigid urethane foam can be reduced, the heat insulating performance can be improved even if the wall thickness is reduced.
Further, it is formed by the outer box 710 and the inner box 750, and is provided on the outer shell of the heat insulating box 700 having a ceiling wall 740, a back wall 730, a side wall 790, and a bottom wall 780, and an opening on the front surface of the heat insulating box 700. Storage chambers 2, 3, 4, 5, 6 provided on the outer surface of the back wall 730 of the heat insulating box body 700, and an injection port provided on the widthwise end or the vertical end of the outer surface of the back wall 730. The vacuum heat insulating material 400 is provided with a foam heat insulating material such as urethane injected from an injection port into a space 315 formed of the outer box 710 and the inner box 750, and the bending elastic modulus of the vacuum heat insulating material 400 is 20 MPa or more. Yes, the thickness of the foam heat insulating material which is an intervening member is 11 mm or less, and the thickness of the foam heat insulating material / (thickness of the foam heat insulating material + the thickness of the vacuum heat insulating material) is 0.3 or less, that is, the following. (1) At least one of the conditions (2) and (3) (1) Flexural modulus of the vacuum heat insulating material> = 20 MPa,
(2) Thickness of foam heat insulating material / (thickness of foam heat insulating material + thickness of vacuum heat insulating material) <= 0.3,
(3) Thickness of foam insulation material <= 11 mm (preferably thickness of foam insulation material <10 mm),
Satisfied,
If the notch 33 is provided at the portion of the vacuum heat insulating material 400 facing the injection ports 703 and 704 so as not to interfere with the injection ports 703 and 704, the wall thickness of the box body can be reduced, and the box body can be reduced. Since both the body strength and the heat insulating performance can be improved, a heat insulating box, a refrigerator, and equipment having a large volume in the room (for example, a storage room), high strength, and good heat insulating performance can be obtained. Further, since the flexural modulus of the rigid urethane foam can be increased, the strength can be improved even if the thickness of the rigid urethane foam is reduced. Therefore, the strength of the box can be improved even if the wall thickness is reduced. Further, since the composite thermal conductivity of the wall formed of the composite member provided with the vacuum heat insulating material 400 and the rigid urethane foam can be reduced, the heat insulating performance can be improved even if the wall thickness is reduced. Further, since the vacuum heat insulating material 400 can be provided with a large covering area without interfering with the injection ports 703 and 704, a heat insulating box, a refrigerator, and an apparatus having high heat insulating performance can be obtained.
Further, it is formed by an outer box 710 and an inner box 750, and is provided on the outer shell of the heat insulating box 700 having a ceiling wall 740, a back wall 730, a side wall 790, and a bottom wall 780, and an opening on the front surface of the heat insulating box 700. 2, 3, 4, 5, 6 and an injection port provided on the outer surface of the back wall 730 of the heat insulating box 700, and provided at the widthwise end or the vertical end of the outer surface of the back wall 730. The vacuum heat insulating material 400 is provided with a foam heat insulating material such as urethane injected from an injection port into a space 315 formed of the outer box 710 and the inner box 750, and the bending elasticity of the vacuum heat insulating material 400 is 20 MPa or more. Yes, the thickness of the foam heat insulating material as an intervening member is 11 mm or less (preferably the thickness of the foam heat insulating material is less than 10 mm), and the density of the foam heat insulating material is larger than 60 kg / m 3, so that the heat insulating performance and the wall The wall thickness can be reduced while ensuring strength.
Further, if the notch 33 is provided at the portion of the vacuum heat insulating material 400 facing the injection ports 703 and 704 so as not to interfere with the injection ports 703 and 704, the wall thickness of the box body can be reduced. Moreover, since both the box body strength and the heat insulating performance can be improved, a heat insulating box body, a refrigerator, and equipment having a large volume in the room (for example, a storage room), high strength, and good heat insulating performance can be obtained. Further, since the flexural modulus of the rigid urethane foam can be increased, the strength can be improved even if the thickness of the rigid urethane foam is reduced. Therefore, the strength of the box can be improved even if the wall thickness is reduced. Further, since the composite thermal conductivity of the wall formed of the composite member provided with the vacuum heat insulating material 400 and the rigid urethane foam can be reduced, the heat insulating performance can be improved even if the wall thickness is reduced. Further, since the vacuum heat insulating material 400 can be provided with a large covering area without interfering with the injection ports 703 and 704, a heat insulating box, a refrigerator, and an apparatus having high heat insulating performance can be obtained. Here, if the density of the heat insulating material (for example, rigid urethane foam) such as urethane, which is an intervening member, becomes too large, (1) the cost increases due to the increase in the injection amount of urethane, (2) the box body due to the increase in the injection pressure of urethane, etc. Urethane leakage from urethane, (3) Mold for suppressing box deformation due to increase in foaming pressure during urethane foaming, mold for suppressing box deformation due to increased adhesion and adhesion between urethane and box holding members, etc. There are problems such as quality deterioration, performance deterioration, cost up, etc., such as difficulty in removing the box body holding member from the box body (difficult to remove from the box body), (4) rapid deterioration of heat insulation performance due to increased urethane density. Since it is generated, the density of the heat insulating material (for example, hard urethane foam) such as urethane which is an intervening member (in the case of the foamed heat insulating material, the density after foaming) is set to 100 kg / m 3 or less (preferably 90 kg / m 3 or less). Better.

また、真空断熱材400は、少なくとも背面壁730内に配置され、背面壁730と側壁790の合計の表面積に対する背面壁730と側壁790に配置される真空断熱材400の配置面積の比率を70%以上にすれば、箱体変形量が小さく、高強度で剛性の高く、断熱性能が良好な断熱箱体、冷蔵庫、機器が得られる。
また、外箱710と内箱750とから形成され、前面に開口部を有する断熱箱体と、外箱710と内箱750との間の空間315内の外箱内面に設けられた(外箱内表面に貼り付けられた)真空断熱材400と、断熱箱体の背面壁730の外面に設けられ、背面壁730の外面の幅方向端部あるいは上下方向端部に設けられた注入口703、704と、外箱710と内箱750とから形成される空間315内に注入口から注入されるウレタン等の発泡断熱材と、備え、注入口703、704と対向する部位には、注入口703、704が真空断熱材400と干渉しないように切欠き部33が設けられているので、断熱箱体あるいは断熱箱体の背面壁の外表面積に対する真空断熱材の配置面積の比率(被覆率)を大きくすることができ、また、箱体を形成する外箱と内箱との間の空間の容積に対する真空断熱材の容積の割合(真空断熱材の充填率)も大きくできるので、冷蔵庫あるいは断熱箱体の断熱性能を向上させることが可能となる。ここで、切り欠き部33の大きさや形状は、注入口703、704が真空断熱材400と干渉しなければ問題ないが、注入口703、704の大きさと略同等かそれ以上の切欠きや開口が好ましい。
また、充填口(注入口)703、704の幅方向配置位置を、箱体700の左端あるいは右端からの距離(幅方向内側端部位置)をY1、側壁790の厚さ(壁厚さ)をT1mm、充填口の幅方向長さ(円の場合は直径)をr1としたとき、注入口703、704の幅方向の所定距離(幅方向内側端部位置)Y1を、T1+r1以下にすれば、充填口(注入口)703、704からウレタンなどの充填材を充填したときに側壁790内にウレタンなどの充填材がスムーズに流れるようになる。
また、充填口(注入口)703、704の上下方向配置位置を、箱体700の上下方向上端あるいは下端あるいは機械室1Aの端部からの距離(上下方向内側端部位置)をY2、天井壁あるいは底面壁あるいは機械室と貯蔵室間を仕切る断熱仕切壁の厚さ(壁厚さ)をT2mm、充填口の上下方向長さ(円の場合は直径)をr2としたとき、注入口703、704の上下方向の所定距離(上下方向内側端部位置)Y2を、T2+r2以下にすれば、充填口(注入口)703、704からウレタンなどの充填材を充填したときに、天井壁内あるいは底面壁内あるいは仕切壁内にウレタンなどの充填材がスムーズに流れるようになる。
Further, the vacuum heat insulating material 400 is arranged at least in the back wall 730, and the ratio of the arranged area of the vacuum heat insulating material 400 arranged on the back wall 730 and the side wall 790 to the total surface area of the back wall 730 and the side wall 790 is 70%. As described above, a heat insulating box body, a refrigerator, and an apparatus having a small amount of deformation of the box body, high strength, high rigidity, and good heat insulating performance can be obtained.
Further, the heat insulating box body formed of the outer box 710 and the inner box 750 and having an opening on the front surface is provided on the inner surface of the outer box in the space 315 between the outer box 710 and the inner box 750 (outer box). The vacuum heat insulating material 400 (attached to the inner surface) and the injection port 703 provided on the outer surface of the back wall 730 of the heat insulating box and provided on the widthwise end or the vertical end of the outer surface of the back wall 730. A foam insulating material such as urethane injected from the injection port into the space 315 formed by the 704, the outer box 710, and the inner box 750 is provided, and the injection port 703 is provided at a portion facing the injection ports 703 and 704. Since the notch 33 is provided so that the 704 does not interfere with the vacuum heat insulating material 400, the ratio (coverage ratio) of the arrangement area of the vacuum heat insulating material to the outer surface area of the heat insulating box or the back wall of the heat insulating box can be determined. It can be increased, and the ratio of the volume of the vacuum heat insulating material to the volume of the space between the outer box and the inner box forming the box body (filling rate of the vacuum heat insulating material) can also be increased, so that the refrigerator or the heat insulating box can be increased. It is possible to improve the heat insulating performance of the body. Here, there is no problem in the size and shape of the notch 33 as long as the injection ports 703 and 704 do not interfere with the vacuum heat insulating material 400, but there are notches and openings that are substantially equal to or larger than the size of the injection ports 703 and 704. Is preferable.
Further, the filling ports (injection ports) 703 and 704 are arranged in the width direction, the distance from the left end or the right end of the box body 700 (inner end position in the width direction) is Y1, and the thickness of the side wall 790 (wall thickness) is set. When T1 mm and the width direction length (diameter in the case of a circle) of the filling port are r1, if the predetermined distance (width direction inner end position) Y1 in the width direction of the injection ports 703 and 704 is set to T1 + r1 or less. When a filler such as urethane is filled from the filling ports (injection ports) 703 and 704, the filler such as urethane flows smoothly into the side wall 790.
Further, the vertical arrangement positions of the filling ports (injection ports) 703 and 704 are set to Y2, the distance from the upper or lower end of the box body 700 in the vertical direction or the end of the machine chamber 1A (inner end position in the vertical direction), and the ceiling wall. Alternatively, when the thickness (wall thickness) of the bottom wall or the heat insulating partition wall separating the machine room and the storage room is T2 mm and the vertical length of the filling port (diameter in the case of a circle) is r2, the injection port 703, If the predetermined distance (position of the inner end in the vertical direction) Y2 of the 704 is set to T2 + r2 or less, the inside of the ceiling wall or the bottom surface when a filler such as urethane is filled from the filling ports (injection ports) 703 and 704. Fillers such as urethane will flow smoothly into the walls or partition walls.

また、断熱箱体外郭を形成する外箱710と内箱750との間の空間315の容積に対する真空断熱材400の占める容積の割合を40%以上に設定すれば、箱体変形量が小さく、高強度で剛性の高く、断熱性能が良好な断熱箱体、冷蔵庫、機器が得られる。
また、外箱710と内箱750とから形成され、前面に開口部を有する断熱箱体と、外箱710と内箱750との間の空間315内の外箱内面に設けられた(外箱内表面に貼り付けられた)真空断熱材400と、断熱箱体の背面壁730の外面に設けられ、背面壁730の外面の幅方向端部あるいは上下方向端部に設けられた注入口703、704と、外箱710と内箱750とから形成される空間315内に注入口から注入されるウレタン等の発泡断熱材と、備え、前記真空断熱材には、注入口703、704と対向する部位に、注入口703、704と干渉しないように切り欠きや開口などの切欠き部33が設けられており、前記真空断熱材は、少なくとも背面壁730内に配置され、背面壁730と側壁790の合計の表面積に対する背面壁730と側壁790に配置される真空断熱材400の配置面積の比率を70%以上にすれば、箱体変形量が小さく、高強度で剛性の高く、断熱性能が良好な断熱箱体、冷蔵庫、機器が得られる。また、真空断熱材400を注入口703、704と干渉せずに被覆面積を大きくで設けることができるので、断熱性能の大きな断熱箱体、冷蔵庫、機器が得られる。
また、外箱710と内箱750とから形成され、前面に開口部を有する断熱箱体と、外箱710と内箱750との間の空間315内の外箱内面に設けられた(外箱内表面に貼り付けられた)真空断熱材400と、断熱箱体の背面壁730の外面に設けられ、背面壁730の外面の幅方向端部あるいは上下方向端部に設けられた注入口703、704と、外箱710と内箱750とから形成される空間315内に注入口から注入されるウレタン等の発泡断熱材と、備え、前記真空断熱材には、注入口703、704と対向する部位に、注入口703、704と干渉しないように切り欠きや開口などの切欠き部33が設けられており、断熱箱体外郭を形成する外箱710と内箱750との間の空間315の容積に対する真空断熱材400の占める容積の割合を40%以上に設定すれば、箱体変形量が小さく、高強度で剛性の高く、断熱性能が良好な断熱箱体、冷蔵庫、機器が得られる。また、真空断熱材400を注入口703、704と干渉せずに被覆面積を大きくで設けることができるので、断熱性能の大きな断熱箱体、冷蔵庫、機器が得られる。また、真空断熱材400を注入口703、704と干渉せずに被覆面積を大きくで設けることができるので、断熱性能の大きな断熱箱体、冷蔵庫、機器が得られる。
Further, if the ratio of the volume occupied by the vacuum heat insulating material 400 to the volume of the space 315 between the outer box 710 and the inner box 750 forming the outer shell of the heat insulating box is set to 40% or more, the amount of deformation of the box is small. A heat insulating box, refrigerator, and equipment with high strength, high rigidity, and good heat insulating performance can be obtained.
Further, the heat insulating box body formed of the outer box 710 and the inner box 750 and having an opening on the front surface is provided on the inner surface of the outer box in the space 315 between the outer box 710 and the inner box 750 (outer box). The vacuum heat insulating material 400 (attached to the inner surface) and the injection port 703 provided on the outer surface of the back wall 730 of the heat insulating box and provided on the widthwise end or the vertical end of the outer surface of the back wall 730, The space 315 formed by the outer box 710 and the inner box 750 is provided with a foam heat insulating material such as urethane injected from the injection port, and the vacuum heat insulating material faces the injection ports 703 and 704. A notch 33 such as a notch or an opening is provided at the site so as not to interfere with the injection ports 703 and 704, and the vacuum heat insulating material is arranged at least in the back wall 730, and the back wall 730 and the side wall 790. If the ratio of the arranged area of the vacuum heat insulating material 400 arranged on the back wall 730 and the side wall 790 to the total surface area of the box is 70% or more, the amount of deformation of the box is small, the strength is high, the rigidity is high, and the heat insulating performance is good. The heat insulating box, refrigerator, and equipment can be obtained. Further, since the vacuum heat insulating material 400 can be provided with a large covering area without interfering with the injection ports 703 and 704, a heat insulating box, a refrigerator, and an apparatus having high heat insulating performance can be obtained.
Further, it is formed from the outer box 710 and the inner box 750, and is provided on the inner surface of the outer box in the space 315 between the outer box 710 and the inner box 750 and the heat insulating box body having an opening on the front surface (outer box). The vacuum heat insulating material 400 (attached to the inner surface) and the injection port 703 provided on the outer surface of the back wall 730 of the heat insulating box and provided at the widthwise end or the vertical end of the outer surface of the back wall 730, The space 315 formed by the outer box 710 and the inner box 750 is provided with a foam heat insulating material such as urethane injected from the injection port, and the vacuum heat insulating material faces the injection ports 703 and 704. A notch 33 such as a notch or an opening is provided at the site so as not to interfere with the injection ports 703 and 704, and the space 315 between the outer box 710 and the inner box 750 forming the outer shell of the heat insulating box is provided. If the ratio of the volume occupied by the vacuum heat insulating material 400 to the volume is set to 40% or more, a heat insulating box, a refrigerator, and equipment having a small amount of deformation of the box, high strength, high rigidity, and good heat insulating performance can be obtained. Further, since the vacuum heat insulating material 400 can be provided with a large covering area without interfering with the injection ports 703 and 704, a heat insulating box, a refrigerator, and an apparatus having high heat insulating performance can be obtained. Further, since the vacuum heat insulating material 400 can be provided with a large covering area without interfering with the injection ports 703 and 704, a heat insulating box, a refrigerator, and an apparatus having high heat insulating performance can be obtained.

また、本実施の形態では、外箱710と内箱750とにより形成され、天面壁740、背面壁730、側壁790、底面壁780を有する断熱箱体700の外郭と、断熱箱体700の外郭の内部が仕切壁24により区画されて形成された前面に開口部を有する貯蔵室2、3、4、5、6と、貯蔵室に収納され、貯蔵室を形成する側壁790に設けられたレール部材810を介して引き出される引き出し式のケース520と、少なくとも貯蔵室の側壁790を形成する内箱750と外箱710との間に配設された真空断熱材400と、側壁790のレール部材810が取り付けられるレール取り付け部755の内箱750と真空断熱材400との間に充填される介在部材である発泡断熱材と、を備え、レール取り付け部755と対向する位置の発泡断熱材の厚さを11mm以下(たとえば10mmより小さい方が良く)にすれば、壁厚さを薄くできる。また、介在部材である発泡断熱材として硬質ウレタンフォームを使用すれば、曲げ弾性率が向上し、箱体の強度が増加し、レール取り付け部755の保持強度あるいは固定強度も向上する。 Further, in the present embodiment, the outer shell of the heat insulating box 700 formed by the outer box 710 and the inner box 750 and having the top wall 740, the back wall 730, the side wall 790, and the bottom wall 780, and the outer shell of the heat insulating box 700. The rails provided on the storage chambers 2, 3, 4, 5, 6 having an opening on the front surface formed by partitioning the inside of the storage chamber 24 and the side wall 790 which is housed in the storage chamber and forms the storage chamber. A pull-out case 520 drawn out via the member 810, a vacuum heat insulating material 400 disposed between the inner box 750 and the outer box 710 forming at least the side wall 790 of the storage chamber, and the rail member 810 of the side wall 790. The foam heat insulating material, which is an intervening member filled between the inner box 750 of the rail mounting portion 755 and the vacuum heat insulating material 400, is provided, and the thickness of the foam heat insulating material at a position facing the rail mounting portion 755. The wall thickness can be reduced by setting the value to 11 mm or less (for example, it is better to be smaller than 10 mm). Further, if a rigid urethane foam is used as the foam heat insulating material as an intervening member, the flexural modulus is improved, the strength of the box body is increased, and the holding strength or fixing strength of the rail mounting portion 755 is also improved.

また、外箱710と内箱750とにより形成され、天面壁740、背面壁730、側壁790、底面壁780を有する断熱箱体700の外郭と、断熱箱体700の外郭の内部が仕切壁24により区画されて形成された前面に開口部を有する貯蔵室2、3、4、5、6と、貯蔵室に収納され、貯蔵室を形成する側壁790に設けられたレール部材810を介して引き出される引き出し式のケース520と、少なくとも貯蔵室の側壁790を形成する内箱750と外箱710との間に配設された真空断熱材400と、側壁790のレール部材810が取り付けられるレール取り付け部755の内箱750と真空断熱材400との間に充填あるいは塗布される介在部材である発泡断熱材と、を備え、レール取り付け部755と対向する位置の介在部材である発泡断熱材の厚さが11mm以下(たとえば10mmより小さい方が良い)であり、レールを取り付けるレール部(レール取り付け部)755の内箱750と真空断熱材400との間に充填あるいは塗布される介在部材である発泡断熱材の密度を60kg/mよりも大きくしている。したがって、介在部材の密度が60kg/mよりも大きいためレールなどを固定するためのネジあるいはネジ固定部の保持強度あるいは固定強度が増加しレール取り付け部755近傍の内箱750が変形したりしないので引き出し扉やケースなどの引き出しがスムーズに行える。また、ネジなどの固定部材が取り付けられるレール取り付け部755が破損することもなくなり、信頼性が向上する。また、発泡断熱材の厚さを11mm以下(好ましくは10mmより小さく)にすれば、壁厚さを薄くできるとともに、介在部材である発泡断熱材として硬質ウレタンフォームを使用すれば、曲げ弾性率が向上し、箱体の強度が増加する。
ここで、断熱箱体あるいは冷蔵庫あるいは機器などの側壁790あるいは背面壁730あるいは天井壁740あるいは底面壁730あるいは仕切壁24の壁厚さは薄い方が庫内の貯蔵品収納容積が大きくできるので、壁厚さは40mm以下が良く、また、壁厚さが薄すぎると強度低下、断熱性能低下、真空断熱材の空間の減少による組み立て性の悪化などの問題が発生する恐れがあるので、壁厚さは20mm以上程度が良い。したがって、側壁790あるいは背面壁730あるいは天井壁740あるいは底面壁730あるいは仕切壁24などの断熱箱体の壁厚さあるいは冷蔵庫の壁厚さあるいは機器の壁厚さは、20mm以上40mm以下の範囲内にした方が良い。
Further, the outer shell of the heat insulating box 700 formed by the outer box 710 and the inner box 750 and having the top wall 740, the back wall 730, the side wall 790, and the bottom wall 780, and the inside of the heat insulating box 700 outer shell are partition walls 24. It is pulled out through the storage chambers 2, 3, 4, 5, 6 having an opening on the front surface and the rail members 810 which are housed in the storage chamber and are provided on the side wall 790 which forms the storage chamber. The pull-out case 520, the vacuum heat insulating material 400 disposed between the inner box 750 and the outer box 710 forming at least the side wall 790 of the storage chamber, and the rail mounting portion to which the rail member 810 of the side wall 790 is attached. The foam heat insulating material, which is an intervening member to be filled or applied between the inner box 750 of the 755 and the vacuum heat insulating material 400, is provided, and the thickness of the foam heat insulating material, which is an intervening member at a position facing the rail mounting portion 755. Is 11 mm or less (for example, it is better to be smaller than 10 mm), and foam insulation is an intervening member that is filled or applied between the inner box 750 of the rail portion (rail attachment portion) 755 to which the rail is attached and the vacuum heat insulating material 400. The density of the material is made larger than 60 kg / m 3. Therefore, since the density of the intervening member is larger than 60 kg / m 3 , the holding strength or fixing strength of the screw for fixing the rail or the like or the screw fixing portion is increased, and the inner box 750 near the rail mounting portion 755 is not deformed. Therefore, drawers such as drawer doors and cases can be pulled out smoothly. Further, the rail mounting portion 755 to which the fixing member such as a screw is mounted is not damaged, and the reliability is improved. Further, if the thickness of the foamed heat insulating material is 11 mm or less (preferably smaller than 10 mm), the wall thickness can be reduced, and if hard urethane foam is used as the foamed heat insulating material as an intervening member, the flexural modulus can be increased. Improves and increases the strength of the box.
Here, the thinner the wall thickness of the side wall 790, the back wall 730, the ceiling wall 740, the bottom wall 730, or the partition wall 24 of the heat insulating box, the refrigerator, or the equipment, the larger the storage volume of the stored items in the refrigerator can be. The wall thickness should be 40 mm or less, and if the wall thickness is too thin, problems such as deterioration of strength, deterioration of heat insulation performance, and deterioration of assembling property due to reduction of space of vacuum heat insulating material may occur. The diameter should be about 20 mm or more. Therefore, the wall thickness of the heat insulating box such as the side wall 790, the back wall 730, the ceiling wall 740, the bottom wall 730, or the partition wall 24, the wall thickness of the refrigerator, or the wall thickness of the device is within the range of 20 mm or more and 40 mm or less. It is better to set it to.

また、本実施の形態では、外箱710と内箱750とにより形成され、天面壁740、背面壁730、側壁790、底面壁780を有する断熱箱体700の外郭と、断熱箱体700の外郭の内部が仕切壁24により区画されて形成された前面に開口部を有する貯蔵室2、3、4、5、6と、貯蔵室に収納され、貯蔵室の底面あるいは上面を形成する仕切壁(貯蔵室と貯蔵室との間の仕切壁24、底面壁780、天井壁740を含む)に設けられたレール部材810を介して引き出される引き出し式のケース520と、レール部材810が設けられた仕切壁(貯蔵室と貯蔵室との間の仕切壁24、底面壁780、天井壁740を含む)内に配設された真空断熱材400と、レール部材810と対向する位置の仕切壁(貯蔵室と貯蔵室との間の仕切壁24、底面壁780、天井壁740を含む)において、仕切壁(貯蔵室と貯蔵室との間の仕切壁24、底面壁780、天井壁740を含む)を形成する外郭部材と真空断熱材400との間に充填あるいは塗布あるいは配置される介在部材である断熱材と、を備え、レール部材810と対向する仕切壁の位置における介在部材である断熱材の厚さが11mm以下(たとえば10mmより小さい)であり、外郭部材と真空断熱材400との間に充填あるいは塗布あるいは配置される介在部材である断熱材の密度を60kg/mよりも大きくしている。したがって、介在部材の密度が60kg/mよりも大きいためレールなどを固定するためのネジあるいはネジ固定部の保持強度あるいは固定強度が増加し、仕切壁(貯蔵室と貯蔵室との間の仕切壁24、底面壁780、天井壁740を含む)のレール取り付け部近傍の外郭部材が変形したりしないので引き出し扉やケースなどの引き出しがスムーズに行える。また、ネジなどの固定部材が取り付けられる仕切壁が破損することもなくなり、信頼性が向上する。また、介在部材である断熱材の厚さを11mm以下(たとえば10mmよりも小さく)にすれば、壁厚さを薄くできるとともに介在部材である断熱材として硬質ウレタンフォームを使用すれば、曲げ弾性率が向上し、仕切壁、箱体の強度が増加する。 Further, in the present embodiment, the outer shell of the heat insulating box 700 formed by the outer box 710 and the inner box 750 and having the top wall 740, the back wall 730, the side wall 790, and the bottom wall 780, and the outer shell of the heat insulating box 700. Storage chambers 2, 3, 4, 5, 6 having openings on the front surface formed by partitioning the inside of the partition wall 24, and partition walls (2, 3, 4, 5, 6) that are housed in the storage chamber and form the bottom surface or the upper surface of the storage chamber. A pull-out case 520 drawn out via a rail member 810 provided on a partition wall 24, a bottom wall 780, and a ceiling wall 740 between the storage chamber and the storage chamber, and a partition provided with the rail member 810. The vacuum heat insulating material 400 arranged in the wall (including the partition wall 24 between the storage chamber and the storage chamber, the bottom wall 780, and the ceiling wall 740) and the partition wall (storage chamber) at a position facing the rail member 810. In the partition wall 24 between the storage room and the storage room, the bottom wall 780, and the ceiling wall 740), the partition wall (including the partition wall 24, the bottom wall 780, and the ceiling wall 740 between the storage room and the storage room) is provided. The heat insulating material which is an intervening member to be filled, coated or arranged between the outer member to be formed and the vacuum heat insulating material 400 is provided, and the thickness of the heat insulating material which is the intervening member at the position of the partition wall facing the rail member 810. The diameter is 11 mm or less (for example, smaller than 10 mm), and the density of the heat insulating material, which is an intervening member filled, coated, or placed between the outer member and the vacuum heat insulating material 400, is made larger than 60 kg / m 3. .. Therefore, since the density of the intervening member is larger than 60 kg / m 3 , the holding strength or fixing strength of the screw for fixing the rail or the like or the screw fixing portion is increased, and the partition wall (the partition between the storage chamber and the storage chamber) is increased. Since the outer member near the rail mounting portion of the wall 24, the bottom wall 780, and the ceiling wall 740 is not deformed, the drawer door and the case can be pulled out smoothly. In addition, the partition wall to which the fixing member such as a screw is attached is not damaged, and the reliability is improved. Further, if the thickness of the heat insulating material as the intervening member is 11 mm or less (for example, smaller than 10 mm), the wall thickness can be reduced, and if hard urethane foam is used as the heat insulating material as the intervening member, the flexural modulus. Is improved, and the strength of the partition wall and the box body is increased.

また、(介在部材である発泡断熱材の厚さ)/(介在部材である発泡断熱材の厚さ+真空断熱材400の厚さ)を0.3以下に設定すれば、介在部材である発泡断熱材と真空断熱材とを合わせた複合部材の熱伝導率を小さくできるので、複合部材の断熱性能を向上させることができる。 Further, if (thickness of the foam heat insulating material as the intervening member) / (thickness of the foam heat insulating material as the intervening member + thickness of the vacuum heat insulating material 400) is set to 0.3 or less, foaming as the intervening member Since the thermal conductivity of the composite member obtained by combining the heat insulating material and the vacuum heat insulating material can be reduced, the heat insulating performance of the composite member can be improved.

また、貯湯タンクなどの熱源を断熱する場合等には、断熱壁(背面壁730、天井壁740、底面壁780、側壁790、仕切壁24など)の厚さを薄くして円筒状や角筒状や前面開口を有する箱体700などの断熱箱体の外形の大きさ(たとえば外径、幅、奥行き、高さなど)を小さくしたコンパクトな断熱箱体、冷蔵庫、貯湯装置、機器などを得ることができる。 In addition, when insulating a heat source such as a hot water storage tank, the thickness of the heat insulating wall (back wall 730, ceiling wall 740, bottom wall 780, side wall 790, partition wall 24, etc.) is reduced to form a cylinder or a square tube. Obtain a compact heat-insulated box, refrigerator, hot water storage device, equipment, etc. with a reduced external size (for example, outer diameter, width, depth, height, etc.) of a heat-insulated box such as a box 700 having a shape or front opening. be able to.

また、介在部材である発泡断熱材が硬質ウレタンフォームであり、硬質ウレタンフォームの曲げ弾性率を15MPa以上で使用するようにすれば、レールなどを固定するためのネジあるいはネジ固定部の保持あるいは固定強度が増加しレール取り付け部755近傍の内箱750が変形したりしないので引き出し扉やケースなどの引き出しがスムーズに行える。また、ネジなどの取り付け部の内箱750が破損することもなくなり、信頼性が向上する。 Further, if the foam insulating material as an intervening member is a rigid urethane foam and the bending elastic modulus of the rigid urethane foam is used at 15 MPa or more, a screw or a screw fixing portion for fixing a rail or the like is held or fixed. Since the strength is increased and the inner box 750 near the rail mounting portion 755 is not deformed, the drawer door and the case can be pulled out smoothly. In addition, the inner box 750 of the mounting portion such as a screw is not damaged, and the reliability is improved.

また、レールが2段階に引き出し可能な2段レール、あるいは、3段階に引き出し可能な3段レールを使用する場合には、レール部(レール取り付け部)755への負荷が大きくなるが、レール部755と対向する位置の介在部材である発泡断熱材の厚さが11mm以下であり、(介在部材である発泡断熱材の厚さ)/(介在部材である発泡断熱材の厚さ+真空断熱材400の厚さ)が0.3以下であって、レール部材810を取り付けるレール取り付け部(レール部)755の内箱750と真空断熱材400との間に充填される介在部材である発泡断熱材の密度を60kg/mよりも大きくすれば、内箱750のレール部755の強度が向上し、また、レール部材810などを固定するためのネジなどの固定部材735の保持強度あるいは固定強度が増加しレール部755近傍の内箱750が変形したりしないので、2段レールあるいは3段レールを使用した場合であっても引き出し扉やケースなどの引き出しがスムーズに行える。また、ネジなどの固定部材735の取り付け部であるレール部755あるいは内箱750が破損することもなくなり、信頼性が向上する。 Further, when a two-stage rail that can be pulled out in two stages or a three-stage rail that can be pulled out in three stages is used, the load on the rail portion (rail mounting portion) 755 becomes large, but the rail portion The thickness of the foamed heat insulating material, which is the intervening member at the position facing the 755, is 11 mm or less, and (thickness of the foamed heat insulating material, which is the intervening member) / (thickness of the foamed heat insulating material, which is the intervening member + vacuum heat insulating material). The thickness of 400) is 0.3 or less, and the foamed heat insulating material is an intervening member that is filled between the inner box 750 of the rail mounting part (rail part) 755 to which the rail member 810 is attached and the vacuum heat insulating material 400. If the density of the rail is made larger than 60 kg / m 3 , the strength of the rail portion 755 of the inner box 750 is improved, and the holding strength or fixing strength of the fixing member 735 such as a screw for fixing the rail member 810 or the like is increased. Since the inner box 750 near the rail portion 755 is not deformed due to the increase, the drawer door and the case can be smoothly pulled out even when the two-stage rail or the three-stage rail is used. Further, the rail portion 755 or the inner box 750, which is the attachment portion of the fixing member 735 such as a screw, is not damaged, and the reliability is improved.

また、ケース520は、ケース520を形成するケース側壁と、ケース側壁に形成され、レール部材810にてケース520が支持される段部であるレール支持部(ケース段差部)525と、を有し、段部であるレール支持部(ケース段差部)525がケース520の高さ方向に対して、上面から1/2以下の下方位置好ましくは1/3以下の下方位置に設けるようにすれば、段部であるレール支持部(ケース段差部)525がケース520の高さ方向に対して1/2よりも上方に設ける場合に比べてケース520の抜き勾配の分だけケース520の幅を大きくできるので、ケース520の容積を大きくできる。 Further, the case 520 has a case side wall forming the case 520 and a rail support portion (case step portion) 525 which is formed on the case side wall and is a step portion in which the case 520 is supported by the rail member 810. If the rail support portion (case step portion) 525, which is a step portion, is provided at a lower position of 1/2 or less, preferably 1/3 or less of the upper surface in the height direction of the case 520, The width of the case 520 can be increased by the draft of the case 520 as compared with the case where the rail support portion (case step portion) 525, which is a step portion, is provided above 1/2 in the height direction of the case 520. Therefore, the volume of the case 520 can be increased.

また、天井壁740あるいは背面壁730の庫外側(図14に示すように貯蔵室側とは反対側)に設けられ、制御装置30が配置さる制御基板室31と、制御基板室31と内箱750との間に配設される真空断熱材400と、真空断熱材400と内箱750との間に充填される自己接着性を有する介在部材である発泡断熱材である硬質ウレタンフォームと、を備え、制御基板室31と対向する位置の発泡断熱材の厚さが11mm以下であって、介在部材である発泡断熱材の厚さ/(介在部材である発泡断熱材の厚さ+真空断熱材の厚さ)が0.3以下、すなわち、
発泡断熱材の厚さ<=11mm(たとえば発泡断熱材の厚さ<10mm)
発泡断熱材の厚さ/(発泡断熱材の厚さ+真空断熱材の厚さ)<=0.3
とすれば、制御基板室31が設けられた部位の箱体の壁厚さを低減でき、しかも箱体強度、断熱性能とも向上できるので、室(たとえば貯蔵室)内の容積が大きく、高強度で断熱性能の良好な冷蔵庫、機器が得られる。また、介在部材である硬質ウレタンフォームの厚さを小さくすることにより硬質ウレタンフォームの曲げ弾性率を大きくすることができるので、介在部材である硬質ウレタンフォームの厚さが小さくなっても強度を向上させることができる。したがって、壁厚さを小さくしても箱体強度を向上できる。また、介在部材である発泡断熱材の厚さ/(介在部材である発泡断熱材の厚さ+真空断熱材の厚さ)が0.3以下に設定すれば、真空断熱材400と硬質ウレタンフォームを備えた複合部材から形成される壁の複合熱伝導率を小さくできるので、壁厚さを小さくしても断熱性能を向上させることができる。ここで、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度は大きくなりすぎると、(1)ウレタンの注入量増加によるコストUP、(2)ウレタンの注入圧力増加による箱体等からのウレタン漏れの発生、(3)ウレタン発泡時の発泡圧力増加による箱体変形抑制用金型や箱体押さえ部材などとウレタンとの密着力、接着力増加のため箱体変形抑制用金型や箱体押さえ部材などが箱体から抜けにくくなる(箱体から取り外しにくくなる)、(4)ウレタンの密度増による断熱性能の急激な悪化など、品質悪化、性能低下、コストUPなどの問題が発生するので、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度(発泡断熱材の場合は発泡後の密度)は100kg/m以下(好ましくは90kg/m以下)にした方が良い。
Further, a control board chamber 31, a control board chamber 31, and an inner box provided on the outside of the ceiling wall 740 or the back wall 730 (opposite to the storage chamber side as shown in FIG. 14) and where the control device 30 is arranged. A vacuum heat insulating material 400 disposed between the vacuum heat insulating material 400 and a rigid urethane foam which is a foam heat insulating material which is a self-adhesive intervening member filled between the vacuum heat insulating material 400 and the inner box 750. The thickness of the foam heat insulating material at the position facing the control board chamber 31 is 11 mm or less, and the thickness of the foam heat insulating material which is an intervening member / (thickness of the foam heat insulating material which is an intervening member + vacuum heat insulating material). Thickness) is 0.3 or less, that is,
Foam insulation thickness <= 11 mm (for example, foam insulation thickness <10 mm)
Thickness of foam heat insulating material / (thickness of foam heat insulating material + thickness of vacuum heat insulating material) <= 0.3
If this is the case, the wall thickness of the box body at the portion where the control board chamber 31 is provided can be reduced, and both the box body strength and the heat insulating performance can be improved. Therefore, the volume inside the chamber (for example, the storage chamber) is large and the strength is high. A refrigerator and equipment with good heat insulation performance can be obtained. Further, since the flexural modulus of the rigid urethane foam can be increased by reducing the thickness of the rigid urethane foam as the intervening member, the strength is improved even if the thickness of the rigid urethane foam as the intervening member is reduced. Can be made to. Therefore, the strength of the box can be improved even if the wall thickness is reduced. Further, if the thickness of the foam heat insulating material which is the intervening member / (the thickness of the foam heat insulating material which is the intervening member + the thickness of the vacuum heat insulating material) is set to 0.3 or less, the vacuum heat insulating material 400 and the rigid urethane foam are set. Since the composite thermal conductivity of the wall formed from the composite member provided with the above can be reduced, the heat insulating performance can be improved even if the wall thickness is reduced. Here, if the density of the heat insulating material (for example, rigid urethane foam) such as urethane, which is an intervening member, becomes too large, (1) the cost increases due to the increase in the injection amount of urethane, (2) the box body due to the increase in the injection pressure of urethane, etc. Urethane leakage from urethane, (3) Mold for suppressing box deformation due to increase in foaming pressure during urethane foaming, mold for suppressing box deformation due to increased adhesion and adhesion between urethane and box holding members, etc. There are problems such as quality deterioration, performance deterioration, cost up, etc., such as difficulty in removing the box body holding member from the box body (difficult to remove from the box body), (4) rapid deterioration of heat insulation performance due to increased urethane density. Since it is generated, the density of the heat insulating material (for example, hard urethane foam) such as urethane which is an intervening member (in the case of the foamed heat insulating material, the density after foaming) is set to 100 kg / m 3 or less (preferably 90 kg / m 3 or less). Better.

また、介在部材である硬質ウレタンフォームの密度を60kg/mよりも大きくすることで、介在部材である硬質ウレタンフォームが密に形成され、曲げ弾性率が大きくなるため、制御基板室31の変形を抑制できる。また、硬質ウレタンフォームが密に形成されるため、ネジなどの固定部材で固定する場合には、ネジなどの保持強度が向上する。
また、断熱箱体700の前面開口部を開閉自在に閉塞する扉を備えた冷蔵庫において、扉は扉枠部材あるいは扉内板などで形成される扉外郭と扉外郭の前面に設けられる意匠面であるガラス面材とで形成されており、ガラス面材と扉外郭とで形成される扉内部空間に真空断熱材400を備えており、扉内部空間(たとえばガラス面材と真空断熱材400との間)に充填あるいは塗布あるいは封入される介在部材である硬質ウレタンフォームの密度を60kg/mよりも大きくすることで、介在部材である硬質ウレタンフォームが密に形成され、曲げ弾性率が大きくなるため、扉前面にガラス面材を配設した場合でもガラス面材の保持あるいは接着強度が向上するので、ガラス面材の落下を抑制でき、また、扉内部空間の介在部材である硬質ウレタンフォームの強度が向上するので、ガラス面材を備えた扉の強度(剛性)も向上する。ここで、ガラス面材は、従来の鋼板に比べて厚さが大きく重量も重くなるのでガラス面材が落下しにくいように扉外郭のガラス面材保持構造を強固にしなければならなくなり構造が複雑で高コストになるが、本実施の形態のように硬質ウレタンフォームの密度を60kg/mよりも大きくすることによって、ウレタンフォームとガラス面材との密着性が増加しガラス面材の保持力が増加するので、ガラス面材の落下に対する信頼性が向上する。また、ガラス面材と対向する位置の発泡断熱材の厚さが11mm以下(厚さのばらつきや真空断熱材400の表面の凹凸等の影響を考慮すると10mm未満が良い)にすれば、介在部材であるウレタンの曲げ弾性率も向上できるので、扉強度を向上でき、扉厚さも低減できる。
また、扉前面に設けられるガラス面材と扉外郭(扉枠部材あるいは扉内板などで形成される)との間の扉内部空間に配設される真空断熱材400と、真空断熱材400とガラス面材との間に充填される自己接着性を有する介在部材である発泡断熱材である硬質ウレタンフォームと、を備え、ガラス面材と対向する位置の発泡断熱材の厚さが11mm以下(厚さのばらつきや真空断熱材400の表面の凹凸等の影響を考慮すると10mm未満が良い)であって、介在部材である発泡断熱材の厚さ/(介在部材である発泡断熱材の厚さ+真空断熱材の厚さ)が0.3以下、すなわち、
発泡断熱材の厚さ<=11mm(たとえば発泡断熱材の厚さ<10mm)
発泡断熱材の厚さ/(発泡断熱材の厚さ+真空断熱材の厚さ)<=0.3
とすれば、ガラス面材が設けられた扉の厚さを低減でき、しかも扉体強度、断熱性能とも向上できるので、室(たとえば貯蔵室)内の容積が大きく、高強度で断熱性能の良好な冷蔵庫、機器が得られる。また、介在部材である硬質ウレタンフォームの厚さを小さくすることにより硬質ウレタンフォームの曲げ弾性率を大きくすることができるので、介在部材である硬質ウレタンフォームの厚さが小さくなっても強度を向上させることができる。したがって、扉厚さを小さくしても扉体強度を向上できる。また、介在部材である発泡断熱材の厚さ/(介在部材である発泡断熱材の厚さ+真空断熱材の厚さ)が0.3以下に設定すれば、真空断熱材400と硬質ウレタンフォームを備えた複合部材から形成される壁の複合熱伝導率を小さくできるので、扉の厚さを小さくしても断熱性能を向上させることができる。
ここで、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度は大きくなりすぎると、(1)ウレタンの注入量増加によるコストUP、(2)ウレタンの注入圧力増加による箱体等からのウレタン漏れの発生、(3)ウレタン発泡時の発泡圧力増加による箱体変形抑制用金型や箱体押さえ部材などとウレタンとの密着力、接着力増加のため箱体変形抑制用金型や箱体押さえ部材などが箱体から抜けにくくなる(箱体から取り外しにくくなる)、(4)ウレタンの密度増による断熱性能の急激な悪化など、品質悪化、性能低下、コストUPなどの問題が発生するので、介在部材であるウレタンなどの断熱材(たとえば硬質ウレタンフォーム)の密度(発泡断熱材の場合は発泡後の密度)は100kg/m以下(好ましくは90kg/m以下)にした方が良い。
また、外箱と内箱とから形成され、背面壁、側壁を有する箱体と、箱体内に設けられ、前面に開口部を有する貯蔵室と、箱体の前面開口部を開閉自在に閉塞する扉と、を備えた冷蔵庫において、扉は、扉の周囲壁を形成する扉枠部と貯蔵品を収納する貯蔵室側の面部を形成する扉内板とによって形成された扉外郭と、前記扉外郭の前面側(断熱箱体あるいは冷蔵庫あるいは機器などに取り付けられたときの前面側)に設けられたガラス面材と、で形成されており、ガラス面材と扉外郭とで形成される扉内部空間に設けられる真空断熱材と、扉内部空間に充填あるいは塗布あるいは封入される発泡断熱材と、を備え、ガラス面材と扉外郭とで形成される扉内部空間の容積に対する真空断熱材の占める容積の割合を40%以上にすることにより、扉の変形量が小さく、高強度で剛性の高く、断熱性能が良好な扉体、冷蔵庫、機器が得られる。
また、断熱箱体あるいは冷蔵庫あるいは機器などの側壁790あるいは背面壁730あるいは天井壁740あるいは底面壁730あるいは仕切壁24の壁厚さあるいは扉の厚さは薄い方が庫内の貯蔵品収納容積が大きくできるので、壁厚さは40mm以下が良く、また、壁厚さが薄すぎると強度低下、断熱性能低下、真空断熱材の空間の減少による組み立て性の悪化などの問題が発生する恐れがあるので、壁厚さは20mm以上程度が良い。したがって、側壁790あるいは背面壁730あるいは天井壁740あるいは底面壁730あるいは仕切壁24などの断熱箱体の壁厚さあるいは冷蔵庫の壁厚さあるいは機器の壁厚さは、20mm以上40mm以下の範囲内にした方が良い。
また、貯蔵室の前面開口部を閉塞する扉を備え、扉は、扉枠部と扉内板で形成された扉外郭と、扉外郭に設けられたガラス面材と、で形成されており、ガラス面材と前記扉外郭とで形成される扉内部空間に設けられた真空断熱材と、扉内部空間に充填あるいは塗布あるいは封入される発泡断熱材と、を備え、ガラス面材と前記真空断熱材との間に充填あるいは塗布あるいは封入される発泡断熱材の発泡後の密度が60kg/mよりも大きく、厚さを10mmより小さくすれば、断熱性能が良好で貯蔵室内容積が大きく、ガラス面材の使用による意匠性もすぐれ、箱体強度も向上する冷蔵庫が得られる。
Further, by increasing the density of the rigid urethane foam as the intervening member to more than 60 kg / m 3 , the rigid urethane foam as the intervening member is densely formed and the flexural modulus increases, so that the control substrate chamber 31 is deformed. Can be suppressed. Further, since the rigid urethane foam is densely formed, the holding strength of the screw or the like is improved when it is fixed by a fixing member such as a screw.
Further, in a refrigerator provided with a door that opens and closes the front opening of the heat insulating box 700 so as to be openable and closable, the door is a door outer shell formed of a door frame member or a door inner plate, and a design surface provided on the front surface of the door outer shell. The door internal space formed by a certain glass surface material and the door outer shell is provided with a vacuum heat insulating material 400, and the door internal space (for example, the glass surface material and the vacuum heat insulating material 400) is provided. By increasing the density of the hard urethane foam, which is an intervening member to be filled, coated, or sealed in the space) to more than 60 kg / m 3 , the hard urethane foam, which is an intervening member, is densely formed and the bending elasticity is increased. Therefore, even when the glass surface material is arranged on the front surface of the door, the holding or adhesive strength of the glass surface material is improved, so that the glass surface material can be suppressed from falling, and the rigid urethane foam which is an intervening member of the door internal space can be used. Since the strength is improved, the strength (rigidity) of the door provided with the glass surface material is also improved. Here, since the glass surface material is thicker and heavier than the conventional steel plate, the glass surface material holding structure of the outer shell of the door must be strengthened so that the glass surface material does not easily fall, and the structure is complicated. However, by increasing the density of the rigid urethane foam to more than 60 kg / m 3 as in the present embodiment, the adhesion between the urethane foam and the glass surface material is increased and the holding power of the glass surface material is increased. Increases the reliability of the glass surface material against dropping. Further, if the thickness of the foam heat insulating material at the position facing the glass surface material is 11 mm or less (less than 10 mm is preferable in consideration of the influence of the thickness variation and the surface unevenness of the vacuum heat insulating material 400), the intervening member Since the flexural modulus of urethane can be improved, the door strength can be improved and the door thickness can be reduced.
Further, the vacuum heat insulating material 400 and the vacuum heat insulating material 400 arranged in the space inside the door between the glass surface material provided on the front surface of the door and the outer shell of the door (formed by the door frame member or the inner plate of the door). It is provided with a rigid urethane foam which is a foam heat insulating material which is an intervening member having self-adhesiveness filled between the glass surface material, and the thickness of the foam heat insulating material at a position facing the glass surface material is 11 mm or less ( Considering the influence of the variation in thickness and the unevenness of the surface of the vacuum heat insulating material 400, less than 10 mm is preferable), and the thickness of the foamed heat insulating material which is the intervening member / (the thickness of the foamed heat insulating material which is the intervening member). + Thickness of vacuum heat insulating material) is 0.3 or less, that is,
Foam insulation thickness <= 11 mm (for example, foam insulation thickness <10 mm)
Thickness of foam heat insulating material / (thickness of foam heat insulating material + thickness of vacuum heat insulating material) <= 0.3
If so, the thickness of the door provided with the glass surface material can be reduced, and the strength and heat insulation performance of the door can be improved. Therefore, the volume inside the room (for example, the storage room) is large, and the strength is high and the heat insulation performance is good. Refrigerator and equipment can be obtained. Further, since the flexural modulus of the rigid urethane foam can be increased by reducing the thickness of the rigid urethane foam as the intervening member, the strength is improved even if the thickness of the rigid urethane foam as the intervening member is reduced. Can be made to. Therefore, the strength of the door body can be improved even if the door thickness is reduced. Further, if the thickness of the foam heat insulating material which is the intervening member / (the thickness of the foam heat insulating material which is the intervening member + the thickness of the vacuum heat insulating material) is set to 0.3 or less, the vacuum heat insulating material 400 and the rigid urethane foam are set. Since the composite thermal conductivity of the wall formed of the composite member provided with the above can be reduced, the heat insulating performance can be improved even if the thickness of the door is reduced.
Here, if the density of the heat insulating material (for example, rigid urethane foam) such as urethane, which is an intervening member, becomes too large, (1) the cost increases due to the increase in the injection amount of urethane, (2) the box body due to the increase in the injection pressure of urethane, etc. Urethane leakage from urethane, (3) Mold for suppressing box deformation due to increase in foaming pressure during urethane foaming, mold for suppressing box deformation due to increased adhesion and adhesion between urethane and box holding members, etc. There are problems such as quality deterioration, performance deterioration, cost up, etc., such as difficulty in removing the box body holding member from the box body (difficult to remove from the box body), (4) rapid deterioration of heat insulation performance due to increased urethane density. Since it is generated, the density of the heat insulating material (for example, hard urethane foam) such as urethane which is an intervening member (in the case of the foamed heat insulating material, the density after foaming) is set to 100 kg / m 3 or less (preferably 90 kg / m 3 or less). Better.
Further, a box body formed of an outer box and an inner box and having a back wall and a side wall, a storage chamber provided inside the box body and having an opening on the front surface, and a front opening opening of the box body can be opened and closed. In a refrigerator provided with a door, the door has a door outer shell formed by a door frame portion forming a peripheral wall of the door and a door inner plate forming a surface portion on the storage chamber side for storing stored items, and the door. It is formed of a glass surface material provided on the front side of the outer shell (the front side when attached to a heat insulating box or a refrigerator or equipment), and the inside of the door formed by the glass surface material and the door outer shell. A vacuum heat insulating material provided in the space and a foamed heat insulating material filled, coated or sealed in the door internal space are provided, and the vacuum heat insulating material occupies the volume of the door internal space formed by the glass surface material and the door outer shell. By setting the volume ratio to 40% or more, a door body, a refrigerator, and equipment having a small amount of deformation of the door, high strength, high rigidity, and good heat insulation performance can be obtained.
Further, the thinner the wall thickness or the door thickness of the side wall 790, the back wall 730, the ceiling wall 740, the bottom wall 730, or the partition wall 24 of the heat insulating box, the refrigerator, or the equipment, the larger the storage capacity of the stored goods in the refrigerator. Since it can be made large, the wall thickness should be 40 mm or less, and if the wall thickness is too thin, problems such as a decrease in strength, a decrease in heat insulation performance, and a decrease in the space of the vacuum heat insulating material may cause a deterioration in assembling property. Therefore, the wall thickness should be about 20 mm or more. Therefore, the wall thickness of the heat insulating box such as the side wall 790, the back wall 730, the ceiling wall 740, the bottom wall 730, or the partition wall 24, the wall thickness of the refrigerator, or the wall thickness of the device is within the range of 20 mm or more and 40 mm or less. It is better to set it to.
In addition, a door is provided to close the front opening of the storage chamber, and the door is formed of a door outer shell formed of a door frame portion and a door inner plate, and a glass surface material provided on the door outer shell. A vacuum heat insulating material provided in the door internal space formed by the glass surface material and the door outer shell, and a foam heat insulating material filled, coated or sealed in the door internal space are provided, and the glass surface material and the vacuum heat insulating material are provided. If the density of the foamed heat insulating material filled, coated or sealed with the material after foaming is larger than 60 kg / m 3 and the thickness is smaller than 10 mm, the heat insulating performance is good, the storage chamber volume is large, and the glass. A refrigerator with excellent design and improved box strength can be obtained by using the face material.

また、制御基板室31の内部、あるいは近傍に設けられ、赤外線接続あるいは無線接続あるいは有線接続(電灯線接続やインターネット回線接続やLAN接続やUSB接続など)にて冷蔵庫1の外部に配置される外部機器と機器情報を送受信可能な送受信手段を備えるようにすれば、冷蔵庫の機器情報を送信したり、あるいは外部機器からの情報を受信することができるので、冷蔵庫や他機器の情報を冷蔵庫や携帯端末や外部機器に表示させることができる。また、サーバからの指示情報を受けて冷蔵庫を制御することもできる。また、冷蔵庫や携帯端末から他機器を制御することも可能になる。 Further, an external device provided inside or near the control board room 31 and arranged outside the refrigerator 1 by an infrared connection, a wireless connection, or a wired connection (light line connection, Internet line connection, LAN connection, USB connection, etc.). If a transmission / reception means capable of transmitting / receiving device information to / from the device is provided, the device information of the refrigerator can be transmitted or the information from the external device can be received, so that the information of the refrigerator or other device can be transmitted to the refrigerator or mobile device. It can be displayed on a terminal or an external device. It is also possible to control the refrigerator by receiving instruction information from the server. It will also be possible to control other devices from a refrigerator or mobile terminal.

また、制御基板室31に制御基板室用カバーを設け、制御基板室31内あるいは制御基板用カバーにネットワーク接続用の端子を備えるようにすれば、冷蔵庫設置後に無線アダプタやWiFiアダプタや有線LANなどを容易に接続することができ、ネットワークを構築することができる。もちろん、ネットワーク接続用の端子は、天井壁730あるいは側壁790であれば、容易に接続できるので問題ない。 Further, if a cover for the control board room is provided in the control board room 31, and a terminal for network connection is provided in the control board room 31 or the cover for the control board, a wireless adapter, a WiFi adapter, a wired LAN, etc. can be installed after the refrigerator is installed. Can be easily connected and a network can be constructed. Of course, if the terminal for network connection is the ceiling wall 730 or the side wall 790, it can be easily connected, so there is no problem.

また、少なくとも貯蔵室内の背面の一部あるいは第2の凹部441を覆うカバー部材(第1風路部品762)が、冷気風路760の少なくとも一部を形成あるいは冷気風路760の少なくとも一部を覆う風路カバー部と、風路カバー部から幅方向に延出し背面壁730あるいは凹部440の少なくとも一部を覆う背面カバー部と、を備えるようにすれば、カバー部材(第1風路部品762)によって、背面壁730や凸部450の少なくとも一部を覆うことができるので、意匠性が向上し、組立性も向上する。 Further, at least a part of the back surface of the storage chamber or a cover member (first air passage component 762) covering the second recess 441 forms at least a part of the cold air passage 760 or at least a part of the cold air passage 760. If the air passage cover portion that covers the air passage cover portion and the back cover portion that extends from the air passage cover portion in the width direction and covers at least a part of the back wall 730 or the recess 440 are provided, the cover member (first air passage component 762) is provided. ) Can cover at least a part of the back wall 730 and the convex portion 450, so that the design is improved and the assembling property is also improved.

また、少なくとも貯蔵室内の背面の一部あるいは第2の凹部441を覆うカバー部材(第1風路部品762)が、冷気風路760の少なくとも一部を形成あるいは冷気風路760の少なくとも一部を覆う風路カバー部と、風路カバー部から幅方向に延出し背面壁730あるいは凹部440の少なくとも一部を覆う背面カバー部と、背面カバー部に接続あるいは背面カバー部に一体に形成されて側壁790の少なくとも一部を覆う側面カバー部と、を備えるようにすれば、カバー部材(第1風路部品762)によって、背面壁730や側壁790や凸部450の少なくとも一部を覆うことができるので、意匠性が向上し、組立性も向上する。 Further, at least a part of the back surface of the storage chamber or a cover member (first air passage component 762) covering the second recess 441 forms at least a part of the cold air passage 760 or at least a part of the cold air passage 760. The air passage cover portion that covers, the back cover portion that extends in the width direction from the air passage cover portion and covers at least a part of the back wall 730 or the recess 440, and the side wall that is connected to the back cover portion or integrally formed with the back cover portion. If a side cover portion that covers at least a part of the 790 is provided, the back wall 730, the side wall 790, and the convex portion 450 can be covered at least a part by the cover member (first air passage component 762). Therefore, the design is improved and the assembling property is also improved.

また、背面カバー部を背面壁730あるいは凹部440あるいは凸部450を形成する内箱750に固定あるいは保持するなどして取り付けるか、あるいは、側面カバー部を側壁790あるいは凸部450を形成する内箱750に固定あるいは保持するなどして取り付けるようにすれば、カバー部材(第1風路部品762)によって、背面壁730や側壁790や凸部450の少なくとも一部を覆うことができるので、意匠性が向上し、組立性も向上する。 Further, the back cover portion is attached by fixing or holding the back wall 730 or the concave portion 440 or the inner box 750 forming the convex portion 450, or the side cover portion is attached to the inner box forming the side wall 790 or the convex portion 450. If it is attached by fixing or holding it to the 750, the cover member (first air passage component 762) can cover at least a part of the back wall 730, the side wall 790, and the convex portion 450. Is improved, and the assemblability is also improved.

また、少なくとも貯蔵室内の背面の一部を覆うカバー部材(第1風路部品762)が、冷気風路760の少なくとも一部を形成あるいは冷気風路760の少なくとも一部を覆う風路カバー部と、風路カバー部から幅方向(左右方向あるいは側壁790方向)に延出し背面壁730あるいは凹部440の少なくとも一部を覆う背面カバー部と、風路カバー部と接続あるいは風路カバー部と一体に形成されて背面壁730の上部あるいは下部に設けられる仕切壁24(天井壁740あるいは底面壁780を含む)の少なくとも一部を覆うように背面壁730の上端部あるいは下端部から前面開口方向に延出して設けられる上下壁カバー部と、を備えるようにすれば、カバー部材(第1風路部品762)によって、背面壁730や仕切壁24や天井壁730や底面壁780の少なくとも一部を覆うことができるので、意匠性が向上し、組立性も向上する。 Further, the cover member (first air passage component 762) that covers at least a part of the back surface of the storage chamber forms at least a part of the cold air passage 760, or the air passage cover portion that covers at least a part of the cold air passage 760. , The back cover portion that extends from the air passage cover portion in the width direction (left-right direction or the side wall 790 direction) and covers at least a part of the back wall 730 or the recess 440, and is connected to the air passage cover portion or integrally with the air passage cover portion. Extend in the front opening direction from the upper end or the lower end of the back wall 730 so as to cover at least a part of the partition wall 24 (including the ceiling wall 740 or the bottom wall 780) formed and provided on the upper or lower portion of the back wall 730. If the upper and lower wall cover portions provided are provided, the cover member (first air passage component 762) covers at least a part of the back wall 730, the partition wall 24, the ceiling wall 730, and the bottom wall 780. Since it can be used, the design is improved and the assembling property is also improved.

また、背面カバー部を背面壁730あるいは凹部440あるいは凸部450を形成する内箱750に固定あるいは保持するなどして取り付けるか、あるいは、上下壁カバー部を背面壁730の上下方向に設けられる仕切壁24(天井壁740あるいは底面壁780を含む)を形成する内箱750に固定あるいは保持するなどして取り付けるようにすれば、カバー部材(第1風路部品762)によって、背面壁730や仕切壁24や天井壁730や底面壁780の少なくとも一部を覆うことができるので、意匠性が向上し、組立性も向上する。 Further, the back cover portion is attached by fixing or holding the back wall 730 or the inner box 750 forming the concave portion 440 or the convex portion 450, or the upper and lower wall cover portions are provided in the vertical direction of the back wall 730. If it is attached by fixing or holding it to the inner box 750 forming the wall 24 (including the ceiling wall 740 or the bottom wall 780), the back wall 730 or the partition is provided by the cover member (first air passage component 762). Since at least a part of the wall 24, the ceiling wall 730, and the bottom wall 780 can be covered, the design is improved and the assembling property is also improved.

1 冷蔵庫、1A 機械室、2 冷蔵室、2A チルド室、2P 内側壁、2X 略密閉された容器、2Y 略密閉された容器、3 製氷室、4 切替室、5 野菜室、6 冷凍室、7 冷蔵室扉、7A 冷蔵室扉左、7B 冷蔵室扉右、8 製氷室扉、9 切替室扉、10 野菜室扉、11 冷凍室扉、12 圧縮機、13 冷却器、14 冷気循環用ファン、15 切替室ダンパ、16 冷気風路、17 切替室用冷気風路、18 冷凍室用冷気風路、19 切替室サーミスタ、21 貯蔵品収納空間、22 サーモパイル、24 仕切壁、30 制御装置、30a マイコン、31 制御基板室、33 切欠き部、34 板金カバー、50 冷気風路、51 仕切壁、53 冷気風路、55 冷蔵室ダンパ、60 操作パネル、60a 部屋選択スイッチ、60b 温度帯切替スイッチ、60c 瞬冷凍スイッチ、60d 製氷切替スイッチ、60e ミスト供給スイッチ、80 棚、131 冷却器室、150 除霜用ヒータ、151 ヒータルーフ、152 水受け容器、154 除霜水受け部、155 除霜水排出口、200 ミスト装置(静電霧化装置)、250 貯蔵品収納スペース、315 空間(壁内空間)、400 真空断熱材、410 冷蔵室戻り風路、420 冷凍室戻り風路、430 野菜室戻り風路、440 凹部、441 第2の凹部、450 凸部、451 凸部の前面側端面、520 ケース、525 ケース段差部、700 断熱箱体、701 断熱材、703、704 充填口(注入口)、710 外箱、717 内箱凹部、718 凹部段部上、719 凹部段部下(レール部材載置部)、720 パイプ、725 冷媒配管、727 内箱凸部、728 凸部段部上、729 凸部段部下、730 背面壁、731 補強部材、732 補強部材延出部上、733 補強部材延出部下、734 補強部材本体部、735 レール固定部材、740 天井壁、750 内箱、755 レール部(レール取り付け部)、757 レール部端部(レール部材載置部)、760 冷気風路、762 第1風路部品、763 突出部、764 第2風路部品、765 風路背面部材、766 風路側面部材、768 冷気供給口、769 第1風路部品の前面側端面、770 空間(収納スペース)、775 段差部、776 段差部、780 底面壁、790 側壁、791,792 貯蔵室内面壁、797 (凸部の)側壁側端部、798 (凸部の)背面壁側端部、810 レール部材、811 上レール(移動レール)、812 下レール(固定レール)、813 中間レール、820 レール支持部、830 ケース支持部、835 ケース支持部固定部材、836 レール支持部固定部材、900 照明装置、910 突起部。 1 Refrigerator, 1A Machine Room, 2 Refrigerator Room, 2A Chilled Room, 2P Inner Wall, 2X Approximately Sealed Container, 2Y Approximately Sealed Container, 3 Ice Making Room, 4 Switching Room, 5 Vegetable Room, 6 Freezer Room, 7 Refrigerator door, 7A Refrigerator door left, 7B Refrigerator door right, 8 Ice making chamber door, 9 Switching chamber door, 10 Vegetable compartment door, 11 Freezer compartment door, 12 Compressor, 13 Cooler, 14 Cool air circulation fan, 15 Switching room damper, 16 Cold air passage, 17 Cold air passage for switching room, 18 Cold air passage for freezing room, 19 Switching room thermista, 21 Storage space for storage, 22 Thermopile, 24 Partition wall, 30 Control device, 30a Microcomputer , 31 Control board room, 33 Notch, 34 Sheet metal cover, 50 Cold air passage, 51 Partition wall, 53 Cold air passage, 55 Refrigerator room damper, 60 Operation panel, 60a Room selection switch, 60b Temperature zone selector switch, 60c Instant refrigeration switch, 60d ice making changeover switch, 60e mist supply switch, 80 shelves, 131 cooler room, 150 defrost heater, 151 heater roof, 152 water receiving container, 154 defrosting water receiving part, 155 defrosting water outlet, 200 Mist device (electrostatic atomizer), 250 Storage space, 315 space (wall space), 400 Vacuum insulation, 410 Refrigerator return air passage, 420 Freezer room return air passage, 430 Vegetable room return air passage 440 concave part, 441 second concave part, 450 convex part, 451 convex part front side end face, 520 case, 525 case stepped part, 700 heat insulating box body, 701 heat insulating material, 703, 704 filling port (injection port), 710 Outer box, 717 inner box recess, 718 recess step above, 719 recess step below (rail member mounting), 720 pipe, 725 refrigerant pipe, 727 inner box convex, 728 convex step top, 729 convex step Subordinates, 730 back wall, 731 reinforcement member, 732 reinforcement member extension part above, 733 reinforcement member extension part below, 734 reinforcement member body part, 735 rail fixing member, 740 ceiling wall, 750 inner box, 755 rail part (rail mounting) Part), 757 Rail part end (rail member mounting part), 760 cold air passage, 762 first air passage part, 763 protrusion, 764 second air passage part, 765 air passage back member, 766 air passage side member, 768 cold air supply port, 769 first air passage component front side end surface, 770 space (storage space), 775 stepped part, 776 stepped part, 780 bottom wall, 790 side wall, 791,792 storage chamber surface wall , 797 (convex) side wall end, 798 (convex) back wall side end, 810 rail member, 811 upper rail (moving rail), 812 lower rail (fixed rail), 813 intermediate rail, 820 rail Support part, 830 case support part, 835 case support part fixing member, 836 rail support part fixing member, 900 lighting device, 910 protrusion part.

Claims (35)

外箱と内箱とにより形成された天井壁、背面壁、左右の側壁、および底面壁を有し、前面に開口を有する仕切壁で区画された貯蔵室が形成された箱体と、
前記左側壁と前記背面壁とのコーナー部、及び、前記右側壁と前記背面壁とのコーナー部の各々に形成され、断面形状が斜辺部を有する略三角形状であり、前記斜辺部が略直線状あるいは曲線状あるいはアーチ状あるいは円弧状である凸部と、
前記背面壁を形成する前記内箱と前記外箱との間に設けられた真空断熱材と、
前記天井壁を形成する前記内箱と前記外箱との間に設けられた第2の真空断熱材と、
前記凸部及び前記凸部間において、前記真空断熱材と前記内箱との間に充填あるいは注入され、前記真空断熱材と前記内箱とを接着、固着、もしくは固定する発泡断熱材と、
前記背面壁の前記貯蔵室側の少なくとも一部を覆うカバー部材と、
左右の前記凸部の間の前記内箱に前記内箱とは別体で設けられ、前記カバー部材を保持あるいは固定する取り付け部と、
外部機器と送受信可能な送受信手段を有し、前記貯蔵室の温度制御を行う制御装置と、
前記天井壁あるいは前記背面壁に設けられ、前記制御装置の制御基板が収納された制御基板室と、
前記制御基板室に設けられた制御基板室カバーと、
前記制御基板室内あるいは前記制御基板室カバーに設けられ、前記送受信手段が接続可能なネットワーク接続用端子と、
を備え、
前記制御基板室と前記内箱との間には前記真空断熱材あるいは前記第2の真空断熱材が配置され、前記真空断熱材あるいは前記第2の真空断熱材と前記内箱との間に前記発泡断熱材が充填されており、
前記発泡断熱材の密度は60g/mより大きく100kg/m以下である冷蔵庫。
A box body having a ceiling wall, a back wall, left and right side walls, and a bottom wall formed by an outer box and an inner box, and a storage chamber formed by a partition wall having an opening at the front.
Corner portions between the left side wall and the rear wall, and wherein formed in each corner portion of the right wall and the rear wall, Ri substantially triangular der the cross-sectional shape having a slant portion, the slant portion is substantially Convex parts that are straight, curved, arched, or arcuate,
The vacuum heat insulating material provided between the inner box and the outer box forming the back wall,
A second vacuum heat insulating material provided between the inner box and the outer box forming the ceiling wall, and
A foam heat insulating material that is filled or injected between the vacuum heat insulating material and the inner box between the convex portion and the convex portion to bond, fix, or fix the vacuum heat insulating material and the inner box.
A cover member that covers at least a part of the back wall on the storage chamber side,
An attachment portion provided separately from the inner box in the inner box between the left and right convex portions to hold or fix the cover member,
A control device having a transmission / reception means capable of transmitting / receiving to / from an external device and controlling the temperature of the storage chamber,
A control board room provided on the ceiling wall or the back wall and accommodating a control board of the control device, and a control board room.
The control board room cover provided in the control board room and
A network connection terminal provided in the control board room or the control board room cover to which the transmission / reception means can be connected.
With
The vacuum heat insulating material or the second vacuum heat insulating material is arranged between the control board chamber and the inner box, and the vacuum heat insulating material or the second vacuum heat insulating material and the inner box are described. Filled with foam insulation,
The density of the foam insulation is 60 k g / m 3 greater than 100 kg / m 3 or less refrigerator.
外箱と内箱とにより形成された天井壁、背面壁、左右の側壁、および底面壁を有し、前面に開口を有する仕切壁で区画された貯蔵室が形成された箱体と、
前記側壁と前記背面壁とのコーナー部に形成され、前記側壁と前記背面壁とを接続する斜辺部を有し、前記斜辺部が直線状あるいは曲線状あるいは円弧状である凸部と、
前記背面壁を形成する前記内箱と前記外箱との間に設けられた真空断熱材と、
前記天井壁を形成する前記内箱と前記外箱との間に設けられた第2の真空断熱材と、
前記凸部及び凸部間の前記真空断熱材と前記内箱との間に充填あるいは注入され、前記真空断熱材と前記内箱とを接着、固着、もしくは固定する発泡断熱材と、
左右の前記凸部の間に前記内箱とは別体で設けられ、前記背面壁の前記貯蔵室側の少なくとも一部を覆うカバー部材を保持あるいは固定する取り付け部と、
外部機器と送受信可能な送受信手段を有し、前記貯蔵室の温度制御を行う制御装置と、
前記天井壁あるいは前記背面壁に設けられ、前記制御装置の制御基板が収納された制御基板室と、
前記貯蔵室の開口を開閉する貯蔵室扉に設けられ、前記貯蔵室の温度設定または前記貯蔵室の温度表示が行える操作パネルと、
を備え、
前記制御基板室と前記内箱との間には前記真空断熱材あるいは前記第2の真空断熱材が配置され、前記真空断熱材あるいは前記第2の真空断熱材と前記内箱との間に前記発泡断熱材が充填されており、
前記発泡断熱材の密度は60g/mより大きく100kg/m以下であり、
前記送受信手段は前記制御基板室内あるいは前記制御基板室の近傍に設けられており、
前記操作パネルにより、インターネットへの接続設定、インターネットへの接続、前記外部機器の情報の閲覧、前記外部機器からの指示内容の閲覧、あるいは前記外部機器に対する送信情報の閲覧も可能にしている冷蔵庫。
A box body having a ceiling wall, a back wall, left and right side walls, and a bottom wall formed by an outer box and an inner box, and a storage chamber formed by a partition wall having an opening at the front.
A convex portion formed at a corner portion between the side wall and the back wall, having a hypotenuse portion connecting the side wall and the back wall, and the hypotenuse portion being linear, curved, or arcuate.
The vacuum heat insulating material provided between the inner box and the outer box forming the back wall,
A second vacuum heat insulating material provided between the inner box and the outer box forming the ceiling wall, and
A foam heat insulating material that is filled or injected between the convex portion and the vacuum heat insulating material between the convex portions and the vacuum heat insulating material and the inner box to bond, fix, or fix the vacuum heat insulating material and the inner box.
A mounting portion provided between the left and right convex portions separately from the inner box and holding or fixing a cover member covering at least a part of the back wall on the storage chamber side.
A control device having a transmission / reception means capable of transmitting / receiving to / from an external device and controlling the temperature of the storage chamber,
A control board room provided on the ceiling wall or the back wall and accommodating a control board of the control device, and a control board room.
An operation panel provided on the storage room door that opens and closes the opening of the storage room and can set the temperature of the storage room or display the temperature of the storage room.
With
The vacuum heat insulating material or the second vacuum heat insulating material is arranged between the control board chamber and the inner box, and the vacuum heat insulating material or the second vacuum heat insulating material and the inner box are described. Filled with foam insulation,
The density of the foam insulation is a 60 k g / m 3 greater than 100 kg / m 3 or less,
The transmitting / receiving means is provided in the control board room or in the vicinity of the control board room.
A refrigerator that enables connection setting to the Internet, connection to the Internet, viewing of information of the external device, viewing of instruction contents from the external device, or viewing of transmission information to the external device by the operation panel.
外箱と内箱とにより形成された天井壁、背面壁、側壁、および底面壁を有し、前面に開口を有する仕切壁で区画された貯蔵室が形成された箱体と、
前記背面壁を形成する前記内箱と前記外箱との間に設けられた真空断熱材と、
前記天井壁を形成する前記内箱と前記外箱との間に設けられた第2の真空断熱材と、
前記側壁と前記背面壁とのコーナー部に形成され、断面形状が斜辺部を有する略三角形状であり、前記斜辺部が略直線状あるいは曲線状あるいはアーチ状あるいは円弧状である凸部と、
前記凸部及び前記凸部間において、前記真空断熱材と前記内箱との間に充填あるいは注入され、前記真空断熱材と前記内箱とを接着、固着、もしくは固定する発泡断熱材と、
左右の前記凸部の間の前記背面壁に設けられ、前記背面壁の前記貯蔵室側の少なくとも一部を覆うカバー部材を保持あるいは固定する取り付け部と、
外部機器と送受信可能な送受信手段を有し、前記貯蔵室の温度制御を行う制御装置と、
前記天井壁あるいは前記背面壁に設けられ、前記制御装置の制御基板が収納された制御基板室と、
前記貯蔵室の開口を開閉する貯蔵室扉に設けられ、前記貯蔵室の温度設定または前記貯蔵室の温度表示が行える操作パネルと、
を備え、
前記制御基板室と前記内箱との間には前記真空断熱材あるいは前記第2の真空断熱材が配置され、前記真空断熱材あるいは前記第2の真空断熱材と前記内箱との間に前記発泡断熱材が充填されており、
前記発泡断熱材の密度は60g/mより大きく100kg/m以下であり、
前記送受信手段は前記制御基板室内あるいは前記制御基板室の近傍に設けられており、
前記操作パネルを操作することによって、前記外部機器との間のインターネット接続設定またはインターネットへの接続が行える冷蔵庫。
A box body having a ceiling wall, a back wall, a side wall, and a bottom wall formed by an outer box and an inner box, and a storage chamber formed by a partition wall having an opening at the front.
The vacuum heat insulating material provided between the inner box and the outer box forming the back wall,
A second vacuum heat insulating material provided between the inner box and the outer box forming the ceiling wall, and
A convex portion formed at a corner between the side wall and the back wall and having a substantially triangular cross-sectional shape having a hypotenuse, and the hypotenuse is substantially straight, curved, arched, or arcuate.
A foam heat insulating material that is filled or injected between the vacuum heat insulating material and the inner box between the convex portion and the convex portion to bond, fix, or fix the vacuum heat insulating material and the inner box.
A mounting portion provided on the back wall between the left and right convex portions to hold or fix a cover member that covers at least a part of the back wall on the storage chamber side.
A control device having a transmission / reception means capable of transmitting / receiving to / from an external device and controlling the temperature of the storage chamber,
A control board room provided on the ceiling wall or the back wall and accommodating a control board of the control device, and a control board room.
An operation panel provided on the storage room door that opens and closes the opening of the storage room and can set the temperature of the storage room or display the temperature of the storage room.
With
The vacuum heat insulating material or the second vacuum heat insulating material is arranged between the control board chamber and the inner box, and the vacuum heat insulating material or the second vacuum heat insulating material and the inner box are described. Filled with foam insulation,
The density of the foam insulation is a 60 k g / m 3 greater than 100 kg / m 3 or less,
The transmitting / receiving means is provided in the control board room or in the vicinity of the control board room.
A refrigerator that allows you to set up an Internet connection with the external device or connect to the Internet by operating the operation panel.
外箱と内箱とにより形成された天井壁、背面壁、左右の側壁、および底面壁を有し、前面に開口を有する仕切壁で区画された貯蔵室が形成された箱体と、
前記背面壁を形成する前記内箱と前記外箱との間に設けられた真空断熱材と、
前記天井壁を形成する前記内箱と前記外箱との間に設けられた第2の真空断熱材と、
前記側壁と前記背面壁とのコーナー部に形成され、前記側壁と前記背面壁とを接続する斜辺部を有し、前記斜辺部が直線状、曲線状あるいは円弧状である凸部と、
前記凸部及び凸部間において、前記真空断熱材と前記内箱との間に充填あるいは注入され、前記真空断熱材と前記内箱との間で発泡した発泡断熱材と、
前記背面壁の前記貯蔵室側の少なくとも一部を覆うカバー部材と、
左右の前記凸部の間の前記背面壁に前記内箱とは別体で設けられ、前記カバー部材を保持あるいは固定する取り付け部と、
外部機器と送受信可能な送受信手段を有し、前記貯蔵室の温度制御を行う制御装置と、
前記天井壁あるいは前記背面壁に設けられ、前記制御装置の制御基板が収納された制御基板室と、
前記貯蔵室の開口を開閉する貯蔵室扉に設けられ、前記貯蔵室の温度設定または前記貯蔵室の温度表示が行える操作パネルと、
携帯機器あるいはパソコンが接続できる接続端子と、
を備え、
前記制御基板室と前記内箱との間には前記真空断熱材あるいは前記第2の真空断熱材が配置され、前記真空断熱材あるいは前記第2の真空断熱材と前記内箱との間に前記発泡断熱材が充填されており、
前記発泡断熱材の密度は60g/mより大きく100kg/m以下であり、
前記操作パネルを操作することによって、前記接続端子に接続された機器の充電を行なえる冷蔵庫。
A box body having a ceiling wall, a back wall, left and right side walls, and a bottom wall formed by an outer box and an inner box, and a storage chamber formed by a partition wall having an opening at the front.
The vacuum heat insulating material provided between the inner box and the outer box forming the back wall,
A second vacuum heat insulating material provided between the inner box and the outer box forming the ceiling wall, and
A convex portion formed at a corner portion between the side wall and the back wall, having a hypotenuse portion connecting the side wall and the back wall, and the hypotenuse portion being linear, curved, or arcuate.
A foam heat insulating material that is filled or injected between the vacuum heat insulating material and the inner box and foamed between the vacuum heat insulating material and the inner box between the convex portions and the convex portions.
A cover member that covers at least a part of the back wall on the storage chamber side,
A mounting portion provided on the back wall between the left and right convex portions separately from the inner box to hold or fix the cover member.
A control device having a transmission / reception means capable of transmitting / receiving to / from an external device and controlling the temperature of the storage chamber,
A control board room provided on the ceiling wall or the back wall and accommodating a control board of the control device, and a control board room.
An operation panel provided on the storage room door that opens and closes the opening of the storage room and can set the temperature of the storage room or display the temperature of the storage room.
A connection terminal to which a mobile device or computer can be connected,
With
The vacuum heat insulating material or the second vacuum heat insulating material is arranged between the control board chamber and the inner box, and the vacuum heat insulating material or the second vacuum heat insulating material and the inner box are described. Filled with foam insulation,
The density of the foam insulation is a 60 k g / m 3 greater than 100 kg / m 3 or less,
A refrigerator that can charge the equipment connected to the connection terminal by operating the operation panel.
機械室を除く前記背面壁の4隅近傍に設けられ、前記発泡断熱材を充填あるいは注入した充填口を備えた請求項1〜4のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 4, which is provided near the four corners of the back wall excluding the machine room and has a filling port filled or injected with the foamed heat insulating material. 前記貯蔵室を冷却する冷気を生成する冷却器を備え、
前記背面壁が前記冷却器により生成された冷気を前記貯蔵室に供給する冷気風路を構成する請求項1〜5のいずれか一項に記載の冷蔵庫。
A cooler that produces cold air to cool the storage chamber is provided.
The refrigerator according to any one of claims 1 to 5, wherein the back wall constitutes a cold air passage for supplying cold air generated by the cooler to the storage chamber.
前記貯蔵室を冷却する冷気を生成する冷却器と、
前記冷却器により生成された冷気を前記貯蔵室に供給する冷気風路と、
前記カバー部材の背面側に設けられ、前記冷気風路の少なくとも一部を形成する第2部材と、を備えた請求項1〜5のいずれか一項に記載の冷蔵庫。
A cooler that produces cold air that cools the storage chamber,
A cold air passage that supplies the cold air generated by the cooler to the storage chamber, and
The refrigerator according to any one of claims 1 to 5, further comprising a second member provided on the back surface side of the cover member and forming at least a part of the cold air passage.
前記貯蔵室を冷却する冷気を生成する冷却器と、
前記冷却器により生成された冷気を前記貯蔵室に供給する冷気風路と、を備え、
前記カバー部材の背面側には前記冷気風路の少なくとも一部を形成する第2部材が設けられ、前記第2部材が前記内箱に当接している請求項1〜5のいずれか一項に記載の冷蔵庫。
A cooler that produces cold air that cools the storage chamber,
A cold air passage for supplying the cold air generated by the cooler to the storage chamber is provided.
The second member forming at least a part of the cold air passage is provided on the back surface side of the cover member, and the second member is in contact with the inner box according to any one of claims 1 to 5. The listed refrigerator.
前記貯蔵室を冷却する冷気を生成する冷却器と、
前記冷却器により生成された冷気を前記貯蔵室に供給する冷気風路と、を備え、
前記カバー部材の背面側には、独立した風路を形成する第2部材が設けられ、前記第2部材の前記風路が前記冷気風路の少なくとも一部を形成している請求項1〜5のいずれか一項に記載の冷蔵庫。
A cooler that produces cold air that cools the storage chamber,
A cold air passage for supplying the cold air generated by the cooler to the storage chamber is provided.
Claims 1 to 5 in which a second member forming an independent air passage is provided on the back surface side of the cover member, and the air passage of the second member forms at least a part of the cold air passage. The refrigerator according to any one of the above.
前記第2部材は、2つの部品あるいは複数の部品から形成されている請求項9に記載の冷蔵庫。 The refrigerator according to claim 9, wherein the second member is formed of two parts or a plurality of parts. 前記冷気風路の断面形状が幅方向に細長い楕円形状であることを特徴とする請求項6〜10のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 6 to 10, wherein the cross-sectional shape of the cold air passage is an elliptical shape elongated in the width direction. 前記カバー部材は、前記冷気風路の少なくとも一部を形成あるいは前記冷気風路の少なくとも一部を覆う風路カバー部と、前記取り付け部に取り付けるための第2の取り付け部と、を備えた請求項6〜10のいずれか一項に記載の冷蔵庫。 The cover member includes an air passage cover portion that forms at least a part of the cold air passage or covers at least a part of the cold air passage, and a second attachment portion for attaching to the attachment portion. Item 8. The refrigerator according to any one of Items 6 to 10. 前記カバー部材は、前記取り付け部と前記第2の取り付け部とが引っ掛け構造あるいは嵌め込み構造あるいは凹凸嵌合、あるいはネジにより固定あるいは保持されている請求項12に記載の冷蔵庫。 The refrigerator according to claim 12, wherein the cover member is a refrigerator in which the mounting portion and the second mounting portion are fixed or held by a hook structure, a fitting structure, a concave-convex fitting, or a screw. 前記側壁の厚さをT1、前記凸部の幅方向長さをAとした時、冷蔵庫背面の幅方向端部から前記充填口の幅方向内側端部までの距離Y1が
Y1<=T1+A
である請求項5に記載の冷蔵庫。
When the thickness of the side wall is T1 and the length of the convex portion in the width direction is A, the distance Y1 from the width direction end portion of the back surface of the refrigerator to the width direction inner end portion of the filling port is Y1 <= T1 + A.
The refrigerator according to claim 5.
前記充填口が前記凸部の範囲に設けられている請求項5または請求項14に記載の冷蔵庫。 The refrigerator according to claim 5 or 14, wherein the filling port is provided in the range of the convex portion. 前記凸部間において、前記真空断熱材と前記内箱との間に充填あるいは注入された前記発泡断熱材が前記凸部間の一部範囲に充填されている請求項1〜5のいずれか一項に記載の冷蔵庫。 Any one of claims 1 to 5 in which the foamed heat insulating material filled or injected between the vacuum heat insulating material and the inner box is filled in a partial range between the convex portions. The refrigerator described in the section. 前記背面壁に設けられた前記真空断熱材は、少なくとも1つの角部に切欠き部を有し、前記切欠き部が前記充填口と対向する位置に配置されている請求項5、請求項14または請求項15に記載の冷蔵庫。 Claims 5 and 14 that the vacuum heat insulating material provided on the back wall has a notch at at least one corner portion, and the notch portion is arranged at a position facing the filling port. Alternatively, the refrigerator according to claim 15. 前記真空断熱材は、前記凸部間の前記内箱と前記外箱との間に設けられている請求項1〜17のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 17, wherein the vacuum heat insulating material is provided between the inner box and the outer box between the convex portions. 前記箱体を形成する前記外箱と前記内箱との間の空間の容積に対する前記真空断熱材の占める容積の割合が40%以上90%以下、
前記外箱の表面積に対する前記真空断熱材の面積比率が60%以上であり、
前記背面壁及び前記側壁に設けられた前記真空断熱材の前記背面壁および前記側壁への投影面積の合計が、前記背面壁と前記側壁を合わせた合計表面積に対して70%以上の割合である請求項1〜18のいずれか一項に記載の冷蔵庫。
The ratio of the volume occupied by the vacuum heat insulating material to the volume of the space between the outer box and the inner box forming the box body is 40% or more and 90% or less.
The area ratio of the vacuum heat insulating material to the surface area of the outer box is 60% or more.
The total projected area of the vacuum heat insulating material provided on the back wall and the side wall onto the back wall and the side wall is 70% or more of the total surface area of the back wall and the side wall combined. The refrigerator according to any one of claims 1 to 18.
前記側壁を形成する前記内箱と前記外箱との間に第3の真空断熱材を備え、前記第3の真空断熱材は、前記凸部と一部が重なるように配置されており、前記凸部において前記発泡断熱材とともに前記外箱、前記内箱と一体に形成されている請求項1〜19のいずれか一項に記載の冷蔵庫。 A third vacuum heat insulating material is provided between the inner box and the outer box forming the side wall, and the third vacuum heat insulating material is arranged so as to partially overlap the convex portion. The refrigerator according to any one of claims 1 to 19, wherein the outer box and the inner box are integrally formed with the foamed heat insulating material at the convex portion. 前記発泡断熱材が硬質ウレタンフォームである請求項1〜20のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 20, wherein the foamed heat insulating material is a rigid urethane foam. 前記真空断熱材の厚さ/(前記側壁あるいは前記背面壁の壁内厚さ)が0.7以上である請求項1〜21のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 21, wherein the thickness of the vacuum heat insulating material / (thickness inside the wall surface or the back wall) is 0.7 or more. 前記貯蔵室に収納され、前記側壁の前記貯蔵室側に設けられたレール部材を介して引き出される引き出し式のケースと、を備え、
前記発泡断熱材が前記レール部材と対向する位置の前記内箱と前記真空断熱材との間に充填あるいは注入されている請求項1〜5のいずれか一項に記載の冷蔵庫。
A pull-out case that is stored in the storage chamber and is pulled out via a rail member provided on the storage chamber side of the side wall is provided.
The refrigerator according to any one of claims 1 to 5, wherein the foam heat insulating material is filled or injected between the inner box at a position facing the rail member and the vacuum heat insulating material.
前記貯蔵室に収納され、前記側壁の前記貯蔵室側に設けられたレール部材を介して引き出される引き出し式のケースと、
前記内箱の前記レール部材と対向する位置の前記外箱側に設けられた部材と、を備え、 前記発泡断熱材が前記部材と前記真空断熱材との間に充填あるいは注入されている請求項1〜5のいずれか一項に記載の冷蔵庫。
A pull-out case that is stored in the storage chamber and pulled out via a rail member provided on the storage chamber side of the side wall.
A claim that includes a member provided on the outer box side at a position facing the rail member of the inner box, and the foam heat insulating material is filled or injected between the member and the vacuum heat insulating material. The refrigerator according to any one of 1 to 5.
前記内箱と前記制御基板室との間の前記発泡断熱材の厚さが11mm以下である請求項1〜5のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 5, wherein the thickness of the foamed heat insulating material between the inner box and the control substrate chamber is 11 mm or less. 前記側壁の厚さが20mm以上40mm以下であって、
前記レール部材と対向する位置の前記真空断熱材の曲げ弾性率が20MPa以上であり、前記発泡断熱材の厚さが10mmより小さい請求項23または請求項24に記載の冷蔵庫。
The thickness of the side wall is 20 mm or more and 40 mm or less.
The refrigerator according to claim 23 or 24, wherein the vacuum heat insulating material at a position facing the rail member has a flexural modulus of 20 MPa or more and the thickness of the foamed heat insulating material is smaller than 10 mm.
前記レール部材が前記貯蔵室の底面を形成する前記仕切壁あるいは前記底面壁の近傍に設けられている請求項23または請求項24に記載の冷蔵庫。 The refrigerator according to claim 23 or 24, wherein the rail member is provided in the vicinity of the partition wall or the bottom wall forming the bottom surface of the storage chamber. 前記レール部材を支持するレール支持部を備え、
前記レール支持部が前記貯蔵室の底面を形成する前記仕切壁あるいは前記底面壁に載置されている請求項23または請求項24に記載の冷蔵庫。
A rail support portion for supporting the rail member is provided.
The refrigerator according to claim 23 or 24, wherein the rail support portion is mounted on the partition wall or the bottom wall forming the bottom surface of the storage chamber.
前記ケースは、前記ケースを形成するケース側壁と、前記ケース側壁に形成され、前記レール部材にて前記ケースが支持される段部と、を有し、
前記段部が前記ケースの高さ方向に対して1/3以下の位置に設けられている請求項23または請求項24に記載の冷蔵庫。
The case has a case side wall forming the case and a step portion formed on the case side wall and supported by the rail member.
The refrigerator according to claim 23 or 24, wherein the step portion is provided at a position of 1/3 or less with respect to the height direction of the case.
前記発泡断熱材が硬質ウレタンフォームであり、前記硬質ウレタンフォームの曲げ弾性率が15MPa以上150MPa以下である請求項1〜29のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 29, wherein the foamed heat insulating material is a rigid urethane foam, and the flexural modulus of the rigid urethane foam is 15 MPa or more and 150 MPa or less. 前記送受信手段がアンテナである請求項1〜5のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 5, wherein the transmitting / receiving means is an antenna. 前記送受信手段が無線アダプタあるいはWiFi(登録商標)アダプタである請求項1〜5のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 5, wherein the transmitting / receiving means is a wireless adapter or a WiFi (registered trademark) adapter. 前記制御装置は前記外部機器と機器情報を送受信可能であり、
前記機器情報が前記冷蔵庫の消費電力、前記冷蔵庫の運転履歴、天気予報、災害情報、前記外部機器の運転状況、あるいは前記外部機器の消費電力である請求項1〜5のいずれか一項に記載の冷蔵庫。
The control device can send and receive device information to and from the external device.
The device information is the power consumption of the refrigerator, the operation history of the refrigerator, the weather forecast, disaster information, the operating status of the external device, or the power consumption of the external device according to any one of claims 1 to 5. Refrigerator.
携帯機器あるいはパソコンが接続できる接続端子を備え、前記冷蔵庫への電力の供給が停止した場合に、電力の供給元を電灯線から外部電源に切り替えることで前記携帯機器あるいは前記パソコンの充電が行える請求項1〜5のいずれか一項に記載の冷蔵庫。 A billing device that has a connection terminal to which a mobile device or computer can be connected, and can charge the mobile device or computer by switching the power supply source from a lamp line to an external power source when the power supply to the refrigerator is stopped. Item 2. The refrigerator according to any one of Items 1 to 5. 前記取り付け部は、前記凸部と前記背面壁とによって形成された凹部に設けられている請求項1〜34のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 34, wherein the mounting portion is provided in a concave portion formed by the convex portion and the back wall.
JP2018151436A 2013-06-07 2018-08-10 refrigerator Active JP6854789B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013120514 2013-06-07
JP2013120514 2013-06-07
JP2013169345 2013-08-19
JP2013169345 2013-08-19

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017089952A Division JP2017150811A (en) 2013-06-07 2017-04-28 refrigerator

Publications (3)

Publication Number Publication Date
JP2018169159A JP2018169159A (en) 2018-11-01
JP2018169159A5 JP2018169159A5 (en) 2019-07-18
JP6854789B2 true JP6854789B2 (en) 2021-04-07

Family

ID=52008240

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2015521492A Active JP6140279B2 (en) 2013-06-07 2014-06-05 Insulated box and refrigerator
JP2015237994A Active JP6062025B2 (en) 2013-06-07 2015-12-04 refrigerator
JP2016107376A Active JP6195644B2 (en) 2013-06-07 2016-05-30 refrigerator
JP2016158677A Active JP6195653B2 (en) 2013-06-07 2016-08-12 refrigerator
JP2017089952A Pending JP2017150811A (en) 2013-06-07 2017-04-28 refrigerator
JP2017241984A Active JP6408685B2 (en) 2013-06-07 2017-12-18 refrigerator
JP2018151436A Active JP6854789B2 (en) 2013-06-07 2018-08-10 refrigerator

Family Applications Before (6)

Application Number Title Priority Date Filing Date
JP2015521492A Active JP6140279B2 (en) 2013-06-07 2014-06-05 Insulated box and refrigerator
JP2015237994A Active JP6062025B2 (en) 2013-06-07 2015-12-04 refrigerator
JP2016107376A Active JP6195644B2 (en) 2013-06-07 2016-05-30 refrigerator
JP2016158677A Active JP6195653B2 (en) 2013-06-07 2016-08-12 refrigerator
JP2017089952A Pending JP2017150811A (en) 2013-06-07 2017-04-28 refrigerator
JP2017241984A Active JP6408685B2 (en) 2013-06-07 2017-12-18 refrigerator

Country Status (9)

Country Link
JP (7) JP6140279B2 (en)
CN (5) CN105393073B (en)
AU (4) AU2014275821B2 (en)
HK (1) HK1217530A1 (en)
MY (1) MY183066A (en)
RU (1) RU2629967C2 (en)
SG (5) SG11201509101TA (en)
TW (2) TWI599752B (en)
WO (1) WO2014196609A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6655277B2 (en) * 2014-06-02 2020-02-26 東芝ライフスタイル株式会社 refrigerator
WO2017033313A1 (en) * 2015-08-26 2017-03-02 三菱電機株式会社 Vacuum heat-insulating material and refrigerator
JPWO2018016053A1 (en) * 2016-07-21 2018-09-06 三菱電機株式会社 Refrigerator capable of communicating with communication devices
JP6948165B2 (en) * 2017-06-12 2021-10-13 東芝ライフスタイル株式会社 refrigerator
JP6635095B2 (en) 2017-07-19 2020-01-22 ダイキン工業株式会社 Rotary compressor
CN107514861B (en) * 2017-08-24 2020-01-17 滁州银兴新材料科技有限公司 Vacuum insulation panel mounting clamping groove for glue bonding free
JP6909738B2 (en) * 2018-01-31 2021-07-28 日立グローバルライフソリューションズ株式会社 refrigerator
CN109900058B (en) * 2017-12-11 2021-11-12 日立环球生活方案株式会社 Refrigerator, premix polyol composition and rigid polyurethane foam
KR102511095B1 (en) 2017-12-13 2023-03-16 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102530909B1 (en) 2017-12-13 2023-05-11 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102466446B1 (en) * 2017-12-13 2022-11-11 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102466448B1 (en) 2017-12-13 2022-11-11 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
KR102568737B1 (en) 2017-12-13 2023-08-21 엘지전자 주식회사 Vacuum adiabatic body and refrigerator
JP2020034206A (en) * 2018-08-29 2020-03-05 日立グローバルライフソリューションズ株式会社 refrigerator
JP7244303B2 (en) * 2019-03-06 2023-03-22 東芝ライフスタイル株式会社 refrigerator
JP6838618B2 (en) * 2019-04-15 2021-03-03 ダイキン工業株式会社 Air conditioner in the refrigerator
US11320194B2 (en) 2019-04-30 2022-05-03 Whirlpool Corporation Barrier layer for insulated structures
US11460143B2 (en) * 2019-05-21 2022-10-04 Whirlpool Corporation Collapsible pattern
WO2021024291A1 (en) * 2019-08-02 2021-02-11 三菱電機株式会社 Refrigerator
JP2021067412A (en) * 2019-10-24 2021-04-30 東芝ライフスタイル株式会社 refrigerator
JP7272934B2 (en) * 2019-11-13 2023-05-12 東芝ライフスタイル株式会社 refrigerator
CN111006431A (en) * 2019-11-19 2020-04-14 长虹美菱股份有限公司 Refrigeration device with ice fresh room
WO2021100174A1 (en) * 2019-11-21 2021-05-27 三菱電機株式会社 Refrigerator
JP7409890B2 (en) 2020-01-31 2024-01-09 東芝ライフスタイル株式会社 refrigerator
JP2021162285A (en) * 2020-04-03 2021-10-11 東芝ライフスタイル株式会社 Refrigerator door and refrigerator
JP7227196B2 (en) * 2020-07-22 2023-02-21 東芝ライフスタイル株式会社 refrigerator
CN114076447A (en) * 2020-08-14 2022-02-22 海信(山东)冰箱有限公司 Refrigerator and mounting structure member applied to refrigerator
JP2021009019A (en) * 2020-10-19 2021-01-28 パナソニックIpマネジメント株式会社 refrigerator
CN112628994A (en) * 2021-01-11 2021-04-09 青岛海尔空调器有限总公司 Sliding panel and vertical air conditioner
CN116235012A (en) * 2021-02-15 2023-06-06 日立环球生活方案株式会社 Refrigerator with a refrigerator body
DE102021202364A1 (en) * 2021-03-11 2022-09-15 BSH Hausgeräte GmbH Backing part for a household refrigeration appliance component, arrangement with a household refrigeration appliance component and a backing part, and assembly method
WO2023084784A1 (en) * 2021-11-15 2023-05-19 三菱電機株式会社 Refrigerator
US20240066942A1 (en) * 2022-08-24 2024-02-29 Caleb Arthur Sommers System for transporting perishable goods utilizing phase change materials and waste heat

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4736593Y1 (en) * 1969-06-02 1972-11-06
JPS5848536Y2 (en) * 1976-08-26 1983-11-05 三洋電機株式会社 insulation box body
JPS5463263U (en) * 1977-10-13 1979-05-04
JPS62200178A (en) * 1986-02-28 1987-09-03 株式会社日立製作所 Refrigerator
JPS63233286A (en) * 1987-03-20 1988-09-28 松下冷機株式会社 Manufacture of refrigerator
JPH03225182A (en) * 1990-01-30 1991-10-04 Asahi Chem Ind Co Ltd Heat insulating material for refrigerator
JPH04103582U (en) * 1991-02-08 1992-09-07 日本建鐵株式会社 commercial refrigerator
JP2755041B2 (en) * 1992-05-15 1998-05-20 三菱電機株式会社 Display mechanism of refrigerator
JP3213454B2 (en) * 1993-09-30 2001-10-02 三洋電機株式会社 Insulated box
JPH07120138A (en) * 1993-10-25 1995-05-12 Hitachi Ltd Vacuum insulated box
JP3143313B2 (en) * 1994-02-28 2001-03-07 三洋電機株式会社 refrigerator
JPH07260339A (en) * 1994-03-17 1995-10-13 Matsushita Refrig Co Ltd Refrigerator
JPH07269779A (en) * 1994-03-28 1995-10-20 Toshiba Corp Manufacture of heat insulating container and vacuum heat insulating panel
JP3811963B2 (en) * 1995-03-09 2006-08-23 株式会社日立製作所 refrigerator
JPH08296953A (en) * 1995-04-27 1996-11-12 Toshiba Corp Refrigerator
KR0162412B1 (en) * 1995-10-13 1999-02-18 구자홍 New regulation loading concentration cooling apparatus of a refrigerator
JP3337927B2 (en) * 1996-12-13 2002-10-28 株式会社東芝 refrigerator
JPH10205989A (en) * 1997-01-22 1998-08-04 Sanyo Electric Co Ltd Refrigerator
JPH10253244A (en) * 1997-03-11 1998-09-25 Sanyo Electric Co Ltd Refrigerator
JPH1194444A (en) * 1997-09-19 1999-04-09 Hitachi Ltd Refrigerator
JP3125017B2 (en) * 1997-10-24 2001-01-15 工業技術院長 Insulation
JP3471205B2 (en) * 1997-11-07 2003-12-02 株式会社東芝 Storage
JPH11237155A (en) * 1998-02-24 1999-08-31 Matsushita Refrig Co Ltd Driving device for blower of refrigerator
JP4275612B2 (en) * 1998-04-15 2009-06-10 三菱電機株式会社 refrigerator
JP2000039255A (en) * 1998-07-27 2000-02-08 Hitachi Ltd Refrigerator
DE60036572T2 (en) * 1999-04-12 2008-10-23 Isuzu Motors Ltd. Heat-insulating wall element and method for its production
JP2001183043A (en) * 1999-12-22 2001-07-06 Sanyo Electric Software Co Ltd Refrigerator system
JP3603943B2 (en) * 2000-03-01 2004-12-22 シャープ株式会社 refrigerator
AU2001222296B2 (en) * 2000-04-21 2004-09-02 Matsushita Refrigeration Company Heat insulation box, and vacuum heat insulation material used therefor
JP3478810B2 (en) * 2001-01-15 2003-12-15 松下冷機株式会社 Insulated box, raw material manufacturing method, and refrigerator
JP2002228328A (en) * 2001-02-06 2002-08-14 Fujitsu General Ltd Electric refrigerator
JP2002295948A (en) * 2001-03-30 2002-10-09 Fujitsu General Ltd Electric refrigerator
WO2002099347A1 (en) * 2001-06-04 2002-12-12 Matsushita Refrigeration Company Insulated box body, refrigerator having the box body, and method of recycling materials for insulated box body
JP3493009B2 (en) * 2001-06-28 2004-02-03 松下冷機株式会社 refrigerator
JP2003042652A (en) * 2001-07-26 2003-02-13 Matsushita Refrig Co Ltd Heat insulation box, and refrigerator equipped therewith
JP3488229B2 (en) * 2001-09-05 2004-01-19 松下冷機株式会社 Insulated box and refrigerator
JP3522733B2 (en) * 2002-06-20 2004-04-26 松下冷機株式会社 refrigerator
JP2003314951A (en) * 2002-04-22 2003-11-06 Matsushita Refrig Co Ltd Refrigerator
KR20030086734A (en) * 2002-05-06 2003-11-12 엘지전자 주식회사 Refrigerator using solar heat
JP3456988B1 (en) * 2002-06-05 2003-10-14 松下冷機株式会社 Vacuum heat insulating material, method of manufacturing the same, and heat insulating box using vacuum heat insulating material
KR100498386B1 (en) * 2002-12-06 2005-07-01 엘지전자 주식회사 Apparatus for supply the cool air of refrigerator
JP2005030607A (en) * 2003-07-07 2005-02-03 Hitachi Ltd Battery charger, and refrigerator provided with battery charger
JP4111096B2 (en) * 2003-08-05 2008-07-02 三菱電機株式会社 refrigerator
DE10342859A1 (en) * 2003-09-15 2005-04-21 Basf Ag Moldings for heat insulation
JP2005140345A (en) * 2003-11-04 2005-06-02 Hitachi Home & Life Solutions Inc Refrigerator
JP2005221211A (en) * 2004-02-09 2005-08-18 Toshiba Corp Refrigerator
JP2006064320A (en) * 2004-08-27 2006-03-09 Toshiba Corp Refrigerator
JP4576197B2 (en) * 2004-10-12 2010-11-04 日立アプライアンス株式会社 Vacuum insulation and refrigerator
JP2006125527A (en) * 2004-10-29 2006-05-18 Hitachi Home & Life Solutions Inc Vacuum thermal insulation panel
JP2006177654A (en) * 2004-11-26 2006-07-06 Matsushita Electric Ind Co Ltd Refrigerator
JP4188313B2 (en) * 2004-12-24 2008-11-26 株式会社東芝 refrigerator
JP4474276B2 (en) * 2004-12-27 2010-06-02 日立アプライアンス株式会社 refrigerator
JP2006183896A (en) * 2004-12-27 2006-07-13 Hitachi Home & Life Solutions Inc Refrigerator and vacuum heat insulating material
JP2006189207A (en) * 2005-01-07 2006-07-20 Hitachi Home & Life Solutions Inc Refrigerator
JP2007024348A (en) * 2005-07-13 2007-02-01 Hoshizaki Electric Co Ltd Cooling storage
JP2007071429A (en) * 2005-09-06 2007-03-22 Matsushita Electric Ind Co Ltd Refrigerator
JP2007093153A (en) * 2005-09-30 2007-04-12 Hitachi Appliances Inc Refrigerator
JP4696906B2 (en) * 2005-12-28 2011-06-08 パナソニック株式会社 refrigerator
JP4814684B2 (en) * 2006-04-20 2011-11-16 日立アプライアンス株式会社 Vacuum heat insulating material, refrigerator and vehicle using the same
JP2007314951A (en) * 2006-05-23 2007-12-06 Chudenko Corp Water-supply emergency shutoff valve system capable of coping with earthquake
JP2009052857A (en) * 2007-08-29 2009-03-12 Hitachi Appliances Inc Cooling device
JP2009092340A (en) * 2007-10-11 2009-04-30 Sharp Corp Refrigerator
JP2009162402A (en) * 2007-12-28 2009-07-23 Sharp Corp Refrigerator
JP2009228948A (en) * 2008-03-21 2009-10-08 Panasonic Corp Refrigerator
JP2010038528A (en) * 2008-07-10 2010-02-18 Toshiba Corp Refrigerator
CN102149991B (en) * 2008-09-12 2013-07-31 松下电器产业株式会社 Refrigerator
MY152066A (en) * 2008-09-30 2014-08-15 Chevron Usa Inc A 110 neutral base oil with improved properties
JP2010145001A (en) * 2008-12-18 2010-07-01 Sharp Corp Heat insulating case body for refrigerator
SG175670A1 (en) * 2009-03-27 2011-11-28 Mitsubishi Electric Corp Electrostatic atomizing apparatus, appliances, air conditioner, and refrigerator
CN201555413U (en) * 2009-04-28 2010-08-18 上海中日家用电器有限公司 Heat insulation layer for refrigerator
KR101602223B1 (en) * 2009-05-22 2016-03-10 엘지전자 주식회사 Eternity panel and refrigerator having the same
JP2010276310A (en) * 2009-05-29 2010-12-09 Hitachi Appliances Inc Refrigerator having vacuum heat insulating material
JP2011033296A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Refrigerator
JP5303397B2 (en) * 2009-08-12 2013-10-02 日立アプライアンス株式会社 refrigerator
JP5537098B2 (en) * 2009-09-07 2014-07-02 株式会社東芝 refrigerator
JP5303415B2 (en) * 2009-09-28 2013-10-02 日立アプライアンス株式会社 refrigerator
JP2011102663A (en) * 2009-11-10 2011-05-26 Toshiba Corp Refrigerator
JP5957169B2 (en) * 2010-01-28 2016-07-27 株式会社東芝 refrigerator
TW201200828A (en) * 2010-03-25 2012-01-01 Panasonic Corp Refrigerator
JP5246193B2 (en) * 2010-03-25 2013-07-24 パナソニック株式会社 refrigerator
JP5589699B2 (en) * 2010-09-13 2014-09-17 パナソニック株式会社 refrigerator
JP5422487B2 (en) * 2010-05-28 2014-02-19 株式会社東芝 Refrigerator insulation box
JP5503478B2 (en) * 2010-09-14 2014-05-28 日立アプライアンス株式会社 refrigerator
JP5743483B2 (en) * 2010-10-20 2015-07-01 株式会社東芝 Insulation cabinet
JP5899395B2 (en) * 2011-09-05 2016-04-06 パナソニックIpマネジメント株式会社 Heat insulation box
JP2011099566A (en) * 2011-02-25 2011-05-19 Hitachi Appliances Inc Vacuum heat insulating panel and refrigerator
JP5686651B2 (en) * 2011-03-30 2015-03-18 日立アプライアンス株式会社 refrigerator
DE102011075388A1 (en) * 2011-05-06 2012-11-08 BSH Bosch und Siemens Hausgeräte GmbH Refrigerating appliance, in particular household refrigerating appliance
JP5788232B2 (en) * 2011-06-13 2015-09-30 株式会社東芝 refrigerator
JP6005342B2 (en) * 2011-06-13 2016-10-12 東芝ライフスタイル株式会社 refrigerator
JP5755040B2 (en) * 2011-06-14 2015-07-29 株式会社東芝 refrigerator
JP2013068353A (en) * 2011-09-22 2013-04-18 Panasonic Corp Refrigerator
JP6023941B2 (en) * 2012-06-27 2016-11-09 東芝ライフスタイル株式会社 Heat insulation box
JP6125163B2 (en) * 2012-06-27 2017-05-10 東芝ライフスタイル株式会社 refrigerator
JP5856091B2 (en) * 2013-01-30 2016-02-09 三菱電機株式会社 Heat insulation wall, refrigerator, equipment

Also Published As

Publication number Publication date
AU2016216583C1 (en) 2017-09-07
SG11201509101TA (en) 2015-12-30
SG10201801355WA (en) 2018-03-28
HK1217530A1 (en) 2017-01-13
CN106016931A (en) 2016-10-12
CN105393073B (en) 2019-03-08
JP2018169159A (en) 2018-11-01
WO2014196609A1 (en) 2014-12-11
JP2017150811A (en) 2017-08-31
SG10201801356QA (en) 2018-03-28
SG10201801359YA (en) 2018-03-28
JP2016188760A (en) 2016-11-04
TW201704705A (en) 2017-02-01
CN106895649A (en) 2017-06-27
RU2629967C2 (en) 2017-09-05
AU2014275821B2 (en) 2016-05-26
JPWO2014196609A1 (en) 2017-02-23
AU2014275821A1 (en) 2015-12-03
TW201520497A (en) 2015-06-01
SG10201801354XA (en) 2018-04-27
CN109855371A (en) 2019-06-07
TWI638125B (en) 2018-10-11
JP2016197005A (en) 2016-11-24
AU2016216583A1 (en) 2016-09-01
JP2016053472A (en) 2016-04-14
JP6195644B2 (en) 2017-09-13
AU2016216583B2 (en) 2017-05-04
TWI599752B (en) 2017-09-21
AU2017204798B2 (en) 2018-11-29
CN106016931B (en) 2019-04-19
CN106196860A (en) 2016-12-07
CN109855371B (en) 2021-01-29
RU2015156309A (en) 2017-07-17
JP2018063110A (en) 2018-04-19
AU2017204798A1 (en) 2017-07-27
JP6408685B2 (en) 2018-10-17
JP6140279B2 (en) 2017-05-31
JP6195653B2 (en) 2017-09-13
JP6062025B2 (en) 2017-01-18
CN105393073A (en) 2016-03-09
AU2016216581B2 (en) 2017-04-20
MY183066A (en) 2021-02-10
AU2016216581A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP6854789B2 (en) refrigerator
JP6647254B2 (en) refrigerator
JP6779196B2 (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200122

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200129

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200204

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200214

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200218

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200721

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201013

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201110

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210108

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210202

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210309

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210316

R150 Certificate of patent or registration of utility model

Ref document number: 6854789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250