JPH05279705A - Production of powder super alloy material - Google Patents

Production of powder super alloy material

Info

Publication number
JPH05279705A
JPH05279705A JP10887292A JP10887292A JPH05279705A JP H05279705 A JPH05279705 A JP H05279705A JP 10887292 A JP10887292 A JP 10887292A JP 10887292 A JP10887292 A JP 10887292A JP H05279705 A JPH05279705 A JP H05279705A
Authority
JP
Japan
Prior art keywords
powder
powder particles
treatment
production
superalloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10887292A
Other languages
Japanese (ja)
Inventor
Takao Sato
隆夫 佐藤
Osamu Matsumoto
修 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10887292A priority Critical patent/JPH05279705A/en
Publication of JPH05279705A publication Critical patent/JPH05279705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide the process for economical production of the power super alloy material which annihilates the residual powder particles having a solidified structure at the time of powder production even if the alloy is subjected to a soln. heat-treatment at the temp. at which the coarse crystal grains are not formed. CONSTITUTION:The powder particles are previously subjected to plastic working in order to prevent the powder particles having a solidified structure formed the time of powder production from remaining in the sintered body in the process for production of the powder super alloy material by subjecting the atomized powder of a super alloy to a hot isotropic pressurization and subjecting the sintered body obtd. in such a manner to the soln. heat-treatment at the temp. at which the coarse crystal grains are not formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超合金 (超耐熱合金) 粉
末の焼結体からなる粉末超合金材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a powder superalloy material comprising a sintered body of superalloy (superheat-resistant alloy) powder.

【0002】[0002]

【従来の技術】ガスタービンやジェットエンジンのター
ビンディスクは、高温で熱疲労を受け易いため、超合金
により形成されている。超合金は機械加工性や均質性の
点から製品に近似した形状の粉末超合金材を素材として
機械仕上加工が施される場合が多い。
2. Description of the Related Art Turbine disks for gas turbines and jet engines are formed of a superalloy because they are susceptible to thermal fatigue at high temperatures. Superalloys are often subjected to mechanical finishing using a powder superalloy material having a shape similar to that of a product in terms of machinability and homogeneity.

【0003】粉末超合金材は、超合金のアトマイズ粉末
を分級して、通常150 メッシュ以下(粒径100 μm 以下)
の粉末をディスク用カプセルに封入し、熱間等方圧加
圧 (HIP) 処理し、得られた焼結体に溶体化処理、時
効処理が施されて製造される。また、HIP処理後の焼
結体に超塑性鍛造が施される場合もある。
The powdered superalloy material is usually classified into 150 mesh or less (particle size of 100 μm or less) by classifying atomized powder of superalloy.
This powder is encapsulated in a disk capsule, subjected to hot isostatic pressing (HIP) treatment, and the obtained sintered body is subjected to solution treatment and aging treatment. In addition, there is a case where the sintered body after the HIP treatment is subjected to superplastic forging.

【0004】[0004]

【発明が解決しようとする課題】アトマイズ法により製
造した超合金粉末は、粉末粒子に凝固組織が形成されて
いる。この組織は、粉末のうち50μm 未満の微粒子につ
いては、HIP処理や溶体化処理の際に、晶出物や折出
物が基地中に固溶されるため、大部分消滅するが、50μ
m 以上の粒子については消滅し難い。焼結体中に粉末製
造時の凝固組織をもつ粉末粒子 (残留粉末粒子) が残存
すると、低サイクル疲労特性 (LCF特性) のばらつき
が大きくなるなど均一な機械的特性が得難く、信頼性が
低下する。
The superalloy powder produced by the atomizing method has a solidification structure formed in the powder particles. With regard to the fine particles of less than 50 μm in the powder, most of the microstructure disappears because the crystallized substances and the protrusions form a solid solution in the matrix during HIP treatment or solution treatment.
Particles larger than m are hard to disappear. If powder particles (residual powder particles) having a solidification structure during powder production remain in the sintered body, it is difficult to obtain uniform mechanical properties such as large variation in low cycle fatigue properties (LCF properties), and reliability is improved. descend.

【0005】焼結体中の残留粉末粒子を消滅させるに
は、HIP処理後の焼結体に高温の溶体化処理を施せば
よいが、結晶粒の粗大化が生じ、機械的特性が劣化す
る。このため、残留粉末粒子の存在は止むを得ないもの
として、結晶粒の粗大化が生じない低い温度で溶体化処
理が行われているのが実情である。因みに、150 メッシ
ュアンダーのAF115 超合金粉末を1000atm 、1130℃×
3Hr のHIP処理を行った後、1170℃×3Hr で溶体化処
理したものと、1190℃×3Hr で処理したものとの金属組
織顕微鏡写真 (倍率400 倍) を図3および図4に示す。
尚、両試料とも溶体化処理後に760 ℃×16Hrの時効処理
が施されたが、時効処理により生成した折出物は微細な
ため、同倍率では判別できない。図3では、結晶粒は細
かいが残留粉末粒子の存在が認められる。一方、図4で
は残留粉末粒子は消滅しているが、結晶粒が著しく粗大
化していることが分かる。
In order to eliminate the residual powder particles in the sintered body, it is sufficient to subject the sintered body after the HIP treatment to a high temperature solution treatment, but coarsening of crystal grains occurs and mechanical properties deteriorate. . Therefore, the presence of residual powder particles is unavoidable, and the solution treatment is actually performed at a low temperature at which the crystal grains are not coarsened. Incidentally, AF115 superalloy powder with 150 mesh under is 1000atm, 1130 ℃ ×
FIGS. 3 and 4 show metallographic micrographs (magnification 400 times) of the solution treated with 1170 ° C. × 3 Hr and the solution treated with 1170 ° C. × 3 Hr after HIP treatment of 3 Hr.
Note that both samples were subjected to an aging treatment at 760 ° C. × 16 Hr after the solution treatment, but the protrusions produced by the aging treatment are minute and cannot be distinguished at the same magnification. In FIG. 3, the presence of residual powder particles is recognized although the crystal grains are fine. On the other hand, in FIG. 4, although the residual powder particles have disappeared, it can be seen that the crystal grains are remarkably coarsened.

【0006】尚、結晶粒を粗大化させることなく、残留
粉末粒子を消滅させるには、超合金粉末又はHIP処理
後の焼結体を押出加工し、押出材に超塑性鍛造を施した
後、低温で溶体化処理を施せばよいが、押出には日本国
内にない3万〜5万トン級のプレスが必要であり、また
特殊耐熱材で形成された高価な金型を備えた超塑性鍛造
装置も必要であり、汎用性、経済性に欠ける。
In order to eliminate the residual powder particles without coarsening the crystal grains, the superalloy powder or the sintered body after HIP treatment is extruded, and the extruded material is subjected to superplastic forging. Although solution treatment may be carried out at low temperature, extrusion requires a 30,000 to 50,000 ton class press, which is not available in Japan, and superplastic forging equipped with an expensive die made of special heat resistant material. Equipment is also required, and lacks versatility and economy.

【0007】本発明はかかる問題に鑑みなされたもの
で、結晶粒が粗大化しない温度で溶体化処理しても、残
留粉末粒子が消滅する粉末超合金材の経済的な製造方法
を提供することを目的とする。
The present invention has been made in view of the above problems, and provides an economical manufacturing method of a powder superalloy material in which residual powder particles disappear even when solution treatment is performed at a temperature at which crystal grains do not coarsen. With the goal.

【0008】[0008]

【課題を解決するための手段】本発明の粉末超合金材の
製造方法は、超合金のアトマイズ粉末を熱間等方圧加圧
し、得られた焼結体を結晶粒の粗大化が生じない温度で
溶体化処理する粉末超合金材の製造方法において、焼結
体中に粉末製造時の凝固組織を有する粉末粒子が残留す
るのを防止するために粉末粒子に予め塑性加工を施して
おく。
In the method for producing a powder superalloy material of the present invention, atomization powder of a superalloy is hot isostatically pressed so that the obtained sintered body does not have coarse crystal grains. In the method for producing a powder superalloy material which is subjected to solution treatment at a temperature, the powder particles are plastically processed in advance in order to prevent the powder particles having a solidified structure at the time of powder production from remaining in the sintered body.

【0009】[0009]

【作用】粉末粒子の凝固組織を消滅させるには、基地中
の晶出物、折出物を基地に固溶して、再結晶化を図る必
要がある。そのためには、粉末粒子に原子移動のための
エネルギーを付与する必要がある。 本発明では、HI
Pおよび溶体化処理の際の加熱による熱エネルギーのみ
ならず、予め塑性加工により粉末粒子に付与された歪エ
ネルギーによっても原子の移動に必要なエネルギーが供
給されるので、溶体化処理の際の加熱温度を結晶が粗大
化しないような温度に止めても凝固組織を消滅させるこ
とができる。
In order to eliminate the solidification structure of the powder particles, it is necessary to solidify the crystallized substances and extruded substances in the matrix to recrystallize them. For that purpose, it is necessary to apply energy for atom transfer to the powder particles. In the present invention, HI
Not only P and heat energy due to heating during solution treatment, but also energy required for atom movement is supplied by strain energy previously applied to powder particles by plastic working, so heating during solution treatment is performed. The solidified structure can be eliminated even if the temperature is kept at a temperature at which the crystal does not coarsen.

【0010】[0010]

【実施例】本発明に使用することができる超合金として
は、AF115 、MA6000、IN100 、Rene95、MA
RL76等の各種のNi基、Co基超合金を例示すること
ができる。これらの超合金はアトマイズ法により、容易
に粉末化される。超合金アトマイズ粉末は、HIP処理
により焼結一体化されるが、本発明ではHIP用カプセ
ルに封入する前に予め粉末粒子に塑性加工が施される。
加工の程度は、焼結体中に残留粉末粒子が存在しないよ
うに、粉末粒度、HIP処理温度、溶体化処理温度を勘
案して決定されるが、粒径50μm 以上の粒子を含む通常
の焼結用粉末を使用する場合は、粉末粒子に25%以上の
粒径変化を生じさせるような偏平加工を施すのがよい。
Examples Super alloys that can be used in the present invention include AF115, MA6000, IN100, Rene95, and MA.
Various Ni-based and Co-based superalloys such as RL76 can be exemplified. These superalloys are easily powdered by the atomizing method. The superalloy atomized powder is sintered and integrated by the HIP process, but in the present invention, the powder particles are plastically processed in advance before being encapsulated in the HIP capsule.
The degree of processing is determined in consideration of the powder particle size, HIP treatment temperature and solution treatment temperature so that no residual powder particles are present in the sintered body. When the binding powder is used, it is preferable that the powder particles be subjected to flattening so as to cause a particle size change of 25% or more.

【0011】図1は、AF115 Ni基超合金粉末のふる
いによる分級後の最大粒径 (すなわちメッシューの開口
径に相当) と、残留粉末粒子の消滅に至る偏平加工量と
の関係を示す図であり、同図より、50μm 以上の粒子を
含む粉末を使用する場合は、最大粒径に応じて少なくと
も25%以上の加工量を付与する必要があることがわか
る。尚、焼結体試料は、AF115 粉末を1000atm 、1130
℃×3Hr のHIP処理後、1170℃で溶体化処理を施した
ものである。
FIG. 1 is a graph showing the relationship between the maximum particle size of AF115 Ni-based superalloy powder after classification by sieving (ie, corresponding to the opening size of the mesh) and the amount of flattening until residual powder particles disappear. Therefore, it can be seen from the figure that when using a powder containing particles of 50 μm or more, it is necessary to give a processing amount of at least 25% or more according to the maximum particle size. In addition, the sintered compact sample was made of AF115 powder at 1000 atm, 1130
After HIP treatment at 3 ° C for 3 hours, solution treatment was performed at 1170 ° C.

【0012】HIP処理後の超合金粉末の焼結体は、結
晶粒の粗大化が生じない温度で溶体化処理され、その
後、時効処理が施される。溶体化処理温度としては、A
F115の場合、1130〜1170℃程度である。尚、HIP処
理温度は、溶体化処理温度と同等又は30〜80℃程度低い
目に設定されるが、同等に設定する場合、HIP処理炉
が急冷可能なものであれば、HIP処理後に急冷するこ
とにより、溶体化処理を兼用することができる。
The sintered body of the superalloy powder after the HIP treatment is solution-treated at a temperature at which the crystal grains are not coarsened, and then is aged. The solution treatment temperature is A
In the case of F115, it is about 1130 to 1170 ° C. The HIP treatment temperature is set to be equal to or lower than the solution heat treatment temperature by about 30 to 80 ° C. However, if the HIP treatment temperature is set equal, the HIP treatment furnace is rapidly cooled after the HIP treatment if it can be rapidly cooled. As a result, the solution treatment can also be used.

【0013】次に具体的実施例を掲げる。 実施例1 (1) AF115 超合金をアトマイズした後、150 メッシュ
アンダーで分級した。 (2) 分級後の粉末を、粉末偏平装置に入れ、酸化防止の
ため真空下で、冷間で50%の偏平加工を与えた。そし
て、偏平加工した粉末をディスク用カプセルに真空下で
充填し、封入した。 (3) 1000atm 、1100℃×3Hr でHIP処理した後、焼結
体を1170℃×3Hr で溶体化処理し、760 ℃×16Hrで時効
処理を行った。得られた粉末超合金材の金属組織を顕微
鏡観察した。その結果を図2 (倍率400 倍) に示す。同
図より、残留粉末粒子は皆無であり、結晶粒は微細であ
ることが分かる。 実施例2 (1) Rene95をアトマイズした後、実施例1と同様に
して分級、偏平加工した粉末を断面凸形段付筒状のカプ
セルに真空下で封入してHIP処理した。HIP処理条
件は1000atm 、1100℃×3Hr である。 (2) HIP処理後の焼結体の大径部外周面に断面コの字
形のリング状形枠を付設してディスク用カプセルを製作
し、枠内のリング状空間に、実施例1と同様に偏平加工
したAF115 粉末を真空下で充填し、封入した。 (3) このディスク用カプセルを1000atm 、1100℃×3Hr
でHIP処理した後、1100℃×3Hr で溶体化処理した。
複合した粉末超合金材の各部から試料を採取し、金属組
織を顕微鏡観察した結果、各部とも残留粉末粒子は皆無
であり、結晶粒も微細であった。
Next, specific examples will be given. Example 1 (1) AF115 superalloy was atomized and then classified with 150 mesh under. (2) The classified powder was put into a powder flattening apparatus, and subjected to cold flattening of 50% under vacuum to prevent oxidation. Then, the flattened powder was filled in a disk capsule under a vacuum and encapsulated. (3) After HIP treatment at 1000 atm and 1100 ° C. × 3 Hr, the sintered body was solution-treated at 1170 ° C. × 3 Hr and aged at 760 ° C. × 16 Hr. The metal structure of the obtained powder superalloy material was observed under a microscope. The results are shown in Fig. 2 (magnification 400 times). From the figure, it can be seen that there are no residual powder particles and the crystal grains are fine. Example 2 (1) After atomizing Rene 95, the powder classified and flattened in the same manner as in Example 1 was encapsulated under vacuum in a capsule having a convex cross-section and subjected to HIP treatment. HIP processing conditions are 1000 atm and 1100 ° C. × 3 Hr. (2) A capsule for a disk is manufactured by attaching a ring-shaped frame having a U-shaped cross section to the outer peripheral surface of the large diameter portion of the HIP-treated sintered body, and in the ring-shaped space in the frame, the same as in Example 1. The AF115 powder flat-processed into was filled in a vacuum and sealed. (3) This disk capsule is 1000atm, 1100 ℃ × 3Hr
After HIP treatment at 1,100 ° C. × 3 Hr solution treatment.
A sample was taken from each part of the composite powdered superalloy material and the metallographic structure was observed under a microscope. As a result, no residual powder particles were found and the crystal grains were fine in each part.

【0014】[0014]

【発明の効果】以上説明した通り、本発明の粉末超合金
材の製造方法は、焼結体中に粉末製造時の凝固組織を有
する粉末粒子が残留するのを防止するために粉末粒子に
予め塑性加工を施すので、焼結体中の粉末は歪エネルギ
ーを有し、溶体化処理時の温度が結晶粒の粗大化を生じ
ない低い温度であっても、溶体化処理時の加熱による熱
エネルギーと前記歪エネルギーとが相まって原子の移動
を促進し、凝固組織の晶出物や折出物を基地中に固溶
し、再結晶により微細結晶粒が得られ、ひいては、均一
組織の粉末超合金材が得られる。また、本発明では押出
装置や超塑性鍛造装置が不要で、また鍛造工程がないた
め材料の歩留りが高く、経済性に優れる。
As described above, according to the method for producing a powder superalloy material of the present invention, in order to prevent the powder particles having the solidification structure during the powder production from remaining in the sintered body, the powder superalloy material is preliminarily used. Since plastic processing is performed, the powder in the sintered body has strain energy, and even if the temperature during solution treatment is a low temperature at which coarsening of crystal grains does not occur, thermal energy due to heating during solution treatment is applied. And the above-mentioned strain energy are combined with each other to promote the movement of atoms, and the crystallized or extruded material of the solidification structure is dissolved in the matrix, and fine crystal grains are obtained by recrystallization. The material is obtained. Further, in the present invention, an extrusion device and a superplastic forging device are unnecessary, and since there is no forging process, the material yield is high and the economy is excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】超合金粉末の最大粒径と、残留粉末粒子を消滅
させるのに要する偏平加工量との関係を示すグラフ図で
ある。
FIG. 1 is a graph showing the relationship between the maximum grain size of superalloy powder and the amount of flattening required to eliminate residual powder grains.

【図2】実施例に係る粉末超合金材の金属組織写真 (40
0 倍) である。
FIG. 2 is a photograph of the metallographic structure of the powder superalloy material according to the example (40
0 times).

【図3】従来例に係る粉末超合金材の金属組織写真 (40
0 倍) である。
FIG. 3 Photograph of metallographic structure of powdered superalloy material according to conventional example (40
0 times).

【図4】高温で溶体化処理した比較例に係る金属組織写
真 (400 倍) である。
FIG. 4 is a metallographic photograph (400 times) of a comparative example subjected to solution treatment at high temperature.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超合金のアトマイズ粉末を熱間等方圧加
圧し、得られた焼結体を結晶粒の粗大化が生じない温度
で溶体化処理する粉末超合金材の製造方法において、 焼結体中に粉末製造時の凝固組織を有する粉末粒子が残
留するのを防止するために粉末粒子に予め塑性加工を施
しておくことを特徴とする粉末超合金材の製造方法。
1. A method for producing a powdered superalloy material, which comprises subjecting an atomized powder of a superalloy to hot isostatic pressing, and subjecting the obtained sintered body to a solution treatment at a temperature at which coarsening of crystal grains does not occur. A method for producing a powder superalloy material, which comprises subjecting powder particles to plastic working in advance in order to prevent powder particles having a solidified structure during powder production from remaining in the aggregate.
【請求項2】 粉末粒子に25%以上の粒径変化を与える
偏平加工を施す請求項1に記載した粉末超合金材の製造
方法。
2. The method for producing a powder superalloy material according to claim 1, wherein the flattening process is applied to the powder particles so as to change the particle size by 25% or more.
JP10887292A 1992-03-31 1992-03-31 Production of powder super alloy material Pending JPH05279705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10887292A JPH05279705A (en) 1992-03-31 1992-03-31 Production of powder super alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10887292A JPH05279705A (en) 1992-03-31 1992-03-31 Production of powder super alloy material

Publications (1)

Publication Number Publication Date
JPH05279705A true JPH05279705A (en) 1993-10-26

Family

ID=14495734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10887292A Pending JPH05279705A (en) 1992-03-31 1992-03-31 Production of powder super alloy material

Country Status (1)

Country Link
JP (1) JPH05279705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018714A1 (en) * 2011-07-29 2013-02-07 国立大学法人東北大学 Method for manufacturing alloy containing transition metal carbide, tungsten alloy containing transition metal carbide, and alloy manufactured by said method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018714A1 (en) * 2011-07-29 2013-02-07 国立大学法人東北大学 Method for manufacturing alloy containing transition metal carbide, tungsten alloy containing transition metal carbide, and alloy manufactured by said method
JPWO2013018714A1 (en) * 2011-07-29 2015-03-05 国立大学法人東北大学 Transition metal carbide-containing alloy manufacturing method, transition metal carbide-containing tungsten alloy, and alloy manufactured by the manufacturing method

Similar Documents

Publication Publication Date Title
US3975219A (en) Thermomechanical treatment for nickel base superalloys
Benjamin Mechanical alloying—A perspective
US5759305A (en) Grain size control in nickel base superalloys
US5547523A (en) Retained strain forging of ni-base superalloys
DE3445767C2 (en)
CA1284450C (en) Nickel base superalloy articles and method for making
US4110131A (en) Method for powder-metallurgic production of a workpiece from a high temperature alloy
US5584947A (en) Method for forming a nickel-base superalloy having improved resistance to abnormal grain growth
KR101237122B1 (en) Titanium alloy microstructural refinement method and high temperature-high strain superplastic forming of titanium alloys
JP2017122279A (en) Method for producing member made of titanium-aluminum based alloy, and the member
US5061324A (en) Thermomechanical processing for fatigue-resistant nickel based superalloys
US5393483A (en) High-temperature fatigue-resistant nickel based superalloy and thermomechanical process
US3639179A (en) Method of making large grain-sized superalloys
US5571345A (en) Thermomechanical processing method for achieving coarse grains in a superalloy article
JP2007031836A (en) Powder metal rotating components for turbine engines and process therefor
US3698962A (en) Method for producing superalloy articles by hot isostatic pressing
US3765958A (en) Method of heat treating a formed powder product material
US3702791A (en) Method of forming superalloys
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
JP2914884B2 (en) High strain rate deformation of nickel-based superalloy compacts
US4655855A (en) Method for refining microstructures of prealloyed titanium powder compacted articles
JP3071118B2 (en) Method for producing NiAl intermetallic compound to which fine additive element is added
US4808250A (en) Method for refining microstructures of blended elemental titanium powder compacts
US4410488A (en) Powder metallurgical process for producing a copper-based shape-memory alloy
US4536234A (en) Method for refining microstructures of blended elemental powder metallurgy titanium articles