JPWO2013051059A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JPWO2013051059A1
JPWO2013051059A1 JP2013537274A JP2013537274A JPWO2013051059A1 JP WO2013051059 A1 JPWO2013051059 A1 JP WO2013051059A1 JP 2013537274 A JP2013537274 A JP 2013537274A JP 2013537274 A JP2013537274 A JP 2013537274A JP WO2013051059 A1 JPWO2013051059 A1 JP WO2013051059A1
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
heat exchanger
water supply
extension pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013537274A
Other languages
English (en)
Other versions
JP5745637B2 (ja
Inventor
章吾 玉木
章吾 玉木
齊藤 信
信 齊藤
亮 大矢
亮 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2013051059A1 publication Critical patent/JPWO2013051059A1/ja
Application granted granted Critical
Publication of JP5745637B2 publication Critical patent/JP5745637B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

水熱交換器12に対する給湯側液延長配管15の容積比率は、室内側熱交換器8が蒸発器、水熱交換器12が凝縮器となり室内側熱交換器8から冷熱を供給し、かつ、水熱交換器12から温熱を供給する冷房給湯同時運転における必要冷媒量と、熱源側熱交換器4が蒸発器、室内側熱交換器8が凝縮器となり室内側熱交換器8から温熱を供給する暖房運転における必要冷媒量と、が等しくなるときの水熱交換器12に対する給湯側液延長配管15の容積比率である最小容積比率以上とした。

Description

本発明は、蒸気圧縮式の冷凍サイクル装置に関し、特に空調運転(冷房運転、暖房運転)及び給湯運転の個別運転が可能であり、かつ冷房給湯同時運転により排熱回収運転が可能な冷凍サイクル装置に関するものである
従来から、1つのシステムにおいて空調運転と給湯運転とを単独に実行できるようにした冷凍サイクル装置が存在している。そのようなものとして、熱源ユニットと室内ユニットと給湯ユニットとを配管接続することによって形成した冷媒回路を搭載し、空調運転及び給湯運転を同時に実行することをできるようにした冷凍サイクル装置が提案されている(たとえば、特許文献1、2参照)。このようなシステムでは、冷房運転と給湯運転とを同時に実行することによって、冷房時の排熱を給湯熱に回収することが可能となり、効率の高い運転を実現することができるようにしている。
特開2010―196950号公報(第34−36頁、図4等) 特開2001―248937号公報(第3−4頁、図4等)
特許文献1に記載されているようなヒートポンプシステムでは、冷房と給湯の同時運転にて排熱回収をする際に熱源側熱交換器が高圧雰囲気となる(特許文献1の図4参照)。そのため、熱源側熱交換器にて外気との熱交換により冷媒の凝縮が発生してしまう。加えて、冷媒が熱源側熱交換器に滞留してしまうのを防ぐために、ある程度の冷媒を熱源側熱交換器に流さなければならず、冷房排熱を完全に給湯熱として回収することができていなかった。
特許文献2に記載されているようなヒートポンプ給湯エアコンでは、冷房と給湯の同時運転時に室外側熱交換器を低圧雰囲気とすることができる。そのため、このようなシステムでは、冷房排熱を給湯熱として完全に回収する完全排熱回収運転が可能になる。しかしながら、冷房運転から冷房給湯同時運転に移行するときに四方弁が切り替わることによって、室外側熱交換器に貯留されていた大量の冷媒が圧縮機の吸入側に流れてくるため、圧縮機が液バックしてしまうという問題があった。また、冷房給湯同時運転において室外側熱交換器が低圧雰囲気となるため、完全排熱回収運転時においては室外側熱交換器が低圧ガスの冷媒で満たされた状態となっており、冷房給湯同時運転において大量の余剰冷媒を貯留するために内容積(容量)の大きな液溜めが必要となっていた。
ところで、冷房運転と暖房運転のみを実施する冷凍サイクル装置(以下、標準機)では、冷房運転よりも暖房運転の方が運転するのに必要な冷媒量が少ないため、暖房運転時に余剰冷媒を液溜めに貯留させる必要がある。それ対して、特許文献2に記載されているようなヒートポンプ給湯エアコンでは、室外熱交換器が低圧ガスで満たされるため、標準機における暖房運転よりも運転するのに必要な冷媒量がさらに少なくなる。その結果、冷房給湯同時運転での余剰冷媒が暖房運転時よりも多く発生する。その余剰冷媒を貯留するために標準機の液溜めよりも大きい内容積(容量)の液溜めが必要であった。そのため、熱源ユニット筐体の外形寸法が大きくなってしまい、限られた設置スペースでは設置できなくなるという問題があった。
本発明は、上記のような課題を解決するためになされたものであり、液溜めの内容積を小さくし、低コストかつ熱源ユニットの外形寸法が冷暖房運転のみを実施する標準機と同等の冷凍サイクル装置を得ることを目的とする。
本発明に係る冷凍サイクル装置は、圧縮機、熱源側熱交換器及び膨張弁を備える熱源ユニットと、室内側熱交換器を備える室内ユニットと、水熱交換器を備える給湯ユニットと、を備え、前記熱源ユニットと前記室内ユニットとを室内側液延長配管及び室内側ガス延長配管からなる室内側延長配管で接続し、前記熱源ユニットと前記給湯ユニットとを給湯側液延長配管及び給湯側ガス延長配管からなる給湯側延長配管で接続した冷凍サイクル装置において、前記水熱交換器に対する前記給湯側液延長配管の容積比率は、前記室内側熱交換器が蒸発器、前記水熱交換器が凝縮器となり前記室内側熱交換器から冷熱を供給し、かつ、前記水熱交換器から温熱を供給する冷房給湯同時運転における必要冷媒量と、前記熱源側熱交換器が蒸発器、前記室内側熱交換器が凝縮器となり前記室内側熱交換器から温熱を供給する暖房運転における必要冷媒量と、が等しくなるときの前記水熱交換器に対する前記給湯側液延長配管の容積比率である最小容積比率以上としたものである。
本発明に係る冷凍サイクル装置によれば、液溜め内容積を冷房運転と暖房運転のみを実施する標準機と同等とすることができるので、低コストかつ熱源ユニットの外形寸法を標準機と同等にできる。
本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路構成を示す概略冷媒回路図である。 本発明の実施の形態1に係る冷凍サイクル装置の暖房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態1に係る冷凍サイクル装置の給湯運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態1に係る冷凍サイクル装置の冷房給湯同時運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態1に係る冷凍サイクル装置の冷房給湯同時運転モード時の冷媒の状態遷移を示すP−h線図である。 室内側延長配管長が0mの場合の給湯側延長配管長と各運転モードにおける必要冷媒量の関係を示した図である。 空気熱交換器が凝縮器の場合の冷媒の状態を表した概略図である。 給湯側液延長配管の配管内径アップした場合の給湯側延長配管長の最小長さの減少効果を示した図である。 給湯側延長配管長がLaの場合の各運転モードにおける室内側延長配管長に対する必要冷媒量の変化を示す図である。 室内側延長配管長が長い場合の給湯側延長配管長にする各運転モードの必要冷媒量の関係を示した図である。 本発明の実施の形態1に係る冷凍サイクル装置の室内側延長配管長及び給湯側延長配管長の設定手順を示したフローチャート図である。 給湯側延長配管の配管長に対する配管径の選定について示したイメージ図である。 並行凝縮運転時の処理の流れを示すフローチャート図である。 本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路構成、特に冷房給湯同時運転モード時の冷媒の流れを示す概略冷媒回路図である。 本発明の実施の形態3に係る冷凍サイクル装置の冷媒回路構成、特に冷房給湯同時運転モード時の冷媒の流れを示す概略冷媒回路図である。 過冷却熱交換器の構成を示す概略図である。
以下、図面に基づいて本発明の実施の形態について説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る冷凍サイクル装置100の冷媒回路構成を示す概略冷媒回路図である。図1に基づいて、冷凍サイクル装置100の構成及び動作の一部について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
この冷凍サイクル装置100は、一般住宅やオフィスビル等に設置され、蒸気圧縮式の冷凍サイクル運転を行うことによって、室内ユニット302にて選択された冷房指令(冷房ON/OFF)又は暖房指令(暖房ON/OFF)、あるいは給湯ユニット303における給湯指令(給湯ON/OFF)を個別に処理することができるものである。また、この冷凍サイクル装置100では、室内ユニット302の冷房指令と給湯ユニット303の給湯指令を同時に処理することができるようになっている。
{冷凍サイクル装置100の構成}
冷凍サイクル装置100は、熱源ユニット301と、室内ユニット302と、給湯ユニット303と、を有している。熱源ユニット301と室内ユニット302とは、冷媒配管である室内側液延長配管7と冷媒配管である室内側ガス延長配管9とで接続されている。熱源ユニット301と給湯ユニット303とは冷媒配管である給湯側ガス延長配管11と冷媒配管である給湯側液延長配管15とで接続されている。なお、冷凍サイクル装置100に用いられる冷媒は、特に限定しない。たとえば、R410A、R32、HFO−1234yf、炭化水素のような自然冷媒などを冷媒として用いることができる。また、熱源ユニット301、室内ユニット302、給湯ユニット303の接続台数を、図示してある台数に限定するものではない。
[熱源ユニット301]
熱源ユニット301は、圧縮機1、吐出電磁弁2a、吐出電磁弁2b、四方弁3、熱源側熱交換器4、第1膨張弁5、第2膨張弁6、アキュムレーター10、第3膨張弁16、低圧均圧電磁弁18を有している。
圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものであり、たとえばインバーターにより回転数が制御されるタイプのもので構成するとよい。この圧縮機1には、吐出側配管30と、吸入側配管40と、が接続されている。吐出側配管30は、途中(四方弁3及び後述する給湯ユニット303は水熱交換器12の上流側)で分岐されている。そして、一方の吐出側配管30aには吐出電磁弁2aが、他方の吐出側配管30bには吐出電磁弁2bが、それぞれ設置されている。
吐出電磁弁2aは、開閉が制御されることで、吐出側配管30aに冷媒を導通したり、しなかったりするものである。吐出電磁弁2bは、開閉が制御されることで、吐出側配管30bに冷媒を導通したり、しなかったりするものである。吐出側配管30aの吐出電磁弁2aの下流には、四方弁3が設置されている。吐出側配管30bの吐出電磁弁2bの下流には、給湯側ガス延長配管11を解して給湯ユニット303の水熱交換器12が設置されている。なお、吐出側配管30bを給湯側ガス延長配管11に接続してもよいし、吐出側配管30bを給湯側ガス延長配管11としてもよい。
四方弁3は、室内ユニット302からの指令によって冷媒の流れを切り替えるものである。つまり、四方弁3は、室内ユニット302から冷房指令時の冷媒の流れと、暖房指令時の冷媒の流れと、を切り替えるものである。
熱源側熱交換器4は、図示省略のファン等の送風機から供給される空気と冷媒との間で熱交換を行い、空気から吸熱又は空気に排熱するものである。この熱源側熱交換器4は、たとえば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成するとよい。
また、熱源ユニット301には、四方弁3を介しての吐出電磁弁2aと熱源側熱交換器4との間と、四方弁3を介しての室内側熱交換器8とアキュムレーター10との間と、を接続する低圧バイパス配管17が設置されている。そして、この低圧バイパス配管17に、低圧均圧電磁弁18が設けられている。低圧均圧電磁弁18は、開閉が制御されることで、低圧バイパス配管17に冷媒を導通したり、しなかったりするものである。
第1膨張弁5、第2膨張弁6、及び、第3膨張弁16は、開度が可変に制御され、冷媒の流量を制御するものである。第1膨張弁5は、熱源側熱交換器4と室内側熱交換器8との間における室内側液延長配管7であって、熱源側熱交換器4側に設置されている。第2膨張弁6は、熱源側熱交換器4と室内側熱交換器8との間における室内側液延長配管7であって、室内側熱交換器8側に設置されている。第3膨張弁16は、第1膨張弁5と第2膨張弁6との間に接続されている給湯側液延長配管15に設置されている。
第1膨張弁5の開度制御、第2膨張弁6の開度制御、第3膨張弁16の開度制御、吐出電磁弁2aの開閉制御、吐出電磁弁2bの開閉制御、四方弁3の流路切替制御、低圧均圧電磁弁18の開閉制御によって、冷媒回路を循環する冷媒の流れ方向を設定することができる。
アキュムレーター10は、圧縮機1の吸入側に設けられており、運転に過剰な冷媒を貯留する機能、及び運転状態が変化する際に一時的に発生する液冷媒を滞留させることで圧縮機1に大量の液冷媒が流入するのを防ぐ機能を有している
また、熱源ユニット301には、圧力センサー201、第1温度センサー202、及び、第2温度センサー203が設けられている。圧力センサー201は、圧縮機1の吐出側に設けられており、設置場所の冷媒圧力を計測するようになっている。第1温度センサー202は、圧縮機1の吐出側に設けられており、設置場所の冷媒温度を計測するようになっている。第2温度センサー203は、熱源側熱交換器4の液側(熱源側熱交換器4と第1膨張弁5との間)に設けられており、設置場所の冷媒温度を計測するようになっている。
さらに、熱源ユニット301には制御装置101が搭載されている。制御装置101は、室内ユニット302及び給湯ユニット303からの指令に基づいて熱源ユニット301に搭載されている圧縮機1、吐出電磁弁2a、吐出電磁弁2b、低圧均圧電磁弁18、四方弁3、第1膨張弁5、第2膨張弁6、第3膨張弁16、熱源側熱交換器4の近傍に設置されているファン等の作動要素(アクチュエーター)を制御するようになっている。なお、圧力センサー201、第1温度センサー202、及び、第2温度センサー203での計測情報は、制御装置101に送られ、アクチュエーターの制御に利用されることになる。
制御装置101は、たとえばマイクロコンピューター等により構成されている。制御装置101には、各種センサー(圧力センサー201や第1温度センサー202、その他の温度センサー(室内ユニット302、給湯ユニット303に設置されている温度センサーを含む)など)による計測情報を取得する計測手段、計測情報から凝縮温度や過冷却度などを演算する演算手段(過冷却度制御手段)、及び、演算結果と冷凍空調装置使用者から指示される運転内容に基づいて、アクチュエーターを制御する制御手段が少なくとも搭載されている。
[室内ユニット302]
室内ユニット302には、室内側熱交換器8が搭載されている。この室内側熱交換器8は、図示省略のファン等の送風機から供給される室内空気と冷媒との間で熱交換を行い、室内空気から吸熱又は室内空気に排熱するものである。この室内側熱交換器8は、たとえば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成するとよい。
室内ユニット302には第3温度センサー204が室内側熱交換器8の液側(室内側熱交換器8と第2膨張弁6との間)に設けられており、設置場所の冷媒温度を測定するようになっている。なお、第3温度センサー204での計測情報は、熱源ユニット301の制御装置101に送られ、アクチュエーターの制御に利用されることになる。
[給湯ユニット303]
給湯ユニット303は、水熱交換器12、水側回路21、水ポンプ13、及び、貯湯タンク14を有している。
水側回路21は、水熱交換器12と貯湯タンク14とを接続しており、熱交換媒体である水を中間水として水熱交換器12と貯湯タンク14との間を循環させるようになっている。
水熱交換器12は、たとえばプレート型水熱交換器により構成され、中間水と冷媒との間で熱交換を行い、水を温水に沸き上げるものである。
水ポンプ13は、中間水を水側回路21で循環させる機能を有している。この水ポンプ13は、水熱交換器12に供給する水の流量を可変に調整できるもので構成してもよく、一定速のもので構成してもよい。
貯湯タンク14は、水熱交換器12で沸きあげられた湯を貯留する機能を有している。この貯湯タンク14は、満水式であり、温度成層を形成しながら貯湯を行い、上部に高温水、下部に低温水が貯湯されるものである。そして、負荷側の出湯要求に応じて貯湯タンク14の上部より湯が出水する。なお、出湯時の貯湯タンク14の湯量減少分は、低温の市水が貯湯タンク14の下方から給水され、貯湯タンク14の下部に滞留するようになっている。
給湯ユニット303において、水ポンプ13により送水された水は、水熱交換器12で冷媒により加熱されて温水となり、その後、貯湯タンク14内に流入することになる。温水は、貯湯タンク14の水に混合されることはなく、中間水として貯湯タンク14内にて水と熱交換をして冷水となる。その後、貯湯タンク14を流出し、水ポンプ13に流れ、再び送水されて水熱交換器12にて温水となる。このようなプロセスにて湯が沸き上げられ、沸き上げられた湯が貯湯タンク14に貯えられていく。
なお、給湯ユニット303による貯湯タンク14の水の加熱方法は実施の形態1のような中間水による熱交換方式に限定されず、貯湯タンク14の水を直接配管に流して、水熱交換器12にて熱交換をさせて温水とし、再び貯湯タンク14に戻す加熱方法にしてもよい。
また、給湯ユニット303には、第4温度センサー205、第5温度センサー206、及び、第6温度センサー207が設けられている。第4温度センサー205は、水熱交換器12の液側(水熱交換器12と第3膨張弁16との間)に設置されており、設置場所の冷媒温度を測定するようになっている。第5温度センサー206は、貯湯タンク14のタンク壁面に設置されており、設置場所の水温を測定するようになっている。第6温度センサー207は、水熱交換器12の水出口側に設置されている、設置場所の水温を測定するようになっている。なお、第4温度センサー205、第5温度センサー206、及び、第6温度センサー207での計測情報は、熱源ユニット301の制御装置101に送られ、アクチュエーターの制御に利用されることになる。
{冷凍サイクル装置100の運転モード}
冷凍サイクル装置100は、室内ユニット302に要求されるそれぞれの空調負荷及び給湯ユニット303に要求される給湯要求に応じて熱源ユニット301、室内ユニット302、給湯ユニット303に搭載されている各機器の制御を行い、冷房運転モード、暖房運転モード、給湯運転モード、冷房給湯同時運転モードを実行可能になっている。なお、冷凍サイクル装置100は暖房給湯同時運転も可能な冷媒回路構成であるが、暖房能力と給湯能力を同時に確保できるほどの容量が圧縮機1又は熱源側熱交換器4にないとして、暖房給湯同時運転を実施しないとした。以下に、各運転モードにおける運転動作について説明する。
[冷房運転モード]
まず、冷房運転モードについて図1を用いて説明する。なお、図1中の矢印は冷媒の流れ方向を示している。図1に示す冷房運転モードの場合、熱源ユニット301では、四方弁3を、圧縮機1の吐出側を熱源側熱交換器4のガス側と接続し、圧縮機1の吸入側を室内側熱交換器8のガス側と接続するように切り替える(図1に示す実線)。また、吐出電磁弁2aは開路(白抜き)、吐出電磁弁2bは閉路(黒塗り)、低圧均圧電磁弁18は閉路(黒塗り)に制御されている。さらに、第1膨張弁5は最大開度(全開)、第2膨張弁6は任意の開度、第3膨張弁16は最低開度(全閉)に制御されている。
低温・低圧の冷媒が圧縮機1によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機1から吐出した高温・高圧のガス冷媒は、吐出電磁弁2a、四方弁3を経由して、熱源側熱交換器4に流入する。そして、熱源側熱交換器4で室外空気と熱交換を行なって高圧の液冷媒になる。この冷媒は、その後、熱源側熱交換器4から流出し、第1膨張弁5を通過し、第2膨張弁6にて減圧され低圧の二相冷媒となる。その後、この二相冷媒は、熱源ユニット301から流出する。
熱源ユニット301から流出した二相冷媒は、室内側液延長配管7を経由して室内ユニット302に流入する。室内ユニット302に流入した冷媒は、室内側熱交換器8に流入し、室内空気を冷却して低温・低圧のガス冷媒となる。その後、このガス冷媒は、室内ユニット302を流出し、室内側ガス延長配管9を経由して熱源ユニット301に流入する。熱源ユニット301に流入したガス冷媒は、四方弁3及びアキュムレーター10を介して再び圧縮機1に吸入される。なお、給湯ユニット303は停止しているため、吐出電磁弁2bから第3膨張弁16までの間は冷媒が流れておらず、気相の冷媒で満たされている。
[暖房運転モード]
次に、暖房運転モードについて図2を用いて説明する。図2は、冷凍サイクル装置100の暖房運転モード時における冷媒の流れを示す冷媒回路図である。なお、図2中の矢印は冷媒の流れ方向を示している。図2に示す暖房運転モードの場合、熱源ユニット301では、四方弁3を、圧縮機1の吐出側を室内側熱交換器8のガス側と接続し、圧縮機1の吸入側を熱源側熱交換器4のガス側と接続するように切り替える(図2に示す実線)。また、吐出電磁弁2aは開路(白抜き)、吐出電磁弁2bは閉路(黒塗り)、低圧均圧電磁弁18は閉路(黒塗り)に制御されている。さらに、第1膨張弁5は任意の開度、第2膨張弁6は最大開度(全開)、第3膨張弁16は最低開度(全閉)に制御されている。
低温・低圧の冷媒が圧縮機1によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機1から吐出した高温・高圧のガス冷媒は、吐出電磁弁2a、四方弁3を経由して熱源ユニット301から流出する。熱源ユニット301から流出した冷媒は、室内側ガス延長配管9を経由し、室内ユニット302へと流れる。その後、この冷媒は、室内側熱交換器8に流入し、室内空気を加熱して高圧液冷媒となり、室内側熱交換器8から流出する。
その後、この液冷媒は、室内ユニット302から流出し、室内側液延長配管7を経由して熱源ユニット301に流入する。熱源ユニット301に流入した冷媒は、第2膨張弁6を通過し、第1膨張弁5にて減圧され低圧二相冷媒となる。その後、この二相冷媒は、熱源側熱交換器4に流入し、室外空気と熱交換を行ない、低温・低圧のガス冷媒となる。その後、このガス冷媒は、四方弁3及びアキュムレーター10を介して再び圧縮機1に吸入される。なお、給湯ユニット303は停止しているため、吐出電磁弁2bから膨張弁16までの間は冷媒が流れておらず、気相の冷媒で満たされている。
[給湯運転モード]
次に、給湯運転モードについて図3を用いて説明する。図3は、冷凍サイクル装置100の給湯運転モード時における冷媒の流れを示す冷媒回路図である。なお、図3中の矢印は冷媒の流れ方向を示している。図3に示す給湯運転モードの場合、熱源ユニット301では、四方弁3を、圧縮機1の吸入側を熱源側熱交換器4のガス側と接続するように切り替える(図3の実線)。また、吐出電磁弁2aは閉路(黒塗り)、吐出電磁弁2bは開路(白抜き)、低圧均圧電磁弁18は閉路(黒塗り)に制御されている。さらに、第1膨張弁5は任意の開度、第2膨張弁6は最低開度(全閉)、第3膨張弁16は最大開度(全開)に制御されている。
低温・低圧の冷媒が圧縮機1によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機1から吐出した高温・高圧のガス冷媒は、吐出電磁弁2bを通過し、熱源ユニット301から流出する。その後、この冷媒は、給湯側ガス延長配管11を経由して給湯ユニット303に流入する。給湯ユニット303に流入した冷媒は、水熱交換器12に流入し、水ポンプ13によって供給される水を加熱し、高圧液冷媒となる。その後、この液冷媒は、水熱交換器12から流出し、給湯ユニット303から流出後、給湯側液延長配管15を経由して熱源ユニット301に流入する。
その後、この冷媒は、第3膨張弁16を通過し、第1膨張弁5により減圧され、低圧の二相冷媒となる。その後、この二相冷媒は、熱源側熱交換器4に流入し、室外空気を冷却して低温・低圧のガス冷媒となる。熱源側熱交換器4から流出したガス冷媒は、四方弁3及びアキュムレーター10を介して再び圧縮機1に吸入される。なお、室内ユニット302は停止しているため、吐出電磁弁2aから第2膨張弁6までの間は冷媒が流れておらず、気相の冷媒で満たされている。
このように、冷凍サイクル装置100では、室内ユニット302の冷房運転、室内ユニット302の暖房運転、及び給湯ユニット303の給湯運転を個別に実施することが可能となっている。具体的には、冷凍サイクル装置100においては、室内ユニット302にて選択された冷房指令(冷房ON/OFF)又は暖房指令(暖房ON/OFF)と、給湯ユニット303における給湯指令(給湯ON/OFF)により、冷房運転モードと暖房運転モードと給湯運転モードとを個別に実施することができるようになっている。
[冷房給湯同時運転モード]
次に、冷房給湯同時運転モードについて図4を用いて説明する。図4は、冷凍サイクル装置100の冷房給湯同時運転モード時における冷媒の流れを示す冷媒回路図である。なお、図4中の矢印は冷媒の流れ方向を示している。図4に示す冷房給湯同時運転モードの場合、熱源ユニット301では、四方弁3を、圧縮機1の吸入側を室内側熱交換器8のガス側と接続するように切り替える(図4の実線)。また、吐出電磁弁2aは閉路(黒塗り)、吐出電磁弁2bは開路(白抜き)、低圧均圧電磁弁18は開路(白抜き)に制御されている。さらに、第1膨張弁5は最低開度(全閉)、第2膨張弁6は任意の開度、第3膨張弁16は最大開度(全開)に制御されている。
低温・低圧の冷媒が圧縮機1によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機1から吐出した高温・高圧のガス冷媒は、吐出電磁弁2bを通過し、熱源ユニット301から流出する。その後、この冷媒は、給湯側ガス延長配管11を経由して給湯ユニット303に流入する。給湯ユニット303に流入した冷媒は、水熱交換器12に流入し、水ポンプ13によって供給される水を加熱し、高圧液冷媒となる。その後、この液冷媒は、水熱交換器12から流出し、給湯ユニット303から流出後、給湯側液延長配管15を経由して熱源ユニット301に流入する。
その後、この冷媒は、第3膨張弁16を通過し、第2膨張弁6により減圧され、低圧の二相冷媒となる。その後、この二相冷媒は、熱源ユニット301から流出する。熱源ユニット301から流出した冷媒は、室内側液延長配管7を経由して室内ユニット302に流入する。室内ユニット302に流入した冷媒は、室内側熱交換器8に流入し、室内空気を冷却して低温・低圧のガス冷媒となる。室内側熱交換器8から流出した冷媒は、その後、室内ユニット302から流出し、室内側ガス延長配管9を経由して、熱源ユニット301に流入し、四方弁3及びアキュムレーター10を介して圧縮機1に吸入される。
このように、冷凍サイクル装置100では、室内ユニット302の冷房運転と給湯ユニット303の給湯運転との同時運転が可能となっている。具体的には、冷凍サイクル装置100においては、室内ユニット302にて選択された冷房指令(冷房ON/OFF)と、給湯ユニット303における給湯指令(給湯ON/OFF)とを同時に処理することができるようになっている。
冷房給湯同時運転モードの運転状態は図5のようになっている。図5は、冷房給湯同時運転モード時の冷媒の状態遷移を示すP−h線図である。図5からわかるように、冷房給湯同時運転モードでは、室内側熱交換器8の蒸発熱の排熱を全て水熱交換器12により凝縮熱として回収する状態となっている。つまり、冷房給湯同時運転モードでは、熱源側熱交換器4による排熱がない、完全排熱回収状態となっており、運転効率が高い状態となっている。
また、冷凍サイクル装置100では、冷房給湯同時運転モード時において第1膨張弁5を全閉開度に制御しているため、熱源側熱交換器4に冷媒は流れない。そのため、熱源側熱交換器4の熱交換量はゼロとなる。さらに、冷凍サイクル装置100では、吐出電磁弁2aを閉路とし、低圧均圧電磁弁18を開路にすることによって、熱源側熱交換器4のガス側を圧縮機1の吸入部に接続することになる。そのため、熱源側熱交換器4は低圧雰囲気となり、冷媒が熱源側熱交換器4に滞留することを防ぐことができる。
吐出電磁弁2a及び低圧均圧電磁弁18がない場合は、熱源側熱交換器4は高圧雰囲気となってしまう。そのため、冷媒が外気により凝縮液化され、冷媒が滞留する。よって、この場合は、冷媒を熱源側熱交換器4に流して冷媒滞留を抑制する必要が生じる。一方、冷凍サイクル装置100のように吐出電磁弁2aと低圧均圧電磁弁18がある場合は、熱源側熱交換器4を低圧雰囲気とすることができ、冷媒が外気により液化されないため、熱源側熱交換器4に冷媒を流す必要がなく、熱源側熱交換器4の冷媒流れをゼロとすることができる。そのため、冷媒を全て室内ユニット302に流すことが可能となり、完全排熱回収となる。その結果、冷凍サイクル装置100では運転効率が向上する。
なお、冷凍サイクル装置100においては、低圧均圧電磁弁18は排熱回収となる給湯冷房同時運転モードでは開路に制御され、それ以外の運転モードでは閉路に制御される。
[液溜め容量のコンパクト化]
なおここでは、室内側ガス延長配管9の配管長と室内側液延長配管7の配管長は同じであるとする。そのため、室内側ガス延長配管9と室内側液延長配管7のことをまとめて室内側延長配管と称し、その配管長のことを室内側延長配管長と称する。具体的には、室内側延長配管長とは熱源ユニット301と室内ユニット302とをつなぐ配管の長さであり、図4で示す熱源ユニット301の点線と室内ユニット302の点線との間の配管の長さを指す。また、給湯側ガス延長配管11の配管長と給湯側液延長配管15の配管長も同じであるとする。そのため、給湯側ガス延長配管11と給湯側液延長配管15のことをまとめて給湯側延長配管と称し、その配管長のことを給湯側延長配管長と称する。具体的には、給湯側延長配管長とは熱源ユニット301と給湯ユニット303とをつなぐ配管の長さであり、図4で示す熱源ユニット301の点線と給湯ユニット303の点線との間の配管の長さを指す。また、各運転モードにおいて、運転するのに最低限必要となる冷媒量を必要冷媒量と称する。
ここで、必要冷媒量が最小となる運転モードを室内側延長配管長0m、給湯側延長配管長0mとした場合において検討する。たとえば、3HPの冷凍サイクル装置100を想定した場合、熱交換器のおよその内容積は熱源側熱交換器4で4.5L、室内側熱交換器8で1.5L、水熱交換器12で0.7Lとなり、熱源側熱交換器4の内容積が他の熱交換器に比べて大きい。そのため、必要冷媒量が最も多い運転モードは熱源側熱交換器4が凝縮器となる冷房運転モードである。
また、暖房運転モードと給湯運転モードにおいては、熱源側熱交換器4はどちらの場合も蒸発器となり、熱源側熱交換器4の冷媒は二相の状態となる。この点については両運転モードとも同一であるが、水熱交換器12の内容積は室内側熱交換器8の内容積よりも小さいため、凝縮器とした場合に室内側熱交換器8の方が水熱交換器12よりも冷媒量が多くなる。したがって、必要冷媒量が冷房運転モードの次に多いのは暖房運転モードであり、その次が給湯運転モードとなる。
冷房給湯同時運転モードでは、熱源側熱交換器4は低圧雰囲気となり、蒸発器の配置となるが、冷媒が流れておらず、かつ、蒸発温度は外気温度よりも低くなる。そのため、熱源側熱交換器4の冷媒は気相状態となる。これらから、必要冷媒量が最小となる運転モードが冷房給湯同時運転モードであることがわかる。
従来の冷房運転モードと暖房運転モードとのみを実施する標準機の冷凍サイクル装置の場合、上記の理由から必要冷媒量が最小となる運転モードは暖房運転モードである。液溜め(アキュムレーター)の内容積(容量)は、必要冷媒量が最大の運転モードと最小の運転モードの必要冷媒量の差である余剰冷媒量によって決まる。つまり、余剰冷媒量が多くなるほど大きな容量を有する液溜めが必要となる。そのため、従来の冷凍サイクル装置では、冷房運転モードと暖房運転モードとの必要冷媒量差に応じて液溜めの容量が設定されていた。
しかしながら、冷凍サイクル装置100では、冷房給湯同時運転モードの方が暖房運転モードよりも必要冷媒量が少ないため、液溜めの容量、つまり、アキュムレーター10の容量は冷房運転モードと冷房給湯同時運転モードにより設定される。そのため、液溜めの容量は、標準機の冷凍サイクル装置よりも大きくなり、熱源ユニット301の筺体の外形寸法が大きくなってしまう。その結果として、限られた設置スペースでは本システムを設置できなくなってしまう。
なお、ここで、室内側液延長配管7の冷媒は、冷房運転モードで二相状態、暖房運転モードで液相状態となる。二相状態よりも液相状態の方が冷媒密度が高いため、室内側延長配管長が長い場合は暖房運転モードの方が冷房運転モードよりも必要冷媒量が大きくなる。さらに、室内側延長配管長が長くなると冷房運転モードと暖房運転モードの必要冷媒量の差は室内側延長配管長0mの場合よりも大きくなる。そうなると余剰冷媒量も増加してその分の液溜め容量が必要となり、標準機においても熱源ユニットの外形寸法が大きくなってしまう。そのため、今回比較している標準機と冷凍サイクル装置100では室内側延長配管の最大長さを冷房運転モードと暖房運転モードの必要冷媒量の差が室内側延長配管長0mの場合以下になる長さとした。
次に、冷凍サイクル装置100において余剰冷媒量を標準機と等しくする方法について説明する。図6は、室内側延長配管長が0mの場合の給湯側延長配管長と各運転モードにおける必要冷媒量の関係を示した図である。図6では、縦軸が必要冷媒量(kg)を、横軸が給湯側延長配管長(m)を、それぞれ表している。
冷房運転モードと暖房運転モードでは、給湯側ガス延長配管11及び給湯側液延長配管15に存在する冷媒は気相状態となっているため、給湯側ガス延長配管11及び給湯側液延長配管15では液冷媒量を無視できる。そのため、冷房運転モードと暖房運転モードの必要冷媒量は給湯側延長配管長に対して一定となる。給湯運転モードと冷房給湯同時運転モードでは、給湯側液延長配管15に存在する冷媒は液相状態となる。そのため、給湯運転モードと冷房給湯同時運転モードの必要冷媒量は給湯側延長配管長に対して増加する。
なお、先の検討にて述べた通り、給湯側延長配管長0mの場合、標準機の余剰冷媒量(冷房運転モードと暖房運転モードの必要冷媒量の差)に対して冷房給湯同時システムの余剰冷媒量(冷房運転モードと冷房給湯同時運転モードの必要冷媒量の差)の方が大きくなる。
上記のような関係があるため、給湯側延長配管長を増加させると冷房運転モードの必要冷媒量は変わらず、冷房給湯同時運転モードの必要冷媒量は増加する。そのため、給湯側延長配管長が長くなると余剰冷媒量は少なくなる。さらに、給湯側延長配管長をLaまで長くすると、暖房運転モードと冷房給湯同時運転モードの必要冷媒量は等しくなる。この場合は冷房運転モードと暖房運転モードの必要冷媒量差と冷房運転モードと冷房給湯同時運転モードでの必要冷媒量差が等しくなるため、標準機と冷凍サイクル装置100の余剰冷媒量も等しくなり、液溜め容量は同等でよい。このことから、冷凍サイクル装置100の給湯側延長配管の最小長さをLaとすることで、液溜め容量を標準機と同等にすることができる。つまり、Laよりも短い給湯側延長配管長は接続不可とする。
給湯側延長配管の最小長さLaは具体的には以下のようにして演算することができる。室内側延長配管長が0mの時の暖房運転と冷房給湯同時運転の必要冷媒が等しくなる状態を求める。暖房運転時は室内側熱交換器8と熱源側熱交換器4に大部分の冷媒が存在しているとし、冷房給湯同時運転時は水熱交換器12、室内側熱交換器8、給湯側液延長配管15に大部分の冷媒が存在しているとすると下記の式(1)が成り立つ。
式(1)
HEXI×ρHEXI_COND + VHEXO×ρHEXO_EVA
=VHEXw×ρHEXw_COND+VHEXI×ρHEXI_EVA+VPLw_La×ρ
ここで、VHEXIは室内側熱交換器8の内容積[m]、ρHEXI_COND は室内側熱交換器8が凝縮器使用の場合の平均冷媒密度[kg/m]、VHEXOは熱源側熱交換器4の内容積[m]、ρHEXO_EVAは熱源側熱交換器4が蒸発器使用の場合の平均冷媒密度[kg/m]、VHEXwは水熱交換器12の内容積[m]、ρHEXw_COND は水熱交換器12が凝縮器使用の場合の平均冷媒密度[kg/m]、ρHEXI_EVAは室内側熱交換器8が蒸発器使用の場合の平均冷媒密度[kg/m]、VPLw_Laは給湯側液延長配管15が最小長さの時の内容積[m]、ρは液冷媒密度[kg/m]である。
給湯側液延長配管15では冷媒は液相状態であり、液冷媒の冷媒密度はだいたい1000kg/mとなるので、ρ=1000kg/mとなる。ここで、VHEXI、VHEXO、VHEXwは機器仕様にて決まるので既知であるが、ρHEXI_COND 、ρHEXO_EVA、ρHEXw_COND 、ρHEXI_EVA は未知数であるため、簡易的に求める方法を考案する。
図7は、空気熱交換器が凝縮器の場合の冷媒の状態を表した概略図である。図7に示すように、空気熱交換器が凝縮器となる場合、凝縮器では冷媒は気相、二相、液相の各相に分かれており、一般的に、各相の容積割合はそれぞれ0.15、0.7、0.15となり、各相の冷媒密度はおよそ、1000kg/m、500kg/m、100kg/mとなる。気相では冷媒密度、容積割合ともに小さいので無視して、ρHEXI_COND を簡易的にρHEXI_COND =a×ρにて表すとする。aはa=0.15+0.7×500/1000=0.51≒0.50とすることで表現できる。
水熱交換器が凝縮器となる場合も空気熱交換器と同様に考えるが、水熱交換器では水の出入口温度差が5℃程度であり、過冷却度が空気熱交換器の時よりも大きくできず、2℃程度となる。そのため、気相、二相、液相の各相の容積割合はそれぞれ0.15、0.80、0.05となり、ρHEXw_COND =a×ρにて表すと、aはa=0.05+0.80×500/1000=0.45となる。空気熱交換器が蒸発器となる場合、冷媒は気相、二相の各相に分かれており、一般的に、各相の容積割合は、液溜めがアキュムレーター機種では0.0、1.0となり、液溜めが高圧側配置となるレシーバー機種では蒸発器出口にて過熱度がつくため、0.05、0.95となる。
気相、二相の冷媒密度はおよそ、40kg/m、200kg/mとなる。気相では冷媒密度、容積割合ともに小さいので無視すると、ρHEXO_EVA、ρHEXI_EVAを液冷媒密度を用いて簡易的にρHEXI_EVA=ρHEXI_EVA=a×ρにて表すとすると、aをa=1.0×200/1000=0.20とすることで表現できる。
以上により、各平均冷媒密度を液冷媒密度を用いた表現に変換することができる。式(1)の各平均冷媒密度に液冷媒を用いた表現を代入し、両辺をρにて割って、VPLw_La について解くと下記の(2)式を得る。
式(2)
PLw_La=a×VHEXI−a×VHEXw+a×(VHEXO−VHEXI
ここで、a=0.50、a=0.45、a=0.20である。具体的には各熱交換器のおよその内容積を先に示したように熱源側熱交換器4にて4.5L(VHEXO=0.0045)、室内側熱交換器8で1.5L(VHEXI=0.0015)、水熱交換器12で0.7L(VHEXw=0.0007)とすると、VPLw_Laは0.0010となり1.0Lとなる。
このときに、水熱交換器12に対する給湯側液延長配管15の容積比率は1.43であり、最小容積比率となる(VPLw_La/VHEXw=1.43)。つまり、標準機に給湯ユニットを追加して、液だめ容積を標準機と同等にしたい場合は、水熱交換器12に対する給湯側液延長配管15の容積比率が1.43以上(VPLw /VHEXw≧1.43)となるように給湯側延長配管の配管長もしくは配管径を設定すればよい。ここで、VPLw は給湯側液延長配管15の内容積[m]である。まずは、任意の配管径に対する最小長さLaの計算方法を以下に示す。給湯側延長配管の最小長さLaとVPLw_Laとの間には下記式(3)の関係がある。
式(3)
PLw_La=π÷4×(φPLw−2tPLw×La
ここでπは円周率、φPLw は給湯側液延長配管15の外径[m]、tPLw は給湯側液延長配管15の肉厚[m]である。給湯側液延長配管15の外径を9.52mm、肉厚を0.8mmとすると、VPLw_La=0.0010であるため、式(3)により給湯側延長配管の最小長さLaは20.3mとなる。つまり、給湯側延長配管の最小長さを20.3mより長くすれば容積比率が最小容積比率の1.43以上となる。
上記のようにして給湯側延長配管の最小長さをLaと設定できる。ここで、給湯側延長配管の配管長を最小長さのLaよりも短くしたい場合には配管内径が大きくなるような配管外径、肉厚のものを使用する。図8は、給湯側液延長配管15の配管内径アップした場合の給湯側延長配管長の最小長さの減少効果を示した図である。図8では、縦軸が必要冷媒量(kg)を、横軸が給湯側延長配管長(m)を、それぞれ表している。
図8から、給湯側液延長配管15の配管内径をアップすることで内容積が大きくなり、多くの冷媒を溜めることができるということがわかる。具体的には、たとえば、給湯側延長配管長を10.3mとしたい場合(La=10.3m)、VPLw_La=0.0010mであるため、式(3)より、配管内径(φPLw −2tPLw )=0.0113mとなり、肉厚0.8mmとすると外径は12.7mmとなる。つまり、内径が11.3mm以上となる配管を使用すれば配管長を10.3mに設定することができる。
[追加充填冷媒量の設定と配管延長の方法]
さて、熱源ユニット301と給湯ユニット303をつなぐ給湯側延長配管長と熱源ユニット301と室内ユニット302をつなぐ室内側延長配管長が長い場合、冷媒不足を回避するために冷媒の追加充填が必要となることがある。そこで、室内側延長配管長、給湯側延長配管長に対する追加充填冷媒量の設定方法について説明する。図9は、給湯側延長配管長がLaの場合の各運転モードにおける室内側延長配管長に対する必要冷媒量の変化を示す図である。図9では、縦軸が必要冷媒量(kg)を、横軸が室内側延長配管長(m)を、それぞれ表している。
冷房運転モードと冷房給湯同時運転モードでは、室内側液延長配管7にて冷媒は二相状態となっているため、室内側延長配管長に対して必要冷媒量は増加する。暖房運転モードでは、室内側液延長配管7にて冷媒は液相状態となっているため、室内側延長配管長に対して必要冷媒量は冷房運転モードと冷房給湯同時運転モードの場合よりも大きく増加する。給湯運転モードでは、室内側ガス延長配管9及び室内側液延長配管7に存在する冷媒は気相状態となっているため、室内側ガス延長配管9及び室内側液延長配管7では冷媒量をほとんど必要としない。そのため、給湯運転モードの必要冷媒量は室内側延長配管長に対して一定となる。
室内側延長配管長が短い場合、必要冷媒量が最大となるのは冷房運転モードであり、室内側延長配管長に対して必要冷媒量は増加する。また、室内側延長配管長が長い場合、必要冷媒量が最大となるのは暖房運転モードとなり、室内側延長配管長に対して必要冷媒量は増加する。以上から、室内側延長配管長に対して必要冷媒量は増加し、その量は室内側延長配管長が短い場合は冷房運転モードにより決まり、室内側延長配管長が長い場合は暖房運転モードにより決まるといえる。
次に、図6を用いて室内側延長配管長が短い場合の給湯側延長配管長に対する必要冷媒量の変化を検討する。給湯側延長配管長が短い場合は、必要冷媒量が最大なのは冷房運転モードとなる。冷房運転モードは、給湯側延長配管長に対して必要冷媒量が一定となるため、冷媒の追加充填は不要である。給湯側延長配管長が長い場合は、必要冷媒量が最大なのは給湯運転となる。給湯運転モードは、給湯側延長配管長に対して必要冷媒量が増加するため、冷媒の追加充填が必要である。
ここで更に、図10を用いて室内側延長配管長が長い場合の給湯側延長配管長に対する必要冷媒量の変化を検討する。図10は、室内側延長配管長が長い場合の給湯側延長配管長にする各運転モードの必要冷媒量の関係を示した図である。図10では、縦軸が必要冷媒量(kg)を、横軸が給湯側延長配管長(m)を、それぞれ表している。
給湯側延長配管長が短い場合は、必要冷媒量が最大なのは暖房運転モードとなる。暖房運転モードは、給湯側延長配管長に対して必要冷媒量が一定となるため、冷媒の追加充填は不要である。また、給湯側延長配管長が長い場合、必要冷媒量が最大なのは冷房給湯同時運転モードとなる。冷房給湯同時運転モードは、給湯側延長配管長に対して必要冷媒量が増加するため、冷媒の追加充填が必要である。以上により、給湯側延長配管長が短い場合は給湯側延長配管長に対して冷媒の追加充填は不要であり、給湯側延長配管長が長い場合は給湯側延長配管長に対して冷媒の追加充填が必要である。追加充填の量は室内側延長配管長が短い場合は給湯運転モードにより決まり、室内側延長配管長が長い場合は冷房給湯同時運転モードにより決まる。
たとえば、室内側延長配管長0mで給湯側延長配管を長くすると、図6に示してあるように必要冷媒量が冷房運転よりも給湯運転の方が多くなり、冷媒の追加充填が必要となる。そこで、冷媒の追加充填を実施することとなるのだが、ここで、暖房運転モードの必要冷媒量は給湯側延長配管長に対して変化しないため、冷媒を追加充填した場合に、余剰冷媒量が多くなる。その結果として、大きい液溜め容量のものを設置しないとオーバーフローしてしまう。以上から、給湯側延長配管長に応じて冷媒を追加充填した場合、多くの余剰冷媒量が発生する可能性があり、好ましいとはいえない。
余剰冷媒が多くなるのを回避する方法として、追加充填冷媒量は室内側延長配管長によって設定するものとし、給湯側延長配管長によらないとする。このようにすることで、余剰冷媒量の増加を抑えることができる。しかしながら、この方法を実施した場合、給湯側延長配管長が短い場合は、冷媒不足とならないが、給湯側延長配管長が長い場合は、給湯運転の必要冷媒量が大きくなるため、冷媒の追加充填をしないと冷媒不足になってしまう。冷媒不足になると冷凍サイクル装置100の運転性能が低下するため、これもまた好ましいとはいえない。
そのため、給湯側延長配管長を長くしたい場合は、室内側延長配管長も長くして冷媒の追加充填を実施するようにする。室内側延長配管長を長くすることにより冷媒が追加充填されるため、給湯側延長配管長を長くしても冷媒不足とならない。このため、室内側延長配管長に応じて給湯側延長配管の上限長さが設定され、上限長さ以下となるように給湯側延長配管長を決める。給湯側延長配管の上限長さは、給湯運転モードもしくは冷房給湯同時運転モードにおいて冷媒不足にならない長さである。
給湯側延長配管の上限長さは、具体的には室内側延長配管長が短い場合と長い場合とで次のようにして求める。なお、図9において、室内側延長配管長が短い場合とは冷房運転モードの必要冷媒量が暖房運転モードよりも多い場合であり、室内側延長配管長が長い場合とは暖房運転モードの必要冷媒量が冷房運転モードよりも多い場合である。室内側延長配管長に対する冷房運転モードと暖房運転モードの必要冷媒量は、予め試験等により求めておくことは可能である。室内側延長配管長が短い場合、上限長さは図6上の給湯運転モードと冷房運転モードの必要冷媒量が等しくなる長さLbとなる。
冷房運転モードでは熱源側熱交換器4、室内側熱交換器8、室内側液延長配管7に大部分の冷媒が存在しているとし、給湯運転モードでは水熱交換器12、熱源側熱交換器4、給湯側液延長配管15に大部分の冷媒が存在しているとすると、Lbでは下記の式(4)が成り立つ。
式(4)
HEXO×ρHEXO_COND +VHEXI×ρHEXI_EVA +VPLc ×ρPLc_two
=VHEXw×ρHEXw_COND +VHEXO×ρHEXO_EVA +VPLw_Lb ×ρ
ここで、ρHEXO_COND は熱源側熱交換器4が凝縮器使用の場合の平均冷媒密度[kg/m]、ρPLc_two は室内側液延長配管7の冷房運転モード及び冷房給湯同時運転モード時の平均冷媒密度[kg/m]、VPLc は室内側液延長配管7の内容積[m]、VPLw_Lbは給湯側延長配管が上限長さLbの場合の給湯側液延長配管15の内容積[m]である。
内容積の変数に関してはVPLw_Lbが求めたい値であり、室内側延長配管長を定めればVPLc も既知となり、VHEXO、VHEXI、VHEXwも機器仕様から既知である。平均冷媒密度は、液冷媒密度ρが1000kg/mとして既知であるが、他のものρHEXO_COND 、ρHEXI_EVA、ρPLc_two、ρHEXw_COND、ρHEXO_EVAは未知数であるため、先と同様に簡易的に求める方法を考案する。空気熱交換器が凝縮器となる場合は先と同様に考えてρHEXI_COND =ρHEXO_COND として、ρHEXO_COND =a×ρにて表すとすると、aをa=0.5とすることで表現できる。水熱交換器が凝縮器となる場合も先と同様にして、ρHEXw_COND =a×ρにて表すとすると、aをa=0.45とすることで表現できる。
空気熱交換器が蒸発器となる場合も先と同様にして、ρHEXI_EVA=ρHEXI_EVA=a×ρにて表すとすると、aをa=0.2とすることで表現できる。ρPLc_two は冷房運転モードと冷房給湯同時運転モードにて室内側熱交換器8にて加熱される前の冷媒密度であり、低圧雰囲気の二相冷媒となる。この時の冷媒密度はおよそ350kg/mであるので、ρPLc_two =a×ρにて表すとすると、aはa=350/1000=0.35となる。以上により、各平均冷媒密度を液冷媒密度を用いた表現に変換し、両辺をρにて割って、VPLw_Lbについて解くと下記(5)式を得る。
式(5)
PLw_Lb=a×VHEXO−a×VHEXw+a×(VHEXI−VHEXO)+a×VPLc
ここで、a=0.50、a=0.45、a=0.20、a=0.35である。
具体的には、各熱交換器のおよその内容積を先に示したように熱源側熱交換器4にて4.5L(VHEXO=0.0045)、室内側熱交換器8で1.5L(VHEXI=0.0015)、水熱交換器12で0.7L(VHEXw=0.0007)とする。室内側延長配管長を15mとした場合、室内側液延長配管7の外径を9.52mm、肉厚0.8mmとすると、内容積は0.7L(VPLc =0.0007L)となる。この時の給湯側延長配管が上限長さLbの場合の給湯側液延長配管15の内容積は1.6L(VPLw_Lb=0.0016)となる。
このときに、室内側液延長配管7に対する給湯側液延長配管15の容積比率は2.29であり、上限容積比率となる(VPLw_Lb/VPLc =2.29)。つまり、室内側液延長配管7に対して給湯側液延長配管15の容積比率が2.29以下(VPLw /VPLc ≦2.29)となるように給湯側延長配管の配管長を設定すればよい。このときの上限長さLbは、以下のようにして求める。給湯側延長配管の上限長さLbとVPLw_Lbとの間には下記式(6)の関係がある。
式(6)
PLw_Lb=π÷4×(φPLw −2tPLw ×Lb・・・(6)
給湯側液延長配管15の外径を9.52mm、肉厚を0.8mmとすると、VPLw_Lb=0.0016であるため、式(6)により給湯側延長配管の上限長さLbは32.5mとなる。つまり、配管長を32.5m以下とすれば容積比率が上限容積比率の2.29以下となる。また、外径を12.7mm、肉厚を0.8mmの場合は、給湯側延長配管の上限長さLbは16.5mとなる。つまり、配管長を16.5m以下とすれば容積比率が上限容積比率の2.29以下となる。
室内側延長配管長が長い場合、上限長さは図10上の暖房運転モードと冷房給湯同時運転モードの必要冷媒量が等しくなる長さLcとなる。暖房運転モードでは、室内側熱交換器8、熱源側熱交換器4、室内側液延長配管7に大部分の冷媒が存在しているとし、冷房給湯同時運転モードでは、室内側液延長配管7、水熱交換器12、室内側熱交換器8、給湯側液延長配管15に大部分の冷媒が存在しているとすると、Lcでは下記の式(7)が成り立つ。
式(7)
HEXI×ρHEXI_COND +VHEXO×ρHEXO_EVA +VPLc ×ρPLc_l
=VPLc ×ρPLc_two+VHEXw×ρHEXw_COND +VHEXI×ρHEXI_EVA +VPLw_Lc×ρ
ここで、ρPLc_l は室内側液延長配管7が暖房運転モード時の平均冷媒密度[kg/m]、VPLw_Lcは給湯側延長配管が上限長さLcの場合の給湯側液延長配管15の内容積[m]である。内容積の変数に関してはVPLw_Lcが求めたい値であり、室内側延長配管長を定めればVPLc も既知となり、VHEXO、VHEXI、VHEXwも機器仕様から既知である。
平均冷媒密度は、液冷媒密度ρが1000kg/mとして既知、ρPLc_l は暖房運転モード時では室内側液延長配管7の冷媒が液冷媒となるため、ρPLc_l =ρ=1000kg/mとして既知とできる。他のものρHEXI_COND 、ρHEXO_EVA、ρ、ρHEXw_COND 、ρHEXI_EVA、ρPLc_two は未知数であるが先と同様に簡易的に求める方法を用いると、各平均冷媒密度を液冷媒密度ρを用いた表現に変換可能である。以上により、各平均冷媒密度を液冷媒密度を用いた表現に変換し、両辺をρにて割って、VPLw_Lcについて解くと下記式(8)を得る。
式(8)
PLw_Lc=a×VHEXI−a×VHEXw+a×(VHEXO−VHEXI)+(1−a)×VPLc
ここで、a=0.50、a=0.45、a=0.20、a=0.35である。
具体的には、各熱交換器のおよその内容積を先に示したように熱源側熱交換器4にて4.5L(VHEXO=0.0045)、室内側熱交換器8で1.5L(VHEXI=0.0015)、水熱交換器12で0.7L(VHEXw=0.0007)とする。室内側延長配管長を40mとした場合、室内側液延長配管7の外径を9.52mm、肉厚0.8mmとすると、内容積2.0L(VPLc =0.002)となる。
このときの給湯側延長配管が上限長さLcの場合の給湯側液延長配管15の内容積は2.3L(VPLw_Lc=0.0023)となる。このときに、室内側液延長配管7に対する給湯側液延長配管15の容積比率は1.15であり、上限容積比率となる(VPLw_Lc/VPLc =1.15)。つまり、室内側液延長配管7に対して給湯側液延長配管15の容積比率が1.15以下(VPLw /VPLc ≦1.15)となるように給湯側延長配管の配管長を設定すればよい。このときの上限長さLcは以下のようにして求める。ここで、給湯側延長配管の上限長さLcとVPLw_Lcとの間には下記式(9)の関係がある。
式(9)
PLw_LC=π÷4×(φPLw −2tPLw ×Lc
給湯側液延長配管15の外径を9.52mm、肉厚を0.8mmとすると、VPLw_Lc=0.0024であるため、式(9)により給湯側延長配管の上限長さLcは46.7mとなる。つまり、配管長を46.7m以下とすれば容積比率は上限容積比率の1.15以下となる。また、外径を12.7mm、肉厚を0.8mmの場合は給湯側延長配管の上限長さLcは23.8mとなる。つまり、配管長を23.8m以下とすれば容積比率は上限容積比率の1.15以下となる。以上のように給湯側延長配管の上限長さLcを求めることができる。
ここで、図10に示すように、室内側延長配管長が長い場合において、給湯側延長配管長を上限長さLcから短くしていくことを考える。このときに必要冷媒量が最大なのは暖房運転モードであり、最小なのは給湯運転モードである。給湯側延長配管長を短くしていくと、暖房運転モードの必要冷媒量は一定であるが、給湯運転モードの必要冷媒量は減少する。そのため、暖房運転モードと給湯運転モードの必要冷媒量の差が大きくなり、長さがLd以下になると余剰冷媒量が標準機よりも多くなってしまう。したがって、給湯側延長配管長をLd以下に短くしたい場合は室内側延長配管長を短くして充填冷媒量を少なくする必要がある。そうすることで、給湯側延長配管長を短くしても余剰冷媒量が多くならない。
このように設定するため、室内側延長配管長に応じて給湯側延長配管の下限長さLdが設定されることになる。給湯側延長配管の下限長さLdは余剰冷媒量が液溜めに液冷媒が満たされた場合の液溜めの冷媒量と同じになる長さ、つまり暖房運転モードと給湯運転モードの必要冷媒量の差が液溜めに液冷媒が満たされた場合の液だめの冷媒量と同じになる長さである。なお、室内側延長配管長が短い場合は次のようになる。つまり、図6に示すように、給湯側延長配管長の最小長さLaと上限長さLbの範囲において、必要冷媒量が最大となる冷房運転モードと必要冷媒量が最小となる暖房運転モードの必要冷媒量は一定である。そのため、余剰冷媒量は変わらないので下限長さは最小長さLaと同じになる。
給湯側延長配管の下限長さLdは、具体的に次のようにして求める。給湯側延長配管が下限長さLdの場合は、暖房運転モードと給湯運転モードの必要冷媒量の差が液溜めが液冷媒で満たされた場合の冷媒量と等しくなる。暖房運転モードでは、室内側熱交換器8、熱源側熱交換器4、室内側液延長配管7に大部分の冷媒が存在しているとし、給湯運転モードでは、水熱交換器12、熱源側熱交換器4、給湯側液延長配管15、に大部分の冷媒が存在しているとすると、Ldでは下記式(10)が成り立つ。
式(10)
ACC ×ρ=(VHEXI×ρHEXI_COND +VHEXO×ρHEXO_EVA+VPLc ×ρPLc_l )−(VHEXw×ρHEXw_COND +VHEXO×ρHEXO_EVA+VPLw_Ld×ρ
ここで、VACC は液溜めの有効内容積[m]であり、実施の形態1ではアキュムレーター10の有効内容積である。アキュムレーター10の場合は一般的に内容積の80%まで液冷媒を貯蓄できるので、有効内容積は内容積の80%となる。VPLw_Ldは給湯側延長配管が下限長さLdの場合の給湯側液延長配管15の内容積[m]である。内容積の変数に関してはVPLw_Ldが求めたい値であり、室内側延長配管長を定めればVPLc も既知となり、VHEXO、VHEXI、VHEXwも機器仕様から既知である。
平均冷媒密度は、液冷媒密度ρが1000kg/mとして既知、ρPLc_l は暖房運転モード時では室内側液延長配管7の冷媒は液冷媒となるため、ρPLc_l =ρ=1000kg/mとして既知とできる。他のものρHEXI_COND 、ρHEXO_EVA、ρHEXw_COND 、は未知数であるが先と同様に簡易的に求める方法を用いると、各平均冷媒密度を液冷媒密度ρを用いた表現に変換可能である。以上により、各平均冷媒密度を液冷媒密度を用いた表現に変換し、両辺をρにて割って、VPLw_Ldについて解くと下記式(11)を得る。
式(11)
PLw_Ld=VPLc −VACC +a×VHEXI−a×VHEXw
ここで、a=0.50、a=0.45、である。
具体的には、アキュムレーター10の内容積を1.1Lとして有効内容積を0.9L(VACC =0.0009)とし、各熱交換器のおよその内容積を先に示したように熱源側熱交換器4にて4.5L(VHEXO=0.0045)、室内側熱交換器8で1.5L(VHEXI=0.0015)、水熱交換器12で0.7L(VHEXw=0.0007)とする。室内側延長配管長を40mとした場合、室内側液延長配管7の外径を9.52mm、肉厚0.8mmとすると、内容積2.0L(VPLc =0.002)となる。
このときの給湯側延長配管が下限長さLdの場合の給湯側液延長配管15の内容積は、式(11)より1.5L(VPLw_Ld=0.0015)となる。このときに、室内側液延長配管7に対する給湯側液延長配管15の容積比率は0.75であり、下限容積比率となる(VPLw_Ld/VPLc =0.75)。つまり、室内側液延長配管7に対して給湯側液延長配管15の容積比率が0.75以上(VPLw /VPLc ≧0.75)となるように給湯側延長配管の配管長を設定すればよい。このときの下限長さLdは、以下のようにして求める。給湯側延長配管の下限長さLdとVPLw_Ldとの間には下記式(12)の関係がある。
式(12)
PLw_Ld=π÷4×(φPLw −2tPLw ×Ld
給湯側液延長配管15の外径を9.52mm、肉厚を0.8mmとすると、VPLw_Ld=0.0016であるため、式(12)により給湯側延長配管の下限長さLdは30.5mとなる。つまり、配管長を30.5m以上とすれば容積比率は下限容積比率の0.75以上となる。また、外径を12.7mm、肉厚を0.8mmの場合は給湯側延長配管の下限長さLdは15.5mとなる。つまり、配管長を15.5m以上とすれば容積比率は下限容積比率の0.75以上となる。
以上により、実際の設置現場での室内側延長配管長と給湯側延長配管長の設定手順を図11のフローチャートを用いて説明する。図11は、冷凍サイクル装置100の室内側延長配管長及び給湯側延長配管長の設定手順を示したフローチャート図である。
まず、作業員は、室内側延長配管長を設定する(ステップS1)。これは、作業員が室内側延長配管長を制御装置101に入力することで実行される。次に、制御装置101は、必要冷媒量が、冷房運転モード、暖房運転モードのどちらが大きくなるかを判定する(ステップS2)。冷房運転モードの方が必要冷媒量が大きくなると判定した場合は(ステップS2;YES)、給湯側延長配管長の最小長さLaを演算し(ステップS3)、給湯側延長配管長の上限長さLbを演算する(ステップS4)。そして、制御装置101は、給湯側延長配管長がLa以上Lb以下となるように給湯側延長配管長を設定して終了となる(ステップS5)。
一方、暖房運転モードの方が必要冷媒量が多くなると判定した場合は(ステップS2;NO)、給湯側延長配管の下限長さLcを演算し(ステップS6)、給湯側延長配管の上限長さLdを演算する(ステップS7)。そして、制御装置101は、給湯側延長配管がLc以上Ld以下となるように給湯側延長配管長を設定して終了となる(ステップS8。
具体的な運用のイメージとしては次のようになる。図12は、給湯側延長配管の配管長に対する配管径の選定について示したイメージ図である。図12(a)が熱源ユニット301と給湯ユニット303との設置距離が遠い場合のイメージ図を、図12(b)が熱源ユニット301と給湯ユニット303との設置距離が近い場合のイメージ図を、それぞれ示している。
給湯ユニット303が室内に設置され、熱源ユニット301と給湯ユニット303の距離が遠い場合(図12(a))、給湯側液延長配管15の配管径が9.52mmのものを使用し、配管を遠くまで延長できるようにする。逆に、給湯ユニット303が室外に設置され、熱源ユニット301と給湯ユニット303の距離が近い場合(図12(b))、給湯側液延長配管15の配管径が12.7mmのものを使用し、配管を短くできるようにする。このように、配管長に応じて配管径を適切に選定することにより、設置の利便性を損なわないようにすることができる。
[冷房給湯同時運転の切り換え対応制御]
本実施の形態1では液溜めにアキュムレーター10を用いている。アキュムレーター10は、前述した通り液溜めの機能を備えているため、余剰冷媒を貯留する働きがある。また別の機能として、アキュムレーター10は、圧縮機1の吸入側配管40に位置しているため、運転状態が変化する際に一時的に発生する液冷媒を溜めることで圧縮機1に大量の液冷媒が流入するのを防ぐ機能がある。
特に、冷凍サイクル装置100では冷房運転モード時に給湯ONの給湯指令を検知した場合に運転モードが冷房運転モードから冷房給湯同時運転モードに移行する。このときに吐出電磁弁2aが開路から閉路、低圧均圧電磁弁18が閉路から開路に変更される。そのため、熱源側熱交換器4のガス側が圧縮機1の吸入側に接続され、熱源側熱交換器4に滞留していた大量の冷媒が低圧バイパス配管17を経由して圧縮機1の吸入側に流れてくる。アキュムレーター10の内容積が一定量確保されていればアキュムレーター10が満液とならず、圧縮機1での液バックを回避できるが、アキュムレーター10の内容積が小さいとアキュムレーター10が液冷媒で満液となり、圧縮機1にて液バックが発生する。結果、圧縮機1の損傷の原因となる。
冷房運転モードから冷房給湯同時運転モードへ変化する時の圧縮機1の液バックを回避する方法としては、冷房運転モード時の熱源側熱交換器4の冷媒量を少なくする方法がある。冷房運転モード時の熱源側熱交換器4の冷媒量は、熱源側熱交換器4の液側の過冷却度が小さくなるほど減少する。つまり、熱源側熱交換器4の液側の過冷却度が所定値に小さくなるように膨張弁6を開くことによって熱源側熱交換器4に液冷媒量(液相量)を少なくすることができるため、冷媒量は減少する。
ここで、熱源側熱交換器4の液側の過冷却度は、圧力センサー201(高圧検出手段)にて検出される圧力の飽和温度から第2温度センサー203(熱源側熱交換器液側温度検出手段)により検出される温度を差し引くことにより求められる。熱源側熱交換器4の液側の過冷却度は、制御装置101に設置されている過冷却度冷却制御手段により調整される。たとえば、熱源側熱交換器4の過冷却度を7℃から2℃の制御に変更することによって、3HPの熱源ユニット301にて熱源側熱交換器4の冷媒量を12%少なくすることができる。この方法をとることによってアキュムレーター10の内容積が大きくなくても冷房運転モードから冷房給湯同時運転モードへの切換え時に圧縮機1への液バックを回避できる。
しかしながら、前述の制御をしてもアキュムレーター10冷房運転モードから冷房給湯同時運転モードへの切り換え時に圧縮機1への液バックをする場合はさらに、以下のような並行凝縮運転を実施するとよい。なお、並行凝縮運転は、制御装置101に実装されている並行凝縮運転実施手段により実施される。図13は、並行凝縮運転時の処理の流れを示すフローチャート図である。
まず、制御装置101は、冷房ONとなった場合に冷房運転モードを実施する(ステップS11)。次に、制御装置101は、給湯ONが検出されたかどうかを判定する(ステップS12)。給湯ONとなった場合は(ステップS12;YES)、制御装置101は、水ポンプ13を起動させ、水の送水を始める。
そして、給湯ONが検出されたら、制御装置101は、並行凝縮運転を開始する(ステップS13)。具体的には、吐出電磁弁2bを開路とし、膨張弁16を微開とし、給湯ユニット303に冷媒を流すことで並行凝縮運転を開始する。吐出電磁弁2bが開路となるため、圧縮機1より吐出した高温高圧の冷媒は吐出電磁弁2bと給湯側ガス延長配管11を経由して水熱交換器12に流入する。水熱交換器12に流入した冷媒は、中間水に熱を放出して凝縮し、給湯側液延長配管15まで進行する。このような状態となるため、冷媒を給湯ユニット303に流していくにつれて、水熱交換器12及び給湯側液延長配管15に冷媒が溜まっていく。つまり、熱源側熱交換器4に溜まっていた冷媒が水熱交換器12及び給湯側液延長配管15に移動していく状態となる。
水熱交換器12での凝縮が進行すると、水熱交換器12の液側に過冷却液が発生する。その状態になると水熱交換器12に冷媒が溜まっていることが確認できる。それを出口水温と水熱交換器12の液側温度の温度差により判定する(ステップS14)。なお、出口水温は第6温度センサー207の検出温度であり(水熱交換器出口温度検出手段)、水熱交換器12の液側温度は第4温度センサー205の検出温度である(水熱交換器液側温度検出手段)。
水熱交換器12の凝縮温度は、水熱交換器12の出口水温とほとんど同じとなるため、出口水温と水熱交換器12の液側温度から水熱交換器12の液側に過冷却液が存在しているか判定できる。すなわち、水熱交換器12の液側温度が出口水温よりも所定値以上、たとえば2℃以上低くなった場合(ステップS14;YES)、並行凝縮運転を終了する(ステップS15)。具体的には、吐出電磁弁2bを閉路、低圧均圧電磁弁18を開路、膨張弁5を全閉、膨張弁16を全開として、冷媒開路状態を冷房給湯同時運転モードの開路に変更する。
以上のような動作を実施することで、冷房運転モードから冷房給湯同時運転モードに切り換える時に熱源側熱交換器4に存在している冷媒を水熱交換器12及び給湯側液延長配管15に移動させてから切り換えることができ、アキュムレーター10の液溜め内容積を大きくしなくても圧縮機1への液バックを回避できる。
なお、実施の形態1では、給湯ユニット303において、水熱交換器12で熱交換して得た温熱を貯湯タンク14にて給湯利用にて使用していたが、これに限定されず、貯湯タンク14ではなく温水パネルを設置して温水床暖房として使用する構成としてもよい。
以上のように、実施の形態1に係る冷凍サイクル装置100によれば、冷房運転と、暖房運転と、給湯運転と、を個別に運転することが可能であり、かつ冷房給湯同時運転により排熱回収運転が可能となっている。また、冷凍サイクル装置100によれば、水熱交換器12に対する給湯側液延長配管15の容積比率を、冷房給湯同時運転における必要冷媒量と暖房運転における必要冷媒量とが等しくなるときの最小容積比率以上としたので、液溜め(アキュムレーター10)の内容積を冷房運転と暖房運転のみを実施する標準機と同等にすることができ、低コストを実現するだけでなく、熱源ユニット301の外形寸法を標準機と同等にすることもできる。
実施の形態2.
図14は、本発明の実施の形態2に係る冷凍サイクル装置200の冷媒回路構成、特に冷房給湯同時運転モード時の冷媒の流れを示す概略冷媒回路図である。図14に基づいて、冷凍サイクル装置200の構成及び動作の一部について説明する。なお、図14中の矢印は冷媒の流れ方向を示したものである。また、この実施の形態2では上述した実施の形態1との相違点を中心に説明するものとし、実施の形態1と同一の箇所については、同一符号を付し、説明を割愛するものとする。
図14に示すように、実施の形態2に係る冷凍サイクル装置200では、熱源ユニット301bの構成が実施の形態1に係る冷凍サイクル装置100の熱源ユニット301と異なっている。なお、実施の形態2に係る冷凍サイクル装置200の熱源ユニット301b以外の構成については、実施の形態1に係る冷凍サイクル装置100と同様である。
[熱源ユニット301b]
熱源ユニット301bは、圧縮機1、吐出電磁弁2a、吐出電磁弁2b、四方弁3、熱源側熱交換器4、第1膨張弁5、第2膨張弁6、アキュムレーター10、第3膨張弁16、低圧均圧電磁弁18、逆止弁20を有している。
また、熱源ユニット301bには、四方弁3を介しての吐出電磁弁2aと熱源側熱交換器4との間にある接続点Aと、四方弁3を介しての第2膨張弁6と室内側熱交換器8との間にある接続点Bと、を接続する低圧バイパス配管19が設置されている。そして、この低圧バイパス配管19に、低圧均圧電磁弁18と逆止弁20が設けられている。逆止弁20は、低圧バイパス配管19を流れる冷媒を一方向に許容するものである。具体的には、低圧均圧電磁弁18と逆止弁20は、低圧バイパス配管19の接続点Aから接続点Bに向かって順に設置されている。そして、逆止弁20は、接続点Aから接続点Bに向かって冷媒が流れるように設置されている。
冷凍サイクル装置200では、冷房給湯同時運転モードにおいて低圧二相冷媒が接続点Bを通過する状態となるため、熱源側熱交換器4に液冷媒が進入するのを防ぐために逆止弁20を設置するようにしている。すなわち、冷凍サイクル装置200は、低圧バイパス配管の接続位置及び逆止弁の有無が、実施の形態1に係る冷凍サイクル装置100と相違している。
[冷凍サイクル装置200の奏する効果>
図14に冷凍サイクル装置200の冷房給湯同時運転時の運転状態を示しているが、これは実施の形態1に係る冷凍サイクル装置100の冷房給湯同時運転時の運転状態と同様である。なお、冷凍サイクル装置200の冷房運転モード、暖房運転モード、給湯運転モードにおいても、実施の形態1に係る冷凍サイクル装置100の各運転モードと同様の運転状態となる。したがって、冷凍サイクル装置200では、実施の形態1に係る冷凍サイクル装置100と同様に、アキュムレーター10の内容積が小さくても、冷房運転モードから冷房給湯同時運転モードに移行するときに圧縮機1の液バックを回避することができる。
具体的には次の通りである。冷房運転モード時に給湯ONの給湯指令を検知した場合に運転モードが冷房運転モードから冷房給湯同時運転モードに移行する。このときに、吐出電磁弁2aが開路から閉路、低圧均圧電磁弁18が閉路から開路に変更される。そのため、熱源側熱交換器4のガス側が低圧バイパス配管19の接続点Bに接続される。熱源側熱交換器4に滞留していた大量の冷媒は、低圧バイパス配管19を経由して接続点Bに流入し、その後、熱源ユニット301bから流出し、室内側液延長配管7を経由して室内ユニット302に流入し、室内側熱交換器8へと流入する。室内側熱交換器8では室内空気により加熱されるため、冷媒はガス化する。室内側熱交換器8より流出した冷媒は室内ユニット302より流出し、室内側ガス延長配管9を経由して熱源ユニット301bに流入し、アキュムレーター10を経由して圧縮機1に吸入される。
このように、熱源側熱交換器4から流出する冷媒は、室内側熱交換器8により加熱されてガス化するため、圧縮機1での液バックを回避可能となる。また、このような構成とすることで、液溜めの設置場所を圧縮機1の吸入側にする必要がなくなるため、たとえばアキュムレーター10を取り外して、膨張弁5と膨張弁6との間などにレシーバー等を設置するようにしてもよい。
以上のように、実施の形態2に係る冷凍サイクル装置200によれば、実施の形態1に係る冷凍サイクル装置100と同様に、冷房運転と、暖房運転と、給湯運転と、を個別に運転することが可能であり、かつ冷房給湯同時運転により排熱回収運転が可能となっている。また、冷凍サイクル装置200によれば、水熱交換器12に対する給湯側液延長配管15の容積比率を、冷房給湯同時運転における必要冷媒量と暖房運転における必要冷媒量とが等しくなるときの最小容積比率以上としたので、液溜め(アキュムレーター10又はレシーバー)の内容積を冷房運転と暖房運転のみを実施する標準機と同等にすることができ、低コストを実現するだけでなく、熱源ユニット301bの外形寸法を標準機と同等にすることもできる。
実施の形態3.
図15は、本発明の実施の形態3に係る冷凍サイクル装置300の冷媒回路構成、特に冷房給湯同時運転モード時の冷媒の流れを示す概略冷媒回路図である。図15に基づいて、冷凍サイクル装置300の構成及び動作の一部について説明する。なお、図15中の矢印は冷媒の流れ方向を示したものである。また、実施の形態3では上述した実施の形態1及び実施の形態2との相違点を中心に説明するものとし、実施の形態1及び実施の形態2と同一の箇所については、同一符号を付し、説明を割愛するものとする。
図15に示すように、実施の形態3に係る冷凍サイクル装置300では、給湯ユニット303bの構成が実施の形態1に係る冷凍サイクル装置100の給湯ユニット303と異なっている。なお、実施の形態2に係る冷凍サイクル装置300の給湯ユニット303b以外の構成については、実施の形態1に係る冷凍サイクル装置100と同様である。
[給湯ユニット303b]
給湯ユニット303bは、水熱交換器12、水側回路21、水ポンプ13、貯湯タンク14、過冷却熱交換器22を有している。なお、図16に過冷却熱交換器22の構成の一例を概略的に示している。図16は、過冷却熱交換器22の構成を示す概略図である。
過冷却熱交換器22は、図16(a)に示すように冷媒と外気とを熱交換させるものであり、たとえば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成するとよい。この場合は、送風ファン23を設置して外気との熱交換となるため、給湯ユニット303は屋外に設置する。または、過冷却熱交換器22は、図16(b)に示すように冷媒と水とを熱交換させるものであり、たとえばプレート型水熱交換器で構成するとよい。この場合は、給水側に水ポンプ24を設置し、加熱された水を排水するとよい。なお、送風ファン23又は水ポンプ24は、回転数を可変に制御できるのもでもよいし、一定速のものでもよい。
[冷房給湯同時運転モード]
冷凍サイクル装置300における冷房給湯同時運転モードの運転状態を図15を用いて説明する。なお、図15中の矢印は冷媒の流れ方向を示している。図15に示す冷房給湯同時運転モードの場合、熱源ユニット301では、四方弁3を、圧縮機1の吸入側を室内側熱交換器8のガス側と接続するように切り替える(図15の実線)。また、吐出電磁弁2aは閉路(黒塗り)、吐出電磁弁2bは開路(白抜き)、低圧均圧電磁弁18は開路(白抜き)に制御されている。さらに、第1膨張弁5は最低開度(全閉)、第2膨張弁6は任意の開度、第3膨張弁16は最大開度(全開)に制御されている。
低温・低圧の冷媒が圧縮機1によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機1から吐出した高温・高圧のガス冷媒は、吐出電磁弁2bを通過し、熱源ユニット301から流出する。その後、この冷媒は、給湯側ガス延長配管11を経由して給湯ユニット303bに流入する。給湯ユニット303bに流入した冷媒は、水熱交換器12に流入し、水ポンプ13によって供給される水を加熱し、高圧液冷媒となる。その後、この液冷媒は、水熱交換器12から流出する。その後、この冷媒は、過冷却熱交換器22に流入してさらに冷やされて過冷却度の高い高圧液冷媒となる。この冷媒は、給湯ユニット303bから流出後、給湯側液延長配管15を経由して熱源ユニット301に流入する。
その後、この冷媒は、第3膨張弁16を通過し、第2膨張弁6により減圧され、低圧の二相冷媒となる。その後、この二相冷媒は、熱源ユニット301から流出する。熱源ユニット301から流出した冷媒は、室内側液延長配管7を経由して室内ユニット302に流入する。室内ユニット302に流入した冷媒は、室内側熱交換器8に流入し、室内空気を冷却して低温・低圧のガス冷媒となる。室内側熱交換器8から流出した冷媒は、その後、室内ユニット302から流出し、室内側ガス延長配管9を経由して、熱源ユニット301に流入し、四方弁3及びアキュムレーター10を介して圧縮機1に吸入される。
冷凍サイクル装置300では、過冷却熱交換器22により実施の形態1及び実施の形態2に係る冷凍サイクル装置よりも過冷却度の高い、つまり温度の低い高圧液冷媒が給湯側液延長配管15に流れる。液冷媒の密度は、温度が低くなるほど上昇するため、給湯側液延長配管15における平均冷媒密度が上昇し、同じ内容積にて実施の形態1及び実施の形態2に係る冷凍サイクル装置よりも多くの冷媒を貯留させることができる。
たとえば、R410A冷媒で55℃出湯時において、凝縮温度55℃にて水熱交換器12の過冷却度を2℃として、過冷却熱交換器22がない場合、給湯側液延長配管15の平均冷媒密度は888kg/mとなる。対して、過冷却熱交換器22がある場合、過冷却熱交換器22にて過冷却度がたとえば13℃となり、給湯側液延長配管15の平均冷媒密度は978kg/mとなる。給湯側液延長配管15の内容積が同じ場合は、平均冷媒密度が上昇した分だけ冷媒を貯留することができ、過冷却熱交換器22がある場合は冷媒量貯留量が約10%上昇する。
このような作用があるため、冷凍サイクル装置300では、実施の形態1及び実施の形態2に係る冷凍サイクル装置に対して給湯側延長配管の最小長さを短くすることができる。また、冷凍サイクル装置300では、給湯側延長配管の最小長さを任意の長さに調整する場合に、配管内径の小さい給湯側延長配管を用いることが可能となる。なお、冷凍サイクル装置300の熱源ユニット301の代わりに、実施の形態2に係る冷凍サイクル装置200の熱源ユニット301bを設置するようにしてもよい。
以上のように、実施の形態3に係る冷凍サイクル装置300によれば、実施の形態1に係る冷凍サイクル装置100と同様に、冷房運転と、暖房運転と、給湯運転と、を個別に運転することが可能であり、かつ冷房給湯同時運転により排熱回収運転が可能となっている。また、冷凍サイクル装置300によれば、水熱交換器12に対する給湯側液延長配管15の容積比率を、冷房給湯同時運転における必要冷媒量と暖房運転における必要冷媒量とが等しくなるときの最小容積比率以上としたので、液溜め(アキュムレーター10)の内容積を冷房運転と暖房運転のみを実施する標準機と同等にすることができ、低コストを実現するだけでなく、熱源ユニット301の外形寸法を標準機と同等にすることもできる。
1 圧縮機、2a 吐出電磁弁、2b 吐出電磁弁、3 四方弁、4 熱源側熱交換器、5 第1膨張弁、6 第2膨張弁、7 室内側液延長配管、8 室内側熱交換器、9 室内側ガス延長配管、10 アキュムレーター、11 給湯側ガス延長配管、12 水熱交換器、13 水ポンプ、14 貯湯タンク、15 給湯側液延長配管、16 第3膨張弁、17 低圧バイパス配管、18 低圧均圧電磁弁、19 低圧バイパス配管、20 逆止弁、21 水側回路、22 過冷却熱交換器、23 送風ファン、24 水ポンプ、30 吐出側配管、30a 吐出側配管、30b 吐出側配管、40 吸入側配管、100 冷凍サイクル装置、101 制御装置、200 冷凍サイクル装置、201 圧力センサー、202 第1温度センサー、203 第2温度センサー、204 第3温度センサー、205 第4温度センサー、206 第5温度センサー、207 第6温度センサー、300 冷凍サイクル装置、301 熱源ユニット、301b 熱源ユニット、302 室内ユニット、303 給湯ユニット、303b 給湯ユニット。
本発明に係る冷凍サイクル装置は、圧縮機、熱源側熱交換器、膨張弁及び液溜めを備える熱源ユニットと、室内側熱交換器を備える室内ユニットと、水熱交換器を備える給湯ユニットと、を備え、前記熱源ユニットと前記室内ユニットとを室内側液延長配管及び室内側ガス延長配管からなる室内側延長配管で接続し、前記熱源ユニットと前記給湯ユニットとを給湯側液延長配管及び給湯側ガス延長配管からなる給湯側延長配管で接続した冷凍サイクル装置において、前記液溜めの容量は、冷房運転時の必要冷媒量と暖房運転時の必要冷媒量との差である余剰冷媒量に応じて設定されており、前記水熱交換器に対する前記給湯側液延長配管の容積比率は、前記室内側熱交換器が蒸発器、前記水熱交換器が凝縮器となり前記室内側熱交換器から冷熱を供給し、かつ、前記水熱交換器から温熱を供給する冷房給湯同時運転における必要冷媒量と、前記熱源側熱交換器が蒸発器、前記室内側熱交換器が凝縮器となり前記室内側熱交換器から温熱を供給する暖房運転における必要冷媒量と、が等しくなるときの前記水熱交換器に対する前記給湯側液延長配管の容積比率である最小容積比率以上としたものである。

Claims (10)

  1. 圧縮機、熱源側熱交換器、膨張弁及び液溜めを備える熱源ユニットと、
    室内側熱交換器を備える室内ユニットと、
    水熱交換器を備える給湯ユニットと、を備え、
    前記熱源ユニットと前記室内ユニットとを室内側液延長配管及び室内側ガス延長配管からなる室内側延長配管で接続し、前記熱源ユニットと前記給湯ユニットとを給湯側液延長配管及び給湯側ガス延長配管からなる給湯側延長配管で接続した冷凍サイクル装置において、
    前記水熱交換器に対する前記給湯側液延長配管の容積比率は、
    前記室内側熱交換器が蒸発器、前記水熱交換器が凝縮器となり前記室内側熱交換器から冷熱を供給し、かつ、前記水熱交換器から温熱を供給する冷房給湯同時運転における必要冷媒量と、前記熱源側熱交換器が蒸発器、前記室内側熱交換器が凝縮器となり前記室内側熱交換器から温熱を供給する暖房運転における必要冷媒量と、が等しくなるときの前記水熱交換器に対する前記給湯側液延長配管の容積比率である最小容積比率以上とした
    冷凍サイクル装置。
  2. 前記水熱交換器に対する前記給湯側液延長配管の容積比率は、
    前記給湯側延長配管の配管長もしくは前記給湯側液延長配管の配管内径の少なくとも一つにより設定する
    請求項1に記載の冷凍サイクル装置。
  3. 前記冷凍サイクルに装置に対する追加充填冷媒量は、
    前記給湯側延長配管の長さではなく、前記室内側延長配管の長さによって設定する
    請求項1又は2に記載の冷凍サイクル装置。
  4. 前記室内側液延長配管に対する前記給湯側液延長配管の容積比率は、
    前記室内側熱交換器が蒸発器、前記熱源側熱交換器が凝縮器となり前記室内側熱交換器から冷熱を供給する冷房運転の必要冷媒量が前記暖房運転の必要冷媒量よりも多い場合は、前記熱源側熱交換器が蒸発器、前記水熱交換器が凝縮器となり前記水熱交換器から温熱を供給する給湯運転の必要冷媒量と前記冷房運転の必要冷媒量とが等しくなるときの前記室内側液延長配管に対する前記給湯側液延長配管の容積比率である上限容積比率以下とし、
    前記暖房運転の必要冷媒量が前記冷房運転の必要冷媒量よりも多い場合は、前記冷房給湯同時運転の必要冷媒量と前記暖房運転の必要冷媒量とが等しくなるときの前記室内側液延長配管に対する前記給湯側液延長配管の容積比率である上限容積比率以下とした
    請求項1〜3のいずれか一項に記載の冷凍サイクル装置
  5. 前記暖房運転の必要冷媒量が前記冷房運転の必要冷媒量よりも多い場合、
    前記室内側液延長配管に対する前記給湯側液延長配管の容積比率は、
    前記暖房運転と前記給湯運転の必要冷媒量の差が、前記液溜めの有効内容積が液冷媒で満たされた際の前記液溜めの冷媒量に等しくなるときの前記室内側液延長配管に対する前記給湯側液延長配管の容積比率である下限容積比率以上とした
    請求項1〜4のいずれか一項に記載の冷凍サイクル装置。
  6. 前記熱源ユニットは、
    前記圧縮機から前記膨張弁の間のいずれかの位置における冷媒の高圧圧力を検出する高圧検出手段と、
    前記熱源側熱交換器の液側冷媒の温度を検出する熱源側熱交換器液側温度検出手段と、
    前記冷房運転時に前記熱源側熱交換器の液側冷媒の過冷却度が所定値以下となるように前記膨張弁の開度を制御する過冷却度制御手段を有する制御装置と、を備えている
    請求項1〜5のいずれか一項に記載の冷凍サイクル装置。
  7. 前記室内側熱交換器が蒸発器、前記水熱交換器が凝縮器、かつ、前記熱源側熱交換器が凝縮器となる並行凝縮運転が可能であり、
    前記冷房運転から前記冷房給湯同時運転に切り換える前に、前記並行凝縮運転を実施する並行凝縮運転実施手段を備える
    請求項1〜6のいずれか一項に記載の冷凍サイクル装置
  8. 前記給湯ユニットは
    前記水熱交換器の出口水温を検出する水熱交換器出口水温検出手段と、
    前記水熱交換器の液側冷媒の温度を検出する水熱交換器液側温度検出手段と、を備え、
    前記並行凝縮運転実施手段は、
    前記並行凝縮運転時に前記水熱交換器液側温度が前記出口水温よりも所定値以上低くなったときに前記並行凝縮運転を終了する
    請求項7に記載の冷凍サイクル装置
  9. 前記熱源ユニットは、
    前記圧縮機と前記熱源側熱交換器のガス側の間のいずれかの位置である接続点Aと、前 前記室内側熱交換器と前記膨張弁との間のいずれかの位置である接続点Bと、を接続する低圧バイパス配管を備え、
    前記低圧バイパス配管には前記接続点Aから前記接続点Bに向かって冷媒が流れるように低圧均圧電磁弁及び逆止弁を設置した
    請求項1〜8のいずれか一項に記載冷凍サイクル装置
  10. 前記給湯ユニットは、
    前記水熱交換器の液側の過冷却液となっている冷媒を冷却するための過冷却熱交換器を備えている
    請求項1〜9のいずれか一項に記載の冷凍サイクル装置。
JP2013537274A 2011-10-04 2011-10-04 冷凍サイクル装置 Active JP5745637B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005605 WO2013051059A1 (ja) 2011-10-04 2011-10-04 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JPWO2013051059A1 true JPWO2013051059A1 (ja) 2015-03-30
JP5745637B2 JP5745637B2 (ja) 2015-07-08

Family

ID=48043256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013537274A Active JP5745637B2 (ja) 2011-10-04 2011-10-04 冷凍サイクル装置

Country Status (6)

Country Link
US (1) US9631847B2 (ja)
EP (1) EP2765371B1 (ja)
JP (1) JP5745637B2 (ja)
CN (1) CN103842747B (ja)
ES (1) ES2796384T3 (ja)
WO (1) WO2013051059A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6004764B2 (ja) * 2012-06-12 2016-10-12 三菱重工業株式会社 熱源システムの熱源選択装置及びその方法並びに熱源システム
GB2528212B (en) * 2013-05-24 2020-01-01 Mitsubishi Electric Corp Refrigeration cycle device
JP6264633B2 (ja) * 2013-07-08 2018-01-24 パナソニックIpマネジメント株式会社 空気調和装置
CN103398506B (zh) * 2013-07-24 2015-06-10 广东申菱空调设备有限公司 一种矿用冷热联供污水源冷热水机组及其控制方法
US20170089616A1 (en) * 2014-03-17 2017-03-30 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US10330358B2 (en) 2014-05-15 2019-06-25 Lennox Industries Inc. System for refrigerant pressure relief in HVAC systems
US9976785B2 (en) 2014-05-15 2018-05-22 Lennox Industries Inc. Liquid line charge compensator
JP2016095039A (ja) * 2014-11-12 2016-05-26 パナソニックIpマネジメント株式会社 冷凍サイクル装置
US10584895B2 (en) * 2015-08-17 2020-03-10 Mitsubishi Electric Corporation Heat utilizing apparatus
US10168087B2 (en) * 2015-09-03 2019-01-01 Ut-Battelle, Llc Refrigerant charge management in an integrated heat pump
EP3285021B1 (en) * 2016-05-26 2019-03-20 Mitsubishi Electric Corporation Heat pump type air conditioning and hot water supplying device
JP6729269B2 (ja) * 2016-10-11 2020-07-22 パナソニック株式会社 冷蔵庫とその制御方法
KR102353913B1 (ko) 2017-04-25 2022-01-21 삼성전자주식회사 공기 조화 시스템 및 그 제어 방법
US10663199B2 (en) 2018-04-19 2020-05-26 Lennox Industries Inc. Method and apparatus for common manifold charge compensator
US10830514B2 (en) 2018-06-21 2020-11-10 Lennox Industries Inc. Method and apparatus for charge compensator reheat valve
WO2021024407A1 (ja) * 2019-08-07 2021-02-11 三菱電機株式会社 冷凍サイクル装置
JP2021055958A (ja) * 2019-09-30 2021-04-08 ダイキン工業株式会社 冷凍装置
US11781798B2 (en) * 2020-02-17 2023-10-10 Trane International Inc. Vibration damping clips for climate control systems
JP7438397B2 (ja) * 2020-11-10 2024-02-26 三菱電機株式会社 冷凍サイクル装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184477U (ja) * 1981-05-18 1982-11-22
JPH02217756A (ja) * 1989-02-15 1990-08-30 Daikin Ind Ltd ヒートポンプシステム
JP2003064352A (ja) * 2001-08-28 2003-03-05 Matsushita Electric Ind Co Ltd 混合作動流体、および冷凍サイクル装置
JP2003106672A (ja) * 2001-09-28 2003-04-09 Kansai Electric Power Co Inc:The 給湯装置
JP2004361036A (ja) * 2003-06-06 2004-12-24 Daikin Ind Ltd 空気調和装置
JP2008116155A (ja) * 2006-11-07 2008-05-22 Matsushita Electric Ind Co Ltd 空気調和機の運転制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840464A (ja) 1981-09-02 1983-03-09 三菱重工業株式会社 空気調和機
US4528822A (en) * 1984-09-07 1985-07-16 American-Standard Inc. Heat pump refrigeration circuit with liquid heating capability
US4693089A (en) * 1986-03-27 1987-09-15 Phenix Heat Pump Systems, Inc. Three function heat pump system
JP2001248937A (ja) 2000-03-08 2001-09-14 Toshiba Kyaria Kk ヒートポンプ給湯エアコン
JP2003279174A (ja) 2002-03-26 2003-10-02 Mitsubishi Electric Corp 空気調和装置
CN100460775C (zh) * 2004-11-04 2009-02-11 陈则韶 带导流套筒换热器储水箱的空气源热泵热水器
JP2006283989A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 冷暖房システム
EP1886081A4 (en) * 2005-06-03 2011-06-08 Carrier Corp REFRIGERANT SYSTEM WITH WATER HEATING
JP5186951B2 (ja) * 2008-02-29 2013-04-24 ダイキン工業株式会社 空気調和装置
JP5200996B2 (ja) * 2009-02-24 2013-06-05 ダイキン工業株式会社 ヒートポンプシステム
KR101505856B1 (ko) * 2010-09-08 2015-03-25 삼성전자 주식회사 공기조화기 및 그 제어방법
CN201852356U (zh) * 2010-11-03 2011-06-01 海尔集团公司 空调热水器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184477U (ja) * 1981-05-18 1982-11-22
JPH02217756A (ja) * 1989-02-15 1990-08-30 Daikin Ind Ltd ヒートポンプシステム
JP2003064352A (ja) * 2001-08-28 2003-03-05 Matsushita Electric Ind Co Ltd 混合作動流体、および冷凍サイクル装置
JP2003106672A (ja) * 2001-09-28 2003-04-09 Kansai Electric Power Co Inc:The 給湯装置
JP2004361036A (ja) * 2003-06-06 2004-12-24 Daikin Ind Ltd 空気調和装置
JP2008116155A (ja) * 2006-11-07 2008-05-22 Matsushita Electric Ind Co Ltd 空気調和機の運転制御方法

Also Published As

Publication number Publication date
CN103842747B (zh) 2016-02-24
ES2796384T3 (es) 2020-11-26
JP5745637B2 (ja) 2015-07-08
US20140345310A1 (en) 2014-11-27
EP2765371A4 (en) 2015-07-22
EP2765371B1 (en) 2020-05-20
EP2765371A1 (en) 2014-08-13
US9631847B2 (en) 2017-04-25
CN103842747A (zh) 2014-06-04
WO2013051059A1 (ja) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5745637B2 (ja) 冷凍サイクル装置
JP5121908B2 (ja) 冷房給湯装置
JP5634502B2 (ja) 空調給湯複合システム
JP5042262B2 (ja) 空調給湯複合システム
JP5137933B2 (ja) 空気調和装置
JP5312613B2 (ja) ヒートポンプシステム
WO2016117128A1 (ja) 空気調和装置
US20120198873A1 (en) Air-conditioning apparatus
JPWO2015162679A1 (ja) 冷凍サイクル装置
JP5300806B2 (ja) ヒートポンプ装置
JP5523470B2 (ja) 空気調和装置
US9816736B2 (en) Air-conditioning apparatus
US20160320100A1 (en) Heat source side unit and air-conditioning apparatus
US9599380B2 (en) Refrigerant charging method for air-conditioning apparatus and air-conditioning apparatus
US9587861B2 (en) Air-conditioning apparatus
JP5005011B2 (ja) 空気調和装置
JP6537629B2 (ja) 空気調和装置
JP6042037B2 (ja) 冷凍サイクル装置
JP6112189B1 (ja) 空気調和装置
WO2017179166A1 (ja) 空気調和装置
WO2023042268A1 (ja) 空気調和装置
WO2018163346A1 (ja) 空気調和装置
JP2008111584A (ja) 空気調和装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150501

R150 Certificate of patent or registration of utility model

Ref document number: 5745637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250