JPWO2013018714A1 - Transition metal carbide-containing alloy manufacturing method, transition metal carbide-containing tungsten alloy, and alloy manufactured by the manufacturing method - Google Patents

Transition metal carbide-containing alloy manufacturing method, transition metal carbide-containing tungsten alloy, and alloy manufactured by the manufacturing method Download PDF

Info

Publication number
JPWO2013018714A1
JPWO2013018714A1 JP2013526892A JP2013526892A JPWO2013018714A1 JP WO2013018714 A1 JPWO2013018714 A1 JP WO2013018714A1 JP 2013526892 A JP2013526892 A JP 2013526892A JP 2013526892 A JP2013526892 A JP 2013526892A JP WO2013018714 A1 JPWO2013018714 A1 JP WO2013018714A1
Authority
JP
Japan
Prior art keywords
alloy
tungsten
less
transition metal
embrittlement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013526892A
Other languages
Japanese (ja)
Other versions
JP5920793B2 (en
Inventor
裕明 栗下
裕明 栗下
荒川 英夫
英夫 荒川
悟 松尾
悟 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Publication of JPWO2013018714A1 publication Critical patent/JPWO2013018714A1/en
Application granted granted Critical
Publication of JP5920793B2 publication Critical patent/JP5920793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

合金、特に、タングステン材料に再結晶微細組織を導入し、その再結晶微細組織における弱い粒界を著しく強化することにより、低温脆化、再結晶脆化、照射脆化が大幅に改善された合金材料を開発する。IVA族、VA族又はVIA族遷移金属の炭化物から選ばれる少なくとも1種及び金属原料をメカニカルアロイングする工程、前記メカニカルアロイングする工程で得られた原料粉末を熱間等方圧プレスにより焼結する工程、前記焼結する工程で得られた合金を500℃以上2000℃以下、10−5s−1以上10−2s−1以下の歪速度で、60%以上の塑性変形を施す工程で合金を製造することで、低温脆化、再結晶脆化、照射脆化が大幅に改善された合金材料が得られる。Alloys, especially alloys with significantly improved low temperature embrittlement, recrystallization embrittlement, and irradiation embrittlement by introducing a recrystallized microstructure into tungsten material and significantly strengthening weak grain boundaries in the recrystallized microstructure Develop materials. At least one selected from carbides of Group IVA, Group VA or Group VIA transition metals and a metal raw material are mechanically alloyed, and the raw material powder obtained in the mechanical alloying step is sintered by hot isostatic pressing. The alloy obtained in the step of subjecting the alloy obtained in the sintering step to plastic deformation of 60% or more at a strain rate of 500 ° C. or more and 2000 ° C. or less, 10 −5 s −1 or more and 10 −2 s −1 or less. By manufacturing, an alloy material in which low temperature embrittlement, recrystallization embrittlement, and irradiation embrittlement are greatly improved can be obtained.

Description

本発明は、遷移金属炭化物入り合金の製造方法、遷移金属炭化物入りタングステン合金及び前記製造方法により製造された合金に関し、特に、合金に超塑性変形を施すことで粒界辷りによる超塑性を発現させ、再結晶破壊強度が高く、再結晶組織であるために高温に加熱されても強度や延性の低下が少なく、低温脆性、再結晶脆性および中性子照射脆性を著しく改善することができる合金の製造方法、及び該製造方法により製造された合金、特に、タングステン合金に関する。   The present invention relates to a transition metal carbide-containing alloy manufacturing method, a transition metal carbide-containing tungsten alloy, and an alloy manufactured by the above manufacturing method, and in particular, superplastic deformation is exerted on the alloy to develop superplasticity due to intergranular cracking. , A method for producing an alloy that has a high recrystallization fracture strength and has a recrystallized structure, so that there is little decrease in strength and ductility even when heated to a high temperature, and low temperature brittleness, recrystallization brittleness and neutron irradiation brittleness can be remarkably improved And an alloy produced by the production method, particularly a tungsten alloy.

タングステンやタングステン合金は、金属では最も高い3410℃もの融点を持つ等、他の金属が追随できない非常に数多くの利点を有している。しかしながら、長年にわたり脆化(低温脆化、再結晶脆化、照射脆化)の問題が解決されないため、これまで構造材料として利用されたことがなく、極限環境下での高温構造材料としての実用化が阻まれている。   Tungsten and tungsten alloys have numerous advantages that other metals cannot follow, such as having the highest melting point of 3410 ° C. among metals. However, since the problem of embrittlement (low temperature embrittlement, recrystallization embrittlement, irradiation embrittlement) has not been solved for many years, it has never been used as a structural material so far, and it can be used as a high temperature structural material in an extreme environment. Is blocked.

これらの脆化は、いずれも結晶粒界が弱く、粒界から破壊しやすい「粒界脆化」に起因する。粒界脆化の原因は、タングステンが共有結合性の度合いの最も強い金属であり、粒界が本質的に高エネルギーで弱い(破壊しやすい)ことに加え、窒素や酸素といった空気中の侵入型ガス元素はタングステン中の固溶度が極端に低いため粒界に偏析・析出しやすく、粒界をさらに弱化し、脆化を促進してしまうことにある。   All of these embrittlements are caused by “grain boundary embrittlement” in which the crystal grain boundaries are weak and are easily broken from the grain boundaries. The cause of grain boundary embrittlement is tungsten, which is the metal with the strongest degree of covalent bonding. In addition to the fact that grain boundaries are inherently high energy and weak (easy to break), intrusion type in air such as nitrogen and oxygen Since the gas element has an extremely low solid solubility in tungsten, it tends to segregate and precipitate at the grain boundary, further weakening the grain boundary and promoting embrittlement.

その結果、図1(a)に示すように、通常の金属は破断する前に塑性変形(永久変形)することから、ほぼ全温度範囲が延性温度領域となる。一方、図1(b)に示すように、タングステンは、原子間結合の方向性の極めて強い共有結合を有しているため、本質的に結晶粒界が弱く、延性脆性遷移を起こすとともに延性脆性遷移温度(ductile−brittle transition temperature、以下「DBTT」と略記することもある。)も高い。そのため、タングステン中のらせん転位の運動に必要なパイエルス応力(降伏強度)が急激に上昇する低温ほど著しくなり(低温脆化)、また、極めて弱い粒界が形成される再結晶組織でより顕著となる(再結晶脆化)。さらに、中性子等の高エネルギー粒子照射により照射欠陥が導入されると、結晶粒内や粒界での照射欠陥の蓄積により転位の辷り運動が阻害されるために、さらに粒界脆化が促進される(照射脆化)。   As a result, as shown in FIG. 1A, a normal metal undergoes plastic deformation (permanent deformation) before it breaks, so that almost the entire temperature range becomes the ductile temperature region. On the other hand, as shown in FIG. 1B, tungsten has a covalent bond with a very strong interatomic bond direction, so that the grain boundary is essentially weak, causing a ductile brittle transition and ductile brittleness. The transition temperature (ductile-britlet transition temperature, hereinafter abbreviated as “DBTT”) is also high. Therefore, the lower the temperature at which the Peierls stress (yield strength) required for the motion of screw dislocations in tungsten rises sharply (low temperature embrittlement), and it becomes more prominent in the recrystallized structure where extremely weak grain boundaries are formed. (Recrystallization embrittlement). Furthermore, when irradiation defects are introduced by irradiation with high-energy particles such as neutrons, dislocation rolling is inhibited by the accumulation of irradiation defects within the crystal grains and at the grain boundaries, which further promotes grain boundary embrittlement. (Irradiation embrittlement).

したがって、低温脆化、再結晶脆化、照射脆化を同時に改善するためには、照射欠陥が消滅可能なサイト(シンク;結晶粒界や分散粒子)を高密度に含む再結晶微細組織を導入し、再結晶微細組織における弱い粒界を破壊しにくい極めて強い粒界に変えることが必要である。   Therefore, in order to improve low temperature embrittlement, recrystallization embrittlement, and irradiation embrittlement at the same time, a recrystallized microstructure containing high-density sites (sinks: grain boundaries and dispersed particles) that can eliminate irradiation defects is introduced. However, it is necessary to change weak grain boundaries in the recrystallized microstructure to extremely strong grain boundaries that are difficult to break.

本発明者らは、タングステンの中性子照射や再結晶による脆化、および低温脆化の問題を解決するため、超微細結晶粒を有するW−TiCをAr雰囲気およびH2雰囲気下でメカニカルアロイング(MA)法と熱間等方加圧(HIP)法により作製することで、室温靭性が向上する等の効果が得られることを見出し、発表をおこなっている(非特許文献1、2参照)。しかしながら、上記方法で作製されたタングステン材料であっても、実用化するには依然として十分ではなかった。In order to solve the problems of embrittlement due to neutron irradiation and recrystallization of tungsten, and low temperature embrittlement, the present inventors mechanically alloyed W-TiC having ultrafine crystal grains in an Ar atmosphere and an H 2 atmosphere ( (MA) method and hot isostatic pressing (HIP) method, it has been found that effects such as improved room temperature toughness can be obtained (see Non-Patent Documents 1 and 2). However, even the tungsten material produced by the above method is still not sufficient for practical use.

一方、高融点金属の耐久性等を改善するための方法としては、Mo、W、Nb、Ta、V、Cr等の高融点金属に、融点1500℃以上であって、粒径≦1.5μmの酸化物、窒化物、炭化物、ホウ化物、ケイ酸塩又はアルミン酸塩の群から選択される一種又は数種の化合物又は混合物を0.005〜10質量%含有させることで、耐クリープ性を向上させることが知られている(特許文献1参照)。しかしながら、特許文献1に開示されているのは、高温での高融点金属の耐熱性及び耐クリープ性を向上させるもので、低温脆化、再結晶脆化、照射脆化を改善するものではない。   On the other hand, as a method for improving the durability and the like of a refractory metal, a refractory metal such as Mo, W, Nb, Ta, V, and Cr has a melting point of 1500 ° C. or higher and a particle size ≦ 1.5 μm. By containing 0.005 to 10% by mass of one or several compounds or mixtures selected from the group of oxides, nitrides, carbides, borides, silicates or aluminates of It is known to improve (see Patent Document 1). However, what is disclosed in Patent Document 1 is to improve the heat resistance and creep resistance of a refractory metal at a high temperature, and does not improve low temperature embrittlement, recrystallization embrittlement, and irradiation embrittlement. .

また、本発明者らは、モリブデン合金に、粒径10nm以下のIVa族遷移金属炭化物の超微粒子を0.05モル以上5モル%以下分散し、結晶粒径を1μm以下とすることで、モリブデン合金の強度を高くでき、また、高温に加熱されても強度低下が少なく、低温脆性、再結晶脆性及び中性子照射脆性を改善できること見出し、特許出願を行っている(特許文献2参照)。しかしながら、特許文献2に記載されているモリブデンは、純金属であっても室温で延性を示す材料であり、また、モリブデンよりもさらに800℃も高融点でああって、極端に脆性材料であるタングステンとは、性質と製造の条件が全く異なる材料である。   Further, the present inventors have dispersed molybdenum alloy ultrafine particles of IVa group transition metal carbide having a particle size of 10 nm or less in a molybdenum alloy by 0.05 mol or more and 5 mol% or less, and having a crystal particle size of 1 μm or less. The inventors have found that the strength of the alloy can be increased, and that the strength is hardly lowered even when heated to a high temperature, and that low temperature brittleness, recrystallization brittleness and neutron irradiation brittleness can be improved, and a patent application has been filed (see Patent Document 2). However, molybdenum described in Patent Document 2 is a material that exhibits ductility at room temperature even if it is a pure metal, and has a melting point that is 800 ° C. higher than that of molybdenum and is an extremely brittle material. Is a material with completely different properties and manufacturing conditions.

更に、モリブデンは、特許文献2では延性改善のために塑性加工(鍛造・圧延等)による加工変形組織の導入・存在を必要とし、その結果、再結晶温度の低下と異方性が生ずる。一方、タングステンは、加工変形組織を全く含まない再結晶状態での、したがって異方性をもたない等軸再結晶組織における延性改善に関するものであり、両者は本質的に異なる。   Further, in Patent Document 2, in order to improve ductility, molybdenum requires the introduction / existence of a work deformation structure by plastic working (forging, rolling, etc.). As a result, the recrystallization temperature is lowered and anisotropy occurs. On the other hand, tungsten is related to ductility improvement in a recrystallized state that does not include any work-deformed structure, and therefore has no anisotropy, and therefore is essentially different.

特表平1−502680号公報JP-T-1-502680 特開平8−85840号公報JP-A-8-85840

日本金属学会講演概要、Vol.148,p235Outline of the Japan Institute of Metals, Vol. 148, p235 日本金属学会講演概要、Vol.143,p322Outline of the Japan Institute of Metals, Vol. 143, p322

本発明者らは、鋭意研究を行ったところ、メカニカルアロイング(MA)法と熱間等方加圧(HIP)法により作製した遷移金属炭化物入り合金を、更に、超塑性変形による粒界辷りを用いた再結晶ランダム粒界の強化処理をすることで、合金に再結晶微細組織を導入し、その再結晶微細組織における弱い粒界を著しく強化することができ、その結果、低温脆化、再結晶脆化、照射脆化が大幅に改善されることを見出した。また、超塑性変形による粒界辷りを用いた再結晶ランダム粒界の強化処理は、全ての合金に適用可能であるが、その中でも極端に脆性材料であるタングステンの脆性の改良に有効であることも新たに見出した。本発明は、これらの新知見に基づいて成されたものである。   The present inventors conducted extensive research and found that transition metal carbide-containing alloys produced by mechanical alloying (MA) method and hot isostatic pressing (HIP) method were further crushed by grain boundaries by superplastic deformation. By re-strengthening the recrystallized random grain boundaries, it is possible to introduce a recrystallized microstructure into the alloy and reinforce the weak grain boundaries in the recrystallized microstructure, resulting in low temperature embrittlement, It was found that recrystallization embrittlement and irradiation embrittlement were greatly improved. In addition, the recrystallization random grain boundary strengthening process using grain boundary cracking due to superplastic deformation can be applied to all alloys, but among them, it is effective in improving the brittleness of tungsten, which is extremely brittle. Also found new. The present invention has been made based on these new findings.

すなわち、本発明の目的は、低温脆化、再結晶脆化、照射脆化が大幅に改善された遷移金属炭化物入り合金の製造方法を提供することである。また、本発明の他の目的は、該製造方法により製造された合金を提供することである。さらに、本発明の他の目的は、低温脆化、再結晶脆化、照射脆化が大幅に改善された遷移金属炭化物入りタングステン合金を提供することである。   That is, an object of the present invention is to provide a method for producing a transition metal carbide-containing alloy in which low temperature embrittlement, recrystallization embrittlement, and irradiation embrittlement are greatly improved. Another object of the present invention is to provide an alloy produced by the production method. Furthermore, another object of the present invention is to provide a transition metal carbide-containing tungsten alloy in which low temperature embrittlement, recrystallization embrittlement, and irradiation embrittlement are greatly improved.

本発明は、以下に示す、遷移金属炭化物入り合金の製造方法、遷移金属炭化物入りタングステン合金及び前記製造方法により製造された合金に関する。   The present invention relates to a method for producing a transition metal carbide-containing alloy, a transition metal carbide-containing tungsten alloy, and an alloy produced by the production method described below.

(1)IVA族、VA族又はVIA族遷移金属の炭化物から選ばれる少なくとも1種及び金属原料をメカニカルアロイングする工程、前記メカニカルアロイングする工程で得られた原料粉末を熱間等方圧プレスにより焼結する工程、前記焼結する工程で得られた合金を500℃以上2000℃以下、10−5−1以上10−2−1以下の歪速度で、60%以上の塑性変形を施す工程、を含むことを特徴とする合金の製造方法。
(2)前記メカニカルアロイングする工程の前に、前記遷移金属の炭化物及び金属原料を加熱により脱気する工程を含むことを特徴とする上記(1)に記載の合金の製造方法。
(3)IVA族、VA族、VIA族遷移金属の炭化物から選ばれる少なくとも1種を0.25質量%以上5質量%以下含むタングステン合金において、酸素の含有量が950質量ppm以下、窒素の含有量が60質量ppm以下であり、タングステン相の面積比の80%以上が粒径0.05μm以上10μm以下の等軸結晶粒であり、3点曲げによる延性脆性遷移温度が500K以下であり、その温度以上で塑性変形可能であることを特徴とするタングステン合金。
(4)タングステン合金組織中に存在する炭化物の方位と、タングステンのマトリクスの方位の90%以上が、{111}W//{110}遷移金属の炭化物,<110>W//<111>遷移金属の炭化物の(Kurdjumov−Sachs)方位関係であることを特徴とする上記(3)に記載のタングステン合金。
(5)X線回折での回折面(220)反射の半値全幅が3°以下であること、あるいは透過電子顕微鏡観察により結晶粒内の転位が50本以下であることを特徴とする上記(3)又は(4)に記載のタングステン合金。
(6)3点曲げによる最大曲げ強度が1470MPa以上であることを特徴とする上記(3)〜(5)の何れか一に記載のタングステン合金。
(7)上記(1)又は(2)に記載の製造方法により製造された合金。
(1) At least one selected from carbides of group IVA, group VA or group VIA transition metal and a metal material mechanically alloyed, hot isostatic pressing of the raw material powder obtained in the mechanical alloying step The alloy obtained in the sintering step and the alloy obtained in the sintering step is subjected to plastic deformation of 60% or more at a strain rate of 500 ° C. or more and 2000 ° C. or less, 10 −5 s −1 or more and 10 −2 s −1 or less. A method for producing an alloy comprising the steps of:
(2) The method for producing an alloy as described in (1) above, including a step of degassing the carbide and metal raw material of the transition metal by heating before the step of mechanical alloying.
(3) In a tungsten alloy containing at least one selected from carbides of Group IVA, Group VA, and Group VIA transition metals in an amount of 0.25 mass% to 5 mass%, the oxygen content is 950 mass ppm or less, and the nitrogen content The amount is 60 mass ppm or less, 80% or more of the area ratio of the tungsten phase is equiaxed grains having a grain size of 0.05 μm or more and 10 μm or less, and a ductile brittle transition temperature by three-point bending is 500 K or less, Tungsten alloy characterized by being capable of plastic deformation above temperature.
(4) The carbide orientation in the tungsten alloy structure and 90% or more of the orientation of the tungsten matrix are carbides of {111} W // {110} transition metal, <110> W // <111> transition The tungsten alloy according to (3) above, which has a (Kurdjumov-Sachs) orientation relationship of a metal carbide.
(5) The full width at half maximum of the diffraction surface (220) reflection in X-ray diffraction is 3 ° or less, or the number of dislocations in the crystal grains is 50 or less by observation with a transmission electron microscope (3) Or a tungsten alloy according to (4).
(6) The tungsten alloy according to any one of (3) to (5) above, wherein the maximum bending strength by three-point bending is 1470 MPa or more.
(7) An alloy produced by the production method described in (1) or (2) above.

本発明によれば、遷移金属炭化物及び合金の粉末をメカニカルアロイング(MA)法と熱間等方加圧(HIP)法により処理し、更に、粒界辷りを最大限に活用できる超塑性変形を利用して再結晶微細粒組織における炭化物の粒界析出・粒界偏析を促進・最適化することによって、(1)再結晶組織における合金、特に、タングステンの粒界強度(粒界結合力)が改善され、高強度と高靭性が実現できる、(2)元々再結晶状態にあるため高温に加熱されても組織変化が小さいので、強度や延性の低下が極めて少なく、再結晶脆化の恐れがない、(3)照射脆化を大幅に改善することができる、(4)合金としてタングステンを用いた場合、タングステン合金の結晶粒径は0.05−10μm程度にまで成長するので、降伏点を適度に低下させる効果が付与され、室温付近でも塑性変形可能なタングステン合金とすることができる、等の効果を奏する。   According to the present invention, transition metal carbide and alloy powder are processed by mechanical alloying (MA) method and hot isostatic pressing (HIP) method, and further, superplastic deformation that can maximize the use of grain boundary wrinkling. (1) Grain boundary strength (intergranular bond strength) of alloys in recrystallized structure, especially tungsten, by promoting and optimizing carbide grain boundary precipitation and grain boundary segregation in recrystallized fine grain structure Can be achieved, and high strength and toughness can be realized. (2) Since it is originally in a recrystallized state, there is little change in structure even when heated to high temperatures, so there is very little reduction in strength and ductility, and there is a risk of recrystallization embrittlement. (3) Irradiation embrittlement can be greatly improved. (4) When tungsten is used as the alloy, the crystal grain size of the tungsten alloy grows to about 0.05-10 μm, so the yield point. Moderately lowered That effect is given, it can be plastically deformable tungsten alloy in the vicinity of room temperature, an effect equal.

図1は、通常金属とタングステンの強度と温度の関係を示す図である。FIG. 1 is a diagram showing the relationship between the strength and temperature of normal metal and tungsten. 図2は、超塑性変形の原理を示す図である。FIG. 2 is a diagram showing the principle of superplastic deformation. 図3は、転位をキャリアーとする加工変形組織の導入を目的とし、その結果、再結晶温度の低下と異方性をもたらす塑性加工の概略を示す図である。FIG. 3 is a diagram showing an outline of plastic working for the purpose of introducing a work deformation structure using dislocations as carriers, and as a result, lowering the recrystallization temperature and causing anisotropy. 図4は、GSMM工程の概略を示す図である。FIG. 4 is a diagram showing an outline of the GSMM process. 図5は、実施例4(DBTT:310K)及び実施例6(DBTT:420K)の温度400Kにおける3点曲げ変形挙動を示す。FIG. 5 shows the three-point bending deformation behavior of Example 4 (DBTT: 310K) and Example 6 (DBTT: 420K) at a temperature of 400K. 図6は、実施例4の300Kにおける3点曲げ変形挙動を示す。FIG. 6 shows the three-point bending deformation behavior of Example 4 at 300K. 図7は、実施例2(GSMM処理済み)及び比較例1(GSMM処理なし)のX線回折パターンを示す。FIG. 7 shows X-ray diffraction patterns of Example 2 (GSMM-treated) and Comparative Example 1 (no GSMM-treated). 図8は、写真代用図面で、比較例1及び実施例2の透過電子顕微鏡写真を示す。FIG. 8 is a photograph-substituting drawing and shows transmission electron micrographs of Comparative Example 1 and Example 2. 図9は、実施例5(GSMM処理済み)及び実施例5のGSMM処理前のas−HIP体のX線回折パターンを示す。FIG. 9 shows X-ray diffraction patterns of as-HIP bodies before the GSMM treatment of Example 5 (GSMM-treated) and Example 5. 図10は、写真代用図面であり、実施例2のタングステン合金の透過電子顕微鏡写真である。FIG. 10 is a photograph-substituting drawing and is a transmission electron micrograph of the tungsten alloy of Example 2.

本発明は、必要に応じて原料を加熱により脱気する工程、前記脱気する工程で得られた原料をメカニカルアロイング(MA)する工程(以下「MA工程」と記載することもある。)、前記メカニカルアロイングする工程で得られた原料粉末を熱間等方圧プレスにより焼結(HIP)する工程(以下「HIP工程」と記載することもある。)、前記焼結する工程で得られた合金を、粒界辷りを最大限に活用できる超塑性変形を用いた再結晶ランダム粒界の強化処理する工程(以下「GSMM工程」と記載することもある。なお、GSMMは、Grain boundary Sliding−based Microstructural Modificationの略である。)、で合金を作製することを特徴としており、更に、該方法により製造された合金が、特にタングステン合金であることを特徴としている。本発明について、更に具体的に説明する。   The present invention includes a step of degassing the raw material by heating, if necessary, and a step of mechanically alloying (MA) the raw material obtained in the degassing step (hereinafter sometimes referred to as “MA step”). The raw powder obtained in the mechanical alloying step is sintered (HIP) by hot isostatic pressing (hereinafter sometimes referred to as “HIP step”), and obtained in the sintering step. The obtained alloy may be described as a process of strengthening a recrystallized random grain boundary using superplastic deformation (hereinafter referred to as a “GSMM process”. Grain boundary is a grain boundary). Abbreviation of Sliding-based Microstructural Modification)), and further, according to the method Manufactured alloy is characterized by a particularly tungsten alloy. The present invention will be described more specifically.

まず、本発明に用いられる原料について説明する。本発明に用いられる遷移金属炭化物としては、IVA族、VA族、VIA族から選ばれる遷移金属の炭化物が挙げられ、特に、構成元素の拡散速度が速く脆いW2Cよりも先に炭化物を形成しやすいこと、あるいは形成された炭化物が熱的に安定であること等から、炭化チタン、炭化ジルコニウム、炭化ニオブ、炭化タンタル等が好ましい。これらのIVA族、VA族、VIA族遷移金属炭化物(以下、単に「遷移金属炭化物」と記載することもある。)は、単独でも複数を組み合わせて用いてもよい。First, the raw material used for this invention is demonstrated. Examples of transition metal carbides used in the present invention include transition metal carbides selected from the group IVA, VA, and VIA. Particularly, the carbides are formed before the brittle W 2 C in which the diffusion rate of the constituent elements is high and brittle. Titanium carbide, zirconium carbide, niobium carbide, tantalum carbide, and the like are preferable because they are easily formed or the formed carbide is thermally stable. These Group IVA, Group VA and Group VIA transition metal carbides (hereinafter sometimes simply referred to as “transition metal carbides”) may be used alone or in combination.

遷移金属炭化物の合金に対する添加量は、0.25質量%以上、5質量%以下が好ましい。遷移金属炭化物の添加量が0.25質量%に満たない量では、結晶粒界の強化や高温における結晶粒界の移動の抑制効果が乏しく、再結晶温度の上昇や再結晶後の結晶粒の粗大化を抑制する効果が乏しいばかりでなく、低温脆性、再結晶脆性、及び中性子照射脆性の改善、及び高温強度の向上が不十分である。一方、遷移金属炭化物の添加量が5質量%を越えると、合金が脆化してしまい好ましくない。   The amount of transition metal carbide added to the alloy is preferably 0.25% by mass or more and 5% by mass or less. If the added amount of transition metal carbide is less than 0.25% by mass, the effect of suppressing the strengthening of the grain boundaries and the movement of the grain boundaries at high temperatures is poor, and the recrystallization temperature is increased or the crystal grains after recrystallization Not only is the effect of suppressing coarsening poor, but the improvement of low-temperature brittleness, recrystallization brittleness, and neutron irradiation brittleness, and high-temperature strength are insufficient. On the other hand, if the added amount of transition metal carbide exceeds 5% by mass, the alloy becomes brittle, which is not preferable.

遷移金属炭化物以外の合金の原料としては、タングステン、モリブデン、バナジウム、イットリウム、クロム、ニオブ、タンタル、チタン、ジルコニウム、ハフニウム等から選ばれる少なくとも1種、或いは、ステンレス、鉄等が挙げられるが、本発明の製造方法は、特に、タングステン等のVIA族遷移金属に有用である。合金原料の粉末は、フィッシャー粒径で2μm以上であることが好ましい。これは、後述する製造方法で詳しく述べるが、製造された合金中の酸素又は窒素濃度が高いと、(1)低温脆化、再結晶脆化、照射脆化を大幅に改善するために必要である遷移金属炭化物の粒界析出・偏析を阻害する、(2)それ自体が脆く破壊の起点として作用するWCの形成を促進する、(3)酸素や窒素は破壊の起点として作用する気孔を形成する、からである。その為、合金中の再結晶微細組織における弱い粒界を強化するためには、合金原料の粉末間等に含まれる酸素と窒素含有量を低く抑えることが不可欠であり、後述する脱気する工程に加え、原料を上記の粒径にすることが好ましい。ただし、不純物混入を抑えるような雰囲気管理がしっかりと行われていれば、必ずしも2μm以上である必要はなく、1μm以下であってもよい。Examples of raw materials for alloys other than transition metal carbide include at least one selected from tungsten, molybdenum, vanadium, yttrium, chromium, niobium, tantalum, titanium, zirconium, hafnium, etc., or stainless steel, iron, etc. The manufacturing method of the invention is particularly useful for Group VIA transition metals such as tungsten. The alloy raw material powder preferably has a Fischer particle size of 2 μm or more. This will be described in detail in the manufacturing method described later. If the oxygen or nitrogen concentration in the manufactured alloy is high, it is necessary to (1) greatly improve low temperature embrittlement, recrystallization embrittlement, and irradiation embrittlement. Inhibits grain boundary precipitation and segregation of certain transition metal carbides, (2) promotes the formation of W 2 C, which itself is brittle and acts as a starting point for fracture, (3) pores where oxygen and nitrogen act as a starting point for fracture It is because it forms. Therefore, in order to strengthen weak grain boundaries in the recrystallized microstructure in the alloy, it is essential to keep the oxygen and nitrogen contents contained between the powders of the alloy raw material low, and a degassing step described later In addition to the above, it is preferable that the raw material has the above-mentioned particle size. However, it is not necessarily 2 μm or more, and may be 1 μm or less as long as the atmosphere management is performed so as to suppress impurity contamination.

次に、本発明の製造方法の各工程について説明する。原料を加熱により脱気する工程は、合金中に最終的に不純物として含まれる酸素、窒素含有量を低減するために行われる工程で、原料粉末調製段階において、原料粉末中の空気(特に湿気)の十分な脱気を行うためのものである。この脱気工程は、酸素や窒素が及ぼす有害の程度が金属材料に応じて異なるため、脱気条件は金属材料に応じて適宜調整すればよい。例えば、バナジウムでは、超高真空であっても加熱すると酸素や窒素を吸収固溶し脆くなる(環境脆化)ので、脱気工程はかなり低い温度で行うか、あるいは不要であり、また、SUS316Lでは厳格に実施する必要は無い。一方、タングステンの場合には、上記のとおり、合金中に残存している酸素や窒素が弱い再結晶粒界に析出・偏析して、粒界脆化(再結晶脆化)を促進すると共に、気孔を形成し、破壊の起点として作用することから、例えば、一般的に市販されているタングステン粉末を原料として用いる場合には、原料粉末を調製する際の容器(粉末搭載用のMo等で作製したボート)に原料粉末を載せた状態で10−4Pa以下にまで真空引きし、800℃〜1、500℃で原料粉末の脱気処理を行うことが望ましい。ただし、例えば、プランゼージャパン(株)社製の超高純度W粉末等、既に酸素及び窒素濃度が十分低いタングステンを原料として用いる場合は、不活性ガス又は還元性ガス(いずれも含まれる水分等を無視できるレベルまで純化処理したガス)雰囲気中で原料を開封し、MA工程を施す等、酸素及び窒素の混入を排除することで、脱気工程を省略することが可能である。Next, each process of the manufacturing method of this invention is demonstrated. The process of degassing the raw material by heating is a process performed to reduce the oxygen and nitrogen content finally contained as impurities in the alloy. In the raw material powder preparation stage, air (especially moisture) in the raw material powder. It is for performing sufficient deaeration. In this degassing step, the degree of harmfulness caused by oxygen and nitrogen varies depending on the metal material, and therefore the degassing conditions may be adjusted as appropriate depending on the metal material. For example, vanadium absorbs and dissolves oxygen and nitrogen and becomes brittle (environmental embrittlement) even when heated in an ultra-high vacuum, so the deaeration process is performed at a considerably low temperature or unnecessary, and SUS316L Then, it is not necessary to carry out strictly. On the other hand, in the case of tungsten, as described above, oxygen and nitrogen remaining in the alloy precipitate and segregate at weak recrystallized grain boundaries to promote grain boundary embrittlement (recrystallization embrittlement), For example, when using a commercially available tungsten powder as a raw material, it forms a pore and acts as a starting point of destruction. For example, a container for preparing a raw material powder (produced with Mo or the like for mounting powder) It is desirable that the raw material powder is evacuated to 10 −4 Pa or less and the raw material powder is deaerated at 800 ° C. to 1,500 ° C. in a state where the raw material powder is placed on the boat. However, for example, when using tungsten having a sufficiently low oxygen and nitrogen concentration as a raw material, such as an ultra-high purity W powder manufactured by Plansee Japan Co., Ltd., an inert gas or a reducing gas (such as moisture contained in both) It is possible to omit the deaeration step by eliminating the mixing of oxygen and nitrogen, such as by opening the raw material in an atmosphere) and performing the MA step.

脱気する時間は、800℃以上であれば120分、950℃以上であれば90分以上を目安として実施することが望ましい。脱気温度が800℃未満であるとガスの脱離が十分でなくなり、1、500℃を超えると脱気用の容器(Mo等で作製したボート)との反応が起こりやすくなり、原料粉末の凝集が始まってその後の工程に別途不具合が起こり望ましくない。   The degassing time is desirably 120 minutes if 800 ° C. or higher, and 90 minutes or more if 950 ° C. or higher. When the degassing temperature is less than 800 ° C., gas desorption is not sufficient, and when it exceeds 1,500 ° C., a reaction with a degassing container (a boat made of Mo or the like) is likely to occur. Undesirably, after the aggregation starts, another problem occurs in the subsequent process.

タングステン合金の場合、製造された合金中の酸素含有量は、950ppm以下、好ましくは850ppm以下、より好ましくは300ppm以下で、窒素含有量は60ppm以下、好ましくは50ppm以下である。合金中の酸素及び窒素の含有量が上記の数値以下であると、緻密化した合金の作製が可能である。なお、タングステン合金中の酸素や窒素は、原料粉末段階では、最終的に製造された合金の約3倍含まれている。したがって、工程管理上は、原料粉末の脱気工程終了段階で、酸素は約3000ppm以下、窒素は約180ppm以下にするよう工程管理をすることが望ましい。   In the case of a tungsten alloy, the oxygen content in the produced alloy is 950 ppm or less, preferably 850 ppm or less, more preferably 300 ppm or less, and the nitrogen content is 60 ppm or less, preferably 50 ppm or less. When the content of oxygen and nitrogen in the alloy is not more than the above numerical values, it is possible to produce a densified alloy. Note that oxygen and nitrogen in the tungsten alloy are contained in the raw material powder stage at about three times as much as the finally produced alloy. Therefore, in terms of process management, it is desirable to manage the process so that oxygen is about 3000 ppm or less and nitrogen is about 180 ppm or less at the end of the raw material powder deaeration process.

脱気工程の後には、MA工程が行われる。このMA工程は、原料を更に粉末にし、該粉末をカプセルに封入してHIPをするまでは、酸素や窒素の混入を防止するため、不活性ガス又は還元性ガス雰囲気中で操作を行うことが好ましい。不活性ガスとしてはAr、ヘリウム、ネオン等が挙げられ、還元性ガスとしては水素等が挙げられる。   After the deaeration process, the MA process is performed. In this MA process, the raw material is further powdered, and until the powder is encapsulated and HIPed, it can be operated in an inert gas or reducing gas atmosphere to prevent oxygen and nitrogen contamination. preferable. Examples of the inert gas include Ar, helium, and neon, and examples of the reducing gas include hydrogen.

MA工程は、合金及び遷移金属炭化物の原料粉末に機械的な高エネルギーを付与することで、遷移金属炭化物を母相の合金組織中に均質に原子状に分解・固溶させると同時に、母相(合金)の超微細粒粉末を作製するための工程で、例えば、3軸加振型ボールミル、遊星型ボールミル、アトライター等、の装置を用いて行われる。MA処理は、通常、ボールと原料粉末をポット内に入れて、このポットをボールミル架台上で回転あるいは振動させることにより原料粉末に機械的に高エネルギーを付与し、その結果、添加した異種の元素同士が平衡状態では固溶しない系でも強制固溶することができ、また、室温で結晶粒を超微細化(10〜30nm)することができる。なお、MA工程で使用されるポットの内壁やボール表面の不純物を除去するため、原料粉末をポット内に入れる前に、ポットとボールのみを150〜200℃で3〜10時間、真空加熱してもよい。   In the MA process, mechanical high energy is imparted to the alloy and the transition metal carbide raw material powder, so that the transition metal carbide is homogeneously decomposed and dissolved in an atomic form in the alloy structure of the parent phase, and at the same time, the parent phase. In the process for producing the (alloy) ultrafine-grained powder, for example, a three-axis vibration ball mill, a planetary ball mill, an attritor or the like is used. In the MA treatment, usually, balls and raw material powder are placed in a pot, and the pot is rotated or vibrated on a ball mill mount to mechanically impart high energy to the raw material powder. Even systems that do not dissolve in equilibrium can be forcibly dissolved, and crystal grains can be made ultrafine (10 to 30 nm) at room temperature. In addition, in order to remove impurities on the inner wall and ball surface of the pot used in the MA process, only the pot and the ball are vacuum heated at 150 to 200 ° C. for 3 to 10 hours before putting the raw material powder into the pot. Also good.

MA工程の処理条件、すなわち、処理時間、回転数、前記ボールの材質、直径、ボールの合計質量と原料粉末の合計質量との質量比、容器の全内容積とボールの合計体積の比は、合金中に遷移金属炭化物が均一に分解固溶されると共に、母相金属の結晶粒径が超微細化され、かつMA工程の過程で容器・ボールの材質が原料粉末中に混入する効果を抑える(混入量を無視できる量に抑制すること、あるいは混入してもその後の材料特性に影響を与えないものとする)ために、適宜条件を設定すればよい。   The processing conditions of the MA process, that is, the processing time, the number of revolutions, the material of the ball, the diameter, the mass ratio of the total mass of the ball and the total mass of the raw material powder, the ratio of the total internal volume of the container and the total volume of the ball, The transition metal carbide is uniformly decomposed and dissolved in the alloy, the crystal grain size of the parent phase metal is made ultrafine, and the effect of mixing the container and ball material into the raw material powder during the MA process is suppressed. In order to suppress the mixing amount to a negligible amount, or even if mixing does not affect the subsequent material properties, conditions may be set as appropriate.

HIP工程は、上記MA工程で作製したMA粉末を、Arガスにより等方的に加圧しながら、MA工程で超微細化した合金粉末が粒成長しにくい比較的低温で、合金にとっては有害なガス不純物で構成されている大気に曝すことなく焼結することで、MA工程時に強制固溶した遷移金属炭化物を析出・偏析させてそのピン止め効果により超微細粒の粒成長を防ぐと共に、再結晶により歪のない、遷移金属炭化物が粒界析出・偏析した合金母相の等軸超微細粒を作製するための工程である。具体的には、MA粉末を軟鋼、SUS、Ti、Nb、Ta等で作製した金属容器に上記した不活性ガス又は還元性ガス雰囲気中で封入し、封入ガスを徹底的に真空排気(真空度は通常、10-4〜10-6Pa)除去した後、1350〜1400℃、100〜1000MPaで、1〜5時間焼結することで上記の組織を持つ合金が得られる。なお、HIP工程で使用される金属容器の内壁の不純物等を除去するため、MA粉末を金属容器内に入れる前に、金属容器のみを500~1000℃で1~3時間、真空加熱してもよい。In the HIP process, the MA powder produced in the MA process is isotropically pressurized with Ar gas, while the alloy powder refined in the MA process has a relatively low temperature at which it is difficult for grains to grow and is harmful to the alloy. Sintering without exposure to the atmosphere composed of impurities precipitates and segregates transition metal carbides that were forcibly dissolved during the MA process, and prevents the growth of ultrafine grains due to its pinning effect, and recrystallization This is a process for producing equiaxed ultrafine grains of an alloy matrix in which transition metal carbides are grain boundary precipitated and segregated without distortion. Specifically, MA powder is sealed in a metal container made of mild steel, SUS, Ti, Nb, Ta or the like in the above-described inert gas or reducing gas atmosphere, and the sealed gas is exhausted thoroughly (vacuum degree). Is usually 10 −4 to 10 −6 Pa), and then sintered at 1350 to 1400 ° C. and 100 to 1000 MPa for 1 to 5 hours to obtain an alloy having the above structure. In addition, in order to remove impurities on the inner wall of the metal container used in the HIP process, the metal container alone may be vacuum heated at 500 to 1000 ° C. for 1 to 3 hours before putting the MA powder into the metal container. Good.

GSMM工程は、再結晶微細組織における弱い粒界を、遷移金属炭化物との強い異相界面、あるいは遷移金属炭化物の構成元素が析出・偏析した強い粒界に置きかえるための工程で、遷移金属炭化物が粒界に析出・編析すると粒界結合力が増加することから、破壊強度が増加して脆性改善の効果が得られる。また、GSMM工程により、結晶粒径を適度な大きさに増加させて降伏強度(変形強度)を下げ延性を出やすくする(粒界の負担を下げる)効果、破壊の起点として作用しやすい残留気孔(HIP後で1〜3%残留)を除去する効果の他、析出物を含む分散強化合金(バナジウムやステンレス等)では、異種析出物との界面(境界面)を強くする効果も得られる。本発明では、遷移金属炭化物の粒界析出・偏析の促進・最適化のため、高温での粒界辷りの効果を利用している。図2は粒界辷りによる超塑性変形の原理を示す図で、粒界辷りとは、図2(1)の結晶構造にせん断応力τが付与されると、図2(2)→(3)→(4)のように、結晶粒が生成・消滅することなく、等軸形状を維持した状態で結晶がずれ変形することを意味する。このような粒界辷りが極めて多くの回数繰り返されることにより、遷移金属炭化物が粒界に析出・編析し、弱い再結晶粒界での破壊強度が降伏強度(変形強度)を凌駕するまでに増大する結果、合金は伸びを生じるようになる。   The GSMM process replaces weak grain boundaries in the recrystallized microstructure with strong heterogeneous interfaces with transition metal carbides or strong grain boundaries where transition metal carbide constituents are precipitated and segregated. Precipitation and knitting at the boundary increases the grain boundary bonding force, so the fracture strength increases and the effect of improving brittleness is obtained. In addition, the GSMM process increases the crystal grain size to an appropriate size to lower the yield strength (deformation strength) and make ductility easier (reducing the burden on the grain boundaries), and residual pores that tend to act as a starting point for fracture In addition to the effect of removing (1 to 3% after HIP), a dispersion strengthened alloy containing precipitates (vanadium, stainless steel, etc.) also has an effect of strengthening the interface (boundary surface) with different types of precipitates. In the present invention, in order to promote and optimize grain boundary precipitation / segregation of transition metal carbide, the effect of grain boundary waviness at high temperature is used. FIG. 2 is a diagram showing the principle of superplastic deformation due to grain boundary wrinkling. Grain boundary wobbling means that when a shear stress τ is applied to the crystal structure of FIG. 2 (1), FIG. 2 (2) → (3) → As shown in (4), it means that the crystal is displaced and deformed while maintaining the equiaxed shape without generating or disappearing the crystal grain. By repeating such grain boundary cracking a very large number of times, transition metal carbide precipitates and sinters at the grain boundary, and the fracture strength at the weak recrystallized grain boundary exceeds the yield strength (deformation strength). As a result of the increase, the alloy becomes elongated.

但し、粒界辷りは不均一な変形であり、粒界辷りに伴う粒界3重点での亀裂形成により逆に脆化を促進することになる(銅合金などで一般的に見られる高温脆化はこの例である)ので、破断までの変形量が極めて大きく粒界辷りを最も活用できる超塑性変形を利用することが本発明において極めて重要である。上記のとおり粒界辷りは不均一な変形であり、通常は粒界辷りに伴う粒界3重点での亀裂形成により脆化を促進する。しかしながら、本発明の超塑性変形は、温度、歪速度(試験片を変形させる速度を試験片のサイズで除して歪に直した量)を後述する一定の条件にすることで、粒界辷りが亀裂の形成に進展しないような緩和機構が働き、数100%もの伸びが生じる。遷移金属炭化物の粒界析出・偏析の促進と最適化のためには、GSMMを短時間行うよりも長時間行う方がより効果的である。   However, grain boundary cracking is a non-uniform deformation and conversely promotes embrittlement by the formation of cracks at the grain boundary triple point accompanying grain boundary cracking (high temperature embrittlement generally seen in copper alloys and the like). Therefore, it is very important in the present invention to use superplastic deformation that has a very large amount of deformation until breakage and that can make the most of grain boundary cracking. As described above, grain boundary cracking is a non-uniform deformation, and usually embrittlement is promoted by crack formation at the triple point of grain boundary accompanying grain boundary cracking. However, the superplastic deformation of the present invention can be achieved by setting the temperature and strain rate (the amount obtained by dividing the test piece deformation rate by the size of the test piece to correct the strain) under certain conditions described later. A relaxation mechanism that does not progress to the formation of cracks works, and elongation of several hundred percent occurs. In order to promote and optimize the grain boundary precipitation / segregation of transition metal carbide, it is more effective to perform GSMM for a longer time than to perform for a short time.

上記のとおり、超塑性変形は、粒界辷りにより数100%の伸びが生じ、変形後も等軸結晶粒を維持できる変形様式であるため、「転位の運動・増殖によらない、長時間にわたる活発な粒界辷りによる結晶粒の相互移動・回転を通して遷移金属炭化物の粒界析出・粒界偏析が促進・最適化され、かつ異方性の少ない等方的な再結晶組織を維持する」ことが可能となる。この「粒界辷りを最大限に活用できる超塑性変形を用いた再結晶ランダム粒界の強化処理法」を、本発明においてはGSMM(Grain boundary Sliding−based Microstructural Modification)と定義している。   As described above, superplastic deformation is a deformation mode in which elongation of several hundreds of percent occurs due to intergranular breakage and can maintain equiaxed crystal grains even after deformation. `` Transition and rotation of crystal grains due to active grain boundary movement promotes and optimizes transition metal carbide grain boundary precipitation and grain boundary segregation, and maintains an isotropic recrystallized structure with little anisotropy. '' Is possible. In the present invention, this “strengthening treatment method of recrystallized random grain boundaries using superplastic deformation capable of maximizing the use of grain boundary wrinkling” is defined as GSMM (Grain boundary Sliding-based Microstructural Modification).

図3は、これまでタングステンを含め、高靭性化のために広く利用されている、「転位をキャリアーとする加工変形組織の導入を目的とし、その結果、再結晶温度の低下と異方性をもたらす塑性加工」の概略を示す図である。「転位」とは、線状の格子欠陥を意味し、前記塑性加工の特徴は、(1)特定の結晶学的面を特定の結晶学的方向に小さな応力ですべり運動できること、(2)すべり運動する過程で転位を新に増殖できること、(3)弾性歪場(たとえば、サイズの違う異種原子の周りに生ずる弾性歪のことで、転位はすべてそのまわりに弾性歪場をもっている)をもつものと非常に強い相互作用をおこす、ことである。このため、図3(1)、(2)に示すように材料に引張応力をかけることで変形が進むと、図3(3)に示すように材料中に辷りが生じ、材料中に転位が増え(すなわち、転位の密度が上昇し)、その結果、転位をさらにすべり運動させるために必要な応力、つまり、合金を塑性変形させるための応力が増加して破断強度に達し、図3(4)に示すように破断することになる。「変形により転位密度が増えた組織」を加工変形組織あるいは加工組織と呼ぶが、転位密度が増えることは、材料(結晶)内部の歪場が増えることであり、内部エネルギーが高い状態になる。そして、高い内部エネルギーの状態の材料は、内部エネルギーを解放しやすいので、熱を加える(温度を上げる)と、少しの熱(少しの温度増加で)で内部エネルギーが解放されるが、その解放の一つの過程が再結晶である。したがって、加工組織では、再結晶温度が低下する。なお、「転位をキャリアーとする加工変形組織の導入を目的とし、その結果、再結晶温度の低下と異方性をもたらす塑性加工」による伸びの上限の多くは数10%程度で、特に伸びる場合でも100%よりかなり小さい。   Fig. 3 shows a wide range of applications, including tungsten, which has been widely used for high toughness. The purpose is to introduce a deformed structure using dislocations as a carrier. It is a figure which shows the outline of the "plastic processing to bring." “Dislocation” means a linear lattice defect, and the characteristics of the plastic working are (1) that a specific crystallographic surface can slide in a specific crystallographic direction with a small stress, and (2) a slip. It has a new ability to multiply dislocations in the process of movement, and (3) an elastic strain field (for example, an elastic strain that occurs around different sizes of different atoms, and all the dislocations have an elastic strain field around them) And has a very strong interaction. For this reason, as shown in FIGS. 3 (1) and (2), when deformation is applied by applying a tensile stress to the material, the material is warped as shown in FIG. 3 (3), and dislocations are generated in the material. As a result, the density of dislocations increases, and as a result, the stress necessary for further sliding movement of the dislocations, that is, the stress for plastic deformation of the alloy increases to reach the breaking strength, and FIG. ) As shown in FIG. “Structure with increased dislocation density due to deformation” is called a processed deformed structure or processed structure, but increasing the dislocation density means increasing the strain field inside the material (crystal), resulting in a high internal energy. And materials with a high internal energy state are easy to release internal energy, so if you add heat (increase the temperature), the internal energy will be released with a little heat (with a slight increase in temperature). One process is recrystallization. Therefore, the recrystallization temperature decreases in the processed structure. Note that many of the upper limits of elongation by “plastic processing that aims to introduce a work deformation structure using dislocations as a carrier and as a result lowers the recrystallization temperature and causes anisotropy” is about several tens of percent, especially when it is elongated. But it is much smaller than 100%.

一方、粒界辷りによる超塑性変形では、その変形の後も歪の少ない再結晶粒組織が維持されるので、基本的に内部エネルギーは増加しない。そして、本発明のGSMM処理では、HIP温度よりも高温で行うために結晶粒が成長(一桁程度増加)するが、結晶粒界は歪の高い領域であることから、結晶粒界が多いほど内部エネルギーも高いことになり、粒成長することは内部エネルギーを下げることになる。   On the other hand, in the superplastic deformation due to grain boundary, the recrystallized grain structure with less strain is maintained after the deformation, so that the internal energy basically does not increase. In the GSMM process of the present invention, the crystal grains grow (increased by an order of magnitude) because the processing is performed at a temperature higher than the HIP temperature. Internal energy will also be high, and grain growth will reduce internal energy.

上記のように、本発明のGSMMは、粒界脆化の原因である弱い再結晶粒界を強化することにより高靭性化を実現する新しい組織制御法であって、上記の塑性加工とは原理が本質的に異なり、処理後の合金の破壊強度も破断までの伸びも全く異なるものである。   As described above, the GSMM of the present invention is a new structure control method that achieves high toughness by strengthening weak recrystallized grain boundaries that are the cause of grain boundary embrittlement. Are essentially different, and the fracture strength and elongation to fracture of the alloy after treatment are completely different.

GSMM工程は、HIP工程で作製された合金を、図4に示すように、BN−SiC複合材料製の板で挟み、500℃〜2000℃の高温(絶対温度で測定した各合金の融点の40〜50%以上)で、10−5−1〜10−2−1の歪速度で圧力をかけ、60%以上の塑性変形を施すことで行われる。温度は、上記のとおり各合金の融点に応じて適宜調整することが好ましく、例えば、タングステン、モリブデンの場合は、1200℃〜2000℃が好ましく、タングステンは、1400℃〜2000℃の方がより好ましい。また、バナジウム、SUS316Lの場合は、800℃〜1500℃の温度が好ましい。タングステンでは、温度が1400℃未満であると圧縮変形中に合金が割れる場合があり、2000℃を超えると工業的に製造する装置が大型になり望ましくない。また、歪速度が10−5−1より遅いと、効果はあるが、時間がかかりすぎるので工業的ではなく、10−2−1より大きいと合金が破壊する恐れがあり望ましくない。なお、60%以上の塑性変形を施すとは、塑性変形による試験片の伸び(ひずみ)が60%以上という意味で、伸びは、試験片が伸びた長さ(ΔL)を最初の長さ(L)で割り、%表示するために100を掛けたことで表される。上記の温度、歪速度、塑性変形を付与できるものであれば、板で挟むことに変え、引張変形やねじり変形等を用いてもよい。In the GSMM process, as shown in FIG. 4, the alloy produced in the HIP process is sandwiched between BN—SiC composite plates, and a high temperature of 500 ° C. to 2000 ° C. (40% of the melting point of each alloy measured at an absolute temperature). It is performed by applying a pressure at a strain rate of 10 −5 s −1 to 10 −2 s −1 and applying plastic deformation of 60% or more. The temperature is preferably adjusted as appropriate according to the melting point of each alloy as described above. For example, in the case of tungsten and molybdenum, 1200 ° C to 2000 ° C is preferable, and tungsten is more preferably 1400 ° C to 2000 ° C. . In the case of vanadium or SUS316L, a temperature of 800 ° C. to 1500 ° C. is preferable. In the case of tungsten, if the temperature is less than 1400 ° C., the alloy may break during compression deformation, and if it exceeds 2000 ° C., the industrially produced apparatus becomes undesirably large. Further, if the strain rate is slower than 10 −5 s −1 , there is an effect, but it takes too much time, so it is not industrial, and if it is larger than 10 −2 s −1 , the alloy may be destroyed, which is not desirable. Note that the plastic deformation of 60% or more means that the elongation (strain) of the test piece due to plastic deformation is 60% or more, and the elongation is the length (ΔL) of the test piece extended to the initial length (ΔL). Divided by L) and multiplied by 100 to display%. As long as the above-mentioned temperature, strain rate, and plastic deformation can be imparted, tensile deformation or torsional deformation may be used instead of pinching with a plate.

遷移金属炭化物は、分散粒子として合金母相の結晶粒を微細に維持し、超塑性変形を発現させるために必要である。また、遷移金属炭化物/合金母相(マトリックス)の異相界面がKurdjumov−Sachsの方位関係を満たし、これにより高強度の異相界面が形成される。合金原料としてタングステンを用いた場合、タングステン合金組織中に存在する遷移金属炭化物の方位と、タングステンのマトリクスの方位の90%以上が、{111}W//{110}遷移金属炭化物,<110>W//<111>遷移金属炭化の(Kurdjumov−Sachs)方位関係であることが望ましい。Kurdjumov−Sachsの方位関係を満たさない遷移金属炭化物粒子が10%以上あると、室温で十分な最大曲げ強度(約1470MPa)を得ることができない。   The transition metal carbide is necessary for maintaining the crystal grains of the alloy matrix as dispersed particles and developing superplastic deformation. Also, the transition metal carbide / alloy matrix (matrix) heterophase interface satisfies the Kurdjumov-Sachs orientation relationship, thereby forming a high-strength heterophase interface. When tungsten is used as the alloy raw material, the orientation of transition metal carbide existing in the tungsten alloy structure and 90% or more of the orientation of the tungsten matrix is {111} W // {110} transition metal carbide, <110> It is desirable to have a (Kurdjumov-Sachs) orientation relationship of W / <111> transition metal carbonization. If there are 10% or more of transition metal carbide particles not satisfying the Kurdjumov-Sachs orientation relationship, sufficient maximum bending strength (about 1470 MPa) cannot be obtained at room temperature.

また、本発明の製造法により製造された合金、特に、タングステン合金の結晶粒径は、0.05〜10μm程度にまで成長する。これにより、降伏点を適度に低下させる効果が付与され、室温付近でも塑性変形可能なタングステン合金とすることができる。タングステン合金の場合、本発明の製造方法により製造することで、3点曲げによる延性脆性遷移温度(無延性遷移温度:DBTT)を500K程度まで下げることができ、そして、延性脆性遷移温度以上では、塑性変形が可能である。   The crystal grain size of an alloy produced by the production method of the present invention, particularly a tungsten alloy, grows to about 0.05 to 10 μm. As a result, the effect of appropriately lowering the yield point is imparted, and a tungsten alloy that can be plastically deformed even near room temperature can be obtained. In the case of a tungsten alloy, the ductile brittle transition temperature (non-ductile transition temperature: DBTT) by three-point bending can be lowered to about 500 K by being produced by the production method of the present invention, and above the ductile brittle transition temperature, Plastic deformation is possible.

前記結晶粒径のサイズは、試料断面中央部分から一般的な透過電子顕微鏡で撮影した写真について市販の画像処理ソフト(例えばImage Pro)により画像処理することで、平均粒径を求めることができる。平均粒径は、タングステン相のみについて求めればよい。面積比80%以上のタングステン結晶粒を数えることにより平均的な情報を得ることができたため、統計的に測定した。   The crystal grain size can be determined by subjecting a photograph taken with a general transmission electron microscope from the central portion of the sample cross section to image processing using commercially available image processing software (for example, Image Pro). The average particle size may be obtained only for the tungsten phase. Since average information could be obtained by counting tungsten crystal grains having an area ratio of 80% or more, it was measured statistically.

面積比20%未満の領域では、タングステン結晶粒が数えにくい(結晶粒の境界である結晶粒界が見えにくいため、結晶粒界とみなすべきかの判断が難しく、細かく数えると多量になる)などの問題があったとしても、面積比80%以上の領域におけるタングステン平均粒径さえ算出できれば、それぞれの材料の特徴を明らかにできる。結晶粒径は、タングステンの結晶粒をおよそ300個以上数えて面積を算出することにより、安定した平均粒径として測定することが可能である。要するに、透過電子顕微鏡で撮影した多くの写真の全視野の80%以上という広い領域で結晶粒径を測定でき、その結果、測定できた結晶粒の80%以上が粒径0.05〜10μmの範囲にあればよい。   In regions where the area ratio is less than 20%, it is difficult to count tungsten crystal grains (because it is difficult to see the crystal grain boundaries that are the boundaries of the crystal grains, it is difficult to judge whether they should be regarded as crystal grain boundaries, and if they are counted finely, etc.) Even if there is such a problem, the characteristics of each material can be clarified as long as the average tungsten particle size in a region with an area ratio of 80% or more can be calculated. The crystal grain size can be measured as a stable average grain size by counting approximately 300 or more tungsten crystal grains and calculating the area. In short, the crystal grain size can be measured in a wide area of 80% or more of the total field of view of many photographs taken with a transmission electron microscope. As a result, 80% or more of the measured crystal grains have a grain size of 0.05 to 10 μm. If it is in range.

平均粒径が0.05μm未満であると、降伏強度が極端に高くなるため塑性変形が著しく困難になり、加工や製造の歩留まりが低下し、工業的ではなくなる。一方、平均粒径が10μmを越えることによっても極端に塑性変形が起こりにくくなる。室温付近での塑性変形が可能となるためには、高靭性化のための塑性変形時(つまり、GSMM処理時)において、適正な加工率範囲となるよう適宜調整する必要がある。平均粒子径を小さい値にするには、GSMM処理時の温度を低くすればよく、平均粒子径を大きい値にするには、GSMM処理時の温度を高くすればよい。   If the average particle size is less than 0.05 μm, the yield strength becomes extremely high, so that plastic deformation becomes extremely difficult, the yield of processing and manufacturing decreases, and it is not industrial. On the other hand, even when the average particle diameter exceeds 10 μm, plastic deformation is extremely difficult to occur. In order to enable plastic deformation near room temperature, it is necessary to appropriately adjust the processing rate range to be within an appropriate range during plastic deformation for high toughness (that is, during GSMM processing). In order to reduce the average particle diameter, the temperature during GSMM treatment may be lowered. To increase the average particle diameter, the temperature during GSMM treatment may be increased.

本発明内容で特筆すべき点の一つは、十分な再結晶が生じた組織において優れた特性(破壊強度と延性等)を得ることができたことであり、それは金属組織として異方性のない等軸結晶粒が生成しているからである。本発明における等軸結晶粒とは、金属組織を2次元的にどのような断面で観察した際にも、アスペクト比(結晶粒の縦横の長さの比)が2以下であることを意味する。   One of the points to be noted in the present invention is that excellent properties (breaking strength, ductility, etc.) could be obtained in a structure in which sufficient recrystallization occurred, which is anisotropic as a metal structure. This is because there are no equiaxed grains. The equiaxed crystal grain in the present invention means that the aspect ratio (ratio of length and width of crystal grains) is 2 or less when the metal structure is observed two-dimensionally in any cross section. .

以下の実施例に示す合金の製造方法及び製造された合金は、図4に示すような一軸方向の単純圧縮変形であるが、粒界辷りを最大限に活用できる超塑性変形を具現できるのであれば、単純引張圧縮に限定するものではない。要求される合金部材形状によって、例えば板状ならば、圧延による圧下を適用することも可能である。   The alloy manufacturing method and the manufactured alloy shown in the following examples are uniaxial simple compression deformations as shown in FIG. 4, but they can realize superplastic deformation that can make maximum use of grain boundary deformation. For example, it is not limited to simple tension compression. Depending on the required shape of the alloy member, for example, if it is a plate shape, it is possible to apply rolling reduction.

<超塑性発現に必要な遷移金属炭化物量の特定>
<実験1>
フィッシャー法による平均粒径4μmのタングステン粉末((株)アライドマテリアル社製)に、平均粒径0.7μmのTiC粉末(添川理化学(株)社製)を添加し、モリブデン製ボートに入れて、水素雰囲気、高真空下(<1x10-4Pa)950℃で1.5時間加熱し脱気処理を行った。次いで、水素雰囲気で、TZM(チタン、ジルコニウム入りモリブデン合金)製の容器(ポット)と3軸加振型ボールミル(トポロジーシステムズ製TKMAC1200)で70時間、回転数360rpmの条件下で混合してメカニカルアロイング(MA)処理した。なお、TiC粉末の好適な添加範囲を特定するため、TiC粉末の含有量が0〜6.0質量%となるように8通りの試料をMA処理した。
<Identification of the amount of transition metal carbide required for the development of superplasticity>
<Experiment 1>
Add a TiC powder (manufactured by Soekawa Riken Co., Ltd.) with an average particle diameter of 0.7 μm to tungsten powder (manufactured by Allied Materials Co., Ltd.) with an average particle diameter of 4 μm by the Fischer method, put it in a molybdenum boat Degassing was performed by heating at 950 ° C. for 1.5 hours in a hydrogen atmosphere under high vacuum (<1 × 10 −4 Pa). Next, in a hydrogen atmosphere, the mixture was mixed in a TZM (titanium, zirconium-containing molybdenum alloy) container (pot) and a triaxial vibration type ball mill (Topology Systems TKMAC1200) for 70 hours at a rotational speed of 360 rpm. Ing (MA) treatment. In addition, in order to specify a suitable addition range of the TiC powder, eight samples were subjected to MA treatment so that the content of the TiC powder was 0 to 6.0% by mass.

次に、MA処理した粉末をモリブデン製ボートに入れ、高真空下950℃で1.5時間加熱することにより、MA処理中にタングステンとTiC粉末に混入した水素を脱気した。その脱気処理粉末をHIPカプセル(軟鋼製)に封入して真空封止した後、アルゴンガス中で1350℃、196MPaで3時間HIP処理して焼結体を得た。以下、得られた焼結体を「as−HIP体」と記載する。   Next, the MA-treated powder was placed in a molybdenum boat and heated at 950 ° C. under high vacuum for 1.5 hours to degas hydrogen mixed in the tungsten and TiC powder during the MA treatment. The deaerated powder was sealed in a HIP capsule (made of mild steel) and vacuum-sealed, and then subjected to HIP treatment at 1350 ° C. and 196 MPa for 3 hours in an argon gas to obtain a sintered body. Hereinafter, the obtained sintered body is referred to as “as-HIP body”.

このas−HIP体より、寸法0.4×4×16mm(平行部長さ:5mm。T.Kuwabara,H.Kurishita,M.Hasegawa,Development of an Ultra−Fine Grained V−1.7mass%Y Alloy Dispersed with Yttrium Compounds Having Superior Ductility and High Strength,Mater. Sci. Eng. A 417(2006) 16−23.のFig.1に示された試験片と同等のI字型平板の引張試験片)をワイヤーカットにより切り出し、全表面を耐水紙(#1500まで)により機械研磨するとともに4つのエッジを面取りした後、引張試験片治具に装着して高温引張試験を行った。引張試験治具は、試験片の肩受け(R部)タイプで、治具への圧縮負荷を試験片への引張負荷に変換する方式によりアライメントが保障され、治具への試験片ワンタッチ装着が可能である。試験片の加熱は、グラファイトサセプタを用いた高周波誘導加熱により行い、試験片の表面温度を2色式放射温度計(チノー、型式1R−AQ)により常時観察・記録した。引張試験は、インストロン社製電気アクチュエータ式試験機R1362型を用い、1500℃、1600℃、1700℃の3通りの温度で、初期歪速度5x10-4/s(クロスヘッド速度:0.0025mm/s)、5x10-4Pa以下の真空下で行い、引張試験に伴う負荷重と伸び(%)を測定した。試料中の酸素及び窒素濃度を、LECO−TC600の赤外線吸収、熱伝導度法を用いて測定したところ、何れの試料も酸素濃度は850ppm以下、窒素濃度は50ppm以下であった。結果を表1に示す。なお、表中、「>160」とは、160%変形しても破断しないことを意味する。From this as-HIP body, dimensions 0.4 × 4 × 16 mm (parallel portion length: 5 mm. T. Kuubara, H. Kurishita, M. Hasegawa, Development of an Ultra-Fine Grained V-1.7 mass% Y Alloy Disp. With Yttrium Compounds Having Superior Ductility and High Strength, Mater. Sci. Eng. A 417 (2006) 16-23. The entire surface was mechanically polished with water-resistant paper (up to # 1500) and the four edges were chamfered, and then mounted on a tensile test piece jig to perform a high temperature tensile test. The tensile test jig is a shoulder support (R part) type of the test piece, and alignment is guaranteed by a method that converts the compression load on the jig into the tensile load on the test piece, so that the test piece can be mounted on the jig with a single touch. Is possible. The test piece was heated by high frequency induction heating using a graphite susceptor, and the surface temperature of the test piece was constantly observed and recorded with a two-color radiation thermometer (Chino, model 1R-AQ). In the tensile test, an electric actuator type testing machine R1362 manufactured by Instron was used, and the initial strain rate was 5 × 10 −4 / s (crosshead speed: 0.0025 mm / s) at three temperatures of 1500 ° C., 1600 ° C., and 1700 ° C. s) It was performed under a vacuum of 5 × 10 −4 Pa or less, and the load weight and elongation (%) accompanying the tensile test were measured. When the oxygen and nitrogen concentrations in the samples were measured using the infrared absorption and thermal conductivity method of LECO-TC600, the oxygen concentration of each sample was 850 ppm or less and the nitrogen concentration was 50 ppm or less. The results are shown in Table 1. In the table, “> 160” means that the material does not break even if it is deformed by 160%.

Figure 2013018714
Figure 2013018714

<実験2>
実験1の水素をアルゴンに変更し、TiCの含有量を一部変えた9通りの試料を用いた以外は、実験1と同様に試験を行った。結果を表2に示す。
<Experiment 2>
The test was performed in the same manner as in Experiment 1 except that the hydrogen in Experiment 1 was changed to argon and nine samples were used in which the TiC content was partially changed. The results are shown in Table 2.

Figure 2013018714
Figure 2013018714

上記の実験1及び実験2から、1600℃〜1700℃で超塑性発現(破断伸びが100%以上であること)のために必要なTiC量は、水素雰囲気MA処理粉末のas−HIP体では0.25〜5質量%、アルゴン雰囲気のas−HIP体では0.7−5質量%であることが判明した。TiC量がこれらの範囲より少ない場合は、タングステン相の粒界の中で弱い粒界が大勢を占め、かつ粒界移動を抑える第2相粒子の存在が希少であるため、タングステン相の粒成長が速くなり、結晶粒が粗大化する。TiC相は、超塑性変形に必要な微細な等軸結晶粒の維持および粒界辷り時の結晶粒の回転・移動にとって不可欠であるため、TiC相が少ない場合には、高温引張試験において、不均一変形である粒界辷りが起こると粒界亀裂が形成・成長し、破断ひずみが小さくなる。   From the above Experiment 1 and Experiment 2, the amount of TiC necessary for the development of superplasticity at 1600 ° C. to 1700 ° C. (the elongation at break is 100% or more) is 0 for the as-HIP body of the hydrogen atmosphere MA-treated powder. It was found to be 0.7-5% by mass in an as-HIP body in an argon atmosphere at 25-5% by mass. When the amount of TiC is less than these ranges, the weak grain boundaries occupy the majority of the grain boundaries of the tungsten phase, and the presence of second phase grains that suppress the grain boundary migration is rare, so the grain growth of the tungsten phase. Becomes faster and the crystal grains become coarser. The TiC phase is indispensable for the maintenance of fine equiaxed grains necessary for superplastic deformation and the rotation and movement of grains during grain boundaries. When the grain boundary cracking that is uniform deformation occurs, a grain boundary crack is formed and grows, and the breaking strain is reduced.

逆に、TiC量がこれらの範囲を上回ると、TiC相同士の接触頻度が大きくなり、TiC/TiC界面の存在割合が増す。TiC相はタングステン母相に比べると、塑性変形能が低く、TiC/TiC界面もすべりにくいと考えられる。したがって、タングステン粒の連続的な粒界辷りに対してタングステン相の調和に過負荷がかかり、粒界(界面)亀裂が発生するため、破断伸びも小さくなる。   On the contrary, when the amount of TiC exceeds these ranges, the contact frequency between the TiC phases increases, and the existence ratio of the TiC / TiC interface increases. The TiC phase is considered to have a lower plastic deformability than the tungsten matrix and the TiC / TiC interface is less likely to slip. Therefore, overload is applied to the harmony of the tungsten phase with respect to the continuous grain boundary of the tungsten grains, and grain boundary (interface) cracks are generated, so that the elongation at break is also reduced.

<実験3>
実験1の炭化チタンに変え、炭化ジルコニウム、炭化ニオブ、炭化タンタル又はそれらの混合物の含有量を変えて添加し、高温引張り伸びを1600℃のみで行った以外は、実験1と同様に試験を行った。結果を表3に示す。
<Experiment 3>
The test was conducted in the same manner as in Experiment 1, except that the content of zirconium carbide, niobium carbide, tantalum carbide, or a mixture thereof was changed and the high temperature tensile elongation was performed only at 1600 ° C instead of the titanium carbide in Experiment 1. It was. The results are shown in Table 3.

Figure 2013018714
Figure 2013018714

表3から明らかなように、合金中に約0.25〜5質量%のTi以外の遷移金属炭化物を添加した場合であっても、延び特性が向上することが明らかになった。   As is apparent from Table 3, it was found that the elongation characteristics were improved even when about 0.25 to 5 mass% of transition metal carbide other than Ti was added to the alloy.

<実施例1>
脱気条件を、高真空下(1x10−4Pa)1050℃で、1.5時間加熱、とした以外は、上記<実験1>の試料番号5と同様に、as−HIP体を作製した。次に、作製したas−HIP材からワイヤーカットにより切り出した直径約9〜10mm、高さ約20mmの当該焼結体について、粒界辷りを最大限に活用した超塑性変形を利用して弱いランダム粒界を強化するために、温度1650℃、歪速度0.5〜2x10−4−1で(超塑性挙動は歪速度が遅いほど起こりやすいので、少しずつ歪速度を増加しながら材料の示す応答(変形応力の上昇)をみて最も実験しやすい速度を選択)、厚さ約3.5mm(直径約21〜23mm)まで圧縮変形し、板材を作製した。焼結体の加熱は、真空下でグラファイトサセプタを用いた高周波誘導加熱により行い、その高温圧縮変形にはインストロン社製電気アクチュエータ式試験機R1362型を用いた。この板材から圧縮方向に垂直に寸法1×1×20mmの片を切り出し、#1500までの耐水紙で表面およびエッジを研磨し、曲げ試験片を作製した。LECO−TC600の赤外線吸収、熱伝導度法を用いて測定した試験片の酸素濃度は40ppm、窒素濃度は30ppmであった。次いで、試験片を、室温〜600℃の温度範囲、クロスヘッドスピード0.001mm/s、高純度Ar−4%Hのflow雰囲気下で3点曲げ試験を行った。3点曲げ試験は、島津製作所製の疲労試験機・サーボパルサーEHF2型(容量5トン)を用い、スパン±2.5mmのLVDT(Linear Variable Differential Transformer)をアクチュエーターヘッドに連結し、容量5トンのロードセルの直下に荷重容量5kNのせん断型ロードセルを取りつけ、静的試験のアプリケーションプログラムにより試験の制御を行った。試験片の加熱には赤外線イメージ炉(アルバック製)を用い、あらかじめ熱電対を点溶接したダミーの試験片について試験片の温度および雰囲気(試験片から数mm離れた位置)の温度を測定しておき、実際の試験では、雰囲気の温度を制御、計測した。曲げ強度は室温で測定し、平均5本の曲げ試験片に対する測定値の最小値を最小曲げ強度、最大値を最大曲げ強度とした。また、DBTTは試験温度を室温から約50℃ずつ増加しながら各温度で塑性歪量を測定してその変化を記録し、一次元的に近似して、塑性歪ゼロに外挿した温度をDBTTとした。なお、一つのDBTTを求めるには試験温度を変えて塑性歪量を測定する必要があり、不純物濃度と組織が同じ試験片を3〜5本準備して測定を行った。
<Example 1>
An as-HIP body was produced in the same manner as Sample No. 5 in <Experiment 1> except that the degassing conditions were heating at 1050 ° C. under high vacuum (1 × 10 −4 Pa) for 1.5 hours. Next, with respect to the sintered body having a diameter of about 9 to 10 mm and a height of about 20 mm cut out from the produced as-HIP material by wire cutting, weak randomness is obtained by utilizing superplastic deformation that makes the best use of grain boundary deformation. In order to reinforce the grain boundary, at a temperature of 1650 ° C. and a strain rate of 0.5 to 2 × 10 −4 s −1 (superplastic behavior is more likely to occur as the strain rate is slower. The plate was produced by compressing and deforming to a thickness of about 3.5 mm (diameter of about 21 to 23 mm) by selecting the speed at which the response (increase in deformation stress) was most easily tested. The sintered body was heated by high-frequency induction heating using a graphite susceptor under vacuum, and an electric actuator type testing machine R1362 manufactured by Instron was used for the high-temperature compression deformation. A piece having a size of 1 × 1 × 20 mm was cut out from the plate material in a direction perpendicular to the compression direction, and the surface and the edge were polished with water-resistant paper up to # 1500 to prepare a bending test piece. The oxygen concentration of the test piece measured using the infrared absorption and thermal conductivity method of LECO-TC600 was 40 ppm, and the nitrogen concentration was 30 ppm. Next, the test piece was subjected to a three-point bending test in a flow range of room temperature to 600 ° C., a crosshead speed of 0.001 mm / s, and a high purity Ar-4% H 2 flow atmosphere. The three-point bending test uses a Shimadzu fatigue tester / servo pulser EHF2 type (capacity 5 tons), and a LVDT (Linear Variable Differential Transformer) with a span of ± 2.5 mm is connected to the actuator head, with a capacity of 5 tons. A shear type load cell having a load capacity of 5 kN was attached immediately below the load cell, and the test was controlled by a static test application program. An infrared image furnace (manufactured by ULVAC) was used for heating the test piece, and the temperature of the test piece and the atmosphere (position several mm away from the test piece) were measured for a dummy test piece spot-welded with a thermocouple in advance. In actual tests, the temperature of the atmosphere was controlled and measured. The bending strength was measured at room temperature, and the minimum value of the measured values for an average of five bending test pieces was the minimum bending strength, and the maximum value was the maximum bending strength. The DBTT measures the plastic strain at each temperature while increasing the test temperature from room temperature by about 50 ° C., records the change, approximates one-dimensionally, and sets the temperature extrapolated to zero plastic strain. It was. In order to obtain one DBTT, it is necessary to change the test temperature and measure the amount of plastic strain, and 3 to 5 test pieces having the same impurity concentration and the same structure were prepared and measured.

<実施例2〜7>
脱気条件を、実施例2では、950℃で1.5時間加熱、実施例3では950℃で1時間加熱、実施例4では900℃で1時間加熱、実施例5では850℃で1.5時間加熱、実施例6では850℃で1時間加熱、実施例7では800℃で1時間加熱し、タングステン合金中の酸素量及び窒素量を変更した以外は、実施例1と同様の手順で試験片を作製し、酸素量、窒素量、室温での最小曲げ強度及び最大曲げ強度、並びにDBTTを測定した。
<Examples 2 to 7>
The degassing conditions were as follows: heating at 950 ° C. for 1.5 hours in Example 2, heating at 950 ° C. for 1 hour in Example 3, heating at 900 ° C. for 1 hour in Example 4, and 1.50 at 850 ° C. in Example 5. Heating for 5 hours, heating at 850 ° C. for 1 hour in Example 6, heating at 800 ° C. for 1 hour in Example 7, and changing the oxygen content and nitrogen content in the tungsten alloy in the same procedure as in Example 1. Test pieces were prepared, and oxygen content, nitrogen content, minimum and maximum bending strengths at room temperature, and DBTT were measured.

<比較例1>
圧縮変形処理をせず、as−HIP体で試験片を作製した以外は、実施例2と同様の手順で測定をした。
<比較例2>
TiCの含有量を1.1質量%とし、脱気処理を行わなかった以外は、実施例1と同じ手順で試験片を作製し、測定した。
<Comparative Example 1>
Measurement was performed in the same manner as in Example 2 except that the test piece was made of an as-HIP body without being subjected to compression deformation treatment.
<Comparative example 2>
A test piece was prepared and measured in the same procedure as in Example 1 except that the TiC content was 1.1% by mass and the deaeration treatment was not performed.

上記実施例1〜7及び比較例1及び2の測定結果を表4に示す。   Table 4 shows the measurement results of Examples 1 to 7 and Comparative Examples 1 and 2.

Figure 2013018714
Figure 2013018714

表4から明らかなように、酸素及び窒素濃度が低いほど、GSMM処理したタングステン合金の曲げ強度が強くなった。更に、as−HIP体に塑性変形を施すことで、DBTTが著しく低くなり、低温でも延性が得られることが明らかとなった。   As is clear from Table 4, the lower the oxygen and nitrogen concentrations, the stronger the bending strength of the GSMM-treated tungsten alloy. Furthermore, it has been clarified that by subjecting an as-HIP body to plastic deformation, DBTT is remarkably lowered and ductility can be obtained even at low temperatures.

<3点曲げ変形挙動試験>
図5は、実施例4(DBTT:310K)及び実施例6(DBTT:420K)の温度400Kにおける3点曲げ変形挙動を示し、図6は、実施例4の300Kにおける3点曲げ変形挙動を示している。図5及び図6から明らかなように、得られた合金のDBTT温度より低い温度では、延性を示さずに破断することから、GSMM(圧縮による)処理に加え、酸素量及び窒素量を低くすることが必要であることが明らかとなった。
<Three-point bending deformation behavior test>
FIG. 5 shows the three-point bending deformation behavior of Example 4 (DBTT: 310 K) and Example 6 (DBTT: 420 K) at a temperature of 400 K, and FIG. 6 shows the three-point bending deformation behavior of Example 4 at 300 K. ing. As apparent from FIGS. 5 and 6, at a temperature lower than the DBTT temperature of the obtained alloy, it breaks without exhibiting ductility. Therefore, in addition to the GSMM (by compression) treatment, the oxygen content and the nitrogen content are reduced. It became clear that it was necessary.

<X線回折パターン試験>
図7は、実施例2(GSMM処理済み)及び比較例1(GSMM処理なし)のX線回折パターンを比較したものである。両者を比較するとTiCピークに大きな強度差がみられたが、これは、GSMM処理時にTiCの析出が進行したことを示している。このことは、透過電子顕微鏡からも確認された。
<X-ray diffraction pattern test>
FIG. 7 compares the X-ray diffraction patterns of Example 2 (GSMM-treated) and Comparative Example 1 (no GSMM-treated). When both were compared, a large intensity difference was observed in the TiC peak, which indicates that TiC precipitation progressed during the GSMM treatment. This was also confirmed from a transmission electron microscope.

<透過電子顕微鏡写真>
図8の(1)は比較例1、(2)は実施例2の透過電子顕微鏡写真で、(3)は(2)の「←」部分の拡大写真である。写真から明らかなように、GSMM処理したタングステン合金は、合金中にTiCの粒界析出が確認され、同時にTiCの構成元素が粒界に固溶偏析していることも確認された。
<Transmission electron micrograph>
(1) in FIG. 8 is a transmission electron micrograph of Comparative Example 1, (2) is a transmission electron micrograph of Example 2, and (3) is an enlarged photograph of the “←” portion of (2). As is clear from the photograph, in the tungsten alloy treated with GSMM, TiC grain boundary precipitation was confirmed in the alloy, and at the same time, it was also confirmed that the constituent elements of TiC were solid solution segregated at the grain boundaries.

<X線回折パターン試験>
図9は、実施例5(GSMM処理済み)及び実施例5のGSMM処理前のas−HIP体のX線回折パターンを比較したものである。GSMM処理により、同様にTiCの析出が進行したことを示しているが、図7の場合と異なり、延性に有害な(すなわち、破壊しやすい)炭化物であるWCが形成されている。酸素量の増加により、TiCとタングステンの間で酸素の関与により、TiCから遊離した一部のCが周囲のタングステンと反応したものと考えられる。
<X-ray diffraction pattern test>
FIG. 9 compares the X-ray diffraction patterns of the as-HIP body before the GSMM treatment of Example 5 (GSMM-treated) and Example 5. Although it is shown that TiC precipitation similarly progressed by the GSMM treatment, unlike the case of FIG. 7, W 2 C, which is a carbide harmful to ductility (that is, easily broken), is formed. It is considered that a part of C liberated from TiC reacted with surrounding tungsten due to the oxygen content between TiC and tungsten due to the increase in the amount of oxygen.

<等軸再結晶粒の確認>
実施例2のタングステン合金から、直径3mm、厚さが約50μmで中央部に微小な孔をもつ薄膜を電解研磨(テヌポール)により作製した後、透過電子顕微鏡(JEOL2000)により加速電圧200kVで観察した。図10(1)は透過電子顕微鏡の観察方向を示し、図10(2)はサンプルを上から(すなわち、圧縮方向と平行な方向から)観察した写真、図10(3)はサンプルを横から(圧縮方向と垂直な方向から)観察した写真である。いずれも明視野像で、観察倍率は約1万倍である。図10からわかるように、結晶粒は等軸粒であり、結晶粒のアスペクト比は1〜2の範囲にあった。
<Confirmation of equiaxed recrystallized grains>
A thin film having a diameter of 3 mm, a thickness of about 50 μm, and a minute hole at the center was prepared from the tungsten alloy of Example 2 by electropolishing (Tenupol), and then observed with a transmission electron microscope (JEOL2000) at an acceleration voltage of 200 kV. . 10 (1) shows the observation direction of the transmission electron microscope, FIG. 10 (2) is a photograph of the sample observed from above (that is, from a direction parallel to the compression direction), and FIG. 10 (3) is the sample from the side. It is the photograph observed (from the direction perpendicular to the compression direction). Both are bright-field images and the observation magnification is about 10,000 times. As can be seen from FIG. 10, the crystal grains were equiaxed grains, and the aspect ratio of the crystal grains was in the range of 1-2.

また、上記薄膜を回折条件及び観察倍率を更に拡大して観察したところ、殆どの結晶粒において転位は観察されず、観察された結晶粒でも多くの場合転位の数は1〜3本と極めて少なかった。以上の観察結果からも、発明品の組織が再結晶組織であることは明らかである。加工変形組織を含み、再結晶していないタングステンの結晶粒内では転位が1000本以上存在することと比較して、再結晶したタングステンの結晶粒内での転位は50本以下になることが明らかになり、これが満たされれば歪のないタングステン結晶粒の特徴を示すことが明らかになった。   Further, when the above-mentioned thin film was observed by further enlarging the diffraction conditions and the observation magnification, no dislocation was observed in most of the crystal grains, and even in the observed crystal grains, the number of dislocations was often as few as 1 to 3 in many cases. It was. From the above observation results, it is clear that the structure of the invention is a recrystallized structure. It is clear that the number of dislocations in the recrystallized tungsten crystal grains is 50 or less compared to the fact that there are 1000 or more dislocations in the tungsten crystal grains that contain a deformed structure and are not recrystallized. It became clear that the characteristics of tungsten crystal grains without distortion were exhibited if this was satisfied.

また、リガク製RAD II−Bを用いたXRD測定からも、歪のない状態が確認された。XRD測定結果には、結晶粒が細かい効果も含まれるものの、未再結晶の状態で歪が大きければ回折ピークの回折幅が大きくなる。例えば、Cu管球40kV30mAソーラースリット1°の条件で、実施例2のタングステン合金(再結晶組織)と市販の純タングステンの応力除去処理材を測定したXRDの結果を検討した結果、格子定数0.11188nmのタングステンの(220)回折において半値全幅が3°を超えていると歪が残っており再結晶組織ではないこと(市販の純タングステンの応力除去処理材)、および半値全幅が3°以下であれば歪がなく再結晶組織であることが明らかになった。   Moreover, the state without distortion was also confirmed from the XRD measurement using Rigaku RAD II-B. Although the XRD measurement results include the effect of fine crystal grains, the diffraction width of the diffraction peak increases if the strain is large in an unrecrystallized state. For example, as a result of examining the XRD results obtained by measuring the tungsten alloy (recrystallized structure) of Example 2 and a commercially available pure tungsten stress relief treatment material under the condition of a Cu tube 40 kV 30 mA solar slit 1 °, the lattice constant was set to 0. When the full width at half maximum exceeds 3 ° in (220) diffraction of tungsten at 11188 nm, strain remains and it is not a recrystallized structure (commercial pure tungsten stress relief treatment material), and the full width at half maximum is 3 ° or less. It became clear that there was no distortion and it was a recrystallized structure.

<粒径の確認>
実施例1〜7で作製したタングステン合金から、直径3mm、厚さが約50μmで中央部に微小な孔をもつ薄膜を電解研磨(テヌポール)により作製した後、透過電子顕微鏡(JEOL2000)により加速電圧200kVで観察した。全ての実施例の透過顕微鏡写真において、写真の全視野の80%以上で結晶粒径を測定でき、測定した結晶粒の80%以上が粒径0.05〜10μmの範囲であることが確認できた。
<Confirmation of particle size>
A thin film having a diameter of 3 mm, a thickness of about 50 μm, and a minute hole at the center was produced from the tungsten alloys produced in Examples 1 to 7 by electrolytic polishing (Tenupol), and then accelerated voltage by a transmission electron microscope (JEOL2000). Observed at 200 kV. In the transmission micrographs of all examples, the crystal grain size can be measured at 80% or more of the entire field of view of the photograph, and it can be confirmed that 80% or more of the measured crystal grains are in the range of 0.05 to 10 μm. It was.

<タングステン合金組織中に存在する炭化物の方位と、タングステンのマトリクスの方位の確認>
上記<粒径の確認>で示した場合と異なり、タングステン母相の中に炭化物粒子1個を含む多くの視野について、数10万倍の高倍率で明視野像、暗視野像、制限視野回折パターンを撮影し、炭化物とタングステン母相の方位関係を解析した。その結果、全ての実施例の透過顕微鏡写真において、タングステン合金組織中に存在する炭化物の方位と、タングステンのマトリクスの方位の90%以上が、{111}W//{110}遷移金属炭化物,<110>W//<111>遷移金属炭化物の(Kurdjumov−Sachs)方位関係を満たすことが確認できた。
<Confirmation of carbide orientation and tungsten matrix orientation in tungsten alloy structure>
Unlike the case shown in <Confirmation of particle size> above, bright field images, dark field images, and limited field diffraction at a high magnification of several hundred thousand times for many fields containing one carbide particle in the tungsten matrix. The pattern was photographed and the orientation relation between carbide and tungsten matrix was analyzed. As a result, in the transmission micrographs of all the examples, the orientation of carbides present in the tungsten alloy structure and 90% or more of the orientation of the tungsten matrix are {111} W // {110} transition metal carbides, < It was confirmed that the (Kurdjumov-Sachs) orientation relationship of 110> W / <111> transition metal carbide was satisfied.

<実施例8>
合金原料粉末として、バナジウム:イットリウム:タングステン:TiC=89.8:1.4:8.0:0.8の質量比となるように秤量配合したのち、Mo製ボートに載せ、200℃で1時間脱気処理を行った。次に、MA処理に使用する容器・ボール(材質:TZM(Mo−0.5Ti−0.1Zr))を高真空下、150〜200℃で10時間、ベーキング処理してから、配合原料粉末をボールとともに容器に入れ、3軸加振型ボールミルにより、純化した水素雰囲気で70時間、MA処理を行った。MA時に雰囲気から混入した水素を除くために600℃で1時間、1x10−4Pa以下の真空下で脱水素処理を行った。その後、あらかじめ900℃で真空加熱脱気したHIPカプセル(軟鋼製)にMA処理済みのバナジウム合金粉末を水素雰囲気で詰め、室温、真空下で脱気しながら、HIPカプセルを高真空(2x10-5Pa)のもとで真空封止した。したがって、HIPカプセル内は高真空の密閉状態にある。これをアルゴンガス中、1000℃、196MPaで3時間HIP処理して、相対密度99.5%以上の焼結体とした後、その焼結体から実施例1と同様の引張試験片を切り出し、粒界辷りを最大限に活用した超塑性変形を利用して弱いランダム粒界を強化するために、温度1300℃、歪速度0.5〜2x10−4−1でGSMM処理した。得られた試験片を、島津製のサーボパルサーEHF2型を用いて、室温、1x10-3/sの初期歪速度の条件で引張試験し、降伏強度、引張強度、均一伸び、破断伸び(全伸び)を測定した。
<Example 8>
As alloy raw material powder, vanadium: yttrium: tungsten: TiC = 89.8: 1.4: 8.0: 0.8 was weighed and blended, and then placed on a Mo boat and 1 at 200 ° C. Time deaeration treatment was performed. Next, the container / ball (material: TZM (Mo-0.5Ti-0.1Zr)) used for MA treatment is baked at 150-200 ° C. for 10 hours under high vacuum, and then the blended raw material powder is It was put into a container together with the balls, and MA treatment was performed for 70 hours in a purified hydrogen atmosphere by a triaxial vibration type ball mill. In order to remove hydrogen mixed in from the atmosphere during MA, dehydrogenation treatment was performed at 600 ° C. for 1 hour under a vacuum of 1 × 10 −4 Pa or less. Thereafter, packed in a hydrogen atmosphere MA treated vanadium alloy powder into a vacuum heating degassing were HIP capsule (manufactured by mild steel) in advance at 900 ° C., at room temperature, while degassing under vacuum, high vacuum HIP capsule (2x10 -5 Vacuum sealed under Pa). Therefore, the inside of the HIP capsule is in a high vacuum sealed state. This was subjected to HIP treatment at 1000 ° C. and 196 MPa in argon gas for 3 hours to obtain a sintered body having a relative density of 99.5% or more, and then a tensile test piece similar to that in Example 1 was cut out from the sintered body. In order to reinforce weak random grain boundaries by utilizing superplastic deformation making the best use of grain boundary deformation, GSMM treatment was performed at a temperature of 1300 ° C. and a strain rate of 0.5 to 2 × 10 −4 s −1 . The obtained specimens were subjected to a tensile test using a Shimadzu servo pulsar EHF type 2 at room temperature and an initial strain rate of 1 × 10 −3 / s, yield strength, tensile strength, uniform elongation, elongation at break (total elongation ) Was measured.

<比較例3>
GSMM処理をしなかった以外は、実施例8と同様の手順で試験片の作製・測定を行った。
<Comparative Example 3>
A test piece was prepared and measured in the same procedure as in Example 8 except that the GSMM treatment was not performed.

<実施例9>
合金原料粉末として、質量比でSUS316L:TiC=98:2のSUS316L(添川理化学(株)社製)及びTiCを用い、脱気処理を450℃で1.5時間、MA処理後の脱水素処理を450℃で1.5時間、HIPカプセルの真空封止時の加熱温度を750℃、HIP処理を850〜900℃で3時間、GSMM処理を950℃で行った以外は、実施例8と同様に試験片を作製・測定を行った。
<Example 9>
As alloy raw material powder, SUS316L of mass ratio of SUS316L: TiC = 98: 2 (manufactured by Soekawa Rikagaku Co., Ltd.) and TiC, degassing treatment at 450 ° C. for 1.5 hours, dehydrogenation treatment after MA treatment The sample was heated at 450 ° C. for 1.5 hours, the heating temperature during vacuum sealing of the HIP capsule was 750 ° C., the HIP process was performed at 850 to 900 ° C. for 3 hours, and the GSMM process was performed at 950 ° C. A test piece was prepared and measured.

<比較例4>
GSMM処理をしなかった以外は、実施例9と同様の手順で試験片の作製・測定を行った。
<Comparative example 4>
A test piece was prepared and measured in the same procedure as in Example 9 except that the GSMM treatment was not performed.

上記実施例8〜9及び比較例3〜4の測定結果を表5に示す。   Table 5 shows the measurement results of Examples 8 to 9 and Comparative Examples 3 to 4.

Figure 2013018714
Figure 2013018714

表5から明らかなように、GSMM処理を施したバナジウム合金、ステンレス合金とも、均一伸び、破断伸びが倍以上改善され、GSMM処理は、タングステンを始め、種々の金属又は合金の延び特性を改善できることが明らかとなった。   As can be seen from Table 5, both the GSMM-treated vanadium alloy and stainless steel alloy have improved uniform elongation and elongation at break more than twice, and GSMM treatment can improve the elongation properties of various metals or alloys including tungsten. Became clear.

合金にGSMM処理を施すことで、合金、特に、タングステンの低温脆化、再結晶脆化、照射脆化を大幅に改善することができるので、高温構造材料、モリブデン代替材料、熱核融合実験炉のプラズマ対向材、高温試験治具、核破砕中性子源固体回転ターゲット等、過酷な熱負荷に晒される極限環境下における合金、特に、タングステン利用への道が拓かれるものと期待される。   By subjecting the alloy to GSMM treatment, the low temperature embrittlement, recrystallization embrittlement, and irradiation embrittlement of alloys, especially tungsten, can be greatly improved, so high temperature structural materials, molybdenum substitute materials, and thermal fusion experimental reactors It is expected that the use of alloys, especially tungsten, in extreme environments exposed to severe heat loads, such as plasma facing materials, high-temperature test jigs, and sputtered neutron source solid rotating targets, is expected.

Claims (7)

IVA族、VA族又はVIA族遷移金属の炭化物から選ばれる少なくとも1種及び金属原料をメカニカルアロイングする工程、前記メカニカルアロイングする工程で得られた原料粉末を熱間等方圧プレスにより焼結する工程、前記焼結する工程で得られた合金を500℃以上2000℃以下、10−5−1以上10−2−1以下の歪速度で、60%以上の塑性変形を施す工程、を含むことを特徴とする合金の製造方法。At least one selected from carbides of Group IVA, Group VA or Group VIA transition metals and a metal raw material are mechanically alloyed, and the raw material powder obtained in the mechanical alloying step is sintered by hot isostatic pressing. A step of subjecting the alloy obtained in the sintering step to a plastic deformation of 60% or more at a strain rate of 500 ° C. or more and 2000 ° C. or less, 10 −5 s −1 or more and 10 −2 s −1 or less, The manufacturing method of the alloy characterized by including. 前記メカニカルアロイングする工程の前に、前記遷移金属の炭化物及び金属原料を加熱により脱気する工程を含むことを特徴とする請求項1に記載の合金の製造方法。   The method for producing an alloy according to claim 1, further comprising a step of degassing the transition metal carbide and the metal raw material by heating before the mechanical alloying step. IVA族、VA族、VIA族遷移金属の炭化物から選ばれる少なくとも1種を0.25質量%以上5質量%以下含むタングステン合金において、酸素の含有量が950質量ppm以下、窒素の含有量が60質量ppm以下であり、タングステン相の面積比の80%以上が粒径0.05μm以上10μm以下の等軸結晶粒であり、3点曲げによる延性脆性遷移温度が500K以下であり、その温度以上で塑性変形可能であることを特徴とするタングステン合金。   In a tungsten alloy containing 0.25 mass% or more and 5 mass% or less of at least one selected from the group IVA, VA, and VIA transition metal carbides, the oxygen content is 950 mass ppm or less, and the nitrogen content is 60 Mass ppm or less, 80% or more of the area ratio of the tungsten phase is equiaxed grains having a grain size of 0.05 μm or more and 10 μm or less, and a ductile brittle transition temperature by three-point bending is 500 K or less. A tungsten alloy characterized by being plastically deformable. タングステン合金組織中に存在する炭化物の方位と、タングステンのマトリクスの方位の90%以上が、{111}W//{110}遷移金属の炭化物,<110>W//<111>遷移金属の炭化物の(Kurdjumov−Sachs)方位関係であることを特徴とする請求項3に記載のタングステン合金。   90% or more of the orientation of carbides present in the tungsten alloy structure and the orientation of the tungsten matrix is a carbide of {111} W // {110} transition metal, <110> W // <111> transition metal carbide The tungsten alloy according to claim 3, which has a (Kurdjumov-Sachs) orientation relationship. X線回折での回折面(220)反射の半値全幅が3°以下であること、あるいは透過電子顕微鏡観察により結晶粒内の転位が50本以下であることを特徴とする請求項3又は4に記載のタングステン合金。   5. The full width at half maximum of diffraction surface (220) reflection in X-ray diffraction is 3 ° or less, or the number of dislocations in crystal grains is 50 or less by observation with a transmission electron microscope. The tungsten alloy described. 3点曲げによる最大曲げ強度が1470MPa以上であることを特徴とする請求項3〜5の何れか一項に記載のタングステン合金。   The maximum bending strength by three-point bending is 1470 MPa or more, The tungsten alloy as described in any one of Claims 3-5 characterized by the above-mentioned. 請求項1又は2に記載の製造方法により製造された合金。   An alloy manufactured by the manufacturing method according to claim 1.
JP2013526892A 2011-07-29 2012-07-27 Process for producing transition metal carbide tungsten alloy and transition metal carbide tungsten alloy Active JP5920793B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011166630 2011-07-29
JP2011166630 2011-07-29
PCT/JP2012/069190 WO2013018714A1 (en) 2011-07-29 2012-07-27 Method for manufacturing alloy containing transition metal carbide, tungsten alloy containing transition metal carbide, and alloy manufactured by said method

Publications (2)

Publication Number Publication Date
JPWO2013018714A1 true JPWO2013018714A1 (en) 2015-03-05
JP5920793B2 JP5920793B2 (en) 2016-05-18

Family

ID=47629237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013526892A Active JP5920793B2 (en) 2011-07-29 2012-07-27 Process for producing transition metal carbide tungsten alloy and transition metal carbide tungsten alloy

Country Status (4)

Country Link
US (1) US20140147327A1 (en)
EP (1) EP2737966A4 (en)
JP (1) JP5920793B2 (en)
WO (1) WO2013018714A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2857534B1 (en) 2012-05-29 2020-10-28 Kabushiki Kaisha Toshiba Tungsten alloy part, and discharge lamp, transmitting tube and magnetron using same, and use of the tungsten alloy part
EP3141625A4 (en) * 2014-05-30 2018-01-17 A.L.M.T. Corp. Heat-resistant tungsten alloy, friction stir welding tool, and method for manufacturing same
ES2830623T3 (en) * 2017-05-02 2021-06-03 Alfa Laval Corp Ab A separating disc for a centrifugal separator
CN107737934A (en) * 2017-09-26 2018-02-27 太原理工大学 A kind of shielding neutron, the preparation method of gamma-ray laminated composite plate
CN109785987A (en) * 2018-12-29 2019-05-21 中国科学院近代物理研究所 A kind of tungsten alloy particle spallation target material
JP2021087985A (en) * 2019-12-05 2021-06-10 大学共同利用機関法人 高エネルギー加速器研究機構 Joule heat metal rolling device
CN112417740B (en) * 2020-12-14 2024-01-26 中南大学 Accurate measurement method for low-temperature fracture elongation of aluminum alloy for aerospace
CN114934222A (en) * 2022-05-16 2022-08-23 北京科技大学 High-strength high-plasticity tungsten alloy with super strain hardening capacity
CN115058628B (en) * 2022-05-30 2023-09-05 中国科学院合肥物质科学研究院 High-entropy ceramic nano twin crystal particle dispersion reinforced tungsten alloy and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602603A (en) * 1983-06-20 1985-01-08 Agency Of Ind Science & Technol Method for forging sintered body of powder by making use of superplasticity
JPS62205202A (en) * 1986-03-06 1987-09-09 Agency Of Ind Science & Technol Production of stock for superplastic forging having fine crystal grains
JPH05163505A (en) * 1991-12-11 1993-06-29 Kobe Steel Ltd Method for forming powdery superalloy
JPH05279705A (en) * 1992-03-31 1993-10-26 Kobe Steel Ltd Production of powder super alloy material
JPH0885840A (en) * 1994-09-19 1996-04-02 Hiroaki Kurishita Molybdenum alloy and production thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT386612B (en) 1987-01-28 1988-09-26 Plansee Metallwerk CRISP-RESISTANT ALLOY FROM MELTING-MELTING METAL AND METHOD FOR THEIR PRODUCTION
US5413649A (en) * 1993-07-29 1995-05-09 Massachusetts Institute Of Technology Method for enhancing superplasticity in composites
JP3764315B2 (en) * 2000-02-10 2006-04-05 株式会社アライドマテリアル Tungsten material and manufacturing method thereof
JP4975916B2 (en) * 2001-09-21 2012-07-11 株式会社日立製作所 High toughness and high strength ferritic steel and its manufacturing method
JP3835757B2 (en) * 2003-03-14 2006-10-18 株式会社アライドマテリアル Plasma facing material and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602603A (en) * 1983-06-20 1985-01-08 Agency Of Ind Science & Technol Method for forging sintered body of powder by making use of superplasticity
JPS62205202A (en) * 1986-03-06 1987-09-09 Agency Of Ind Science & Technol Production of stock for superplastic forging having fine crystal grains
JPH05163505A (en) * 1991-12-11 1993-06-29 Kobe Steel Ltd Method for forming powdery superalloy
JPH05279705A (en) * 1992-03-31 1993-10-26 Kobe Steel Ltd Production of powder super alloy material
JPH0885840A (en) * 1994-09-19 1996-04-02 Hiroaki Kurishita Molybdenum alloy and production thereof

Also Published As

Publication number Publication date
EP2737966A4 (en) 2016-04-13
WO2013018714A1 (en) 2013-02-07
US20140147327A1 (en) 2014-05-29
JP5920793B2 (en) 2016-05-18
EP2737966A1 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5920793B2 (en) Process for producing transition metal carbide tungsten alloy and transition metal carbide tungsten alloy
Zhilyaev et al. Mechanical behavior and microstructure properties of titanium powder consolidated by high-pressure torsion
Koch Nanocrystalline high-entropy alloys
Stolyarov et al. Processing nanocrystalline Ti and its nanocomposites from micrometer-sized Ti powder using high pressure torsion
Vintila et al. Synthesis and consolidation via spark plasma sintering of nanostructured Al-5356/B4C composite
Ohser-Wiedemann et al. Spark plasma sintering of TiC particle-reinforced molybdenum composites
Guo et al. Microstructure and mechanical properties of oxide dispersion strengthened FeCoNi concentrated solid solution alloys
Khan et al. Achieving excellent thermal stability and very high activation energy in an ultrafine-grained magnesium silver rare earth alloy prepared by friction stir processing
Kang et al. Fabrication, microstructure and mechanical property of a novel Nb-rich refractory high-entropy alloy strengthened by in-situ formation of dispersoids
Guo et al. Microstructural evolution and final properties of a cold-swaged multifunctional Ti–Nb–Ta–Zr–O alloy produced by a powder metallurgy route
Lu et al. Microstructure and mechanical properties of a spark plasma sinteredTi–45Al–8.5 Nb–0.2 W–0.2 B–0.1 Y alloy
Zadorozhnyy et al. Ti-based nanostructured low-alloy with high strength and ductility
Patra et al. Effect of nano Y2O3 dispersion on thermal, microstructure, mechanical and high temperature oxidation behavior of mechanically alloyed W-Ni-Mo-Ti
Shon et al. Effects of various sintering methods on microstructure and mechanical properties of CP-Ti powder consolidations
Sun et al. The microstructure and tensile properties of the Ti2AlC reinforced TiAl composites fabricated by powder metallurgy
Zhang et al. Elevated tensile properties of Ti-O alloy with a novel core-shell structure
Yu et al. Modifying element diffusion pathway by transition layer structure in high-entropy alloy particle reinforced Cu matrix composites
Shao et al. Fabrication, microstructure and mechanical properties of WNiTi composites
Zong et al. Fabrication of nano-ZrO2 strengthened WMoNbTaV refractory high-entropy alloy by spark plasma sintering
Ishijima et al. Current status of ductile tungsten alloy development by mechanical alloying
XIAO et al. Microstructure and mechanical properties of TiAl-based alloy prepared by double mechanical milling and spark plasma sintering
Wang et al. Towards strength-ductility enhancement of titanium matrix composites through heterogeneous grain structured Ti matrix design
Kang et al. The outstanding tensile strength of Ni-rich high entropy superalloy fabricated by powder metallurgical process
Jiang et al. Fabrication and mechanical properties of the titanium matrix composites based on Ti6Al4V-ZrB2-(Si) system
Korneva et al. The α↔ ω phase transformations and thermal stability of TiCo alloy treated by high pressure torsion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5920793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R150 Certificate of patent or registration of utility model

Ref document number: 5920793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250