JPWO2013018641A1 - 蓄電装置温度測定方法 - Google Patents

蓄電装置温度測定方法 Download PDF

Info

Publication number
JPWO2013018641A1
JPWO2013018641A1 JP2012557331A JP2012557331A JPWO2013018641A1 JP WO2013018641 A1 JPWO2013018641 A1 JP WO2013018641A1 JP 2012557331 A JP2012557331 A JP 2012557331A JP 2012557331 A JP2012557331 A JP 2012557331A JP WO2013018641 A1 JPWO2013018641 A1 JP WO2013018641A1
Authority
JP
Japan
Prior art keywords
storage device
power storage
temperature
frequency
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012557331A
Other languages
English (en)
Other versions
JP5261622B1 (ja
Inventor
蛇口 広行
広行 蛇口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Green Devices Co Ltd
Original Assignee
Alps Green Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Green Devices Co Ltd filed Critical Alps Green Devices Co Ltd
Priority to JP2012557331A priority Critical patent/JP5261622B1/ja
Application granted granted Critical
Publication of JP5261622B1 publication Critical patent/JP5261622B1/ja
Publication of JPWO2013018641A1 publication Critical patent/JPWO2013018641A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

蓄電装置の劣化状態の影響を受け、測定される内部インピーダンスの測定値が変動し、正確な蓄電装置の内部温度が得られない従来の蓄電装置の温度測定方法に対して、蓄電装置の内部温度を正確に測定するための蓄電装置の温度測定方法を提供することを目的とする。蓄電装置(1)のイオンが追従し難い周波数(例えば10kHz以上の周波数)の信号で、蓄電装置(1)の内部インピーダンスを測定し、内部インピーダンスの測定値から蓄電装置(1)の内部温度を算出することを特徴としている。

Description

本発明は、蓄電装置の温度を測定する方法に関し、特に、蓄電装置の内部温度を正確に測定するための蓄電装置温度測定方法に関する。
リチウムイオン二次電池や電気二重層キャパシタ等の蓄電装置は様々な用途に利用され、例えば、携帯電話の電池パックやPCのバッテリ、或いは自動車のバッテリ等に広く適用されている。その際に、蓄電装置の状態、例えば劣化状態(SOH;State Of Healthという)や残容量(SOC;State Of Chargeという)を検知するのは大変重要な事項となっている。特に、自動車において、アイドリングストップを行う省エネ自動車やハイブリッド自動車、電気自動車等における蓄電装置の状態を検知することは、自動車の走行に深く関連しており、非常に重要なこととして注目されている。
この蓄電装置の状態を検知するために、一般的に良く知られているのが、蓄電装置の電圧、電流及び温度を測定し、蓄電装置の劣化状態(SOH)や残容量(SOC)等を算出する方法である。この中でも蓄電装置の温度は、蓄電装置の劣化に大きな影響を与えるため、重要な測定パラメータである。
蓄電装置の温度の測定方法の従来技術として、特許文献1のように、温度検出素子を蓄電装置に当てる或いは繋いで直接測定する方法が一般的に知られている。特許文献1では、温度検出素子にツェナーダイオ−ドを用い、ツェナーダイオ−ドを蓄電装置のプラス端子に接続し、蓄電装置のプラス端子から伝わる温度を正確に測定できるとしている。しかしながら、特許文献1(従来例1)では、蓄電装置の内部抵抗の自己発熱等により、温度検出素子の温度検出点(従来例1では蓄電装置のプラス端子)の温度と蓄電装置の内部の温度とに大きな差が生じる場合があり、蓄電装置の正確な温度を把握できないという問題があった。
一方、熱電対などの温度検出素子で蓄電装置の温度を検知し、蓄電装置の内部インピーダンスを求めて蓄電装置の劣化状態(SOH)を判定する装置(特許文献2)や、温度検出素子を用いずに蓄電装置の内部インピーダンスを求めて内部温度を決定する装置(特許文献3)が提案されている。
特許文献2(従来例2)の装置は、蓄電装置の温度を調整する温度調整手段と、蓄電装置の内部インピーダンスを算出するインピーダンス算出手段と、算出された内部インピーダンスに基づいて蓄電装置の劣化状態を判定する劣化判定手段とから構成されている。そして、蓄電装置を温度調整手段によって所定範囲内の温度に調整した状態で、蓄電装置が所定周波数(10Hz以上1kHz以下)の交流電流で充電又は放電されたときの内部インピーダンスの算出値と、蓄電装置の電圧及び蓄電装置の温度とに基づいて、予め蓄電装置の温度及び蓄電装置の電圧に対応させて設定した内部インピーダンスのマップを参照して、劣化状態の判定が行えるとしている。
また、特許文献3(従来例3)の内部温度を決定する装置は、蓄電装置に時間変動する電気励起を付与するための電気励起回路と、その結果で時間変動する電気応答を検出するための応答検出回路と、入力された励起と応答信号から導出された電圧と電流信号を使用して内部温度を決定するための計算回路とから構成される。そして、時間変動する電気励起を異なる周波数(実施例では5Hz、70Hz、1kHz)で与え、測定されたインピーダンスを想定される等価回路に代入し、この等価回路の特定の要素値から蓄電装置の内部温度を算定するとしている。
特開平6−260215号公報 特開2010−67502号公報 特表2003−508759号公報
しかしながら、従来例2では、蓄電装置の電解質におけるイオンの挙動の影響を受ける低い周波数(従来例2では10Hz以上1kHz以下)で内部インピーダンスの測定をしているので、内部インピーダンスを正確に測定するため、温度の影響を受けないように蓄電装置を温度調整手段によって所定範囲内の温度に調整した状態で測定を行っている。この方法では、内部インピーダンスの測定により蓄電装置の内部温度を推定しようとしても、蓄電装置の劣化状態により、測定される内部インピーダンスの測定値は異なってくるので、正確な蓄電装置の内部温度が得られないという問題がある。
また、従来例3では、残容量(SOC)に対して変化の少ない周波数を測定に用いるのが好適としているが、従来例2と同様に、蓄電装置の電解質におけるイオンの挙動の影響を受ける低い周波数(従来例3では5Hz、70Hz、1kHz)で内部インピーダンスの測定をしているので、蓄電装置の劣化状態により、測定される内部インピーダンスの測定値が異なり、正確な蓄電装置の内部温度が得られないという問題がある。
本発明は、上述した課題を解決するもので、蓄電装置の内部温度を正確に測定するための蓄電装置の温度測定方法を提供することを目的とする。
本発明の蓄電装置温度測定方法は、蓄電装置内のイオンが追従し難い周波数の信号で、前記蓄電装置の内部インピーダンスを測定し、前記内部インピーダンスの測定値から前記蓄電装置の内部温度を算出することを特徴とする。
この構成によれば、電解質のイオンが追従し難い周波数で、蓄電装置の内部インピーダンスを測定した測定値から蓄電装置の内部温度を算出するので、イオンの挙動の違いによる温度誤差が測定されることはない。このため、蓄電装置の残容量や劣化状態の違いによるイオンの挙動の違いが大きく測定値に反映されることがない。このことにより、温度のみに依存する蓄電装置の内部インピーダンスを測定でき、蓄電装置の内部温度を正確に測定することができる。
また、本発明の蓄電装置温度測定方法において、前記蓄電装置は、正極集電体、前記電解質、セパレータ及び負極集電体を有し、前記周波数は、前記正極集電体、前記電解質、前記セパレータ及び前記負極集電体の少なくとも一つが電子伝導性の抵抗として測定される周波数であることが好ましい。この構成によれば、信号の周波数は、正極集電体、電解質、セパレータ及び負極集電体の少なくとも一つが、主としてイオン伝導ではない電子伝導性の抵抗として測定される周波数なので、蓄電装置の残容量や劣化状態の違いによるイオンの挙動の違いが大きく測定値に反映されることがない。このことにより、電子伝導性の抵抗、言い換えると、インピーダンスにおけるレジスタンス(R、実部)が測定されるので、温度のみに依存する蓄電装置の抵抗を測定でき、蓄電装置の内部温度をより正確に測定することができる。
また、本発明の蓄電装置温度測定方法において、10kHz以上の周波数の信号で、蓄電装置の内部インピーダンスを測定し、前記内部インピーダンスの測定値から前記蓄電装置の内部温度を算出することが好ましい。この構成によれば、10kHz以上の周波数で、蓄電装置の内部インピーダンスを測定した測定値から蓄電装置の内部温度を算出するので、電解質のイオンがこの周波数に対して追従することはなく、イオンの挙動の違いによる温度誤差が測定されることはない。このため、蓄電装置の残容量や劣化状態の違いによるイオンの挙動の違いが測定値に反映されることがない。このことにより、温度のみに依存する蓄電装置の内部インピーダンスを測定でき、蓄電装置の内部温度を正確に測定することができる。
また、本発明の蓄電装置温度測定方法において、前記蓄電装置に与えられたパルスが誘起する過渡応答に対して、フーリエ変換を利用して周波数成分に変換し、前記周波数における前記内部インピーダンスを算出し、算出した値を前記測定値とすることが好ましい。この構成によれば、蓄電装置に与えられたパルスが誘起する過渡応答のフーリエ変換を利用して、イオンが追従しない或いは10kHz以上の周波数における内部インピーダンスの算出値を測定値としたので、蓄電装置に高い周波数の信号を付与するための交流信号源を設ける必要がなく、蓄電装置に対して新たに高い周波数信号を与える必要もない。このことにより、測定のための交流信号源を準備する必要がなく、本発明の蓄電装置温度測定方法を用いた蓄電装置温度測定装置の製造コストを下げることができる。
また、本発明の蓄電装置温度測定方法において、前記蓄電装置が二次電池であることが好ましい。この構成によれば、蓄電装置が充放電を繰り返すタイプの二次蓄電装置であるので、蓄電装置の残容量や劣化状態がその都度違ってくる。本発明の蓄電装置温度測定方法では、蓄電装置の残容量や劣化状態の違いによるイオンの挙動の違いが測定値に大きく反映されることがないので、このような蓄電装置を用いる場合でも、蓄電装置の内部温度を正確に測定することができる。さらに、二次電池が大容量の製品に適用された場合、大電流での充放電時に蓄電装置の内部発熱により、蓄電装置の内部温度と蓄電装置の表面温度との差が大きく生じるが、その際にも蓄電装置の内部温度を正確に測定することができる。
また、本発明の蓄電装置温度測定方法において、前記蓄電装置に接続される充電回路と前記蓄電装置との間に設けられるローパスフィルタにより、前記充電回路で生じる前記信号の周波数のノイズを除去することが好ましい。この構成によれば、蓄電装置に接続される充電回路と蓄電装置との間にローパスフィルタを設けるので、充電回路で生じる内部温度測定用の信号の周波数のノイズを除去できる。これにより、充電回路からのノイズによる内部インピーダンスの測定精度の低下を防止して、温度の算出精度を高く維持できる。
また、本発明の蓄電装置温度測定方法において、前記蓄電装置に接続される負荷と前記蓄電装置との間に設けられるローパスフィルタにより、前記負荷で生じる前記信号の周波数のノイズを除去することが好ましい。この構成によれば、蓄電装置に接続される負荷と蓄電装置との間にローパスフィルタを設けるので、負荷で生じる内部温度測定用の信号の周波数のノイズを除去できる。これにより、負荷からのノイズによる内部インピーダンスの測定精度の低下を防止して、温度の算出精度を高く維持できる。
また、本発明の蓄電装置温度測定方法において、前記蓄電装置に接続される電力変換器のスイッチ電源から生じる前記周波数の信号で、前記蓄電装置の内部インピーダンスを測定することが好ましい。この構成によれば、電力変換器で発生する信号を用いて蓄電装置の内部インピーダンスを測定するので、内部温度測定用の信号を発生する信号源を別に設ける必要がない。このため、温度測定精度を高く維持しつつ、本発明の蓄電装置温度測定方法に用いる測定システムに要するコストを低減できる。
また、本発明の蓄電装置温度測定方法において、前記蓄電装置のインピーダンスが前記蓄電装置側から見た前記蓄電装置に接続される充電回路のインピーダンスより小さくなる前記周波数の信号で、前記蓄電装置の内部インピーダンスを測定することが好ましい。この構成によれば、蓄電装置のインピーダンスが充電回路のインピーダンスより小さくなる周波数の信号で蓄電装置の内部インピーダンスを測定するので、内部インピーダンスの測定において充電回路の影響が小さくなる。これにより、内部インピーダンスの測定精度を高め、高精度に温度を算出できる。
また、本発明の蓄電装置温度測定方法において、蓄電装置のインピーダンスが前記蓄電装置側から見た前記蓄電装置に接続される負荷のインピーダンスより小さくなる前記周波数の信号で、前記蓄電装置の内部インピーダンスを測定することが好ましい。この構成によれば、蓄電装置のインピーダンスが負荷のインピーダンスより小さくなる周波数の信号で蓄電装置の内部インピーダンスを測定するので、内部インピーダンスの測定において負荷の影響が小さくなる。これにより、内部インピーダンスの測定精度を高め、高精度に温度を算出できる。
また、本発明の蓄電装置温度測定方法において、前記蓄電装置に接続される位相補償回路により、前記周波数の信号による電流の位相と電圧の位相とが揃えられることが好ましい。この構成によれば、蓄電装置に接続される位相補償回路により、電流の位相と電圧の位相とを揃えることで、検出装置の性能が高くなくとも、蓄電装置の内部インピーダンスを精度良く計測できる。このため、温度測定精度を高く維持しつつ、本発明の蓄電装置温度測定方法に用いる測定システムに要するコストを低減できる。
また、本発明の蓄電装置温度測定方法において、前記蓄電装置と前記位相補償回路とにより、共振回路が構成されることが好ましい。この構成によれば、蓄電装置と位相補償回路とで直列共振回路が構成されることで、共振周波数においてインピーダンスの虚部を0にできる。このため、共振周波数の信号により、蓄電装置の内部インピーダンスの抵抗成分のみを検出可能である。また、蓄電装置と位相補償回路とで並列共振回路が構成されることで、蓄電装置の内部インピーダンスの僅かな変動を共振によって増幅できる。このため、S/Nが高くなり、内部インピーダンスを精度良く計測できる。
また、本発明の蓄電装置温度測定方法において、前記位相補償回路は、キャパシタを備えることが好ましい。この構成によれば、位相補償回路は、キャパシタを含んで構成されるので、簡単な構成の位相補償回路で、電流の位相と電圧の位相とを揃えることができる。
本発明の蓄電装置温度測定方法は、前記蓄電装置の内部インピーダンスのインダクタンス成分が、キャパシタンス成分より支配的となる周波数の信号で、前記蓄電装置の内部インピーダンスを測定し、前記内部インピーダンスの測定値から前記蓄電装置の内部温度を算出することを特徴とする。
本発明の蓄電装置温度測定方法は、前記蓄電装置の内部インピーダンスの抵抗成分が温度の上昇に伴い大きくなる周波数の信号で、前記蓄電装置の内部インピーダンスを測定し、前記内部インピーダンスの測定値から前記蓄電装置の内部温度を算出することを特徴とする。
本発明により、蓄電装置の内部温度を正確に測定するための蓄電装置の温度測定方法を提供できる。
本発明の第1実施形態の蓄電装置温度測定方法を説明する図であって、蓄電装置の内部温度を測定するための測定システムのブロック図である。 本発明の第1実施形態の蓄電装置温度測定方法を説明する図であって、蓄電装置の内部温度を測定するための別の測定システムのブロック図である。 本発明の第1実施形態の蓄電装置温度測定方法を説明する図であって、リチウムイオン二次電池の構造模式図である。 本発明の第1実施形態の蓄電装置温度測定方法を説明する図であって、蓄電装置における抵抗の時間依存性を表したグラフの一例である。 本発明の第1実施形態の蓄電装置温度測定方法を説明する図であって、リチウムイオン二次電池の等価回路図である。 本発明の第1実施形態の蓄電装置温度測定方法を説明する図であって、蓄電装置に供給される信号の周波数と、内部インピーダンスの実部(抵抗)との関係の一例を示すグラフである。 本発明の第2実施形態の蓄電装置温度測定方法を説明する図であって、蓄電装置の内部温度を測定するための測定システムのブロック図である。 本発明の第4実施形態の蓄電装置温度測定方法を説明する図であって、蓄電装置の内部温度を測定するための測定システムのブロック図である。 本発明の第5実施形態の蓄電装置温度測定方法を説明する図であって、蓄電装置の内部温度を測定するための測定システムのブロック図である。 本発明の第6実施形態の蓄電装置温度測定方法を説明する図であって、蓄電装置の内部温度を測定するための測定システムのブロック図である。 本発明の第6実施形態の蓄電装置温度測定方法を説明する図であって、電流の位相と電圧の位相とが揃う様子を示すグラフである。 本発明の第1実施形態の蓄電装置温度測定方法の変形例1を説明する図であって、蓄電装置の内部温度を測定するための測定システムのブロック図である。
以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
[第1実施形態]
図1Aは、本発明の第1実施形態の蓄電装置の温度測定方法(蓄電装置温度測定方法)を説明する図であって、蓄電装置1の内部温度を測定するための測定システム101のブロック図である。図1Bは、本発明の第1実施形態の蓄電装置温度測定方法を説明する図であって、蓄電装置1の内部温度を測定するための測定システムA101のブロック図である。図2は、本発明の第1実施形態の蓄電装置温度測定方法を説明する図であって、リチウムイオン二次電池L1の構造模式図である。図3は、本発明の第1実施形態の蓄電装置温度測定方法を説明する図であって、蓄電装置1における抵抗の時間依存性を表したグラフの一例である。図4は、本発明の第1実施形態の蓄電装置温度測定方法を説明する図であって、リチウムイオン二次電池L1の等価回路図である。図5は、本発明の第1実施形態の蓄電装置温度測定方法を説明する図であって、蓄電装置1に供給される信号の周波数と、内部インピーダンスの実部(抵抗成分)との関係の一例を示すグラフである。
本発明の第1実施形態の蓄電装置温度測定方法は、図1Aに示す蓄電装置1の内部温度を測定するための測定システム101、又は図1Bに示す蓄電装置1の内部温度を測定するための測定システムA101を用いて行う方法である。測定システム101は、図1Aに示すように、蓄電装置1に高い周波数の信号を付与するための交流信号源部5と、その結果で応答する電流及び電圧を検出する電流検出部4及び電圧検出部6と、入力された高い周波数信号と検出された電流及び電圧とを使用して内部温度を算出する内部温度算出部7とから構成される。また、測定システムA101は、図1Bに示すように、測定システム101と同様の構成を有しており、例えば、100kHz以上の高い周波数で蓄電装置の温度を測定する場合に用いられる。測定システムA101において、交流信号源部5は、キャパシタを介して負荷と並列に接続されており、蓄電装置1の電流経路には配置されていない。これにより、電流経路の直流抵抗を低く抑えて電力損失を低減できる。
蓄電装置1は、例えば、リチウムイオン二次電池等の充電可能な化学電池であるが、電気二重層キャパシタのようにイオンを利用して電気エネルギーを蓄えることのできる装置も含まれる。一般的に、蓄電装置1は、主に正極集電体A1、負極集電体C1、電解質E1及びセパレータS1とから構成され、例えばリチウムイオン二次電池L1の場合、図2に示すように、上述した構成要素の他に、正極集電体A1側の電気をためる物質である正極活物質A51、負極集電体C1側の電気をためる物質である負極活物質C51、電気の流れを良くするために加える導電助材D51、バインダーである結着材等を有している。リチウムイオン二次電池L1の場合、正極集電体A1としてアルミニウム(Al)、負極集電体C1として銅(Cu)、電解質E1として有機系の溶媒(C4H6O3等)とリチウム塩(LiPF6等)の溶質とから構成される溶液、正極活物質A51としてコバルト酸リチウム(LiCoO2)、負極活物質C51として炭素(C)が最も使用されている。負極活物質C51の炭素(C)には、層状に形成された黒鉛の結晶を用いており、層と層の間にリチウムがイオンの状態で蓄えられているのが特徴である。
交流信号源部5は、およそ1kHz以上の高い周波数の信号を発生させるためのものである。電流検出部4は、蓄電装置1が接続され負荷9がかかっている回路の間に接続されている。そして、電流検出部4は、電流を検出するための電流センサと電流センサの制御回路とから主に構成され、電流を検出している。電流センサとして、例えば、磁気抵抗素子を用いた小型電流センサを用いることができる。電圧検出部6は、蓄電装置1の電圧を検出している。内部温度算出部7は、入力された高い周波数信号と検出された電流及び電圧とを使用して、蓄電装置1の内部インピーダンスを測定し、内部インピーダンスの測定値から蓄電装置1の内部温度を算出している。
この蓄電装置1の測定は、前述したように、蓄電装置1におけるイオンの挙動の影響を大きく受けることが良く知られている。図3は、蓄電装置1の抵抗値を測定した際の、応答時間と得られた抵抗値との関係の一例を示したグラフである。図3に示すように、応答時間が約0.2m秒以下では、得られる蓄電装置1の抵抗値は、イオン応答が追従しないので、蓄電装置1の構成要素の純粋な抵抗値、所謂電子伝導性の抵抗値を合計した値として得られる(図中の領域ZA)。応答時間が約0.2m秒以上になると、負極界面でのイオンとの反応抵抗などが見られ、上記の電子伝導性の抵抗値に加え反応による抵抗値が加算されてくる(図中の領域ZB)。更に、応答時間が約10m秒以上になると、正極界面でのイオンとの反応抵抗が見られ、上記の電子伝導性の抵抗値に加え反応による抵抗値が更に加算されてくる(図中の領域ZC)。そして、応答時間が約1秒以上になると、イオンの拡散が行われるようになるので、拡散による抵抗値が更に加算されてくる(図中の領域ZD)。このように、蓄電装置1の抵抗値の測定は、イオンの挙動の影響を大きく受け、しかも応答時間とも大きく関連している。
図4は、リチウムイオン二次電池L1の等価回路図である。図4において、La及びRaは、それぞれ正極集電体A1のインダクタンス及び電気抵抗を示し、Ca及びRbは、それぞれ正極部分の反応に依存する静電容量及び電気抵抗を示し、Rcは、電解質E1に起因する電気抵抗を示し、Cb及びRdは、それぞれセパレータS1を通過するイオンに起因する静電容量及び電気抵抗を示し、Cc及びReは、それぞれ負極部分の反応に依存する静電容量及び電気抵抗を示し、Lb及びRfは、それぞれ負極集電体C1のインダクタンス及び電気抵抗を示す。
図4に示すように、リチウムイオン二次電池L1の内部インピーダンスにおいて、イオンの挙動の影響が大きいのは、正極部分の反応に依存するCa,Rb、セパレータS1を通過するイオンに起因するCb,Rd、及び負極部分の反応に依存するCc,Reである。本発明者は、この点に着目し、正極部の反応に依存するCa,Rb、セパレータS1を通過するイオンに起因するCb,Rd、及び負極部の反応に依存するCc,Reの影響が十分に低減される条件を実現できれば、内部インピーダンスを精度良く測定できるのではないかと考えた。
すなわち、本発明の骨子は、蓄電装置1(例えば、リチウムイオン二次電池L1)においてインダクタンスが支配的となる高い周波数の信号を用いて内部インピーダンスを測定することである。このような高い周波数では、Ca,Cb,Ccは実質的に短絡されるので、イオンの挙動による影響が十分に低減された状態で内部インピーダンスを測定できる。
上述の技術的思想に基づき、本発明の第1実施形態の蓄電装置温度測定方法は、蓄電装置1のイオンの影響が少ない、或いはイオンの影響を受けない応答時間で測定したことを特徴としている。つまり、蓄電装置1のイオンが追従し難い周波数の信号を用いて、蓄電装置1の内部インピーダンスを測定し、内部インピーダンスの測定値から、蓄電装置1の内部温度を算出するようにした。イオンが追従し難い周波数、具体的には約5kHz(図3に示す応答時間約0.2m秒に相当する)以上の信号で測定すると応答時間を短くすることができるので、イオンの挙動による影響を無くすことができ、蓄電装置1の構成要素の純粋な内部インピーダンスを測定することができる。このように測定される内部インピーダンスは、温度のみに依存しているので、内部インピーダンスの測定値から、蓄電装置1の内部温度を精度良く算出することができる。すなわち、蓄電装置1の残容量や劣化状態の違いによるイオンの挙動の違いが測定値に大きく反映されることがないので、温度にのみ依存する蓄電装置1の内部インピーダンスを測定でき、蓄電装置1の内部温度を正確に測定することができる。このように、本発明によって、蓄電装置1の内部温度を正確に測定するための温度測定方法を提供できる。
また、本発明の第1実施形態の蓄電装置温度測定方法で用いた信号の周波数は、インダクタンスが支配的となる程度に高くなっており、正極集電体A1、電解質E1、セパレータS1及び負極集電体C1の少なくとも一つが、主としてイオン伝導ではない電子伝導性の抵抗として測定されるので、蓄電装置1の残容量や劣化状態の違いによるイオンの挙動の違いが大きく測定値に反映されることがない。しかも、主として電子伝導性の抵抗、言い換えると、インピーダンスにおけるレジスタンス(R、実部)が測定されるので、温度にのみ依存する蓄電装置1の抵抗を測定でき、蓄電装置1の内部温度をより正確に測定することができる。
ここで、イオン伝導の抵抗と電子伝導の抵抗とは、インピーダンスの抵抗成分の温度依存性に基づいて見分けることができる。イオン伝導の場合、温度が高くなるほどイオンの移動度が大きくなり、インピーダンスの抵抗成分は小さくなる(つまり、インピーダンスの抵抗成分の温度依存性が負)。電子伝導の場合、特に金属の場合には、温度が高くなるほど電子の散乱が大きくなり、インピーダンスの抵抗成分は大きくなる(つまり、インピーダンスの抵抗成分の温度依存性が正)。従って、インピーダンスの抵抗成分が温度の上昇に伴い大きくなるような周波数(インピーダンスの抵抗成分の温度依存性が正となる周波数)を用いることで、同様に温度にのみ依存する蓄電装置1の抵抗を測定でき、蓄電装置1の内部温度をより正確に測定することが可能である。
また、本発明の第1実施形態の蓄電装置温度測定方法で測定した蓄電装置1は、例えば、充放電を繰り返すタイプの二次電池であるので、蓄電装置1の残容量や劣化状態がその都度違ってくる。本発明の第1実施形態の蓄電装置温度測定方法は、蓄電装置1の残容量や劣化状態の違いによるイオンの挙動の違いが測定値に大きく反映されることがないので、このような蓄電装置1を用いる場合でも、蓄電装置1の内部温度を正確に測定することができる。さらに、蓄電装置1が大容量の製品に適用された場合、大電流での充放電時に蓄電装置1の内部発熱により、蓄電装置1の内部温度と蓄電装置1の表面温度との差が大きく生じるが、本発明の第1実施形態の蓄電装置温度測定方法は、その際にも蓄電装置1の内部温度を正確に測定することができる。
図5は、蓄電装置1に供給される信号の周波数と、内部インピーダンスの実部(抵抗)との関係の一例を示すグラフである。図5においては、充電率が25%,50%,75%,100%、温度が0℃,20℃,40℃のそれぞれの条件における関係を示している。図5から、インダクタンスが支配的となる高い周波数では、内部インピーダンスは主に温度に依存し、充電率に依存しないことが確認できる。なお、インピーダンスの測定精度を高めるためには、測定に用いる信号の周波数は10kHz以上とするのが好ましく、100kHz以上とするとより好ましい。一方、インピーダンスの測定の容易性を考慮すれば、信号の周波数は1MHz以下に抑えるのが望ましい。
以上により、本実施形態の蓄電装置温度測定方法は、イオンが追従し難い周波数で、蓄電装置1の内部インピーダンスを測定した測定値から蓄電装置1の内部温度を算出するので、イオンの挙動の違いによる温度誤差が測定されることはない。このため、蓄電装置1の残容量や劣化状態の違いによるイオンの挙動の違いが大きく測定値に反映されることがない。このことにより、温度のみに依存する蓄電装置1の内部インピーダンスを測定でき、蓄電装置1の内部温度を正確に測定することができる。
また、信号の周波数は、正極集電体A1、電解質E1、セパレータS1及び負極集電体C1の少なくとも一つが、主としてイオン伝導ではない電子伝導性の抵抗として測定される周波数なので、蓄電装置1の残容量や劣化状態の違いによるイオンの挙動の違いが大きく測定値に反映されることがない。このことにより、電子伝導性の抵抗、言い換えると、インピーダンスにおけるレジスタンス(R、実部)が測定されるので、温度のみに依存する蓄電装置1の抵抗を測定でき、蓄電装置1の内部温度をより正確に測定することができる。
また、蓄電装置1が充放電を繰り返すタイプの二次電池の場合でも、蓄電装置1の残容量や劣化状態の違いによるイオンの挙動の違いが測定値に大きく反映されることがないので、蓄電装置の内部温度を正確に測定することができる。さらに、蓄電装置1が大容量の製品に適用された場合、大電流での充放電時に蓄電装置1の内部発熱により、蓄電装置1の内部温度と蓄電装置1の表面温度との差が大きく生じるが、その際にも蓄電装置1の内部温度を正確に測定することができる。
[第2実施形態]
図6は、本発明の第2実施形態の蓄電装置温度測定方法を説明する図であって、蓄電装置1の内部温度を測定するための測定システム102のブロック図である。第2実施形態の蓄電装置温度測定方法は、第1実施形態に対し、蓄電装置1に与えられたパルスから周波数成分に変換する変換部8を設けている点が異なる。なお、第1実施形態と同一の構成については、同一の符号を付して詳細な説明は省略する。
本発明の第2実施形態の蓄電装置温度測定方法は、図6に示す蓄電装置1の内部温度を測定するための測定システム102を用いて行う方法である。この測定システム102は、図6に示すように、スイッチ・オン等のトリガーTRから蓄電装置1に与えられたパルスから周波数成分に変換する変換部8と、蓄電装置1に与えられたパルスに応答する電流及び電圧を検出する電流検出部4及び電圧検出部6と、入力された高い周波数信号と検出された電流及び電圧とを使用して内部温度を算出する内部温度算出部7とから構成される。
上述したトリガーTRとして、例えば自動車の場合、エンジン始動時のスイッチ・オンや、回生ブレーキがかけられた時の充電時、蓄電装置1の急速充電時等が挙げられる。この際に発生するパルス信号が蓄電装置1に与えられるが、このパルスが誘起する過渡応答に対して、フーリエ変換を利用して周波数成分に変換することができる。パルス信号に含まれる周波数の中から、蓄電装置1のイオンが追従し難い周波数を選択し、この周波数における蓄電装置1の内部インピーダンスを算出し、算出した値を測定値とすることにより、イオンの挙動の違いによる温度誤差が測定されることはない。このため、蓄電装置1の残容量や劣化状態の違いによるイオンの挙動の違いが大きく測定値に反映されることがないので、蓄電装置1の内部温度を正確に測定することができる。
以上により、本実施形態の蓄電装置温度測定方法は、蓄電装置1に高い周波数の信号を付与するための交流信号源を設ける必要がなく、蓄電装置1に対して新たに高い周波数信号を与える必要もない。このことにより、測定のための交流信号源を準備する必要がなく、本発明の蓄電装置温度測定方法を用いた蓄電装置温度測定装置の製造コストを下げることができる。本実施形態に係る構成及び方法は、他の実施形態に係る構成及び方法と適宜組み合わせて実施できる。
[第3実施形態]
第3実施形態の蓄電装置温度測定方法は、第1実施形態に対し、図1の交流信号源部5の仕様が異なり、10kHz以上の周波数の信号を発生させる。この10kHz以上の周波数の信号で測定するので、応答時間が0.1m秒以下となり、図3に示すように、蓄電装置1のイオンがこの周波数に対して追従しなくなり、蓄電装置1の構成要素の純粋な抵抗値、所謂電子伝導性の抵抗値を合計した値が得られる。これにより、10kHz以上の周波数における蓄電装置1の内部インピーダンスを算出し、算出した値を測定値としたことにより、イオンの挙動の違いによる温度誤差が測定されることはない。
以上により、本実施形態の蓄電装置温度測定方法は、10kHz以上の周波数で、蓄電装置1の内部インピーダンスを測定した測定値から蓄電装置1の内部温度を算出するので、蓄電装置1のイオンがこの周波数に対して追従することはなく、イオンの挙動の違いによる温度誤差が測定されることはない。このため、蓄電装置1の残容量や劣化状態の違いによるイオンの挙動の違いが測定値に反映されることがない。このことにより、温度にのみ依存する蓄電装置1の内部インピーダンスを測定でき、蓄電装置1の内部温度を正確に測定することができる。本実施形態に係る構成及び方法は、他の実施形態に係る構成及び方法と適宜組み合わせて実施できる。
[第4実施形態]
図7は、本発明の第4実施形態の蓄電装置温度測定方法を説明する図であって、蓄電装置1の内部温度を測定するための測定システム104のブロック図である。第4実施形態の蓄電装置温度測定方法は、第1実施形態に対し、負荷9及び充電回路11で生じる高周波数のノイズを除去するためのローパスフィルタ12a,12bを用いる点が異なる。なお、第1実施形態と同一の構成については、同一の符号を付して詳細な説明は省略する。
第4実施形態の蓄電装置温度測定方法は、図7に示す蓄電装置1の内部温度を測定するための測定システム104を用いて行う方法である。測定システム104は、図7に示すように、蓄電装置1に高い周波数の信号を付与するための交流信号源部5と、電流及び電圧を検出する電流検出部4及び電圧検出部6と、交流信号源部5から入力される高い周波数の信号と、電流検出部4及び電圧検出部6で検出される電流及び電圧とを用いて蓄電装置1の内部温度を算出する内部温度算出部7とを備えている。
蓄電装置1には、スイッチSWaを介して、電力の供給先である負荷9と、蓄電装置1を充電する充電回路11とが接続されている。スイッチSWaにより、蓄電装置1の放電時には蓄電装置1と負荷9とが接続され、蓄電装置1の充電時には蓄電装置1と充電回路11とが接続される。負荷9は、代表的には、蓄電装置1の直流電力を交流電力に変換するインバータなどの電力変換器である。負荷9には、リップル電流を抑制するためのキャパシタ13が並列に接続されている。
負荷9には、ローパスフィルタ12aが直列に接続されている。ローパスフィルタ12aは、負荷9と蓄電装置1との間に設けられており、負荷9において発生する信号の高周波数成分(ノイズ)を除去する。なお、ローパスフィルタ12aは、リップル電流を抑制するためのキャパシタ13より蓄電装置1側に設けられている。同様に、充電回路11には、ローパスフィルタ12bが直列に接続されている。ローパスフィルタ12bは、充電回路11と蓄電装置1との間に設けられており、充電回路11において発生する信号の高周波数成分(ノイズ)を除去する。
測定システム104において、内部温度を測定するために用いられる信号の周波数は、ローパスフィルタ12a,12bの通過帯域より高くなっている。つまり、負荷9や充電回路11で発生する信号の高周波数成分(ノイズ)は、ローパスフィルタ12a,12bで除去されて、電流検出部4及び電圧検出部6の検出精度に影響を与えない。このため、負荷9や充電回路11からの信号による内部温度の測定精度の低下を防止できる。
このように、本実施形態の蓄電装置温度測定方法は、蓄電装置1に接続される負荷9と蓄電装置1との間にローパスフィルタ12aを設け、又は、蓄電装置1に接続される充電回路11と蓄電装置1との間にローパスフィルタ12bを設けることで、内部温度測定用の信号と同じ周波数のノイズを除去できる。これにより、負荷9又は充電回路11からのノイズによる内部温度の測定精度の低下を防止できる。本実施形態に係る構成及び方法は、他の実施形態に係る構成及び方法と適宜組み合わせて実施できる。
[第5実施形態]
図8は、本発明の第5実施形態の蓄電装置温度測定方法を説明する図であって、蓄電装置1の内部温度を測定するための測定システム105のブロック図である。第5実施形態の蓄電装置温度測定方法は、第1実施形態に対し、負荷9で発生する高周波数の信号を用いて蓄電装置1の内部インピーダンスを測定する点が異なる。なお、第1実施形態と同一の構成については、同一の符号を付して詳細な説明は省略する。
第5実施形態の蓄電装置温度測定方法は、図8に示す蓄電装置1の内部温度を測定するための測定システム105を用いて行う方法である。測定システム105には、図8に示すように、蓄電装置1から電力が供給される負荷9が接続されている。負荷9は、代表的には、蓄電装置1の直流電力を交流電力に変換するインバータやDC−DCコンバータなどの電力変換器であり、スイッチ周波数の固定されたスイッチ電源(不図示)を備えている。負荷9のスイッチ電源は、蓄電装置1の内部温度の測定に適した高周波数の信号(例えば、リップル電流)を発生できるように構成されている。
また、測定システム105は、負荷9のスイッチ電源からの信号で生じる電流及び電圧を検出する電流検出部4及び電圧検出部6と、負荷9から入力された高い周波数の信号と、電流検出部4及び電圧検出部6で検出された電流及び電圧とを用いて蓄電装置1の内部温度を算出する内部温度算出部7とを備えている。
本実施形態の蓄電装置温度測定方法では、負荷9で発生する高周波数の信号を用いて蓄電装置1の内部インピーダンスを測定するので、第1実施形態の測定システム101,A101のような交流信号源部5を設ける必要がない。このため、温度測定精度を高く維持しつつ、測定システムに要するコストを低減できる。本実施形態に係る構成及び方法は、他の実施形態に係る構成及び方法と適宜組み合わせて実施できる。
[第6実施形態]
図9は、本発明の第6実施形態の蓄電装置温度測定方法を説明する図であって、蓄電装置1の内部温度を測定するための測定システム106のブロック図である。第6実施形態の蓄電装置温度測定方法は、第1実施形態に対し、電流の位相と電圧の位相とを揃えるための位相補償回路14を用いる点が異なる。なお、第1実施形態と同一の構成については、同一の符号を付して詳細な説明は省略する。
第6実施形態の蓄電装置温度測定方法は、図9に示す蓄電装置1の内部温度を測定するための測定システム106を用いて行う方法である。測定システム106は、図9に示すように、蓄電装置1に高い周波数の信号を付与するための交流信号源部5と、交流信号源部5からの信号による電流及び電圧を検出する電流検出部4及び電圧検出部6と、入力された高い周波数信号と検出された電流及び電圧とを用いて蓄電装置1の内部温度を算出する内部温度算出部7とを備えている。
蓄電装置1には、交流信号源部5からの高い周波数の信号で生じる電流及び電圧の位相を揃えるための位相補償回路14が接続されている。通常、蓄電装置1の内部インピーダンスを求めるには、電流と電圧との位相差を計測するために時間分解能の高い電流検出部4及び電圧検出部6が必要となる。これに対して、本実施形態の測定システム106では、位相補償回路14によって電流と電圧との位相が揃えられるので、電流検出部4及び電圧検出部6の時間分解能が高くなくとも、蓄電装置1の内部インピーダンスの抵抗成分(実部)を精度良く計測できる。また、電流と電圧の位相差を算出する必要がないので蓄電装置1の内部インピーダンスをリアルタイムに計測できる。
位相補償回路14は、蓄電装置1と位相補償回路14とで直列共振回路を構成するように設けられるのが好ましい。この場合、共振周波数においてインピーダンスの虚部を0にできるので、共振周波数の信号を用いれば、蓄電装置1の内部インピーダンスの抵抗成分のみを検出できる。また、位相補償回路14は、蓄電装置1と位相補償回路14とで並列共振回路を構成するように設けられるのが好ましい。この場合、蓄電装置1の内部インピーダンスの僅かな変動を共振によって増幅できるので、S/Nが高くなり、内部インピーダンスを精度良く計測できる。また、本実施の形態の蓄電装置温度測定方法に用いられる周波数において、蓄電装置1のインピーダンスはインダクタンス成分が支配的となるため、位相補償回路14は、キャパシタを含んで構成されることが好ましい。この場合、簡単な構成の位相補償回路14で、電流と電圧との位相を揃えることができる。
図10は、蓄電装置1と位相補償回路14とで構成される共振回路により、電流の位相と電圧の位相とが揃う様子を示すグラフである。図10では、交流信号源部5を定電流源として、周波数が300kHzで、最大値及び最小値が±20mAの交流電流を発生させた場合を例示している。図10に示すように、位相補償回路14を用いることで、電流(破線)の位相と電圧(実線)の位相とが揃えられるのが分かる。
このように、本実施形態の蓄電装置温度測定方法は、蓄電装置1に接続される位相補償回路14で電流の位相と電圧の位相とを揃えることにより、検出装置の性能が高くなくとも、蓄電装置1の内部インピーダンスを精度良く計測できる。このため、温度測定精度を高く維持しつつ、測定システムに要するコストを低減できる。本実施形態に係る構成及び方法は、他の実施形態に係る構成及び方法と適宜組み合わせて実施できる。
[第7実施形態]
第7実施形態の蓄電装置温度測定方法は、例えば、図7に示す測定システム104において、蓄電装置1のインピーダンスが、蓄電装置1側から見た充電回路11のインピーダンスより小さくなる条件で、蓄電装置1の内部インピーダンスを測定する。また、例えば、図8に示す測定システム105において、蓄電装置1のインピーダンスが、蓄電装置1側から見た負荷9のインピーダンスより小さくなる条件で、蓄電装置1の内部インピーダンスを測定する。
具体的には、蓄電装置1のインピーダンスをZ1、蓄電装置1側から見た負荷9のインピーダンスをZ2、蓄電装置1側から見た充電回路11の負荷をZ3として、測定に用いられる周波数において、Z1<Z2、又はZ1<Z3を満たすようにする。この場合、蓄電装置1以外の構成の影響は小さくなるので、内部インピーダンスの測定精度を高めることができる。その結果、高い温度測定精度を実現できる。本実施形態に係る構成及び方法は、他の実施形態に係る構成及び方法と適宜組み合わせて実施できる。
なお、本発明は上記実施形態に限定されるものではなく、例えば次のように変形して実施することができ、これらの実施形態も本発明の技術的範囲に属する。
<変形例1>
図11は、本発明の第1実施形態の蓄電装置温度測定方法の変形例1を説明する図であって、蓄電装置1の内部温度を測定するための測定システムC101のブロック図である。上記第1実施形態の測定システム101の測定系に、図11に示すように、スイッチSW1及びスイッチSW2を設けた測定システムC101であっても良い。これによれば、測定の際に負荷9の影響を受ける場合は、負荷9を駆動しなくても良いタイミングで、スイッチSW1を開きスイッチSW2を閉じて測定することにより、より精度が高い測定値を得ることができる。
本発明は上記実施の形態に限定されず、本発明の目的の範囲を逸脱しない限りにおいて適宜変更することが可能である。
本発明の蓄電装置温度測定方法は、蓄電装置の劣化状態(SOH)や残容量(SOC)を求める際に有用である。
本出願は、2011年8月1日出願の特願2011−168518に基づく。この内容は、全てここに含めておく。
また、本発明の蓄電装置温度測定方法において、前記蓄電装置は、正極集電体、電解質、セパレータ及び負極集電体を有し、前記周波数は、前記正極集電体、前記電解質、前記セパレータ及び前記負極集電体の少なくとも一つが電子伝導性の抵抗として測定される周波数であることが好ましい。この構成によれば、信号の周波数は、正極集電体、電解質、セパレータ及び負極集電体の少なくとも一つが、主としてイオン伝導ではない電子伝導性の抵抗として測定される周波数なので、蓄電装置の残容量や劣化状態の違いによるイオンの挙動の違いが大きく測定値に反映されることがない。このことにより、電子伝導性の抵抗、言い換えると、インピーダンスにおけるレジスタンス(R、実部)が測定されるので、温度のみに依存する蓄電装置の抵抗を測定でき、蓄電装置の内部温度をより正確に測定することができる。
本発明の蓄電装置温度測定方法は、蓄電装置の内部インピーダンスのインダクタンス成分が、キャパシタンス成分より支配的となる周波数の信号で、前記蓄電装置の内部インピーダンスを測定し、前記内部インピーダンスの測定値から前記蓄電装置の内部温度を算出することを特徴とする。
本発明の蓄電装置温度測定方法は、蓄電装置の内部インピーダンスの抵抗成分が温度の上昇に伴い大きくなる周波数の信号で、前記蓄電装置の内部インピーダンスを測定し、前記内部インピーダンスの測定値から前記蓄電装置の内部温度を算出することを特徴とする。
本発明の蓄電装置温度測定方法は、蓄電装置の内部インピーダンスの抵抗成分が温度の上昇に伴い大きくなる周波数の信号で、前記蓄電装置の内部インピーダンスを測定し、前記内部インピーダンスの測定値から前記蓄電装置の内部温度を算出することを特徴とする。
本発明の蓄電装置温度測定方法は、蓄電装置内のイオンが追従し難い周波数の信号で、前記蓄電装置の内部インピーダンスを測定し、前記内部インピーダンスの測定値から前記蓄電装置の内部温度を算出する蓄電装置温度測定方法であって、前記蓄電装置は、正極集電体、電解質、セパレータ及び負極集電体を有し、前記蓄電装置の内部インピーダンスを測定する信号の周波数は、前記正極集電体、前記電解質、前記セパレータ及び前記負極集電体の全てが電子伝導性の抵抗として測定される周波数であることを特徴とする
この構成によれば、電解質のイオンが追従し難い周波数で、蓄電装置の内部インピーダンスを測定した測定値から蓄電装置の内部温度を算出するので、イオンの挙動の違いによる温度誤差が測定されることはない。このため、蓄電装置の残容量や劣化状態の違いによるイオンの挙動の違いが大きく測定値に反映されることがない。このことにより、温度のみに依存する蓄電装置の内部インピーダンスを測定でき、蓄電装置の内部温度を正確に測定することができる。
また、本発明の蓄電装置温度測定方法において、前記蓄電装置の内部インピーダンスを測定する信号の周波数は、10kHz以上の周波数であることが好ましい。
さらに、本発明の蓄電装置温度測定方法において、前記蓄電装置の内部インピーダンスを測定する信号の周波数は、100kHz以上の周波数であることが好ましい。
さらに、本発明の蓄電装置温度測定方法において、前記蓄電装置の内部インピーダンスを測定する信号の周波数は、1MHz以下の周波数であることが好ましい。
また、本発明の蓄電装置温度測定方法において、前記位相補償回路は、キャパシタを備えることが好ましい。この構成によれば、位相補償回路は、キャパシタを含んで構成されるので、簡単な構成の位相補償回路で、電流の位相と電圧の位相とを揃えることができる。
さらに、本発明の蓄電装置温度測定方法は、100kHz以上、1MHz以下の周波数の信号で、蓄電装置の内部インピーダンスを測定し、前記内部インピーダンスの測定値から前記蓄電装置の内部温度を算出することを特徴とする。

Claims (15)

  1. 蓄電装置内のイオンが追従し難い周波数の信号で、前記蓄電装置の内部インピーダンスを測定し、前記内部インピーダンスの測定値から前記蓄電装置の内部温度を算出することを特徴とする蓄電装置温度測定方法。
  2. 前記蓄電装置は、正極集電体、前記電解質、セパレータ及び負極集電体を有し、
    前記周波数は、前記正極集電体、前記電解質、前記セパレータ及び前記負極集電体の少なくとも一つが電子伝導性の抵抗として測定される周波数であることを特徴とする請求項1に記載の蓄電装置温度測定方法。
  3. 10kHz以上の周波数の信号で、蓄電装置の内部インピーダンスを測定し、前記内部インピーダンスの測定値から前記蓄電装置の内部温度を算出することを特徴とする蓄電装置温度測定方法。
  4. 前記蓄電装置に与えられたパルスが誘起する過渡応答に対して、フーリエ変換を利用して周波数成分に変換し、前記周波数における前記内部インピーダンスを算出し、算出した値を前記測定値としたことを特徴とする請求項1ないし請求項3のいずれかに記載の蓄電装置温度測定方法。
  5. 前記蓄電装置が二次電池であることを特徴とする請求項1ないし請求項4のいずれかに記載の蓄電装置温度測定方法。
  6. 前記蓄電装置に接続される充電回路と前記蓄電装置との間に設けられるローパスフィルタにより、前記充電回路で生じる前記信号の周波数のノイズを除去することを特徴とする請求項1ないし請求項5のいずれかに記載の蓄電装置温度測定方法。
  7. 前記蓄電装置に接続される負荷と前記蓄電装置との間に設けられるローパスフィルタにより、前記負荷で生じる前記信号の周波数のノイズを除去することを特徴とする請求項1ないし請求項5のいずれかに記載の蓄電装置温度測定方法。
  8. 前記蓄電装置に接続される電力変換器のスイッチ電源から生じる前記周波数の信号で、前記蓄電装置の内部インピーダンスを測定することを特徴とする請求項1ないし請求項7のいずれかに記載の蓄電装置温度測定方法。
  9. 前記蓄電装置のインピーダンスが前記蓄電装置側から見た前記蓄電装置に接続される充電回路のインピーダンスより小さくなる前記周波数の信号で、前記蓄電装置の内部インピーダンスを測定することを特徴とする請求項1ないし請求項5のいずれかに記載の蓄電装置温度測定方法。
  10. 前記蓄電装置のインピーダンスが前記蓄電装置側から見た前記蓄電装置に接続される負荷のインピーダンスより小さくなる前記周波数の信号で、前記蓄電装置の内部インピーダンスを測定することを特徴とする請求項1ないし請求項5のいずれかに記載の蓄電装置温度測定方法。
  11. 前記蓄電装置に接続される位相補償回路により、前記周波数の信号による電流の位相と電圧の位相とが揃えられることを特徴とする請求項1ないし請求項10のいずれかに記載の蓄電装置温度測定方法。
  12. 前記蓄電装置と前記位相補償回路とにより、共振回路が構成されることを特徴とする請求項11に記載の蓄電装置温度測定方法。
  13. 前記位相補償回路は、キャパシタを備えることを特徴とする請求項11又は請求項12に記載の蓄電装置温度測定方法。
  14. 前記蓄電装置の内部インピーダンスのインダクタンス成分が、キャパシタンス成分より支配的となる周波数の信号で、前記蓄電装置の内部インピーダンスを測定し、前記内部インピーダンスの測定値から前記蓄電装置の内部温度を算出することを特徴とする蓄電装置温度測定方法。
  15. 前記蓄電装置の内部インピーダンスの抵抗成分が温度の上昇に伴い大きくなる周波数の信号で、前記蓄電装置の内部インピーダンスを測定し、前記内部インピーダンスの測定値から前記蓄電装置の内部温度を算出することを特徴とする蓄電装置温度測定方法。
JP2012557331A 2011-08-01 2012-07-26 蓄電装置温度測定方法 Expired - Fee Related JP5261622B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012557331A JP5261622B1 (ja) 2011-08-01 2012-07-26 蓄電装置温度測定方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011168518 2011-08-01
JP2011168518 2011-08-01
PCT/JP2012/068927 WO2013018641A1 (ja) 2011-08-01 2012-07-26 蓄電装置温度測定方法
JP2012557331A JP5261622B1 (ja) 2011-08-01 2012-07-26 蓄電装置温度測定方法

Publications (2)

Publication Number Publication Date
JP5261622B1 JP5261622B1 (ja) 2013-08-14
JPWO2013018641A1 true JPWO2013018641A1 (ja) 2015-03-05

Family

ID=47629166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012557331A Expired - Fee Related JP5261622B1 (ja) 2011-08-01 2012-07-26 蓄電装置温度測定方法

Country Status (6)

Country Link
US (1) US9229061B2 (ja)
EP (1) EP2741060B1 (ja)
JP (1) JP5261622B1 (ja)
KR (1) KR101609076B1 (ja)
CN (1) CN103080712B (ja)
WO (1) WO2013018641A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105378498A (zh) * 2013-07-10 2016-03-02 阿尔卑斯绿色器件株式会社 蓄电装置状态估计方法
US10649036B2 (en) 2017-03-22 2020-05-12 Toyota Jidosha Kabushiki Kaisha Battery state estimating apparatus

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8994340B2 (en) 2012-05-15 2015-03-31 GM Global Technology Operations LLC Cell temperature and degradation measurement in lithium ion battery systems using cell voltage and pack current measurement and the relation of cell impedance to temperature based on signal given by the power inverter
EP3104185B1 (en) * 2012-11-12 2018-01-03 Alps Electric Co., Ltd. Storage device state detection method
JP6200359B2 (ja) * 2014-03-20 2017-09-20 古河電気工業株式会社 二次電池内部温度推定装置および二次電池内部温度推定方法
US9673657B2 (en) 2014-04-03 2017-06-06 Nxp B.V. Battery charging apparatus and approach
KR102527327B1 (ko) 2015-10-12 2023-04-27 삼성전자주식회사 배터리의 온도 추정 장치 및 방법, 배터리 관리 장치 및 방법
DE102015225389B4 (de) * 2015-12-16 2018-02-01 Audi Ag Temperaturermittlung bei einer Fahrzeugbatterie
KR102574083B1 (ko) 2016-01-12 2023-09-04 삼성전자주식회사 배터리 관리 장치 및 방법
DE102016207571A1 (de) * 2016-05-03 2017-11-09 Robert Bosch Gmbh Diagnoseverfahren, Betriebsverfahren für eine Batterieanordnung, Betriebsverfahren für eine Vorrichtung, Steuereinheit und Vorrichtung
JP6508729B2 (ja) 2016-12-02 2019-05-08 トヨタ自動車株式会社 電池状態推定装置
KR102105172B1 (ko) 2017-01-03 2020-04-27 주식회사 엘지화학 내부의 온도를 측정할 수 있는 전지셀
US10481214B2 (en) * 2017-01-30 2019-11-19 Infineon Technologies Ag Battery temperature detection
JP6614176B2 (ja) 2017-02-09 2019-12-04 トヨタ自動車株式会社 電池状態推定装置
JP6881156B2 (ja) 2017-08-24 2021-06-02 トヨタ自動車株式会社 インピーダンス推定装置
JP6806002B2 (ja) 2017-08-24 2020-12-23 トヨタ自動車株式会社 温度推定装置
KR102472161B1 (ko) 2017-09-05 2022-11-28 에스케이온 주식회사 이차 전지 성능 추정 장치 및 방법
DE102017217194A1 (de) * 2017-09-27 2019-03-28 Continental Automotive Gmbh Verfahren zur Ermittlung einer Temperatur einer aktiven Schicht eines Heizwiderstands
JP6436271B1 (ja) * 2018-05-07 2018-12-12 三菱電機株式会社 電池劣化検出装置および電池温度推定装置
CN109254251B (zh) * 2018-09-20 2021-03-09 大唐恩智浦半导体有限公司 电池阻抗测量装置、方法及芯片
DE102018216607A1 (de) * 2018-09-27 2020-04-02 Siemens Aktiengesellschaft PV-Einrichtung mit reduzierter Alterung
KR20200132002A (ko) 2019-05-15 2020-11-25 에스케이이노베이션 주식회사 Bms 장치 및 그 제어 방법
CN112162202B (zh) * 2020-09-14 2024-02-20 欣旺达动力科技股份有限公司 电池内部温度检测方法、系统、设备及存储介质
EP4354164A1 (en) 2021-06-07 2024-04-17 Nuvoton Technology Corporation Japan Battery abnormality detecting device, and battery abnormality detecting method
CN117110914B (zh) * 2023-10-24 2024-04-05 宁德时代新能源科技股份有限公司 电池温度测量方法、装置、电子设备及存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260215A (ja) 1991-08-20 1994-09-16 Japan Storage Battery Co Ltd 自動車蓄電池用充電装置
US7059769B1 (en) * 1997-06-27 2006-06-13 Patrick Henry Potega Apparatus for enabling multiple modes of operation among a plurality of devices
US6137269A (en) 1999-09-01 2000-10-24 Champlin; Keith S. Method and apparatus for electronically evaluating the internal temperature of an electrochemical cell or battery
JP3501401B2 (ja) 2000-03-07 2004-03-02 住友金属工業株式会社 インピーダンス検出回路、インピーダンス検出装置、及びインピーダンス検出方法
JP4025080B2 (ja) * 2002-01-31 2007-12-19 日置電機株式会社 抵抗測定装置および診断装置
JP4720105B2 (ja) 2004-05-20 2011-07-13 日産自動車株式会社 燃料電池診断装置及び燃料電池診断方法
JP4327692B2 (ja) * 2004-09-30 2009-09-09 トヨタ自動車株式会社 二次電池の充放電制御装置
US9030173B2 (en) * 2006-07-18 2015-05-12 Global Energy Innovations, Inc. Identifying and amerliorating a deteriorating condition for battery networks in-situ
ATE553394T1 (de) * 2006-08-22 2012-04-15 Delphi Tech Inc Batterieüberwachungssystem
JP5343465B2 (ja) 2008-09-11 2013-11-13 マツダ株式会社 蓄電装置
JP5136901B2 (ja) * 2008-10-09 2013-02-06 株式会社ネットコムセック 温度検出装置
JP2010243481A (ja) * 2009-03-18 2010-10-28 National Institute Of Advanced Industrial Science & Technology 二次電池の温度に関する状態を判定する方法、判定装置および判定プログラム
JP4856209B2 (ja) * 2009-03-30 2012-01-18 株式会社東芝 電池性能測定装置、電池制御システム及び車両
JP4807443B2 (ja) * 2009-07-08 2011-11-02 トヨタ自動車株式会社 二次電池の温度推定装置
US8529125B2 (en) * 2010-05-26 2013-09-10 GM Global Technology Operations LLC Dynamic estimation of cell core temperature by simple external measurements
EP2630687B1 (en) * 2010-10-18 2017-12-06 Johns Hopkins University Battery phase meter to determine internal temperatures of lithium-ion rechargeable cells under charge and discharge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105378498A (zh) * 2013-07-10 2016-03-02 阿尔卑斯绿色器件株式会社 蓄电装置状态估计方法
US10649036B2 (en) 2017-03-22 2020-05-12 Toyota Jidosha Kabushiki Kaisha Battery state estimating apparatus

Also Published As

Publication number Publication date
EP2741060B1 (en) 2016-11-02
CN103080712A (zh) 2013-05-01
WO2013018641A1 (ja) 2013-02-07
EP2741060A4 (en) 2015-07-15
KR101609076B1 (ko) 2016-04-04
CN103080712B (zh) 2015-01-14
EP2741060A1 (en) 2014-06-11
US20130156072A1 (en) 2013-06-20
KR20140028135A (ko) 2014-03-07
JP5261622B1 (ja) 2013-08-14
US9229061B2 (en) 2016-01-05

Similar Documents

Publication Publication Date Title
JP5261622B1 (ja) 蓄電装置温度測定方法
JP5906491B2 (ja) 蓄電装置の状態検知方法
JP6019368B2 (ja) 蓄電装置状態推定方法
JP6019318B2 (ja) 蓄電装置温度測定方法
US7136762B2 (en) System for calculating remaining capacity of energy storage device
US20180321326A1 (en) Method and system for estimating state of charge or depth of discharge of battery, and method and system for evaluating health of battery
JP2008014702A (ja) バッテリの劣化演算装置
JPWO2019054020A1 (ja) 電池管理装置、電池システム、及び電池管理方法
JP2006038495A (ja) 蓄電デバイスの残存容量演算装置
JP2006098134A (ja) 蓄電デバイスの残存容量演算装置
JP4954791B2 (ja) 蓄電デバイスの電圧予測方法
JP4519551B2 (ja) 蓄電デバイスの残存容量演算装置
JP2015169483A (ja) 二次電池の異常判定装置
JP4638211B2 (ja) 蓄電デバイスの残存容量演算装置
JP2019102136A (ja) 燃料電池システム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5261622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees