JPS602637A - Manufacture of ni superalloy billet for superplastic forging - Google Patents

Manufacture of ni superalloy billet for superplastic forging

Info

Publication number
JPS602637A
JPS602637A JP10933183A JP10933183A JPS602637A JP S602637 A JPS602637 A JP S602637A JP 10933183 A JP10933183 A JP 10933183A JP 10933183 A JP10933183 A JP 10933183A JP S602637 A JPS602637 A JP S602637A
Authority
JP
Japan
Prior art keywords
powder
forging
billet
superplastic
superalloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10933183A
Other languages
Japanese (ja)
Other versions
JPS641521B2 (en
Inventor
Hisashi Takada
寿 高田
Nobuyasu Kawai
河合 伸泰
Tomiharu Matsushita
富春 松下
Hiroshi Takigawa
滝川 博
Kenichi Aota
健一 青田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10933183A priority Critical patent/JPS602637A/en
Publication of JPS602637A publication Critical patent/JPS602637A/en
Publication of JPS641521B2 publication Critical patent/JPS641521B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain easily a billet having a desired grain size and suitable for superplastic forging when the titled billet is manufactured by molding and caking alloy powder prepd. by atomization with gaseous Ar, by specifying the particle size of the powder, the heating temp. and the gamma' content. CONSTITUTION:Ni superalloy powder having <=50mum diameter and contg. 50- 90vol% gamma' (precipitate) is prepd. by atomization with gaseous Ar, and the powder is molded and caked at <=1,100 deg.C to obtain an Ni superalloy billet for superplastic forging. The diameter of crystals produced in the molded body is controlled to <=6mum. The molding and caking are carried out by HIP, forging, extrusion or other means.

Description

【発明の詳細な説明】 本発明は微細結晶粒をもった超合金製品、特に超塑性鍛
造に適したN1基超合金の超塑性鍛造用ビレットの製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a superalloy product having fine grains, particularly a billet for superplastic forging of an N1-base superalloy suitable for superplastic forging.

耐熱超合金材料を超塑性鍛造して各種形状物に加工成形
する場合、結晶粒を微細にすれば超塑性挙動が発現し、
複雑な形状のものが容易に得られることは既知の事実で
あり、そのため結晶粒を微細にすべく種々の方法が試み
られている。現在、研究開発され、実用に供されている
この種方法の有効な手段を大別すると、以下の各手段に
分類される。
When heat-resistant superalloy materials are superplastically forged and processed into various shapes, if the crystal grains are made finer, superplastic behavior will occur.
It is a known fact that complex shapes can be easily obtained, and therefore various methods have been attempted to make crystal grains finer. The effective means of this type of method currently being researched and developed and put into practical use can be roughly classified into the following means.

即ち、先ずその第一の方法としては、耐熱超合金の溶融
流をタンディツシュを介しアルゴンガス等によるガスア
トマイズチャンバ内に滴下状に流下させ、溶滴を粉末化
させるとともに、この粉末体をカプセル内に充填し、再
結晶温度より低温下で慣用の押出プレスにより圧密化し
てこれを超塑性鍛造処理するものであり、第二の方法と
しては、粉末化並びにカプセル充填は第一の方法と同様
でよって加工成形するものであシ、第三の方法としては
、ガスアトマイズによる粉末化は第一、第二の方法と同
様であるが、得られた粉末化粒子に対して予め歪みを冷
間において付加する(ローラ通過による圧延、ボールミ
ルによる衝撃その他)処の冷間予歪付加処理を行い、処
理された粉末体をカプセルに充填し、これをH工Pプロ
セスにヨッて圧密化し、超塑性鍛造処理するものである
。しかし、これらの手段には次のようにそれぞれ問題点
がある。即ち第一の方法においては、その結晶粒微細化
のだめの慣用プレスによる押出時に外周と内部において
歪み量が異なるとともに、これによって加工発熱量が部
分的に異なることであって、均質化の点で好ましくなく
、更にその押出が再結晶温度以下の低温で行われるため
、変形抵抗が高く、大容量のプレスを必要とする点であ
り、また第二の方法においては、H工Pプロセスによっ
て圧密化したものを、2段階鍛造手段における第1段鍛
造によってその結晶微細化を図る時、この鍛造段階では
きわめて遅い歪速度を用いる必要がおいては、粉末状態
で冷間予歪付加処理を行っているため、第一、第二の方
法で生じる問題点はないが、その代りに冷間予歪付加工
程が増加することになるとともに、この工程処理時にお
いて、例えば圧延ロール通過による処理では、その微粒
子粉末がロール周面に付着し、これをブラシその他で掻
き落すことが必要で、この際ブラシ等からの破片の混入
による粉末体の汚染トラブル等が生じ易く、この種超合
金粉末による鍛造物の用途が航空機エンジンや発電機タ
ービン等の高熱、高負荷器材や部品に使用される関係上
、かかる粉末体以外の物質の混入は重大な事故を生じる
原因となるので、処理上の面倒において問題が生じるの
である。
That is, the first method is to drop a molten stream of a heat-resistant superalloy through a tundish into a gas atomization chamber using argon gas, etc., to pulverize the droplets, and to place this powder into a capsule. In the second method, powdering and capsule filling are the same as in the first method. In the third method, powdering by gas atomization is the same as the first and second methods, but strain is added in advance to the obtained powdered particles in the cold. Cold prestrain processing (rolling by passing through rollers, impact by ball mill, etc.) is performed, and the processed powder is filled into capsules, which are consolidated by H-process and then subjected to superplastic forging. It is something. However, each of these means has its own problems as follows. In other words, in the first method, the amount of strain differs between the outer periphery and the inside during extrusion using a conventional press for grain refinement, and the amount of heat generated during processing is partially different due to this. Moreover, since the extrusion is performed at a low temperature below the recrystallization temperature, the deformation resistance is high and a large-capacity press is required. When attempting to refine the crystals of the forged material by the first stage forging in a two-stage forging means, if it is necessary to use an extremely slow strain rate in this forging stage, cold prestraining treatment is performed in the powder state. Therefore, there are no problems that arise with the first and second methods, but instead, the cold prestraining process is increased, and during this process, for example, when processing by passing through rolling rolls, Fine particle powder adheres to the circumferential surface of the roll, and it is necessary to scrape it off with a brush or other means. At this time, troubles such as contamination of the powder due to debris from the brush etc. are likely to occur, and forgings made of this type of superalloy powder Because it is used in high-heat, high-load equipment and parts such as aircraft engines and generator turbines, contamination with substances other than powder can cause serious accidents, so it is a problem in terms of processing. occurs.

本発明は以上の如き従来法の各問題点に鑑み、その解決
を図るべく、粉末の粒度と加熱温度との関係ならびにγ
′量(析出物量)に着目し、それらの条件を厳密にコン
トロールすることによって所望の結晶粒度をもった材料
を提供することを目的とするものである。
In view of the problems of the conventional method as described above, the present invention aims to solve the problems by determining the relationship between the particle size of powder and the heating temperature.
The purpose of this method is to provide a material with a desired crystal grain size by focusing on the amount of precipitates (amount of precipitates) and strictly controlling these conditions.

即ち、本発明は上記のような各種の問題点が余丁の温度
で成形固化し、成形体中に生じる結晶粒径を6μm以下
に制御するN1基超合金の超塑性鍛造用ビレットの製造
方法にある。
That is, the present invention solves the above-mentioned various problems by providing a method for producing a billet for superplastic forging of an N1-base superalloy, which is compacted and solidified at a temperature below 100 µm, and which controls the crystal grain size produced in the compact to 6 μm or less. be.

以下、更にこれを詳述すれば、先ず、本発明の第1の特
徴は50μm以下の粉末で、γ′を50〜90体積%含
有する粉末を用いることであり、第2は、それらの粉末
を特に1100℃以下の温度で成形固化することである
In more detail below, the first feature of the present invention is to use a powder of 50 μm or less and containing 50 to 90% by volume of γ'; In particular, it is molded and solidified at a temperature of 1100° C. or lower.

第1図はN1基超合金粉末の粒径に関し、H工P(熱間
静水下プレス)処理後の結晶粒径との関係を考察した結
果を図示しており、同図より一般に粉末の粒径が小さく
なればそれに伴ない結晶粒径も小さくなる傾向があるこ
とが直ちに理解される。
Figure 1 shows the results of considering the relationship between the particle size of N1-based superalloy powder and the crystal grain size after H-P (hot still water pressing) treatment. It is immediately understood that as the diameter becomes smaller, the crystal grain size also tends to become smaller.

とりわけ、一般的に超塑性挙動を示すに有利な結晶粒は
出来るだけ微細粒であることが好ましいことは勿論であ
るが、超塑性鍛造に必要とされる結晶粒は6Im程度と
思われる。換言すれば、6μmは超塑性鍛造に必要とさ
れる上限の結晶粒である。
In particular, it goes without saying that crystal grains that are generally advantageous in exhibiting superplastic behavior are preferably as fine as possible, but it is thought that the crystal grains required for superplastic forging are about 6 Im. In other words, 6 μm is the upper limit of grain size required for superplastic forging.

因に、この6μmの結晶粒が上限であるとする点に超塑
性鍛造の長所の1つは変形抵抗の少い領域で鍛造するこ
とによって力量の小さな小型プレスで鍛造可能にあり、
この特徴を生かすだめには変形抵抗が1” ”rrrm
 2以下であることが必要とされる。
Incidentally, one of the advantages of superplastic forging is that this 6 μm crystal grain is the upper limit, and by forging in an area with low deformation resistance, it can be forged with a small press with low power.
In order to take advantage of this feature, the deformation resistance must be 1” ”rrrm.
It is required that it be 2 or less.

そのためには同図に徴すれば材料の結晶粒径は6μm以
下でなければならないことが理解されよう。
For this purpose, it will be understood from the figure that the crystal grain size of the material must be 6 μm or less.

従って、結晶粒径6μmは超塑性鍛造に必要とされる路
上限の結晶粒径であると云える。
Therefore, it can be said that the crystal grain size of 6 μm is the upper limit of the crystal grain size required for superplastic forging.

そこで、再び第1図に転ずれば、粉末粒径50μmで、
加熱温度が1100℃の時、その粉末に存在する結晶粒
の大きさは6Pnであることが分る。
Therefore, if we turn to Figure 1 again, with a powder particle size of 50 μm,
It can be seen that when the heating temperature is 1100°C, the size of crystal grains present in the powder is 6Pn.

そして、これより粉末が粗くなったり温度が高過ぎたり
すると結晶粒は粗大化してゆく。
If the powder becomes coarser than this or the temperature is too high, the crystal grains will become coarser.

これは粉末粒径が50戸以下で、かつ1100℃以下の
温度で成形固化されることが必要な条件であることを示
しており、これを一方でも欠如することは超塑性鍛造に
必要な結晶粒度は得られない0 ことで、成形固化の手段は、H工P、鍛造、押出等の各
手段が含まれ、衝撃波を利用すれば常温次に、超合金の
強度であるが、超合金の強度はγ′(析出物量)によっ
て決まり、γ′量が65体積%付近にて最強点が存在す
る。第3図はγ′量と破断寿命との関係を示すことによ
ってその強度を考察しており、800℃、35にζ2(
○印)、10oo℃、12t2(△印)及0: l O
O0℃、10KL2(×印)のクリープ条件下で共に同
じ傾向を示し、65〜75体積%の間に最大点がみられ
る。
This indicates that the necessary conditions are that the powder particle size is 50 degrees or less and that it is formed and solidified at a temperature of 1100 degrees Celsius or less, and the lack of either of these conditions indicates that the crystals required for superplastic forging are required. Grain size cannot be obtained. Therefore, the means of forming and solidifying include H-P, forging, extrusion, etc. If shock waves are used, the strength of superalloys will be the same at room temperature, but the strength of superalloys will be The strength is determined by γ' (amount of precipitates), and the strongest point exists when the amount of γ' is around 65% by volume. Figure 3 considers the strength by showing the relationship between the amount of γ′ and the fracture life.
○ mark), 10oo℃, 12t2 (△ mark) and 0: l O
Both exhibit the same tendency under the creep conditions of 0°C and 10KL2 (x mark), and the maximum point is seen between 65 and 75% by volume.

このγ′量は通常、g、Tiの量に比例し、その他Nb
 、 Ta等も関与する。そしてγ′量が30体積%以
上に々ると、通常の鍛造では加工困難となり、特に50
体積%以上では超塑性鍛造でないと鍛造できなくなる。
The amount of γ′ is usually proportional to the amount of g and Ti, and the amount of other Nb
, Ta, etc. are also involved. When the amount of γ' reaches 30% by volume or more, it becomes difficult to process with normal forging, especially when the amount of 50%
If it exceeds the volume percentage, it cannot be forged unless it is superplastic forged.

第4図はI量とAA + Ti + /2 + /2と
の関係を示しており、超塑性鍛造でないと加工できない
γ′量50体積%のときのγ′生成元素の総量は約9%
となる。
Figure 4 shows the relationship between the I content and AA + Ti + /2 + /2, and when the γ' content is 50% by volume, which cannot be processed without superplastic forging, the total amount of γ'-generating elements is approximately 9%.
becomes.

従って、超塑性鍛造用としてはγ′量は50体積%以上
が肝要である。しかし、N1基超合金の組成より100
体積%は殆んど考えられないところか度である。
Therefore, for superplastic forging, it is important that the amount of γ' is 50% by volume or more. However, from the composition of the N1-base superalloy, 100
Volume % is almost unthinkable.

かくして、以上の′ような考察、検討を経て、本発明の
各条件は見出され、これによって結晶粒径6μm以下の
粉末で超塑性鍛造に用いて好適なビレットを得ることが
できる。
Thus, through the above-mentioned considerations and examinations, the conditions of the present invention have been found, whereby a billet suitable for use in superplastic forging can be obtained using powder with a crystal grain size of 6 μm or less.

以下、更に実施例を掲げ、具体的に説明する。Hereinafter, further examples will be given and concretely explained.

実施例 Arガスアトマイズで下記成分、 0.060−12.50r−18,3Co−3,18M
o −5−IA7−4.41Ti −、O,’74V−
残り阻 からなるγ′が60体積%で粒径30μm以下のN1基
超合金粉末を作りHIP処理によって下記の条件で成形
固化してビレットを製造した。
Example Ar gas atomization with the following components: 0.060-12.50r-18,3Co-3,18M
o -5-IA7-4.41Ti -, O,'74V-
A N1-based superalloy powder having a particle size of 30 μm or less and containing 60% by volume of γ' consisting of residual particles was prepared and solidified by HIP treatment under the following conditions to produce a billet.

1100℃×9003×1時間保持 得られたビレットの密度は100%の真密度比を示し、
組織を調べたところ結晶粒径は平均して5μmであった
The density of the obtained billet was held at 1100°C x 9003 x 1 hour, showing a true density ratio of 100%,
When the structure was examined, the average crystal grain size was 5 μm.

次いで、上記結晶粒径をもつ材料について1050℃、
歪速度8 X ]−0seCで高温引張試験を行抵抗は
30にζ2であり、かつそのときの伸びは12%で超塑
性特性の発現は全く認められなかった。
Next, the material having the above crystal grain size was heated at 1050°C.
A high-temperature tensile test was carried out at a strain rate of 8.times.x]-0 sec. The resistance was 30.zeta.2, the elongation was 12%, and no superplastic properties were observed.

本発明は以上のようにN1基超合金の粉末で、粒径が5
0μm以下、Iを50〜90体積%含有する粉末を11
00℃以下の温度で成形固化し、成形体中の結晶粒径を
6戸以下に制御して超塑性鍛造用ビレットを製造する方
法であり、粉末の直径ならびにγ′を上記の如く設定し
、所要の温度で成形することにより超塑性挙動を示すビ
レットを容易に製造することができると共に、特にI量
を決めたことにより高強度N1基超合金の超塑性鍛造が
可能となシ、超合金粉末による各種鍛造の用途の拡大、
更によシ高強度製品の作成の上に顕著な効果を奏し、今
後における工業化に大なる期待かもた、れる方法である
As described above, the present invention uses N1-based superalloy powder with a particle size of 5.
11 powder containing 50 to 90% by volume of I with a diameter of 0 μm or less
This is a method of producing a billet for superplastic forging by compacting and solidifying at a temperature of 00°C or less and controlling the crystal grain size in the compact to 6 doors or less.The powder diameter and γ' are set as above, Billets exhibiting superplastic behavior can be easily produced by forming at the required temperature, and superplastic forging of high-strength N1-based superalloys is possible by specifically determining the amount of I. Expanding the applications of various types of forging using powder,
Furthermore, this method has a remarkable effect on the production of high-strength products, and holds great promise for future industrialization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は種々の温度におけるN1基超合金< i50重
量%含有)の粉末粒径と結晶粒径との関係を示す図表、
第2図は各結晶粒径の歪速度と変形抵特許出願人 工業
技術院長 W1図 り宋R怪(μm) −11− 72図 びf与速度s” 美3閉 r’(vo1%)
FIG. 1 is a chart showing the relationship between the powder particle size and crystal grain size of N1-based superalloys (containing 50% by weight of i) at various temperatures;
Figure 2 shows the strain rate and deformation resistance of each grain size and the deformation resistance patent applicant Agency of Industrial Science and Technology

Claims (1)

【特許請求の範囲】[Claims] 1、 Arガスアトマイズで作られた直径が50/ll
T1以下で、かつγ′を50〜90体積%含有するN1
基超合金粉末を1100℃以下の温度で成形固化し、成
形体中の結晶粒径を6μm以下として超塑性鍛造に適し
た超合金ビレットを作成することを特徴とす
1. Diameter made by Ar gas atomization is 50/liter
N1 having T1 or less and containing 50 to 90% by volume of γ'
A superalloy billet suitable for superplastic forging is created by molding and solidifying the base superalloy powder at a temperature of 1100°C or less, and setting the crystal grain size in the compact to 6 μm or less.
JP10933183A 1983-06-20 1983-06-20 Manufacture of ni superalloy billet for superplastic forging Granted JPS602637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10933183A JPS602637A (en) 1983-06-20 1983-06-20 Manufacture of ni superalloy billet for superplastic forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10933183A JPS602637A (en) 1983-06-20 1983-06-20 Manufacture of ni superalloy billet for superplastic forging

Publications (2)

Publication Number Publication Date
JPS602637A true JPS602637A (en) 1985-01-08
JPS641521B2 JPS641521B2 (en) 1989-01-11

Family

ID=14507510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10933183A Granted JPS602637A (en) 1983-06-20 1983-06-20 Manufacture of ni superalloy billet for superplastic forging

Country Status (1)

Country Link
JP (1) JPS602637A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205202A (en) * 1986-03-06 1987-09-09 Agency Of Ind Science & Technol Production of stock for superplastic forging having fine crystal grains

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113443A (en) * 1974-07-25 1976-02-02 Mitsubishi Heavy Ind Ltd
JPS5338250A (en) * 1976-09-20 1978-04-08 Matsushita Electric Ind Co Ltd Transistor circuit
JPS5884901A (en) * 1981-11-14 1983-05-21 Kobe Steel Ltd Production of heat resistant superalloy by powder metallurgical method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113443A (en) * 1974-07-25 1976-02-02 Mitsubishi Heavy Ind Ltd
JPS5338250A (en) * 1976-09-20 1978-04-08 Matsushita Electric Ind Co Ltd Transistor circuit
JPS5884901A (en) * 1981-11-14 1983-05-21 Kobe Steel Ltd Production of heat resistant superalloy by powder metallurgical method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205202A (en) * 1986-03-06 1987-09-09 Agency Of Ind Science & Technol Production of stock for superplastic forging having fine crystal grains

Also Published As

Publication number Publication date
JPS641521B2 (en) 1989-01-11

Similar Documents

Publication Publication Date Title
US3655458A (en) Process for making nickel-based superalloys
CA1061608A (en) Method for processing and densifying metal
US4714587A (en) Method for producing very fine microstructures in titanium alloy powder compacts
US3709667A (en) Dispersion strengthening of platinum group metals and alloys
Fiedler et al. The spray forming of superalloys
US3639179A (en) Method of making large grain-sized superalloys
TW202106893A (en) Spherical tantalum-titanium alloy powder, products containing the same, and methods of making the same
JPS63125649A (en) Production of preform for forging nickel-base superalloy
US20110044844A1 (en) Hot compaction and extrusion of l12 aluminum alloys
US2966731A (en) Aluminum base alloy powder product
US3698962A (en) Method for producing superalloy articles by hot isostatic pressing
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
US20100254850A1 (en) Ceracon forging of l12 aluminum alloys
JPS602637A (en) Manufacture of ni superalloy billet for superplastic forging
JPH0841561A (en) High-strain-rate deformation of compressed nickel-base superalloy
US2994947A (en) Aluminum base alloy powder product
JP5161414B2 (en) High strength magnesium alloy
US3502463A (en) Nickel base alloys and process for their manufacture
US20110061494A1 (en) Superplastic forming high strength l12 aluminum alloys
US2966734A (en) Aluminum base alloy powder product
US4481034A (en) Process for producing high hafnium carbide containing alloys
JPH0250172B2 (en)
RU2032496C1 (en) Method of obtaining aluminides of transition metals
JPS6360265A (en) Production of aluminum alloy member
JPS5887204A (en) Constant temperature forging method for superalloy using quickly soldified powder