JPS62205202A - Production of stock for superplastic forging having fine crystal grains - Google Patents

Production of stock for superplastic forging having fine crystal grains

Info

Publication number
JPS62205202A
JPS62205202A JP4719786A JP4719786A JPS62205202A JP S62205202 A JPS62205202 A JP S62205202A JP 4719786 A JP4719786 A JP 4719786A JP 4719786 A JP4719786 A JP 4719786A JP S62205202 A JPS62205202 A JP S62205202A
Authority
JP
Japan
Prior art keywords
powder
superalloy
hip
temp
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4719786A
Other languages
Japanese (ja)
Inventor
Nobuyasu Kawai
河合 伸泰
Hiroshi Takigawa
滝川 博
Kenji Iwai
健治 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4719786A priority Critical patent/JPS62205202A/en
Publication of JPS62205202A publication Critical patent/JPS62205202A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a sintered material which has a fine crystal and permits superplastic forging by specifying temp. and pressure to specific conditions at the time of subjecting heat-resistant superalloy powder to pressurizing, molding and sintering by a hot hydrostatic pressing method. CONSTITUTION:The pulverized superalloy powder sized <=80mum is packed into a cylinder made of a stainless steel sheet and the inside of the cylinder is evacuated to a vacuum state at the time of producing a stock for superplastic forging by subjecting the powder of the superalloy made by a gaseous Ar atomization method to pressurizing, molding and sintering by the hot hydrostatic pressing (HIP) method. The raw material is subjected to the HIP treatment at the temp. lower by 250 deg.C than the melting temp. of the superalloy which is the raw material and under 1,000-2,000kg/cm<2> pressure at the time of subjecting the powder to pressurizing, molding and sintering by the HIP method. The treatment is so executed that the temp. in the central part of the superalloy molding which is the material to be treated is maintained at the above-mentioned temp. for at least >=30 minutes. The sintered superalloy stock of the fine crystal suitable for superplastic forging is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超塑性鍛造に適した微細結晶粒を有する素材の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a material having fine crystal grains suitable for superplastic forging.

(従来の技術) 耐熱超合金材料を超塑性鍛造して各種形状物に加工成形
する場合、結晶粒を微細にすれば超塑性挙動が発現し、
複雑な形状のものが容易に得られることは斯界周知の事
実であり、そのため結晶粒を微細にすべ〈従来、種々の
方法が試みられて来た。
(Conventional technology) When superplastically forging a heat-resistant superalloy material and processing it into various shapes, if the crystal grains are made finer, superplastic behavior will occur.
It is a well-known fact in the art that complex shapes can be easily obtained, and for this reason, various methods have been tried in the past to make crystal grains finer.

即ち、その1つはガスアトマイズにより得られた粉末に
対して予め歪みを冷間において付加するローラ通過によ
る圧延、アトライター処理、ボールミルによる衝撃その
他の冷間予歪付加処理を行い、処理された粉末をカプセ
ルに充填し、これを熱間静水圧プレス(以下、HIPと
略記する。)プロセスによって再結晶温度より若干低い
温度で圧密化し、微細粒を得る方法であり、他の1つは
耐熱超合金の溶融流をタンディツシュを介しアルゴンガ
ス等によるガスアトマイズチャンバ内に滴下状に流下さ
せ、溶滴を粉末化させると共にこの粉末をケース内に充
填し熱間にて押出加工し、粉末を圧密化すると同時に歪
を与えて結晶粒を微細化する方法である。
That is, one of them is powder obtained by gas atomization, which is subjected to cold pre-straining treatment such as rolling by passing through rollers, attritor treatment, impact using a ball mill, and other cold pre-straining treatments. The other method is to fill a capsule with the powder and compact it at a temperature slightly lower than the recrystallization temperature using a hot isostatic pressing (hereinafter abbreviated as HIP) process to obtain fine grains. The molten alloy flow is made to fall through a tundish into a gas atomization chamber using argon gas, etc., and the droplets are pulverized, and this powder is filled into a case and hot extruded to compact the powder. This method simultaneously applies strain to refine crystal grains.

ところが、これらの各方法においては、前者の方法では
、粉末に予歪を与えるために?トライター処理や冷間圧
延を行う必要があり、工程が長くなってコストアンプの
要因となるのみならず、それ以上に最終製品の性質に悪
影響を与えるガス成分(0,Nなど)や異物が処理中に
粉末中にまきこまれるという問題がある。とりわけ異物
が処理中にまきこまれる問題は、例えば圧延ロール通過
による処理ではその微粒子粉末がロール周面に付着し、
これをブラシその他で掻き落とすことが必要で、この際
、ブラシなどからの破片の混入による粉末の汚染トラブ
ル等が生じ易く、この種超合金粉末の鍛造物の用途、即
ち、航空機エンジンや発電機タービン等の高熱、高負荷
器材や部品に使用されることから、かかる粉末以外の物
質の混入は重大な事故を生ずる原因となる。
However, in each of these methods, in the former method, in order to give pre-strain to the powder? It is necessary to perform triter treatment and cold rolling, which not only lengthens the process and increases costs, but also eliminates gas components (0, N, etc.) and foreign substances that adversely affect the properties of the final product. There is a problem that it gets mixed into the powder during processing. Particularly, the problem of foreign matter getting mixed in during processing is, for example, when processing by passing through a rolling roll, the fine powder particles adhere to the circumferential surface of the roll.
It is necessary to scrape off this with a brush or other means, and at this time, troubles such as contamination of the powder due to the mixing of debris from the brush etc. are likely to occur. Since it is used in high-heat, high-load equipment and parts such as turbines, contamination with substances other than powder can cause serious accidents.

従って、好ましい形態としては上述のような予歪付加処
理を行うことなく微細結晶粒を得ることである。
Therefore, a preferred form is to obtain fine crystal grains without performing the above-mentioned pre-strain addition process.

そこで、かかる観点に立脚すれば、後者のケース内に清
浄な粉末を入れて熱間で押出す方法は好ましい方法であ
るが、しかし、この方法で微細粒を作るためにはビレッ
トと押出材の断面積比で3〜5以上が必要であるために
鍛造用素材を得るためには200〜400璽鵬Φのヒ゛
レットを曲用14ずことが要求され、このため数万トン
クラスの人容最プレスが必要となってくる。
Therefore, from this point of view, the latter method of putting clean powder in a case and extruding it under hot conditions is a preferable method. Since a cross-sectional area ratio of 3 to 5 or more is required, in order to obtain a material for forging, it is required to bend a 200 to 400 mm diameter core. A press will be required.

しかも、この押出し法は素材形状に対する制約があって
円柱形状以外の比較的複雑な形状の素材は製造困難であ
るのみならず、結晶粒微細化のための慣用プレスによる
押出時に外周と内部において歪み量が異なると共に、こ
れによって加工発熱量が異なることもあって均質な微細
組織が得られないという問題を有している。
Moreover, this extrusion method has restrictions on the shape of the material, and not only is it difficult to manufacture materials with relatively complex shapes other than cylindrical shapes, but also distortion occurs on the outer periphery and inside when extruding with a conventional press for grain refinement. There is a problem that a homogeneous microstructure cannot be obtained because the amount of heat is different and the amount of heat generated during processing is also different due to this.

このように従来知られている方法にあっては、工業的に
活用する場合に品質上の問題やコストアップの要因を多
数含んでおり、未だ充分満足すべき方法には至っていな
い。
As described above, the conventionally known methods have many problems in quality and increase in cost when used industrially, and have not yet reached a fully satisfactory method.

そのため、本発明者らは工業的に存利な製造方法を見出
すべく鋭意研究に努め、さきにHI P処理のみで成形
に必要な超塑性変形能を確保でき、しかも素材準備に要
するコストも安く、汚染の少ない鍛造用素材を得ること
に着目し、粉末の粒径とHIP後の結晶粒径を考察して
使用する粉末の粒径とその配置ならびに粉末粒度と加熱
温度との関係などについて提案した。(特願昭58−1
09330号、同109331号) (発明が解決しようとする問題点) 本発明は上述の如き実状に立脚し、更にHIP処理を利
用し超塑性鍛造に好適な素材を得る際におけるH I 
P条件を問題点とし、その解決を図るものである。
Therefore, the inventors of the present invention have made extensive research efforts to find an industrially viable manufacturing method, and have found that the superplastic deformability necessary for forming can be secured with only HIP treatment, and the cost required for material preparation is low. , focused on obtaining a forging material with less contamination, considered the particle size of the powder and the crystal grain size after HIP, and proposed the particle size of the powder to be used, its arrangement, and the relationship between the powder particle size and heating temperature. did. (Special application 1986-1
(No. 09330, No. 109331) (Problems to be Solved by the Invention) The present invention is based on the above-mentioned actual situation, and furthermore, it solves the problem of H I when obtaining a material suitable for superplastic forging using HIP processing.
This paper considers the P condition as a problem and attempts to solve it.

即ち、超合金粉末をHI P処理する場合の要素は温度
1時間、圧力であり、HIP処理条件はこれらの組み合
わせによって決められる。なかでも、上記素材を得る上
に問題となる結晶粒の大きさに最も影啓を及ぼすものは
温度であるが、勿論、圧力1時間もこれに平行して影響
を有する。
That is, the factors when performing HIP treatment on superalloy powder are temperature for 1 hour and pressure, and the HIP treatment conditions are determined by a combination of these. Among these, temperature has the greatest influence on the size of crystal grains, which is a problem in obtaining the above-mentioned material, but, of course, the pressure for one hour also has an influence in parallel.

(問題点を解決するための手段) しかして、叙上の如き問題点に対応し、これを解決する
本発明製造方法の特徴は、アルゴンガスアトマイズ等で
作られた超合金粉末を)(I P処理により成形固化し
超塑性鍛造用素材を製造する方法であり、かつ、その際
のHIP処理として処理温度を当該超合金の溶融温度よ
り250℃低い温度で、圧力をl O00〜2000k
g/cIl!、そして少なくとも中心部が上記温度に達
してから30分以上保持せしめてHIP処理する点にあ
る。
(Means for Solving the Problems) Therefore, the feature of the manufacturing method of the present invention that corresponds to and solves the above-mentioned problems is that superalloy powder made by argon gas atomization etc.) (I P This is a method of manufacturing a superplastic forging material by forming and solidifying it through processing, and at the same time, the HIP treatment at that time is performed at a processing temperature 250°C lower than the melting temperature of the superalloy and at a pressure of lO00 to 2000k.
g/cIl! After at least the center reaches the above temperature, it is held for 30 minutes or more and then subjected to HIP treatment.

以下、更に上記本発明を具体的に説明すると、先ず、本
発明者らは第1表に示す3種類の代表的なNi基超超合
金粉末製造し、粉末の粒径を80μmと一定にしてi(
I P処理の温度を種々変えて成形した。
Hereinafter, to further specifically explain the present invention, the present inventors first manufactured three types of representative Ni-based superalloy powders shown in Table 1, and fixed the particle size of the powder at 80 μm. i(
Molding was carried out by varying the temperature of the IP treatment.

第  1  表 Ni基超超合金成分  (tVt%)
その結果は第1図に示す通りで超塑性鍛造で一番問題に
なる材料の変形抵抗は3種類の超合金共にHIP処理温
度(T HIF )がその超合金の溶融温度(T、)か
ら250℃低いときに、即ち前記両温度の差(TRIP
  TM =△T)が250℃であるときに最も低い値
を示した。
Table 1 Ni-based superalloy composition (tVt%)
The results are shown in Figure 1, and the deformation resistance of the material, which is the most important problem in superplastic forging, is that the HIP treatment temperature (T HIF ) of the three types of superalloys is 250% from the melting temperature (T, ) of the superalloy. ℃ is lower, that is, the difference between the two temperatures (TRIP
The lowest value was shown when TM = ΔT) was 250°C.

なお、このときHIP処理の圧力は1500kg/ c
rAであったが、この圧力は粉末の成形面からは出来る
だけ高圧力が望ましいことが分かった。
In addition, the pressure of HIP treatment at this time is 1500 kg/c
rA, but it was found that this pressure is preferably as high as possible from the powder molding surface.

しかし、現在、市販のHIP装置の圧力は端々2000
kg/−位までである。一方、圧力の下限については別
の試験の結果、1000kg/−以下では粉末が完全に
固化せず、数%のポロシティ−を有する材料が得られ、
これを超塑性鍛造した結果、ポロシティ一部分から割れ
が発生し、良好な鍛造製品を得ることができなかったの
で1000kg/cjlは適していない。
However, at present, the pressure of commercially available HIP equipment is around 2,000 yen.
up to kg/-. On the other hand, as for the lower limit of pressure, as a result of another test, below 1000 kg/- the powder does not solidify completely and a material with several percent porosity is obtained.
As a result of superplastic forging of this, cracking occurred in a part of the porosity, and a good forged product could not be obtained, so 1000 kg/cjl is not suitable.

そのため、圧力範囲は1000〜2000kg/Cl1
1が有効である。
Therefore, the pressure range is 1000 to 2000 kg/Cl1
1 is valid.

又、保持時間については製品の大きさによって必ずしも
一様に言えないが、少なくとも中心部がHIP処理温度
に達してから30分以上は粒子同志の拡散接合のために
必要である。
Further, although the holding time cannot necessarily be determined uniformly depending on the size of the product, at least 30 minutes or more after the center reaches the HIP treatment temperature is necessary for diffusion bonding of the particles.

かくして、これらの結果を踏まえ、前記本発明製造方法
におけるHIP処理条件が肝要といえる。
Thus, based on these results, it can be said that the HIP treatment conditions in the production method of the present invention are important.

なお、超合金粉末は、最も一般的にはアルゴンガスアト
マイズによって作られるが、これに限られるものではな
い。
Note that superalloy powder is most commonly produced by argon gas atomization, but is not limited thereto.

しかし、粒径が小であることが好適であることから上記
アルゴンガスアトマイズ法は頗る有利であり、本発明に
おいても好ましくは粒径80μm以下の粉末が使用され
る。
However, since it is preferable for the particle size to be small, the above-mentioned argon gas atomization method is very advantageous, and in the present invention, preferably, powder with a particle size of 80 μm or less is used.

(実施例1) アルゴンガスアトマイズ法により噴霧された微粉末を直
接金属カプセルに充填した後、H[P処理により固化し
、それを引張試験することによって超塑性特性に及ぼす
HIP処理条件の影響について考察した。
(Example 1) Fine powder sprayed by argon gas atomization was directly filled into a metal capsule, solidified by H[P treatment, and then tensile tested to examine the influence of HIP treatment conditions on superplastic properties. did.

なお、試験片はNi基超超合金第2図(rl)に示す如
く一対の円柱形状のものを細径円柱で連結した形状のも
ので一対の円柱形状のものは1oΦ鰭で長さ10龍、細
径円柱部分は4Φ鶴で長さ16m鵬であった。
The test piece was a Ni-based superalloy as shown in Figure 2 (rl), in which a pair of cylindrical pieces were connected by a small-diameter cylinder. The small diameter cylindrical part was 4Φ Tsuru and 16 m long.

そして粉末粒径の超塑性特性に及ぼす影響も考察するた
め30μm、40μm、80μmの3種類の粒径の粉末
を用いた。
In order to consider the influence of powder particle size on superplastic properties, powders with three types of particle sizes, 30 μm, 40 μm, and 80 μm, were used.

この粉末を直径17.3鰭のステンレス容器に充填後、
真空脱ガスし、HIP処理し、前記試験片とした。この
際、HIP条件としては真密度が得られ、かつ結晶粒の
粗大化が抑制されるように圧力。
After filling this powder into a stainless steel container with a diameter of 17.3 fins,
It was degassed in vacuum and subjected to HIP treatment to obtain the above-mentioned test piece. At this time, the HIP conditions are such that the true density is obtained and the coarsening of crystal grains is suppressed.

時間を夫々1500 kg/cni、  1時間と一定
にし、温度をかえてその影♂を調べた。
The time was kept constant at 1500 kg/cni and 1 hour, respectively, and the temperature was changed to examine the effects.

畝上の各条件をまとめて表記すれば第2表の通りである
Table 2 shows the conditions on the ridges.

第2図(イ)は上記考察にもとづく歪速度が5×10−
’Sにおける変形抵抗とHIP処理温度との関係を示す
Figure 2 (a) shows that the strain rate is 5×10− based on the above considerations.
The relationship between deformation resistance and HIP treatment temperature in 'S is shown.

図より明らかなように、A、B、Cの3種類の粉末とも
にHIP処理の温度がl OOO’Cのときに最小の変
形抵抗を示している。これは該温度で丁度、再結晶が起
こっているからである。
As is clear from the figure, the three types of powders A, B, and C all exhibit the minimum deformation resistance when the HIP treatment temperature is 100'C. This is because recrystallization is occurring at this temperature.

ここで用いた超合金粉末の溶融温度は1250℃である
ので上記変形抵抗が最小となる温度はT。
Since the melting temperature of the superalloy powder used here is 1250°C, the temperature at which the above deformation resistance is minimum is T.

−250℃となる。-250℃.

なお、第2図において1000℃以下の温度範囲におい
てはHIP温度が低い程、変形抵抗が増大している。
In addition, in the temperature range of 1000° C. or lower in FIG. 2, the lower the HIP temperature, the greater the deformation resistance.

これはHIP温度が低い程、未再結晶Mi織である樹枝
状晶の比率が増すためである。一方、又、1000℃以
上になると再び、変形抵抗が増大しているが、これは再
結晶粒が粗大化するためである。従ッテ、TM  25
0’C(7)温度下でHIP処理することが最も良好で
あることが理解される。
This is because the lower the HIP temperature, the higher the proportion of dendrites that are unrecrystallized Mi textures. On the other hand, when the temperature exceeds 1000° C., the deformation resistance increases again, but this is because the recrystallized grains become coarser. Jutte, TM 25
It is understood that HIPing at a temperature of 0'C(7) is best.

(実施例2) 前記実施例1と同じ粉末を用いて種々の温度、即ち、9
00’c、950℃、1000℃、1050℃、1io
o℃の各温度でHIP処理により素材を成形し、その破
断伸びを考察した。その結果は第3図に示す通りで、第
2図(イ)と同様にH[P処理温度が1000′c、即
ちTs−250℃のときに最も超塑性特性を示し、よく
伸びた。
(Example 2) The same powder as in Example 1 was used at various temperatures, i.e. 9
00'c, 950℃, 1000℃, 1050℃, 1io
Materials were molded by HIP treatment at various temperatures of 0.degree. C., and their elongation at break was examined. The results are shown in FIG. 3, and as in FIG. 2(a), when the H[P treatment temperature was 1000'c, that is, Ts-250°C, it exhibited the best superplastic properties and elongated well.

第4図にこの試験片試料の伸び破断後の縦断面ミクロ組
織を示す。これは粒径30μmで1100℃でHI P
処理したものであり、かつ1050°Cの温度、歪速度
5 X 10−’/Sで試験したものである。
FIG. 4 shows the longitudinal cross-sectional microstructure of this test piece sample after elongation fracture. This has a particle size of 30μm and is HI-Ped at 1100℃.
The specimens were treated and tested at a temperature of 1050°C and a strain rate of 5 x 10-'/S.

そしてこれは伸びが96%と小さい場合で、この場合に
は元の形状を維持した粉末の界面より多数のボイドが生
成している。破断はこのようなボイドの連結によって生
じたことが破断部近傍の状態から窺える。このような条
件下ではHIP処理直後のミクロ組織が大きな影響因子
となることは明らかである。
This is a case where the elongation is as small as 96%, and in this case, a large number of voids are generated from the powder interface, which maintains its original shape. It can be seen from the state near the fracture that the fracture was caused by the connection of such voids. Under such conditions, it is clear that the microstructure immediately after the HIP treatment becomes a major influencing factor.

これに対して伸びが大きい場合には動的再結晶を起こし
た微細結晶組織を示し、元の形状を維持した粉末は殆ど
見当たらなかった。
On the other hand, when the elongation was large, a fine crystalline structure with dynamic recrystallization was observed, and powder that maintained its original shape was hardly found.

(発明の効果) 本発明は以上のようにHIP処理の条件を選定すること
により超塑性鍛造に適した微細結晶を有する素材を製造
する方法であり、従来の押し出し法などの問題点を解消
し、HIP処理のみの簡単な工程で超塑性特性を付与す
ることができ、超塑性鍛造用素材に要する費用を著しく
節減し、コスト低減を図り、工業上類る顕著な効果を有
する。
(Effects of the Invention) The present invention is a method of manufacturing a material having fine crystals suitable for superplastic forging by selecting the HIP processing conditions as described above, and solves the problems of the conventional extrusion method. , superplastic properties can be imparted through a simple process of only HIP treatment, the cost required for superplastic forging materials can be significantly reduced, cost reduction can be achieved, and the same remarkable effects can be achieved in industry.

しかも本発明はその処理条件により素材の外周部、中心
部における歪差もなく均質化が達成され、更に素材形状
に対する制約もなく、又、予歪付加をする必要がないこ
とから予歪付加工程中の問題もな(、超塑性鍛造用素材
の製造法として頗る有効で、今後の実用化が期待される
Moreover, the present invention achieves homogenization with no strain difference between the outer periphery and the center of the material due to the processing conditions, and there is no restriction on the shape of the material, and there is no need to add prestrain, so the prestrain addition step However, it is an extremely effective method for producing superplastic forging materials, and is expected to be put to practical use in the future.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はNi基超超合金粉末HIP処理における温度と
変形抵抗との関係を示す図表、第2図(イ)は実施例1
の歪速度5 x 10−’/Sにおける変形抵抗とHI
P処理温度との関係を示す図表、同第2図(ロ)は試験
片の形状を示す説明図、第3図は実施例2におけるHI
P処理温度と破断伸びとの関係を示す図表、第4図は破
断試験片の縦断面ミクロ組織を示す400倍顕微鏡写真
である。 特許出願人  工 業 技 術 院 長竿l目 VZ図 (イ〕 HI P gL)L(’) 第3目 華4目 (×toty)
Figure 1 is a chart showing the relationship between temperature and deformation resistance in Ni-based super-superalloy powder HIP treatment, and Figure 2 (a) is Example 1.
Deformation resistance and HI at strain rate 5 x 10-'/S
A chart showing the relationship with the P treatment temperature, Figure 2 (b) is an explanatory diagram showing the shape of the test piece, and Figure 3 is the HI in Example 2.
A graph showing the relationship between P treatment temperature and elongation at break, and FIG. 4 is a 400x microscopic photograph showing the microstructure of a longitudinal section of a break test piece. Patent Applicant Institute of Technology VZ Diagram of Long Rod 1st Eye (A) HI P gL) L(') 3rd Eye Flower 4th Eye (×toty)

Claims (1)

【特許請求の範囲】[Claims] 1、超合金粉末を熱間静水圧プレス処理により成形固化
し、微細結晶粒を有する超塑性鍛造用素材を製造するに
際し、前記超合金粉末を該超合金粉末の溶融温度より2
50℃低い処理温度で、圧力範囲を1000〜2000
kg/cm^3、かつ少なくとも被処理体中心部が上記
温度に達してから30分以上保持せしめて熱間静水圧プ
レス処理することを特徴とする微細結晶粒を有する超塑
性鍛造用素材の製造方法。
1. When solidifying superalloy powder by hot isostatic pressing to produce a superplastic forging material having fine crystal grains,
50℃ lower processing temperature, pressure range 1000~2000
production of a superplastic forging material having fine crystal grains, characterized in that the temperature is maintained at least 30 minutes or more after the center of the object to be processed reaches the above temperature, and hot isostatic pressing is performed. Method.
JP4719786A 1986-03-06 1986-03-06 Production of stock for superplastic forging having fine crystal grains Pending JPS62205202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4719786A JPS62205202A (en) 1986-03-06 1986-03-06 Production of stock for superplastic forging having fine crystal grains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4719786A JPS62205202A (en) 1986-03-06 1986-03-06 Production of stock for superplastic forging having fine crystal grains

Publications (1)

Publication Number Publication Date
JPS62205202A true JPS62205202A (en) 1987-09-09

Family

ID=12768401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4719786A Pending JPS62205202A (en) 1986-03-06 1986-03-06 Production of stock for superplastic forging having fine crystal grains

Country Status (1)

Country Link
JP (1) JPS62205202A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841561A (en) * 1994-04-06 1996-02-13 Special Metals Corp High-strain-rate deformation of compressed nickel-base superalloy
WO2013018714A1 (en) * 2011-07-29 2013-02-07 国立大学法人東北大学 Method for manufacturing alloy containing transition metal carbide, tungsten alloy containing transition metal carbide, and alloy manufactured by said method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602637A (en) * 1983-06-20 1985-01-08 Agency Of Ind Science & Technol Manufacture of ni superalloy billet for superplastic forging

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602637A (en) * 1983-06-20 1985-01-08 Agency Of Ind Science & Technol Manufacture of ni superalloy billet for superplastic forging

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841561A (en) * 1994-04-06 1996-02-13 Special Metals Corp High-strain-rate deformation of compressed nickel-base superalloy
WO2013018714A1 (en) * 2011-07-29 2013-02-07 国立大学法人東北大学 Method for manufacturing alloy containing transition metal carbide, tungsten alloy containing transition metal carbide, and alloy manufactured by said method
JPWO2013018714A1 (en) * 2011-07-29 2015-03-05 国立大学法人東北大学 Transition metal carbide-containing alloy manufacturing method, transition metal carbide-containing tungsten alloy, and alloy manufactured by the manufacturing method

Similar Documents

Publication Publication Date Title
JP3839493B2 (en) Method for producing member made of Ti-Al intermetallic compound
JP4110533B2 (en) Manufacturing method of Mo-based target material
US4066449A (en) Method for processing and densifying metal powder
JP2860064B2 (en) Method for producing Ti-Al alloy target material
US20240123502A1 (en) Titanium alloy powder for selective laser melting 3d printing, selective laser melted titanium alloy and preparation thereof
US3462248A (en) Metallurgy
JP2022512537A (en) High-strength titanium alloy for additive manufacturing
JPS61250123A (en) Compressed article prepared from heat-treated amorphous lumpy parts
FR2489371A1 (en) ALUMINA DISPERSION CURED COPPER ALLOY, ALLOY POWDER, AND MANUFACTURING METHOD THEREOF
US3698962A (en) Method for producing superalloy articles by hot isostatic pressing
TW201103999A (en) Method for manufacturing nickel alloy target
JPS62205202A (en) Production of stock for superplastic forging having fine crystal grains
US3472709A (en) Method of producing refractory composites containing tantalum carbide,hafnium carbide,and hafnium boride
CN110607487B (en) ODS-Fe3Al alloy, alloy product and preparation method thereof
CN113798488A (en) Aluminum-based powder metallurgy material and preparation method thereof
JPH03155427A (en) Hot forging method for titanium alloy sintered material
JP3551355B2 (en) Ru target and method of manufacturing the same
US3498782A (en) Compactible fused and atomized metal powder
US3690963A (en) Compactible fused and atomized metal powder
JP7333215B2 (en) Aluminum alloy processed material and its manufacturing method
JPS6360265A (en) Production of aluminum alloy member
JPH0137441B2 (en)
Groh et al. Development of Prior Particle Boundary Free Hot-Isostatic-Pressing Process for Inconel 718 Powder
JP2572832B2 (en) Al-based alloy powder for sintering
RU2602311C2 (en) Method of producing articles from powders of refractory nickel alloys