JP2007031836A - Powder metal rotating components for turbine engines and process therefor - Google Patents

Powder metal rotating components for turbine engines and process therefor Download PDF

Info

Publication number
JP2007031836A
JP2007031836A JP2006198882A JP2006198882A JP2007031836A JP 2007031836 A JP2007031836 A JP 2007031836A JP 2006198882 A JP2006198882 A JP 2006198882A JP 2006198882 A JP2006198882 A JP 2006198882A JP 2007031836 A JP2007031836 A JP 2007031836A
Authority
JP
Japan
Prior art keywords
powder
forging
weight
produce
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006198882A
Other languages
Japanese (ja)
Inventor
Joseph J Jackson
ジョセフ・ジェイ・ジャクソン
Jon C Schaeffer
ジョン・コンラッド・シェイファー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2007031836A publication Critical patent/JP2007031836A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/006Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine wheels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Forging (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for producing turbine rotors and other large rotating components of power-generating gas turbine engines using powder metallurgy techniques. <P>SOLUTION: The process involves forming a powder of a gamma prime or gamma double prime precipitation-strengthened nickel-based superalloy whose particles are about 0.100 mm in diameter or smaller. The powder is placed in a can and consolidated to produce an essentially fully dense consolidation, which is then hot worked to produce a billet of a size sufficient to form a forging of at least 2300 kg. The billet is forged at a temperature and strain rate to produce a forging with a uniform fine grain of ASTM 10 or finer. Thereafter, the forging may undergo a heat treatment to achieve a desired balance of mechanical properties while retaining a uniform grain size of ASTM 10 or finer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、出発材料として金属粉末を用いて大型鍛造品を製造する方法に関する。より具体的には、本発明は、粉末冶金法を用いてタービンエンジンのタービンロータ及びその他の大型回転構成部品を製造する方法を対象とする。   The present invention relates to a method for producing large forgings using metal powder as a starting material. More specifically, the present invention is directed to a method of manufacturing a turbine engine turbine rotor and other large rotating components using powder metallurgy.

現在、本発明の出願人のH及びFBクラスのガスタービンのような、発電産業において使用される一部の最新式地上設置ガスタービンエンジン用のロータ構成部品は、合金718及び合金706のようなガンマダブルプライム(γ’’)析出強化ニッケル基超合金で形成される。例えば、ホイール及びスペーサは、約27〜約36インチ(約70〜約90cm)の直径を有する三重溶解(真空誘導溶解(VIM)/エレクトロスラグ再溶解(ESR)/真空アーク再溶解(VAR))したインゴットで、このインゴットを次にビレット化しかつ鍛造して形成される。潜在的な化学的又は微細構造的偏析とインゴットから最終鍛造品までに生じる予想熱間加工損失とのために、出発インゴットの重量は、最終鍛造品の重量の約1.5〜3倍、また最終機械加工部品の重量の約2.5〜7倍でなければならない。これらの大きな材料損失に加えて、現在の最良の処理実施法では一般的に、ビレット(例えば、ASTM00又はそれよりも大きい)及び最終鍛造品(例えば、ASTM8.0又はそれよりも大きい)(全体を通して、米国材料試験協会によって確立された標準スケールによるASTM粒子サイズを参照)内に不均一かつ比較的粗粒な微細構造を生じる。ビレット粒子サイズは、大き過ぎて何らかの適正な超音波検査で潜在的な寿命制限欠陥を識別することができず、その結果、超音波検査は現在使用されているビレットには実施されない。従って、最終鍛造品は、潜在的な寿命制限欠陥を超音波検査しなければならず、一般的に最小0.25インチ(約6mm)厚さの音波形状検査用外被を必要とし、この外被が、最終鍛造形状のエンベロープを形成することになる。   Currently, rotor components for some state-of-the-art gas turbine engines used in the power generation industry, such as the Applicant's H and FB class gas turbines, such as Alloy 718 and Alloy 706 Made of gamma double prime (γ ″) precipitation strengthened nickel-base superalloy. For example, the wheel and spacer are triple melt (vacuum induction melt (VIM) / electroslag remelt (ESR) / vacuum arc remelt (VAR)) having a diameter of about 27 to about 36 inches (about 70 to about 90 cm). This ingot is then billeted and formed by forging. Due to potential chemical or microstructural segregation and the expected hot working losses that occur from ingot to final forging, the weight of the starting ingot is about 1.5 to 3 times the weight of the final forging, and It should be about 2.5-7 times the weight of the final machined part. In addition to these large material losses, current best processing practices generally include billets (eg, ASTM 00 or greater) and final forgings (eg, ASTM 8.0 or greater) (overall Through non-uniform and relatively coarse grained microstructures within the standard scale established by the American Materials Testing Association). The billet particle size is too large to allow any proper ultrasonic inspection to identify potential life limit defects, so that ultrasonic inspection is not performed on currently used billets. Therefore, the final forging must be ultrasonically inspected for potential life-limiting defects and generally requires a minimum 0.25 inch (about 6 mm) thick sonic shape inspection jacket. The cover forms the final forged envelope.

これと対照的に、航空機ガスタービンエンジンのロータ構成部品は、粉末冶金(PM)法によって形成されることが多く、この粉末冶金法は、クリープ、引張り及び疲労割れ成長特性の良好なバランスをもたらして航空機ガスタービンエンジンの性能要件を満たすことが知られている。一般的に、粉末金属構成部品は、金属粉末を押出し圧密体のような何らかの形態として圧密化し、次に圧密化材料を所望の外形に等温又は熱間型鍛造し、最後に鍛造品を熱処理した後に最終機械加工して製造プロセスを完了することによって製造される。圧密化及び鍛造の処理ステップは、材料内に非常に微細な粒子サイズを保持して、ビレットの高分解能超音波検査を可能にし、金型荷重を最小にし、かつ最終鍛造品の形状形成を向上させるように設計される。最新式地上設置ガスタービンエンジンのタービンシステムとは異なり、航空機ガスタービンエンジンのPMロータ構成部品は一般的に、これら部品に要求される非常に高い温度及び応力性能を有するガンマプライム(γ’)析出強化ニッケル基超合金で形成されてきた。高温での耐疲労割れ成長性及び機械的特性を改善するために、これら合金の幾つかは、そのガンマプライムソルバス温度以上に熱処理(通常、超ソルバス熱処理と呼ばれる)されて、粒子の顕著かつ均一な粗大化を引き起こす。大型発電タービンに使用するニッケル基超合金ロータは、現在ではその使命及び構成部品機械特性要件を満たすのに耐熱ガンマプライム合金もこの粒子粗大化処理も必要としないが、そのような耐熱合金は、近い将来に、タービン効率を高めるか又は構成部品の寿命を延ばすために必要なものになると予測できる。   In contrast, aircraft gas turbine engine rotor components are often formed by powder metallurgy (PM), which provides a good balance of creep, tensile and fatigue crack growth properties. It is known to meet the performance requirements of aircraft gas turbine engines. In general, powder metal components are compacted in some form, such as extruded compacted metal powder, then isothermal or hot die forged the consolidated material to the desired contour, and finally the forged product is heat treated. Manufactured after final machining to complete the manufacturing process. Consolidation and forging process steps maintain a very fine particle size in the material, allowing high-resolution ultrasonic inspection of billets, minimizing mold load and improving final forging shape formation Designed to let you. Unlike state-of-the-art gas turbine engine turbine systems, PM rotor components in aircraft gas turbine engines typically have gamma prime (γ ') deposition that has the very high temperature and stress performance required for these components. It has been formed from a reinforced nickel-base superalloy. In order to improve fatigue crack growth resistance and mechanical properties at high temperatures, some of these alloys have been heat treated above their gamma prime solvus temperature (usually referred to as supersolvus heat treatment) to make the particles noticeable and Causes uniform coarsening. Nickel-based superalloy rotors used in large power turbines currently require neither heat-resistant gamma prime alloy nor this grain coarsening treatment to meet their mission and component mechanical property requirements. It can be expected in the near future that it will be necessary to increase turbine efficiency or extend component life.

粉末金属ニッケル基超合金は、一般的に2000ポンド(約900kg)よりも軽い航空機エンジンタービンロータ鍛造品における使用では処理されてきたが、粉末金属法は、5000ポンド(約2300kg)を超える重量になる可能性がある、発電産業で使用するガスタービンに必要な非常に大型の鍛造品を製造するのには用いられてこなかった。しかしながら、粉末冶金法を用いて発電ガスタービンエンジンのロータ構成部品に適した大型ニッケル基超合金鍛造品を製造することができることは、よりニアネットシェイプの鍛造品を製造し、それによって材料損失を低減する可能性をもたらすことになる。最近まで、これら発電タービン合金は、低合金含有量、すなわち比較的容易にかつ最小限の化学的又は微細構造的偏析で溶解及び処理することが可能である3つ又は4つの主要元素を有する鉄又はニッケル基であった。これら合金の粉末金属バージョンは、容易にロータ鍛造品に転換することができる鋳造インゴットに比べて、処理の容易さ又は特性利得のいずれにおいてもPMの基準原価がより高いことを補うほど大きな利点をもたらさないことになる。しかしながら、合金718及びそれ以上の合金のようなより複雑な合金が好ましくなり、また鍛造品の寸法が増大し続けるにつれて、化学的及び微細構造的偏析、粗大粒子インゴットを最終鍛造品に転換することに関連する高い材料損失、及び大型かつ高強度鍛造品を処理する生産能力の限界についての関心により、より高い基準原価のPM合金は潜在的により費用効果があるものになってきている。処理損失の低減、生産能力の拡大、微粒子PMビレット及び部品の検査性の向上、並びによりニアネットシェイプの鍛造品を製造することができることは全て、現在の鋳造プラス鍛造実施法によるよりもPMからより低価格の大型ロータ鍛造品を達成することに対する推進要因である。
米国特許第6,315,846号公報 米国特許第6,531,002号公報 米国特許第5,413,752号公報 米国特許第5,529,643号公報 米国特許第5,571,345号公報 米国特許第5,584,947号公報 米国特許第5,584,948号公報
Although powder metal nickel-base superalloys have been processed for use in aircraft engine turbine rotor forgings, which are typically lighter than 2000 pounds, the powder metal process can weigh over 5000 pounds (about 2300 kg). It has not been used to produce the very large forgings necessary for gas turbines used in the power generation industry. However, the ability to use powder metallurgy to produce large nickel-based superalloy forgings suitable for power gas turbine engine rotor components produces more near net shape forgings, thereby reducing material loss. Will bring the possibility to reduce. Until recently, these power turbine alloys have low alloy content, ie iron with three or four main elements that can be dissolved and processed relatively easily and with minimal chemical or microstructural segregation. Or it was nickel group. The powder metal versions of these alloys offer significant advantages to compensate for the higher base cost of PM in either ease of processing or characteristic gain compared to cast ingots that can be easily converted to rotor forgings. Will not bring. However, as more complex alloys such as alloy 718 and higher are preferred and the size of the forging continues to increase, convert chemical and microstructure segregation, coarse grain ingots to the final forging. Due to the high material loss associated with and the limitations of production capacity to process large and high strength forgings, higher reference cost PM alloys are becoming potentially more cost effective. Reduced processing losses, increased production capacity, improved inspection of fine particulate billets and parts, and the ability to produce more near net shape forgings are all from PM than with current casting plus forging practices It is a driving factor for achieving lower cost large rotor forgings.
US Pat. No. 6,315,846 US Pat. No. 6,531,002 US Pat. No. 5,413,752 US Pat. No. 5,529,643 US Pat. No. 5,571,345 US Pat. No. 5,584,947 US Pat. No. 5,584,948

本発明は、粉末冶金法を用いて発電ガスタービンエンジンのタービンロータ及びその他の大型回転構成部品を製造する方法を提供する。本方法は、粗大粒子インゴットから微粒子鍛造品への転換の間における収率損失を排除することによって最終鍛造品重量に対する投入重量の比率を著しく低下させる。本方法はまた、実質的に化学的及び微細構造的偏析を排除し、また微細かつ均一な粒子サイズ(ASTM10の又はそれよりも微細な)をもたらし、この微細かつ均一な粒子サイズは必要な音波形状外被を減少させ、従って最終鍛造品重量をさらに軽減する利点がある。加えて、微粒子PMビレットの使用は、最終鍛造品を生成するのに必要な押込み力を低下させ、それによって資本設備費用を低減しかつ潜在的な供給基盤を拡大する可能性を有する。   The present invention provides a method for manufacturing turbine rotors and other large rotating components of power generation gas turbine engines using powder metallurgy. The method significantly reduces the ratio of input weight to final forging weight by eliminating yield loss during the conversion from coarse particle ingots to fine particle forgings. The method also substantially eliminates chemical and microstructural segregation and results in a fine and uniform particle size (ASTM 10 or finer), which is the required acoustic wave size. There is the advantage of reducing the shape envelope and thus further reducing the final forged weight. In addition, the use of particulate PM billets has the potential to reduce the indentation force required to produce the final forging, thereby reducing capital equipment costs and expanding the potential supply base.

本発明の方法は、その粒子の直径が約0.004インチ(約0.100mm)又はそれよりも小さい析出強化(ガンマプライム又はガンマダブルプライム)ニッケル基超合金の粉末を形成するステップを含む。粉末は、缶内に配置して缶を制御環境内で真空排気しかつ密封し、次に本質的に完全密度の圧密体を生成する温度、時間及び圧力で圧密化される。圧密体は次に、ASTM10の又はそれよりも微細な均一な粒子サイズを有しかつ少なくとも5000ポンド(約2300kg)の鍛造品を形成するのに十分な寸法のビレットを生成する温度で熱間加工される。ビレットは次に、全体にわたってASTM10の又はそれよりも微細な均一な微粒子を有する鍛造品を生成するように選択した温度及びひずみ速度で鍛造される。その後、鍛造品には、ASTM10の又はそれよりも微細な粒子サイズを保持しながら所望の機械的特性のバランスを達成するように設計された熱処理を行うのが好ましい。   The method of the present invention includes forming a precipitation strengthened (gamma prime or gamma double prime) nickel-base superalloy powder having a particle diameter of about 0.004 inches (about 0.100 mm) or less. The powder is placed in a can and the can is evacuated and sealed in a controlled environment, and then compacted at a temperature, time and pressure that produces an essentially full density compact. The compact is then hot worked at a temperature that produces a uniform particle size of ASTM 10 or finer and a sufficient size to form a billet that is at least 5000 pounds (about 2300 kg) in size. Is done. The billet is then forged at a temperature and strain rate selected to produce a forging having uniform fine particles of ASTM 10 or finer throughout. The forged product is then preferably subjected to a heat treatment designed to achieve a desired balance of mechanical properties while maintaining a particle size of ASTM 10 or finer.

上記方法の結果として、以前は従来型の鋳造及び鍛造法による処理に限定されていた非常に大型のロータ構成部品が、今や粉末冶金法によって、材料損失を低減しかつこの粉末冶金法で達成することができる微細構造的、組成的及び機械的特性の利点を有する状態で形成することができる。   As a result of the above method, very large rotor components, previously limited to conventional casting and forging processes, now reduce material loss and achieve with this powder metallurgy process by powder metallurgy. It can be formed with the advantages of microstructural, compositional and mechanical properties.

本発明の他の目的及び利点は、以下の詳細な説明から一層よく理解されるであろう。   Other objects and advantages of this invention will be better appreciated from the following detailed description.

本発明は、粉末冶金法を用いて、一般的に5000ポンド(約2300kg)を超える非常に大型のニッケル基合金ロータ鍛造品を製造する方法を提供する。粉末金属合金を用いてニッケルベースの圧密体が生成され、次に圧密体はビレットに熱間加工され、その後、発電産業で使用する大型ガスタービンエンジンに適した寸法の大型タービンホイール、スペーサ又はその他の回転構成部品に鍛造される。   The present invention provides a method for producing very large nickel-base alloy rotor forgings, typically over 5000 pounds, using powder metallurgy. A powder-based alloy is used to produce a nickel-based compact, which is then hot-worked into billets and then large turbine wheels, spacers or other dimensions that are suitable for large gas turbine engines used in the power generation industry Forged into rotating components.

本発明の利点を示すのに特に適した合金は、市場で購入可能な合金725に基づいたガンマプライム析出強化ニッケル基超合金である。本明細書でARA725として特定した超合金は、重量で約19〜約23%のクロム、約7〜約8%のモリブデン、約3〜約4%のニオブ、約4〜約6%の鉄、約0.3〜約0.6%のアルミニウム、約1〜約1.8%のチタン、約0.002〜約0.004%のホウ素、最大約0.35%のマンガン、最大約0.2%のケイ素、最大約0.03%の炭素、残部のニッケル及び付随不純物の組成を有する。Hibner他の米国特許第6,315,846号及びHenry他の米国特許第6,531,002号に記載されており、合金を非常に大型の鍛造品を粉末金属で製造するのに特に良く適したものにすると考えられる従来型の鋳造プラス鍛造ARA725の特性は、合金718と同様な室温及び高温引張り強度及び延性を含み、合金718に比べて耐時間依存割れ成長性が著しく改善されている。ARA725の粉末冶金バージョンに使用できる機械的特性データはまだないが、適正に処理した粉末金属鍛造品は、鋳造プラス鍛造の鍛造品と同様又は場合によってはそれよりも良好な特性を有することになると予測される。本発明はARA725合金に関して説明するが、本発明の教示は、合金625、LC Astroloy(U700)、Udimet720、ARA054、ARA017のようなその他のガンマプライム及びガンマダブルプライム析出強化ニッケル基超合金、並びに合金718と同等又はそれよりも良好な引張り特性と共に合金718に比べて優れた耐時間依存割れ成長性を有するその他のあらゆるニッケル基超合金に適用可能である。   A particularly suitable alloy to demonstrate the advantages of the present invention is a gamma prime precipitation strengthened nickel base superalloy based on commercially available alloy 725. The superalloy identified herein as ARA725 is about 19 to about 23% by weight chromium, about 7 to about 8% molybdenum, about 3 to about 4% niobium, about 4 to about 6% iron, About 0.3 to about 0.6% aluminum, about 1 to about 1.8% titanium, about 0.002 to about 0.004% boron, up to about 0.35% manganese, up to about 0.00. It has a composition of 2% silicon, up to about 0.03% carbon, the balance nickel and associated impurities. US Pat. No. 6,315,846 to Hibner et al. And US Pat. No. 6,531,002 to Henry et al. Are particularly well suited for making very large forgings with powder metal. The properties of the conventional cast plus forged ARA 725 considered to be included include room temperature and high temperature tensile strength and ductility similar to alloy 718, with significantly improved resistance to time-dependent crack growth compared to alloy 718. No mechanical property data is available yet for the powder metallurgy version of ARA725, but properly processed powder metal forgings will have similar or in some cases better properties than casting plus forgings. is expected. Although the present invention will be described with reference to an ARA725 alloy, the teachings of the present invention include alloys 625, other gamma prime and gamma double prime precipitation strengthened nickel-base superalloys such as LC Astroloy (U700), Udimet 720, ARA054, ARA017, and alloys It can be applied to any other nickel-base superalloy that has excellent time-dependent crack growth resistance compared to alloy 718 with tensile properties equivalent to or better than 718.

本発明の関心のある用途では、最適な処理性及び機械的特性が、ASTM10よりも大きくない均一な粒子サイズによって達成される。ASTM10よりも大きい粒子サイズは、そのような粒子の存在が構成部品の耐低サイクル疲労性を著しく低下させるおそれがあり、引張り及び高サイクル疲労(HCF)強度のような構成部品の他の機械的特性に悪影響を与えるおそれがあり、熱間加工荷重要件を増大させ、またビレット及び厚肉鍛造品の徹底的な超音波検査を妨げるという点で望ましくない。従って、本発明の好ましい態様は、ニッケル基超合金内に均一な粒子サイズを達成することであり、このニッケル基超合金内では不規則な粒子成長を防止してASTM10の又はそれよりも微細な最大粒子サイズを生成するようにする。   In interesting applications of the present invention, optimum processability and mechanical properties are achieved with a uniform particle size not larger than ASTM 10. Larger particle sizes than ASTM 10 can cause the presence of such particles to significantly reduce the low cycle fatigue resistance of the component, and other mechanical components such as tensile and high cycle fatigue (HCF) strength. Properties can be adversely affected, increasing hot working load requirements and undesirable in that they prevent thorough ultrasonic inspection of billets and thick forgings. Accordingly, a preferred embodiment of the present invention is to achieve a uniform particle size within the nickel-base superalloy, which prevents irregular grain growth within the nickel-base superalloy and is finer than that of ASTM 10 or finer. Try to produce maximum particle size.

本発明の方法は、その化学的性質が所望の合金(例えば、ARA725)の性質である溶解物を形成するステップを含む。これは一般的に、VIM処理法によって達成されるが、ESR又はVAR処理法の適応によっても行うことができ、その後の微粒化又は他の粉末製造方法のための溶解物を形成することができる。好ましいガンマプライム及びガンマダブルプライム析出強化合金内に含まれた元素(例えば、アルミニウム及びチタン)の反応性を考慮すると、溶解物は真空下又は不活性環境内(以下では、制御環境)で形成される。溶解条件内及び化学的仕様範囲内にある間に、合金は、微粒化法又はほぼ球形の粉末粒子を生成するのに適した別の処理法によって粉末に転換される。本発明の好ましい態様によると、粒子は、微粒化法によって、その大部分が0.004インチ(約0.100mm)又はそれより小さい直径を有するように生成される。粉末は次に、制御環境内でふるいにかけられ、その後のビレット/鍛造品の欠陥の可能性を減少させる目的で0.004インチ(約0.100mm)よりも大きい粒子を実質的に全て除去される。より大きい粉末サイズは、0.004インチ(約0.100mm)よりも大きい不良粒子(例えば、セラミックスなど)をスクリーニング法による以外の方法で除去することができる場合には、許容可能とすることができる。本発明で要求される寸法、例えば5000〜20000ポンド(約2300〜約10000kg)のビレットを生成するのに必要な大量の粉末の故に、本発明の方法に用いるのに十分な粉末を蓄積するように複数の微粒化ステップにより生成した粉末を混合することが必要である場合がある。そのような粉末のあらゆる必要な保存は、制御環境容器内にするのが好ましい。   The method of the present invention includes the step of forming a melt whose chemical properties are those of the desired alloy (eg, ARA725). This is generally achieved by the VIM treatment method, but can also be done by adaptation of the ESR or VAR treatment method to form a lysate for subsequent atomization or other powder manufacturing methods. . Considering the reactivity of the elements contained in the preferred gamma prime and gamma double prime precipitation strengthened alloys (eg, aluminum and titanium), the melt is formed under vacuum or in an inert environment (hereinafter controlled environment). The While within the melting conditions and within the chemical specification range, the alloy is converted to a powder by atomization or another processing method suitable to produce approximately spherical powder particles. According to a preferred embodiment of the present invention, the particles are produced by the atomization process so that most of them have a diameter of 0.004 inches (about 0.100 mm) or smaller. The powder is then screened in a controlled environment to remove substantially all particles larger than 0.004 inches (about 0.100 mm) in order to reduce the likelihood of subsequent billet / forging defects. The Larger powder sizes may be acceptable if defective particles larger than 0.004 inches (eg, ceramics) can be removed by methods other than screening methods. it can. Because of the large amount of powder required to produce billets of the dimensions required by the present invention, for example, 5000-20000 pounds (about 2300-10,000 kg), it will accumulate enough powder to be used in the method of the present invention. It may be necessary to mix powders produced by multiple atomization steps. Any necessary storage of such powder is preferably in a controlled environment container.

十分な量の粉末が生成されると、粉末は、その寸法が圧密化後にビレット寸法要件を満たすことになる適当な缶、好ましくは軟鋼缶内に配置される。缶の装填は制御環境(不活性ガス又は真空)内で行われ、その後缶は、中温加熱(例えば、約200°F(約93°C)以上)を行って湿気及びあらゆる揮発物を放出させながら真空排気され、次に密封される。その後、缶及びその内容物は、少なくとも約99.9%の理論密度を有する圧密体を生成するのに十分な温度、時間及び圧力で圧密化される。圧密体は、熱間静水圧圧縮成形(HIP)、押出し、又は他の適当な圧密化方法によって達成することができる。   Once a sufficient amount of powder has been produced, the powder is placed in a suitable can, preferably a mild steel can, whose dimensions will meet billet size requirements after consolidation. The can is loaded in a controlled environment (inert gas or vacuum), after which the can is subjected to medium temperature heating (eg, about 200 ° F. (about 93 ° C. or higher)) to release moisture and any volatiles. While being evacuated, it is then sealed. The can and its contents are then consolidated at a temperature, time and pressure sufficient to produce a consolidated body having a theoretical density of at least about 99.9%. Consolidation can be achieved by hot isostatic pressing (HIP), extrusion, or other suitable consolidation methods.

粉末圧密体は次に、押出し、すえ込み及び引抜き、などのような幾つかの方法のいずれかによって熱間加工され、鍛造に適当な投入ビレット寸法を生成する。投入ビレットを生成するのに用いる条件は、最終部品形状に鍛造する前にその超音波検査を可能にするために、全体にわたって均一なASTM10の又はそれよりも微細な粒子サイズを生じるものにすべきである。   The powder compact is then hot worked by any of several methods, such as extrusion, upsetting and drawing, to produce the appropriate billet dimensions for forging. The conditions used to generate the input billet should produce a uniform ASTM 10 or finer particle size throughout to allow its ultrasonic inspection before forging into the final part shape. It is.

ビレットは次に、大型産業用タービンの合金706及び合金718ロータ鍛造品を製造するのに現在使用されているが、微粒子ビレット法の利点を持つように改良した方法のような公知の方法を用いて鍛造される。鍛造は、最終鍛造ダイ空洞の完全な充填を可能にし、破損を防ぎ、かつ材料内にASTM10よりも大きくない均一な微粒子サイズを生成又は保持するような温度及び荷重条件で行われる。特に、化学的及び微細構造的偏析が実質的に排除され、また非常に微細な粒子サイズを粉末金属出発材料の使用により達成することができるので、最終鍛造品重量に対する投入(ビレット)重量の比率は、著しく低下させることができる。例えば、出発ビレットの重量は、最終鍛造品の重量のわずか約1.2〜約1.5倍、また最終機械加工ロータ構成部品の重量の約1.8〜約4倍と少なくすることができる。この重量軽減は、微粒子ビレットの処理性の改善とその音波検査性の増大とによって可能になる。   Billets are then currently used to produce large industrial turbine alloy 706 and alloy 718 rotor forgings, but using known methods such as those modified to have the advantages of the fine particle billet method. And forged. Forging is performed at temperature and load conditions that allow complete filling of the final forged die cavity, prevent breakage, and generate or retain a uniform fine particle size that is not larger than ASTM 10 in the material. In particular, the ratio of the billet weight to the final forging weight, since chemical and microstructural segregation is virtually eliminated and very fine particle sizes can be achieved through the use of powder metal starting materials. Can be significantly reduced. For example, the weight of the starting billet can be as low as about 1.2 to about 1.5 times the weight of the final forging and about 1.8 to about 4 times the weight of the final machined rotor component. . This weight reduction is made possible by improving the processability of the fine particle billet and increasing its sound testability.

得られたロータ鍛造品には、潜在的な寿命制限欠陥の超音波検査を行うのが好ましい。しかしながら、投入ビレットの超音波検査性が高められることによって、構成部品処理のこのステップは、場合によっては排除することができ、このことによって、よりニアネットシェイプの鍛造品を製造することが可能になり、また投入重量をさらに減少させることが可能になることになる。   The resulting rotor forging is preferably subjected to ultrasonic inspection for potential life-limiting defects. However, by enhancing the ultrasonic inspection of the billet, this step of component processing can be eliminated in some cases, which makes it possible to produce more near net shape forgings. In addition, the input weight can be further reduced.

検査(実行した場合には)の後に、あらゆる適当な公知の方法によって最終機械加工を行って、最終機械加工ロータ構成部品を生成する。ロータ構成部品の必要な機械的特性を達成するために、機械加工に先だって、鍛造品は、長期間の産業用ガスタービンの稼働のための好ましい特性のバランスを達成する温度及び時間で溶体化熱処理及びエージング処理される。ARA725合金のための適正な熱処理法の例示的な実施例は、約1650°F(約900°C)の温度でおよそ4時間溶体化熱処理し、その後2つのステップ、すなわち約1400°F(約760°C)の温度でおよそ8時間エージングするステップと、次に約1150°F(約620°C)まで毎分100°F(約56°C)の速度で冷却しておよそ8時間その温度に保持し、その後空気冷却するステップとが続く処理を含む。   After inspection (if performed), final machining is performed by any suitable known method to produce the final machined rotor component. To achieve the required mechanical properties of the rotor components, prior to machining, the forgings are solution heat treated at temperatures and times that achieve a favorable balance of properties for long-term industrial gas turbine operation. And aging processing. An illustrative example of a suitable heat treatment method for the ARA725 alloy is a solution heat treatment at a temperature of about 1650 ° F. (about 900 ° C.) for approximately 4 hours, followed by two steps: about 1400 ° F. (about Aging at a temperature of about 760 ° C for about 8 hours, and then cooling to about 1150 ° F (about 620 ° C) at a rate of 100 ° F per minute (about 56 ° C) for about 8 hours. Followed by a step of air cooling.

好ましいARA725合金に加えて、上記の方法は、その組成及び温度性能が様々な特定の製品要求を満たす広範な金属合金に適用することができる。例えば、不動酸化物、窒化物及び/又は炭化物のような従来型の強化及び/又は粒界固定分散質又はナノ分散質を含む合金は、長期安定性を与えるのに望ましいといえる。コバルト、タングステン、モリブデン、タンタル、ニオブなどのような高温強化元素をより高いレベルで含む合金は、最大1800°F(約1000°C)又はそれよりも高い温度での稼働を必要とする用途に望ましいといえる。特定の合金組成の直接溶解及び微粒化に加えて、2つ又はそれ以上の別個に処理した粉末を機械的に合金化することもまた、ロータ構成部品の所望の特性を得るために使用することができる。   In addition to the preferred ARA725 alloy, the above method can be applied to a wide range of metal alloys whose composition and temperature performance meet various specific product requirements. For example, conventional reinforcements such as passive oxides, nitrides and / or carbides and / or alloys containing intergranular fixed or nanodispersoids may be desirable to provide long-term stability. Alloys containing higher levels of high temperature strengthening elements such as cobalt, tungsten, molybdenum, tantalum, niobium, etc., for applications that require operation at temperatures up to 1800 ° F. (about 1000 ° C.) or higher. This is desirable. In addition to direct melting and atomization of a specific alloy composition, mechanical alloying of two or more separately processed powders can also be used to obtain the desired properties of the rotor component. Can do.

本発明を好ましい実施形態に関して説明してきたが、当業者がその他の形態を採用することができることは明らかである。従って、本発明の技術的範囲は、特許請求の範囲によってのみ限定されることになる。   While the invention has been described in terms of a preferred embodiment, it is apparent that other forms can be adopted by one skilled in the art. Accordingly, the technical scope of the present invention is limited only by the claims.

Claims (10)

ガンマプライム又はガンマダブルプライム析出強化ニッケル基超合金で構成部品を製造する方法であって、
前記超合金の粉末を形成するステップと、
前記粉末で缶を満たし、制御環境内で前記缶を真空排気しかつ密封するステップと、
圧密体を生成するための温度、時間及び圧力で前記缶及びその中の粉末を圧密化するステップと、
前記圧密体を熱間加工して少なくとも2300kgの鍛造品を形成するのに十分な寸法のビレットを生成するステップと、
全体にわたってASTM10の又はそれよりも微細な均一な微粒子を有する鍛造品を生成するための温度及びひずみ速度で前記ビレットを鍛造するステップと、
を含む方法。
A method of manufacturing a component with gamma prime or gamma double prime precipitation strengthened nickel-base superalloy,
Forming the superalloy powder;
Filling the can with the powder and evacuating and sealing the can in a controlled environment;
Consolidating the can and the powder therein at a temperature, time and pressure to produce a compact;
Hot-working the compacted body to produce billets of sufficient dimensions to form at least a 2300 kg forging;
Forging the billet at a temperature and strain rate to produce a forging having uniform fine particles of ASTM 10 or finer throughout;
Including methods.
前記ニッケル基超合金が、重量で19〜23%のクロム、7〜8%のモリブデン、3〜4%のニオブ、4〜6%の鉄、0.3〜0.6%のアルミニウム、1〜1.8%のチタン、0.002〜0.004%のホウ素、最大0.35%のマンガン、最大0.2%のケイ素、最大0.03%の炭素、残部のニッケル及び付随不純物からなる組成を有する、請求項1記載の方法。   The nickel-base superalloy is 19-23% chromium by weight, 7-8% molybdenum, 3-4% niobium, 4-6% iron, 0.3-0.6% aluminum, Consists of 1.8% titanium, 0.002-0.004% boron, up to 0.35% manganese, up to 0.2% silicon, up to 0.03% carbon, the balance nickel and associated impurities The method of claim 1 having a composition. 前記形成するステップが、制御環境内で前記ニッケル基超合金の溶解物を生成するステップと、次に前記溶解物を急速に冷却して前記粉末を形成するステップとを含む、請求項1及び請求項2のいずれか1項記載の方法。   The said forming step includes the steps of generating a melt of the nickel-base superalloy in a controlled environment and then rapidly cooling the melt to form the powder. Item 3. The method according to any one of Items 2. 前記形成するステップが、制御環境内で前記粉末をふるいにかけて直径が0.100mmよりも大きい粒子を全て除去するステップをさらに含む、請求項3記載の方法。   The method of claim 3, wherein the forming step further comprises sieving the powder in a controlled environment to remove all particles having a diameter greater than 0.100 mm. 前記形成するステップが、前記粉末を前記ニッケル基超合金の第2の粉末と混合するステップをさらに含む、請求項3又は請求項4のいずれか1項記載の方法。   5. A method according to any one of claims 3 or 4, wherein the forming step further comprises mixing the powder with a second powder of the nickel-base superalloy. 前記圧密化ステップによって形成された圧密体が、少なくとも99.9%の理論密度を有する、請求項1から請求項5のいずれか1項記載の方法。   6. A method according to any one of claims 1 to 5, wherein the compact formed by the consolidation step has a theoretical density of at least 99.9%. 前記鍛造ステップによって生成された鍛造品が、少なくとも2300kgの重量である、請求項1から請求項6のいずれか1項記載の方法。   The method according to claim 1, wherein the forging produced by the forging step has a weight of at least 2300 kg. 前記熱間加工ステップによって形成されたビレットが、前記鍛造品の重量の1.2〜1.5倍の重量である、請求項1から請求項7のいずれか1項記載の方法。   The method according to any one of claims 1 to 7, wherein the billet formed by the hot working step has a weight of 1.2 to 1.5 times the weight of the forged product. 前記熱間加工ステップによって形成されたビレットが、前記ロータ構成部品の重量の1.8〜4倍の重量である、請求項1から請求項8のいずれか1項記載の方法。   The method according to any one of claims 1 to 8, wherein the billet formed by the hot working step has a weight of 1.8 to 4 times the weight of the rotor component. 前記構成部品が、タービンホイール及びスペーサから成る群から選択されたガスタービンエンジンロータ構成部品である、請求項1から請求項9のいずれか1項記載の方法。   The method of any one of claims 1 to 9, wherein the component is a gas turbine engine rotor component selected from the group consisting of a turbine wheel and a spacer.
JP2006198882A 2005-07-22 2006-07-21 Powder metal rotating components for turbine engines and process therefor Withdrawn JP2007031836A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/161,114 US20070020135A1 (en) 2005-07-22 2005-07-22 Powder metal rotating components for turbine engines and process therefor

Publications (1)

Publication Number Publication Date
JP2007031836A true JP2007031836A (en) 2007-02-08

Family

ID=37679231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198882A Withdrawn JP2007031836A (en) 2005-07-22 2006-07-21 Powder metal rotating components for turbine engines and process therefor

Country Status (3)

Country Link
US (1) US20070020135A1 (en)
JP (1) JP2007031836A (en)
KR (1) KR20070012274A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157965A (en) * 2010-02-02 2011-08-18 General Electric Co <Ge> Shaped rotor wheel capable of carrying multiple blade stages
JP2012509407A (en) * 2008-11-19 2012-04-19 サンドビック インテレクチュアル プロパティー アクティエボラーグ Aluminum oxide forming nickel base alloy

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7237730B2 (en) * 2005-03-17 2007-07-03 Pratt & Whitney Canada Corp. Modular fuel nozzle and method of making
US8316541B2 (en) 2007-06-29 2012-11-27 Pratt & Whitney Canada Corp. Combustor heat shield with integrated louver and method of manufacturing the same
US20090057275A1 (en) * 2007-08-31 2009-03-05 General Electric Company Method of Repairing Nickel-Based Alloy Articles
FR2935396B1 (en) * 2008-08-26 2010-09-24 Aubert & Duval Sa PROCESS FOR THE PREPARATION OF A NICKEL - BASED SUPERALLIATION WORKPIECE AND PIECE THUS OBTAINED
US20110038748A1 (en) * 2009-08-14 2011-02-17 General Electric Company Powder metal mold
US20120051919A1 (en) * 2010-08-31 2012-03-01 General Electric Company Powder compact rotor forging preform and forged powder compact turbine rotor and methods of making the same
CN102095799B (en) * 2010-12-21 2012-06-27 东北轻合金有限责任公司 Method for detecting defect of 7 series aluminium alloy forge piece by ultrasonic testing with immersion type probe
GB201317757D0 (en) * 2013-10-08 2013-11-20 Rolls Royce Plc A method of manufacturing an article by hot pressing and ultrasonically inspecting the article
GB2545004B (en) * 2015-12-03 2019-04-03 Rolls Royce Plc Method and apparatus for machining objects
US10247480B2 (en) 2017-04-28 2019-04-02 General Electric Company High temperature furnace
US11174734B2 (en) 2017-06-20 2021-11-16 Siemens Energy Global GmbH & Co. KG Life extension of power turbine disks exposed to in-service corrosion damage

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661156A (en) * 1985-10-03 1987-04-28 General Electric Company Nickel aluminide base compositions consolidated from powder
US4851190A (en) * 1987-07-27 1989-07-25 Williams International Corporation Method of making a multi-alloy turbine rotor disk
US5413752A (en) * 1992-10-07 1995-05-09 General Electric Company Method for making fatigue crack growth-resistant nickel-base article
US5571345A (en) * 1994-06-30 1996-11-05 General Electric Company Thermomechanical processing method for achieving coarse grains in a superalloy article
US5584947A (en) * 1994-08-18 1996-12-17 General Electric Company Method for forming a nickel-base superalloy having improved resistance to abnormal grain growth
US5584948A (en) * 1994-09-19 1996-12-17 General Electric Company Method for reducing thermally induced porosity in a polycrystalline nickel-base superalloy article
US5529643A (en) * 1994-10-17 1996-06-25 General Electric Company Method for minimizing nonuniform nucleation and supersolvus grain growth in a nickel-base superalloy
WO2000003053A1 (en) * 1998-07-09 2000-01-20 Inco Alloys International, Inc. Heat treatment for nickel-base alloys
US6531002B1 (en) * 2001-04-24 2003-03-11 General Electric Company Nickel-base superalloys and articles formed therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509407A (en) * 2008-11-19 2012-04-19 サンドビック インテレクチュアル プロパティー アクティエボラーグ Aluminum oxide forming nickel base alloy
JP2011157965A (en) * 2010-02-02 2011-08-18 General Electric Co <Ge> Shaped rotor wheel capable of carrying multiple blade stages

Also Published As

Publication number Publication date
US20070020135A1 (en) 2007-01-25
KR20070012274A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP2007031836A (en) Powder metal rotating components for turbine engines and process therefor
US8357328B2 (en) Methods for processing nanostructured ferritic alloys, and articles produced thereby
EP0421229B1 (en) Creep, stress rupture and hold-time fatigue crack resistant alloys
EP1666618B2 (en) Ni based superalloy and its use as gas turbine disks, shafts and impellers
CA1088784A (en) Elimination of carbide segregation to prior particle boundaries
JP2017122279A (en) Method for producing member made of titanium-aluminum based alloy, and the member
CN104759830B (en) The method of the metal material of production performance enhancing
US3671230A (en) Method of making superalloys
US6551372B1 (en) High performance wrought powder metal articles and method of manufacture
US5571345A (en) Thermomechanical processing method for achieving coarse grains in a superalloy article
US3902862A (en) Nickel-base superalloy articles and method for producing the same
JP2012051029A (en) Powder compact rotor forging preform and forged powder compact turbine rotor and method of making the same
US5098484A (en) Method for producing very fine microstructures in titanium aluminide alloy powder compacts
US5061324A (en) Thermomechanical processing for fatigue-resistant nickel based superalloys
CN105492639A (en) Superalloys and components formed thereof
US5424027A (en) Method to produce hot-worked gamma titanium aluminide articles
CN116287871B (en) Nickel-based superalloy for 650 ℃ and additive manufacturing method thereof
EP1779946B1 (en) Supersolvus hot isostatic pressing and ring rolling of hollow powder forms
JP4994843B2 (en) Nickel-containing alloy, method for producing the same, and article obtained therefrom
US5009704A (en) Processing nickel-base superalloy powders for improved thermomechanical working
US3698962A (en) Method for producing superalloy articles by hot isostatic pressing
US3765958A (en) Method of heat treating a formed powder product material
US3702791A (en) Method of forming superalloys
EP2283952A2 (en) Powder metal mold
US3775101A (en) Method of forming articles of manufacture from superalloy powders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090714

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090714

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20101130

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207