JPWO2012172823A1 - 燃料電池用電極触媒およびその製造方法 - Google Patents

燃料電池用電極触媒およびその製造方法 Download PDF

Info

Publication number
JPWO2012172823A1
JPWO2012172823A1 JP2012548667A JP2012548667A JPWO2012172823A1 JP WO2012172823 A1 JPWO2012172823 A1 JP WO2012172823A1 JP 2012548667 A JP2012548667 A JP 2012548667A JP 2012548667 A JP2012548667 A JP 2012548667A JP WO2012172823 A1 JPWO2012172823 A1 JP WO2012172823A1
Authority
JP
Japan
Prior art keywords
catalyst
group
fuel cell
electrode
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012548667A
Other languages
English (en)
Other versions
JP5255160B1 (ja
Inventor
央 高橋
央 高橋
雅揮 堀北
雅揮 堀北
卓也 今井
卓也 今井
安顕 脇坂
安顕 脇坂
佐藤 孝志
孝志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2012548667A priority Critical patent/JP5255160B1/ja
Application granted granted Critical
Publication of JP5255160B1 publication Critical patent/JP5255160B1/ja
Publication of JPWO2012172823A1 publication Critical patent/JPWO2012172823A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9091Unsupported catalytic particles; loose particulate catalytic materials, e.g. in fluidised state
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • H01M4/8832Ink jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

本発明は、少なくとも、3〜7族元素から選ばれる少なくとも一種の元素であるM1、鉄族元素から選ばれる少なくとも一種の元素であるM2、13族元素から選ばれる少なくとも一種の元素であるM3、炭素、窒素および酸素を構成元素として有し、前記各元素の原子数の比(M1:M2:M3:炭素:窒素:酸素)をa:b:c:x:y:zとした場合に、0<a<1、0<b≰0.5、0<c<1、0<x≰6、0<y≰2、0<z≰3、a+b+c=1であり、BET比表面積が100m2/g以上である燃料電池用電極触媒である。本発明の燃料電池用電極触媒は、従来の貴金属代替触媒に比較して高い触媒活性を有する。本発明の燃料電池用電極触媒は低コストで製造することができる。本発明の燃料電池用電極触媒の製造方法によれば、高温での熱処理(焼成)工程を設けることなく、13族元素、遷移金属(チタン等)を用いた高い触媒活性を有する燃料電池用電極触媒を製造することができる。

Description

本発明は、燃料電池用電極触媒およびその製造方法に関し、さらに詳しくは、13族元素、遷移金属含有燃料電池用電極触媒およびその製造方法に関する。
固体高分子型燃料電池は、固体高分子電解質をアノードとカソードとで挟み、アノードに燃料を供給し、カソードに酸素または空気を供給して、カソードで酸素が還元されて電気を取り出す形式の燃料電池である。燃料には水素またはメタノールなどが主として用いられる。
従来、燃料電池の反応速度を高め、燃料電池のエネルギー変換効率を高めるために、燃料電池のカソード(空気極)表面やアノード(燃料極)表面には、触媒を含む層(以下「燃料電池用触媒層」とも記す。)が設けられていた。
この触媒として、一般的に貴金属が用いられており、貴金属の中でも高い電位で安定であり、活性が高い白金、パラジウムなどの貴金属が主として用いられてきた。しかし、これらの貴金属は価格が高く、また資源量が限られていることから、代替可能な触媒の開発が求められていた。
貴金属代替触媒として、貴金属を一切使わない卑金属炭化物、卑金属酸化物、卑金属炭窒酸化物、カルコゲン化合物及び炭素触媒などが報告されている(例えば、特許文献1〜特許文献4を参照)。これらの材料は、白金などの貴金属材料に比べて、安価であり、資源量が豊富である。
しかしながら、特許文献1及び特許文献2に記載された卑金属材料を含むこれらの触媒は、実用的に充分な酸素還元能が得られていないという問題点がある。
また、特許文献3及び特許文献4に記載された触媒は、高い酸素還元触媒活性を示すが、燃料電池運転条件下での安定性が低いことが問題点である。
このような貴金属代替触媒として、特許文献5及び特許文献6に記載されたNb及びTi炭窒酸化物は上記性能をある程度有効に発現できている。
特許文献5及び特許文献6に記載された触媒は、それまでの貴金属代替触媒に比べて高性能であるが、その製造工程の一部において1600℃〜1800℃という高温下での加熱処理が必要であった(例えば特許文献5 実施例1または特許文献6 実施例1)。
このような高温加熱処理は工業的には、高額な設備や厳密な運転管理を要し、ひいては製造コストが高くなる。
特許文献7には炭素、窒素及び酸素を含有するカーボン含有チタンオキシナイトライドの製造に関する技術が報告されている。ただし、用途として太陽光集熱器用の薄膜および光触媒としての応用が記されているだけで、電極触媒として有用性の高い粒状または繊維状などの形状を持つ金属炭窒酸化物の製造方法及びその用途は開示も検討もなされていない。
さらに、特許文献7に記載されている製造方法では、カーボン含有チタンオキシナイトライドを製造するために、窒素含有有機化合物とチタン前駆体との反応によるチタンオキシナイトライドの製造とフェノール樹脂とチタンオキシナイトライド前駆体との反応によるカーボン含有チタンオキシナイトライド製造の二段階合成が必要であり、工程が複雑で製造コストが高い。
また、フェノール樹脂は3次元網目構造を持つ熱硬化性樹脂であるため、金属酸化物と均一に混合して反応させることが難しい。特に、フェノール樹脂の熱分解温度は400℃〜900℃であるため、1000℃以下の温度で、フェノール樹脂の完全分解による炭化反応が起こりにくい問題点もある。
特許文献8には、酸化物と炭素材料前駆体との混合材料を焼成することを特徴とする電極触媒の製造方法が開示されているが、充分な触媒性能を持つ電極触媒は得られていない。
また、特許文献9には、コバルトなどの多核錯体を用いてなる燃料電池用電極触媒が開示されているが、原料の毒性が高く、高コストであり、充分な触媒活性を持たないという問題があった。
特許文献10では、カーボンに担持された、Al,Cu,第VIII族元素及びLa系列元素を含む合金の燃料電池用触媒が開示されている。ただし、カーボンは該触媒自身の構成成分ではない。
非特許文献2には、チタンアルコキシドと炭素材料前駆体との混合材料を焼成することを特徴とする電極触媒の製造方法が開示されているが、製造工程においては、窒素を含有する有機物は使用されておらず、充分な触媒性能を持つ電極触媒は得られていない。
特開2004−303664号公報 国際公開第07/072665号パンフレット 米国特許出願公開第2004/0096728号明細書 特開2005−19332号公報 国際公開第2009/031383パンフレット 国際公開第2009/107518パンフレット 特開2009−23887号公報 特開2009−255053号公報 特開2008−258150号公報 特開2003−187812号公報 国際公開第2009/119523
Journal of Inorganic Materials (Chinese) 20, 4, P785 Electrochemistry Communications Volume 12, Issue 9, September 2010, Pages 1177-1179
本発明はこのような従来技術における問題点の解決を課題とする。
すなわち本発明の目的は、貴金属代替触媒となる、高い触媒活性を有する燃料電池用電極触媒を提供することである。
本発明の目的は、貴金属代替触媒となる、高い耐久性を有する燃料電池用電極触媒を提供することである。
また、本発明の他の目的は、低コストで、高い触媒活性を有する燃料電池用電極触媒を製造することのできる燃料電池用電極触媒の製造方法を提供することである。
本発明の目的は、低コストで、高い耐久性を有する燃料電池用電極触媒を製造することのできる燃料電池用電極触媒の製造方法を提供することである。
本発明は、たとえば以下の(1)〜(15)に関する。
(1)
少なくとも、3〜7族の遷移金属元素から選ばれる少なくとも一種の元素であるM1、鉄族元素から選ばれる少なくとも一種の元素であるM2、13族元素から選ばれる少なくとも一種の元素であるM3、炭素、窒素および酸素を構成元素として有し、前記各元素の原子数の比(M1:M2:M3:炭素:窒素:酸素)をa:b:c:x:y:zとした場合に、0<a<1、0<b≦0.5、0<c<1、0<x≦6、0<y≦2、0<z≦3、a+b+c=1であり、BET比表面積が100m2/g以上である燃料電池用電極触媒。
(2)
前記M1が、チタン、ジルコニウム、ハフニウム、ニオブおよびタンタルからなる群から選ばれる少なくとも一種の元素である上記(1)に記載の燃料電池用電極触媒。
(3)
前記M2が鉄である上記(1)または(2)に記載の燃料電池用電極触媒。
(4)
前記M3がホウ素、アルミニウム、ガリウムおよびインジウムからなる群から選ばれる少なくとも一種の元素である上記(1)〜(3)のいずれかに記載の燃料電池用電極触媒。
(5)
前記M1が、チタン、ジルコニウム、ハフニウム、ニオブおよびタンタルからなる群から選ばれる少なくとも一種の元素であり、M2が鉄であり、M3がホウ素、アルミニウム、ガリウムおよびインジウムからなる群から選ばれる少なくとも一種の元素である上記(1)に記載の燃料電池用電極触媒。
(6)
前記xが、0.15〜5である上記(1)〜(5)のいずれかに記載の燃料電池用電極触媒。
(7)
前記yが、0.01〜1.5である上記(1)〜(6)のいずれかに記載の燃料電池用電極触媒。
(8)
前記zが、0.1〜2.6である上記(1)〜(7)のいずれかに記載の燃料電池用電極触媒。
(9)
XRD測定により算出される(110)面間隔が、
M3を加えずに該触媒と同様に製造された触媒のXRD測定により算出される(110)面間隔より小さい、上記(1)〜(8)のいずれかに記載の燃料電池用電極触媒。
(10)
少なくとも3〜7族元素から選ばれる少なくとも一種の元素M1を含有する化合物、鉄族元素から選ばれる少なくとも一種の元素M2を含有する化合物、13族元素から選ばれる少なくとも一種の元素M3を含有する化合物、窒素含有有機化合物および溶媒を混合して触媒前駆体溶液を得る工程1、
前記触媒前駆体溶液から溶媒を除去して固形分残渣を得る工程2、および
工程2で得られた固形分残渣を500〜1200℃の温度で熱処理して電極触媒を得る工程3
を含む燃料電池用電極触媒の製造方法。
(11)
前記M1を含有する化合物が、金属硝酸塩、金属有機酸塩、金属酸塩化物、金属アルコキシド、金属ハロゲン化物、金属過塩素酸塩および金属次亜塩素酸塩からなる群から選ばれる1種類以上である上記(10)に記載の燃料電池用電極触媒の製造方法。
(12)
前記窒素含有有機化合物が、アミノ基、ニトリル基、イミド基、イミン基、ニトロ基、アミド基、アジド基、アジリジン基、アゾ基、イソシアネート基、イソチオシアネート基、オキシム基、ジアゾ基、およびニトロソ基、ならびにピロール環、ポルフィリン環、イミダゾール環、ピリジン環、ピリミジン環、およびピラジン環から選ばれる1種類以上を分子中に有する上記(10)または(11)に記載の燃料電池用電極触媒の製造方法。
(13)
前記窒素含有有機化合物が、水酸基、カルボキシル基、ホルミル基、ハロカルボニル基、スルホン酸基、リン酸基、ケトン基、エーテル基、およびエステル基から選ばれる1種類以上を分子中に有する上記(10)〜(12)のいずれかに記載の燃料電池用電極触媒の製造方法。
(14)
前記工程3において、前記固形分残渣を、アルゴンガス、ヘリウムガスまたは窒素ガスを含む雰囲気中で熱処理する上記(10)〜(13)のいずれかに記載の燃料電池用電極触媒の製造方法。
(15)
前記工程3において、前記固形分残渣を、水素ガスを含む雰囲気中で熱処理する上記(10)〜(13)のいずれかに記載の燃料電池用電極触媒の製造方法。
(16)
上記(1)〜(9)のいずれかに記載の燃料電池用電極触媒を用いて作製されるインク。
(17)
上記(16)に記載のインクを用いて作製される燃料電池用触媒層。
(18)
燃料電池用触媒層とガス拡散層とを有する電極であって、前記燃料電池用触媒層が上記(17)に記載の燃料電池用触媒層である電極。
(19)
カソードとアノードと前記カソード及び前記アノードの間に配置された電解質膜とを有する膜電極接合体であって、前記カソードが上記(18)に記載の電極である膜電極接合体。
(20)
上記(19)に記載の膜電極接合体を備える固体高分子型燃料電池。
本発明の燃料電池用電極触媒は、従来の貴金属代替触媒に比較して高い触媒活性を有する。本発明の燃料電池用電極触媒は、従来の貴金属代替触媒に比較して高い耐久性を有する。また、本発明の燃料電池用電極触媒は低コストで製造することができる。
本発明の燃料電池用電極触媒の製造方法によれば、高温での熱処理(焼成)工程を行うことなく、低コストで、製造工程の安全性を確保し易く、13族元素、遷移金属を含む、高い触媒活性を有し、高い耐久性を有する燃料電池用電極触媒を製造することができる。
図1は、実施例1−1の燃料電池用電極(1−1)の酸素還元能を評価した電流−電位曲線を示す。 図2は、実施例1−2の燃料電池用電極(1−2)の酸素還元能を評価した電流−電位曲線を示す。 図3は、実施例1−3の燃料電池用電極(1−3)の酸素還元能を評価した電流−電位曲線を示す。 図4は、実施例2の燃料電池用電極(2)の酸素還元能を評価した電流−電位曲線を示す。 図5は、実施例3の触媒(3)の粉末X線回折スペクトルである。 図6は、実施例3の燃料電池用電極(3)の酸素還元能を評価した電流−電位曲線を示す。 図7は、実施例3の単セル(1)の定電流負荷測定試験の測定結果を示す図である。 図8は、実施例4の燃料電池用電極(4)の酸素還元能を評価した電流−電位曲線を示す。 図9は、実施例5の燃料電池用電極(5)の酸素還元能を評価した電流−電位曲線を示す。 図10は、参考例1の燃料電池用電極(6)の酸素還元能を評価した電流−電位曲線を示す。 図11は、参考例1の単セル(2)の定電流負荷測定試験の測定結果を示す図である。 図12は、実施例6の燃料電池用電極(7)の酸素還元能を評価した電流−電位曲線を示す。 図13は、実施例7の燃料電池用電極(8)の酸素還元能を評価した電流−電位曲線を示す。 図14は、比較例1の燃料電池用電極(9)の酸素還元能を評価した電流−電位曲線を示す。 図15は、比較例2の触媒(10)の粉末X線回折スペクトルである。 図16は、比較例2の燃料電池用電極(10)の酸素還元能を評価した電流−電位曲線を示す。 図17は、比較例2の単セル(3)の定電流負荷測定試験の測定結果を示す図である。 図18は、比較例3の燃料電池用電極(11)の酸素還元能を評価した電流−電位曲線を示す。 図19は、比較例4の燃料電池用電極(12)の酸素還元能を評価した電流−電位曲線を示す。 図20は、比較例5の燃料電池用電極(13)の酸素還元能を評価した電流−電位曲線を示す。 図21は、比較例6の燃料電池用電極(14)の酸素還元能を評価した電流−電位曲線を示す。 図22は、固体高分子型燃料電池の単セルの分解断面図の一例である。
[燃料電池用電極触媒]
本発明の燃料電池用電極触媒は、少なくとも、3〜7族元素から選ばれる少なくとも一種の元素であるM1、13族元素から選ばれる少なくとも一種の元素であるM3、炭素、窒素および酸素を構成元素として有し、前記各元素の原子数の比(M1:M3:炭素:窒素:酸素)をa:c:x:y:zとした場合に、0<a<1、0<c<1、0<x≦6、0<y≦2、0<z≦3、a+c=1であり、BET比表面積が100m2/g以上である。
なお、M1の原子数は、M1が複数の元素からなる場合は、それら元素の原子数の合計である。これは、M3及び後述するM2についても同様である。
前記燃料電池用電極触媒(以下「触媒(A)」ともいう。)は、金属元素として、3〜7族元素から選ばれる少なくとも一種の元素であるM1(以下「遷移金属元素M1」ともいう。)の他、13族元素から選ばれる少なくとも一種の元素であるM3(以下「13族元素M3」ともいう。)を有する。
<13族元素M3が存在することにより発揮されると予想される効果>
13族元素M3が存在することにより予想される効果は以下のとおりである。
(1)たとえば遷移金属元素M1であるチタンに比べて価数の低い13族元素を添加することで、チタンの価数を4価以下で安定化させ、活性点を維持する。
(2)活性点が安定に維持されるため、高い耐久性をもった触媒としての効果も期待される。
(3)遷移金属元素M1が溶出するような高電位、高酸化性雰囲気下で電極触媒を使用する場合であっても、13族元素M3が不動態化することによって、遷移金属元素M1のさらなる溶出を防ぐ。
遷移金属元素M1としては、チタン、ジルコニウム、ハフニウム、ニオブおよびタンタルからなる群から選ばれる少なくとも一種の元素であることが好ましく、特に好ましくはチタン、ニオブである。遷移金属元素M1がこれらの元素であると、高活性の電極触媒を得やすい。
13族元素M3としては、ホウ素、アルミニウム、ガリウムおよびインジウムからなる群から選ばれる少なくとも一種の元素であることであることが好ましく、特に好ましくはアルミニウム、ホウ素である。13族元素M3がこれらの元素であると、高活性の電極触媒を得やすい。
本発明の燃料電池用電極触媒の構成元素である遷移金属元素M1、13族元素M3、炭素、窒素および酸素の原子数の比(M1:M3:炭素:窒素:酸素)をa:c:x:y:zとした場合、0<a<1、0<c<1、0<x≦6、0<y≦2、0<z≦3である。ただし、a+c=1である。
電極触媒の活性が高いことから、xの範囲は、より好ましくは0.15≦x≦5、さらに好ましくは0.2≦x≦4であり、特に好ましくは1≦x≦3であり、yの範囲は、より好ましくは0.01≦y≦1.5、さらに好ましくは0.03≦y≦1.5であり、特に好ましくは0.05≦y≦1であり、zの範囲は、より好ましくは0.1≦z≦2.6であり、さらに好ましくは0.3≦z≦2であり、特に好ましくは0.5≦z≦1.9である。
また、電極触媒の活性が高いことから、aの範囲は、より好ましくは0.3≦a<1、さらに好ましくは0.3≦a≦0.95であり、特に好ましくは0.5≦a≦0.95である。
前記a、c、x、yおよびzの値は、後述する実施例で採用した方法により測定した場合の値である。前記触媒(A)の、下記測定法(A)に従って測定される酸素還元開始電位は、可逆水素電極を基準として好ましくは0.6V(vs.RHE)以上、より好ましくは0.7V(vs.RHE)以上、さらに好ましくは0.8V(vs.RHE)以上である。
前記触媒(A)の、下記測定法(A)に従って測定される酸素還元電流密度は、好ましくは0.6Vで0.5mA/cm2以上、より好ましくは0.7Vで0.5mA/cm2以上、さらに好ましくは0.75Vで0.5mA/cm2以上である。
〔測定法(A):
電子伝導性物質であるカーボンに分散させた触媒が1質量%となるように、該触媒及びカーボンを溶剤中に入れ、超音波で攪拌し懸濁液を得る。なお、カーボンとしては、カーボンブラック(比表面積:100〜300m2/g)(例えばキャボット社製 XC−72)を用い、触媒とカーボンとが質量比で95:5になるように分散させる。また、溶剤としては、イソプロピルアルコール:水(質量比)=2:1を用いる。
前記懸濁液を、超音波をかけながら10μLを採取し、すばやくグラッシーカーボン電極(直径:5.2mm)上に滴下し、120℃で5分間乾燥させる。乾燥することにより触媒を含む燃料電池用触媒層が、グラッシーカーボン電極上に形成される。この滴下及び乾燥操作を、カーボン電極表面に1.0mg以上の燃料電池触媒層が形成されるまで行う。
次いでNAFION(登録商標)(デュポン社 5%NAFION(登録商標)溶液(DE521))をイソプロピルアルコールで10倍に希釈したものを、さらに前記燃料電池用触媒層上に10μL滴下する。これを、120℃で1時間乾燥する。
このようにして得られた電極を用いて、酸素雰囲気及び窒素雰囲気で、0.5mol/Lの硫酸水溶液中、30℃の温度で、同濃度の硫酸水溶液中での可逆水素電極を参照電極とし、5mV/秒の電位走査速度で分極することにより電流−電位曲線を測定した際の、酸素雰囲気での還元電流と窒素雰囲気での還元電流とに0.2μA/cm2以上の差が現れ始める電位を酸素還元開始電位とする。〕
本発明において、酸素還元電流密度は、以下のとおり求めることができる。
まず、上記測定法(A)の結果から、0.75V(vsRHE)における、酸素雰囲気での還元電流と窒素雰囲気での還元電流との差を算出する。算出した値を、さらに電極面積で除した値を酸素還元電流密度(mA/cm2)とする。ただし、0.75Vにおける電流密度が0.5mA/cm2以下である場合は、0.7V(vsRHE)において得られた酸素還元電流密度で性能を評価し、さらに0.7Vにおける電流密度が0.5mA/cm2以下である場合は、0.6V(vsRHE)において得られた電流密度で性能を評価する。
触媒(A)は、XRD測定により算出される(110)面間隔が、M3を加えずに該触媒と同様に製造された触媒(以下「触媒(B)」ともいう。)のXRD測定により算出される(110)面間隔より小さいことが好ましい。これら面間隔の差は、0より大きく0.006Å以下であることが好ましく、0.0003Å以上0.002Å以下であることがより好ましく、0.0005Å以上0.001Å以下であることがさらに好ましい。前記面間隔の差であれば、13族元素が遷移金属骨格に組み込まれ、性能が向上する点で好ましい。
本発明の燃料電池用電極触媒は、より好ましくは、少なくとも、3〜7族元素から選ばれる少なくとも一種の元素であるM1、鉄族元素から選ばれる少なくとも一種の元素であるM2、13族元素から選ばれる少なくとも一種の元素であるM3、炭素、窒素および酸素を構成元素として有し、前記各元素の原子数の比(M1:M2:M3:炭素:窒素:酸素)をa:b:c:x:y:zとした場合に、0<a<1、0<b≦0.5、0<c<1、0<x≦6、0<y≦2、0<z≦3、a+b+c=1であり、BET比表面積が100m2/g以上である。
前記燃料電池用電極触媒(以下「触媒(C)」ともいう。)は、金属元素として、遷移金属元素M1および13族元素M3の他、鉄族元素から選ばれる少なくとも一種の元素であるM2(以下「鉄族元素M2」ともいう。)を有する。
<鉄族元素M2が存在することにより発揮されると予想される効果>
鉄族元素M2が存在することにより予想される効果は以下のとおりである。
(1)遷移金属元素M1が溶出するような高電位、高酸化性雰囲気下で電極触媒を使用する場合であっても、鉄族元素M2が不動態化することによって、遷移金属元素M1のさらなる溶出を防ぐ。
(2)電極触媒中に遷移金属元素M1および鉄族元素M2が存在することによって、双方の金属元素が隣接しあう部位において、電荷の偏りが生じ、金属元素として遷移金属元素M1のみを有する電極触媒ではなしえない、基質の吸着もしくは反応、または生成物の脱離が発生する。
鉄族元素M2としては、鉄、ニッケル、およびコバルトからなる群から選ばれる少なくとも一種の元素であり、好ましくは鉄である。鉄族元素M2がこれらの元素であると、高活性の電極触媒を得やすい。
触媒(C)において、本発明の燃料電池用電極触媒の構成元素である遷移金属元素M1、鉄族元素M2、13族元素M3、炭素、窒素および酸素の原子数の比(M1:M2:M3:炭素:窒素:酸素)をa:b:c:x:y:zとした場合に、0<a<1、0<b≦0.5、0<c<1、0<x≦6、0<y≦2、0<z≦3である。ただし、a+b+c=1である。前記触媒(C)は、このようにM2を含むので、より性能が高くなる。
電極触媒の活性が高いことから、x、yおよびzの好ましい範囲は上述の触媒(A)の場合と同様であり、aの範囲は、より好ましくは0.3≦a≦1、さらに好ましくは0.3≦a≦0.95、特に好ましくは0.5≦a≦0.95であり、bの範囲は、より好ましくは0.01<b≦0.5、さらに好ましくは0.02<b≦0.4、特に好ましくは0.05<b≦0.3である。
前記a、b、c、x、yおよびzの値は、後述する実施例で採用した方法により測定した場合の値である。前記触媒(C)の、上記測定法(A)に従って測定される酸素還元開始電位は、可逆水素電極を基準として好ましくは0.6V(vs.RHE)以上、より好ましくは0.7V(vs.RHE)以上、さらに好ましくは0.8V(vs.RHE)以上である。
前記触媒(C)の、上記測定法(A)に従って測定される酸素還元電流密度は、好ましくは0.6Vで0.5mA/cm2以上、より好ましくは0.7Vで0.5mA/cm2以上、さらに好ましくは0.75Vで0.5mA/cm2以上である。
触媒(C)は、XRD測定により算出される(110)面間隔が、該触媒に含まれる元素のうちM3以外の元素を構成元素として有し、前記各元素の原子数の比(M1:M2:炭素:窒素:酸素)をa:b:x:y:zとした場合に、0<a<1、0<b≦0.5、0<x≦6、0<y≦2、0<z≦3、a+b=1であり、BET比表面積が100m2/g以上である触媒(以下「触媒(D)」ともいう。)のXRD測定により算出される(110)面間隔と比較して、0.0005Å以上小さいことが好ましく、0.0003Å以上小さいことがより好ましい。触媒(C)の前記(110)面間隔が、触媒(D)の前記(110)面間隔と比較して0.0005Å以上小さいと、13族元素が遷移金属骨格に組み込まれ、性能が向上する点で好ましい。
<BET比表面積>
本発明の触媒(A)および触媒(C)のBET法で算出される比表面積は、100m2/g以上であり、好ましくは150m2/g以上、さらに好ましくは200m2/g以上である。前記比表面積の上限には特に制限はない。前記比表面積が100m2/g以上であると、インク分散性が高く、高い触媒能が得られる。前記比表面積が100m2/gより小さいと、触媒表面積が小さいためインク分散性が低く、触媒層形成時に三相界面形成が困難になることから高い触媒能を発揮できない。前記比表面積の上限には特に制限はないが、下記製造方法によれば、得られる触媒(A)および触媒(C)の前記比表面積の上限は600m2/g程度であり、多くの場合は450m2/g程度である。
本発明の触媒(A)および触媒(C)は、好ましくは、3〜7族元素、13族元素、炭素、窒素および酸素の各原子を有し、前記3〜7族元素および13族元素の酸化物、炭化物または窒化物単独あるいはこれらのうちの複数の結晶構造を有する。前記触媒(A)および触媒(C)に対するX線回折分析による結晶構造解析の結果と、元素分析の結果とから判断すると、前記触媒(A)および触媒(C)は、前記遷移金属元素および13族元素の酸化物構造を有したまま、酸化物構造の酸素原子のサイトを炭素原子または窒素原子で置換した構造、あるいは前記遷移金属元素および13族元素の炭化物、窒化物または炭窒化物の構造を有したまま、炭素原子または窒素原子のサイトを酸素原子で置換した構造を有するか、あるいはこれらの構造を含む混合物ではないかと推測される。
本発明の触媒(A)および触媒(C)は、その製造方法には制限はなく、たとえば以下の製造方法により製造することができる。
[燃料電池用電極触媒の製造方法]
本発明の燃料電池用電極触媒の製造方法は、
少なくとも3〜7族元素から選ばれる少なくとも一種の元素M1を含有する化合物、13族元素から選ばれる少なくとも一種の元素M3を含有する化合物、窒素含有有機化合物および溶媒を混合して触媒前駆体溶液を得る工程1、
前記触媒前駆体溶液から溶媒を除去して固形分残渣を得る工程2、および
工程2で得られた固形分残渣を500〜1200℃の温度で熱処理して電極触媒を得る工程3
を含むことを特徴としている。
なお本明細書において、特段の事情がない限り、原子およびイオンを、厳密に区別することなく「原子」と記載する。
(工程1)
工程1では、少なくとも3〜7族元素から選ばれる少なくとも一種の元素M1を含有する化合物(以下「遷移金属M1含有化合物」ともいう。)、13族から選ばれる少なくとも一種の元素M3を含有する化合物(以下「13族元素含有化合物」ともいう。)、窒素含有有機化合物および溶媒を混合して触媒前駆体溶液を調製する。
混合操作は、1つの容器に溶媒を準備し、そこへ遷移金属M1含有化合物、13族元素含有化合物および窒素含有有機化合物を添加し、溶解させて、これらを混合することにより実施してもよく、遷移金属M1含有化合物の溶液、13族元素含有化合物の溶液および窒素含有有機化合物の溶液を準備し、これらを混合することにより実施してもよい。遷移金属M1含有化合物および窒素含有有機化合物のそれぞれに対して溶解性の高い溶媒が異なる場合には、後者の混合操作が好ましい。
混合操作は、溶媒への各成分の溶解速度を高めるために、撹拌しながら行うことが好ましい。
遷移金属M1含有化合物の溶液と13族元素含有化合物の溶液と窒素含有有機化合物の溶液とを混合する場合には、一つの溶液に対して他の2つの溶液を、ポンプ等を用いて一定の速度で供給することが好ましい。
また、窒素含有有機化合物の溶液へ遷移金属M1含有化合物の溶液および13族元素含有化合物の溶液を少量ずつ添加する(すなわち、全量を一度に添加しない。)ことも好ましい。
前記触媒前駆体溶液は、好ましくは沈殿物や分散質を含まないが、これらを少量(たとえば溶液全量の5質量%以下、好ましくは2質量%以下、より好ましくは1質量%以下。)含んでいてもよい。
前記触媒前駆体溶液は、好ましくは澄明であり、JIS K0102に記載された液体の透視度の測定法において測定された値は、好ましくは1cm以上、より好ましくは2cm以上、さらに好ましくは5cm以上である。
工程1では、オートクレーブ等の加圧可能な容器に遷移金属M1含有化合物、13族元素含有化合物、窒素含有有機化合物、溶媒を入れ、常圧以上の圧力をかけながら、混合を行ってもよい。
遷移金属M1含有化合物と13族元素含有化合物と窒素含有有機化合物と溶媒とを混合する際の温度は、たとえば、0〜60℃である。遷移金属M1含有化合物と窒素含有有機化合物とから錯体が形成されると推測されるところ、この温度が過度に高いと、溶媒が水を含む場合に錯体が加水分解され水酸化物の沈殿を生じ、優れた触媒が得られないと考えられ、この温度が過度に低いと、錯体が形成される前に遷移金属M1含有化合物が析出してしまい、優れた触媒が得られないと考えられる。
<遷移金属M1含有化合物>
遷移金属M1含有化合物が含有するM1としては、具体的にはチタン、ジルコニウム、ハフニウム、ニオブ及びタンタルが挙げられる。これらは、1種単独で含有されていてもよく2種以上含有されていてもよい。
これらの中でも、コストおよび得られる触媒の性能の観点から、チタン、ジルコニウム、ニオブおよびタンタルが好ましく、チタンおよびジルコニウムがさらに好ましい。
前記遷移金属M1含有化合物は、好ましくは、酸素原子およびハロゲン原子から選ばれる少なくとも1種を有しており、その具体例としては、金属リン酸塩、金属硫酸塩、金属硝酸塩、金属有機酸塩、金属酸ハロゲン化物(金属ハロゲン化物の中途加水分解物)、金属アルコキシド、金属ハロゲン化物、金属ハロゲン酸塩および金属次亜ハロゲン酸塩、金属錯体が挙げられる。これらは、1種単独で用いてもよく2種以上を併用してもよい。
前記金属アルコキシドとしては、前記遷移金属のメトキシド、プロポキシド、イソプロポキシド、エトキシド、ブトキシド、およびイソブトキシドが好ましく、前記遷移金属のイソプロポキシド、エトキシドおよびブトキシドがさらに好ましい。前記金属アルコキシドは、1種のアルコキシ基を有していてもよく、2種以上のアルコキシ基を有していてもよい。
酸素原子を有する遷移金属M1含有化合物としては、酸化物、アルコキシド、アセチルアセトン錯体、酸塩化物および硫酸塩が好ましく、コストの面から、酸化物、アルコキシド、アセチルアセトン錯体がより好ましく、前記液相中の溶媒への溶解性の観点から、アルコキシド、アセチルアセトン錯体がさらに好ましい。
前記金属ハロゲン化物としては、前記遷移金属の塩化物、臭化物およびヨウ化物が好ましく、前記金属酸ハロゲン化物としては、前記遷移金属の酸塩化物、酸臭化物、酸ヨウ化物が好ましい。
前記遷移金属M1含有化合物の具体例としては、
二酸化チタン、チタン1原子に対し1以上2以下の酸素原子を有する酸化チタン、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラプロポキシド、チタンテトライソプロポキシド、チタンテトラブトキシド、チタンテトライソブトキシド、チタンテトラペントキシド、チタンテトラアセチルアセトネート、チタンオキシジアセチルアセトネート、トリス(アセチルアセトナト)第二チタン塩化物、四塩化チタン、三塩化チタン、オキシ塩化チタン、四臭化チタン、三臭化チタン、オキシ臭化チタン、四ヨウ化チタン、三ヨウ化チタン、オキシヨウ化チタン等のチタン化合物;
五酸化ニオブ、ニオブ1原子に対し2.5以下の酸素原子を有する酸化ニオブ、ニオブペンタメトキシド、ニオブペンタエトキシド、ニオブペンタイソプロポキシド、ニオブペンタブトキシド、ニオブペンタペントキシド、五塩化ニオブ、オキシ塩化ニオブ、五臭化ニオブ、オキシ臭化ニオブ、五ヨウ化ニオブ、オキシヨウ化ニオブ等のニオブ化合物;
二酸化ジルコニウム、ジルコニウム1原子に対し1以上2以下の酸素原子を有する酸化ジルコニウム、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラプロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラブトキシド、ジルコニウムテトライソブトキシド、ジルコニウムテトラペントキシド、ジルコニウムテトラアセチルアセトネート、四塩化ジルコニウム、オキシ塩化ジルコニウム、四臭化ジルコニウム、オキシ臭化ジルコニウム、四ヨウ化ジルコニウム、オキシヨウ化ジルコニウム等のジルコニウム化合物;
五酸化タンタル、タンタル1原子に対し2.5以下の酸素原子を有する酸化タンタル、タンタルペンタメトキシド、タンタルペンタエトキシド、タンタルペンタイソプロポキシド、タンタルペンタブトキシド、タンタルペンタペントキシド、タンタルテトラエトキシアセチルアセトナト、五塩化タンタル、オキシ塩化タンタル、五臭化タンタル、オキシ臭化タンタル、五ヨウ化タンタル、オキシヨウ化タンタル等のタンタル化合物;
二酸化ハフニウム、ハフニウム1原子に対し1以上2以下の酸素原子を有する酸化ハフニウム、ハフニウムテトラメトキシド、ハフニウムテトラエトキシド、ハフニウムテトラプロポキシド、ハフニウムテトライソプロポキシド、ハフニウムテトラブトキシド、ハフニウムテトライソブトキシド、ハフニウムテトラペントキシド、ハフニウムテトラアセチルアセトネート、四塩化ハフニウム、オキシ塩化ハフニウム、臭化ハフニウム、オキシ臭化ハフニウム、ヨウ化ハフニウム、オキシヨウ化ハフニウム等のハフニウム化合物が挙げられる。これらは、1種単独で用いてもよく2種以上を併用してもよい。
これらの化合物の中でも、得られる触媒が均一な粒径の微粒子となり、その活性が高いことから、
チタンテトラエトキシド、四塩化チタン、オキシ塩化チタン、チタンテトライソプロポキシド、チタンテトラアセチルアセトネート、
ニオブペンタエトキシド、五塩化ニオブ、オキシ塩化ニオブ、ニオブペンタイソプロポキシド、
ジルコニウムテトラエトキシド、四塩化ジルコニウム、オキシ塩化ジルコニウム、ジルコニウムテトライソプロポキシド、ジルコニウムテトラアセチルアセトネート、
タンタルペンタメトキシド、タンタルペンタエトキシド、五塩化タンタル、オキシ塩化タンタル、タンタルペンタイソプロポキシド、およびタンタルテトラエトキシアセチルアセトナト
が好ましく、チタンテトライソプロポキシド、チタンテトラアセチルアセトネート、ニオブエトキシド、ニオブイソプロポキシド、オキシ塩化ジルコニウム、ジルコニウムテトライソプロポキシド、およびタンタルペンタイソプロポキシドがさらに好ましい。
また、前記触媒(C)を製造する場合には、遷移金属M1含有化合物、鉄族元素から選ばれる少なくとも一種の元素M2を含む化合物(以下「鉄族元素M2含有化合物」ともいう。)、13族元素含有化合物が使用される。鉄族元素M2含有化合物を用いると、得られる触媒の性能が向上する。
触媒のXPSスペクトルの観察から、鉄族元素M2含有化合物を用いると、遷移金属元素M1(例えばチタン)と窒素原子との結合形成が促進され、その結果、触媒の性能が向上するのではないかと推測される。
<鉄族元素M2含有化合物>
鉄族元素M2含有化合物中の鉄族元素M2としては、鉄、ニッケル、コバルトが挙げられ、コストと得られる触媒の性能とのバランスの観点から、鉄が好ましい。
鉄族元素M2含有化合物の具体例としては、
塩化鉄(II)、塩化鉄(III)、硫酸鉄(III)、硫化鉄(II)、硫化鉄(III)、フェロシアン化カリウム、フェリシアン化カリウム、フェロシアン化アンモニウム、フェリシアン化アンモニウム、フェロシアン化鉄、硝酸鉄(II)、硝酸鉄(III)、シュウ酸鉄(II)、シュウ酸鉄(III)、リン酸鉄(II)、リン酸鉄(III)フェロセン、水酸化鉄(II)、水酸化鉄(III)、酸化鉄(II)、酸化鉄(III)、四酸化三鉄、酢酸鉄(II)、乳酸鉄(II)、クエン酸鉄(III)等の鉄化合物; 塩化コバルト(II)、塩化コバルト(III)、硫酸コバルト(II)、硫化コバルト(II)、硝酸コバルト(II)、硝酸コバルト(III)、シュウ酸コバルト(II)、リン酸コバルト(II)、コバルトセン、水酸化コバルト(II)、酸化コバルト(II)、酸化コバルト(III)、四酸化三コバルト、酢酸コバルト(II)、乳酸コバルト(II)等のコバルト化合物;が挙げられる。これらは、1種単独で用いてもよく2種以上を併用してもよい。
これらの化合物の中でも、
塩化鉄(II)、塩化鉄(III)、フェロシアン化カリウム、フェリシアン化カリウム、フェロシアン化アンモニウム、フェリシアン化アンモニウム、酢酸鉄(II)、乳酸鉄(II)、 塩化コバルト(II)、塩化コバルト(III)、酢酸コバルト(II)、乳酸コバルト(II)、が好ましく、
塩化鉄(II)、塩化鉄(III)、フェロシアン化カリウム、フェリシアン化カリウム、フェロシアン化アンモニウム、フェリシアン化アンモニウム、酢酸鉄(II)、乳酸鉄(II)がさらに好ましい。
<13族元素含有化合物>
13族元素含有化合物に含有されるM3としては、ホウ素、アルミニウム、ガリウム及びインジウムが挙げられる。これらは、1種単独で含有されていてもよく2種以上含有されていてもよい。
これらの中でも、得られる触媒の性能の観点から、アルミニウムおよびホウ素が好ましい。
前記13族元素含有化合物は、好ましくは、酸素原子およびハロゲン原子から選ばれる少なくとも1種を有しており、例えば、リン酸化合物、硫酸化合物、硝酸化合物、有機酸化合物、酸ハロゲン化物(金属ハロゲン化物の中途加水分解物)、アルコキシド、ハロゲン化物、ハロゲン酸化合物および次亜ハロゲン酸化合物、錯体が挙げられる。これらは、1種単独で用いてもよく2種以上を併用してもよい。
前記アルコキシドとしては、前記13族元素のメトキシド、プロポキシド、イソプロポキシド、エトキシド、ブトキシド、およびイソブトキシドが好ましく、前記13族元素のイソプロポキシド、エトキシドおよびブトキシドがさらに好ましい。前記アルコキシドは、1種のアルコキシ基を有していてもよく、2種以上のアルコキシ基を有していてもよい。
酸素原子を有する13族元素含有化合物としては、酸化物、アルコキシド、アセチルアセトン錯体、酸塩化物および硫酸化合物が好ましく、コストの面から、酸化物、アルコキシド、アセチルアセトン錯体がより好ましく、前記液相中の溶媒への溶解性の観点から、アルコキシド、アセチルアセトン錯体がさらに好ましい。
前記ハロゲン化物としては、前記13族元素の塩化物、臭化物およびヨウ化物が好ましく、前記ハロゲン酸化物としては、酸塩化物、酸臭化物、酸ヨウ化物が好ましい。
前記13族元素含有化合物の具体例としては、硫化アルミニウム、硫酸アルミニウム、フッ化アルミニウム、塩化アルミニウム、臭化アルミニウム、ヨウ化アルミニウム、水酸化アルミニウム、リン酸アルミニウム、アルミニウムトリイソプロポキシド、アルミニウムトリメトキシド、アルミニウムトリエトキシド、酢酸アルミニウム、アルミニウムアセチルアセトナート、窒化ホウ素、フッ化ホウ素、塩化ホウ素、臭化ホウ素、ヨウ化ホウ素、ホウ酸トリイソプロピル、トリメトキシボラン、トリエトキシボラン、硫化ガリウム、硫酸ガリウム、フッ化ガリウム、塩化ガリウム、臭化ガリウム、ヨウ化ガリウム、水酸化ガリウム、ガリウムアセチルアセトナート、ガリウムトリイソプロポキシド、ガリウムトリメトキシド、ガリウムトリエトキシド、硫化インジウム、硫酸インジウム、フッ化インジウム、塩化インジウム、臭化インジウム、ヨウ化インジウム、水酸化インジウム、酢酸インジウム、硝酸インジウム、インジウムアセチルアセトナート、トリイソプロピルインジウム、トリメトキシインジウム、トリエトキシインジウムを挙げることができる。
これらの化合物の中でも、得られる触媒が均一な粒径の微粒子となり、その活性が高いことから、アルミニウムトリイソプロポキシド、アルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムアセチルアセトナート、塩化アルミニウム、
ホウ酸トリイソプロピル、トリメトキシボラン、トリエトキシボラン、塩化ホウ素、
水酸化ガリウム、ガリウムアセチルアセトナート、水酸化インジウム、塩化インジウム、インジウムアセチルアセトナート、トリイソプロピルインジウム、トリメトキシインジウム、トリエトキシインジウム、が好ましく、アルミニウムトリイソプロポキシド、アルミニウムアセチルアセトナート、ホウ酸トリイソプロピル、トリイソプロピルガリウム、ガリウムアセチルアセトナート、トリイソプロピルインジウム、インジウムアセチルアセトナートがさらに好ましい。
<窒素含有有機化合物>
前記窒素含有有機化合物としては、前記遷移金属M1含有化合物および鉄族元素M2含有化合物中の金属原子に配位可能な配位子となり得る化合物(好ましくは、単核の錯体を形成し得る化合物)が好ましく、多座配位子(好ましくは、2座配位子または3座配位子)となり得る(キレートを形成し得る)化合物がさらに好ましい。
前記窒素含有有機化合物は、1種単独で用いてもよく、2種以上を併用してもよい。
前記窒素含有有機化合物は、好ましくは、アミノ基、ニトリル基、イミド基、イミン基、ニトロ基、アミド基、アジド基、アジリジン基、アゾ基、イソシアネート基、イソチオシアネート基、オキシム基、ジアゾ基、ニトロソ基などの官能基、またはピロール環、ポルフィリン環、イミダゾール環、ピリジン環、ピリミジン環、ピラジン環などの環(これらの官能基および環をまとめて「含窒素分子団」ともいう。)を有する。
前記窒素含有有機化合物は、含窒素分子団を分子内に有すると、工程1での混合を経て、前記遷移金属M1含有化合物および鉄族元素M2含有化合物に由来する遷移金属原子により強く配位することができると考えられる。
前記含窒素分子団の中では、アミノ基、イミン基、アミド基、ピロール環、ピリジン環およびピラジン環がより好ましく、アミノ基、イミン基、ピロール環およびピラジン環がさらに好ましく、アミノ基およびピラジン環が、得られる触媒の活性が特に高くなることから、特に好ましい。
前記窒素含有有機化合物(ただし、酸素原子を含まない。)の具体例としては、メラミン、エチレンジアミン、エチレンジアミン・二塩酸塩、トリアゾール、アセトニトリル、アクリロニトリル、エチレンイミン、アニリン、ピロール、ポリエチレンイミンなどが挙げられ、これらの中でも、得られる触媒の活性が高いことからエチレンジアミンおよびエチレンジアミン・二塩酸塩が好ましい。
前記窒素含有有機化合物は、好ましくは、水酸基、カルボキシル基、ホルミル基、ハロカルボニル基、スルホン酸基、リン酸基、ケトン基、エーテル基またはエステル基(これらをまとめて「含酸素分子団」ともいう。)を有する。前記窒素含有有機化合物は、含酸素分子団を分子内に有すると、工程1での混合を経て、前記遷移金属M1含有化合物および鉄族元素M2含有化合物に由来する遷移金属原子により強く配位できると考えられる。
前記含酸素分子団の中では、カルボキシル基およびホルミル基が、得られる触媒の活性が特に高くなることから、特に好ましい。
分子中に酸素原子を含む前記窒素含有有機化合物としては、前記含窒素分子団および前記含酸素分子団を有する化合物が好ましい。このような化合物は、工程1を経て、前記遷移金属M1含有化合物および鉄族元素M2含有化合物に由来する遷移金属原子に特に強く配位できると考えられる。
前記含窒素分子団および前記含酸素分子団を有する化合物としては、アミノ基およびカルボキシル基を有するアミノ酸、ならびにその誘導体が好ましい。
前記アミノ酸としては、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、セリン、トレオニン、トリプトファン、チロシン、バリン、ノルバリン、グリシルグリシン、トリグリシンおよびテトラグリシンが好ましく、得られる触媒の活性が高いことから、アラニン、グリシン、リジン、メチオニン、チロシンがより好ましく、得られる触媒が極めて高い活性を示すことから、アラニン、グリシンおよびリジンが特に好ましい。
分子中に酸素原子を含む前記窒素含有有機化合物の具体例としては、上記アミノ酸等に加えて、アセチルピロールなどのアシルピロール類、ピロールカルボン酸、アセチルイミダゾールなどのアシルイミダゾール類、カルボニルジイミダゾール、イミダゾールカルボン酸、ピラゾール、アセトアニリド、ピラジンカルボン酸、ピペリジンカルボン酸、ピペラジンカルボン酸、モルホリン、ピリミジンカルボン酸、ニコチン酸、2−ピリジンカルボン酸、2,4−ピリジンジカルボン酸、8−キノリノール、およびポリビニルピロリドンが挙げられ、得られる触媒の活性が高いことから、2座配位子となり得る化合物、具体的にはピロール−2−カルボン酸、イミダゾール−4−カルボン酸、2−ピラジンカルボン酸、2−ピペリジンカルボン酸、2−ピペラジンカルボン酸、ニコチン酸、2−ピリジンカルボン酸、2,4−ピリジンジカルボン酸、および8−キノリノールが好ましく、2−ピラジンカルボン酸、および2−ピリジンカルボン酸がより好ましい。
工程1で用いられる前記遷移金属M1含有化合物および鉄族元素M2含有化合物の遷移金属元素の総原子数Aに対する、工程1で用いられる前記窒素含有有機化合物の炭素の総原子数Bの比(B/A)は、工程3での熱処理時に二酸化炭素、一酸化炭素等の炭素化合物として脱離する成分を少なくすることが可能であり、すなわち触媒製造時に排気ガスを少量とすることができることから、好ましくは200以下、より好ましくは150以下、さらに好ましくは80以下、特に好ましくは30以下であり、良好な活性の触媒を得るという観点から、好ましくは1以上、より好ましくは2以上、さらに好ましくは3以上、特に好ましくは5以上である。
工程1で用いられる前記遷移金属M1含有化合物および鉄族元素M2含有化合物の遷移金属元素の総原子数Aに対する、工程1で用いられる前記窒素含有有機化合物の窒素の総原子数Cの比(C/A)は、良好な活性の触媒を得るという観点から、好ましくは28以下、より好ましくは17以下、さらに好ましくは12以下、特に好ましくは8.5以下であり、良好な活性の触媒を得るという観点から、好ましくは1以上、より好ましくは2.5以上、さらに好ましくは3以上、特に好ましくは3.5以上である。
工程1で用いられる前記遷移金属M1含有化合物および鉄族元素M2含有化合物の遷移金属元素の総原子数Aに対する、工程1で用いられる前記13族元素含有化合物の総原子数Dの比(D/A)は、良好な活性の触媒を得るという観点から、好ましくは30以下、より好ましくは25以下、特に好ましくは15以下であり、良好な活性の触媒を得るという観点から、好ましくは0.001以上、より好ましくは0.005以上、特に好ましくは0.01以上である。
<溶媒>
前記溶媒としては、たとえば水、酢酸、およびアルコール類が挙げられる。アルコール類としては、エタノール、メタノール、ブタノール、プロパノールおよびエトキシエタノールが好ましく、エタノールおよびメタノールさらに好ましい。溶解性を増すために、前記溶媒に酸を含有させることが好ましく、酸としては、酢酸、硝酸、塩酸、リン酸およびクエン酸が好ましく、酢酸および硝酸がさらに好ましい。これらは、1種単独で用いてもよく2種以上を併用してもよい。
<沈殿抑制剤>
沈殿抑制剤を用いることにより、前記遷移金属M1含有化合物に由来する沈殿の発生を抑制しつつ、澄明な触媒前駆体溶液を得ることができる。前記遷移金属M1含有化合物がハロゲン原子を含む場合であって、かつ前記溶媒として水を単独でまたは水とアルコール類とを併用する場合には、沈殿抑制剤として塩酸等の強酸を添加することが好ましい。
前記遷移金属M1含有化合物が金属錯体であって、かつ前記溶媒として水を単独でまたは水と他の化合物とを用いる場合には、沈殿抑制剤としてジケトン構造を有する化合物が好ましく、ジアセチル、アセチルアセトン、2,5−ヘキサンジオンおよびジメドンがより好ましい。前記沈殿抑制剤は、工程1の中でのいずれの段階で添加されてもよい。
工程1では、好ましくは、前記遷移金属M1含有化合物、13族元素含有化合物および前記沈殿抑制剤を含む溶液を調製して、次いでこの溶液と前記窒素含有有機化合物とを混合して触媒前駆体溶液を調製する。このように工程1を実施すると、前記沈殿の発生をより確実に抑制することができる。
また、鉄族元素M2含有化合物を用いる場合であれば、工程1では、好ましくは、前記遷移金属M1含有化合物、13族元素含有化合物および前記沈殿抑制剤を含む溶液を調製して、次いでこの溶液と前記窒素含有有機化合物および前記鉄族元素M2含有化合物とを混合して触媒前駆体溶液を得る。
(工程2)
工程2では、工程1で得られた前記触媒前駆体溶液から溶媒を除去して固形分残渣を得る。
溶媒の除去は大気下で行ってもよく、窒素ガスや不活性ガス(例えば、アルゴン、ヘリウム)雰囲気下で行ってもよい。これらガスとしては、コストの観点から、窒素およびアルゴンが好ましく、窒素がより好ましい。
溶媒除去の際の温度は、溶媒の蒸気圧が大きい場合には常温であってもよいが、触媒の量産性の観点からは、好ましくは30℃以上、より好ましくは40℃以上、さらに好ましくは50℃以上であり、工程1で得られる溶液中に含まれる、キレート等の金属錯体であると推定される触媒前駆体を分解させないという観点からは、好ましくは250℃以下、より好ましくは150℃以下、さらに好ましくは110℃以下である。
溶媒の除去は、溶媒の蒸気圧が大きい場合には大気圧下で行ってもよいが、より短時間で溶媒を除去するため、減圧(たとえば、0.1Pa〜0.1MPa)下で行ってもよい。溶媒の除去は、工程1で得られた混合物を静置した状態で行ってもよいが、より均一な固形分残渣を得るためには、混合物を撹拌させながら溶媒を除去することが好ましい。
溶媒の除去の方法、あるいは前記遷移金属M1含有化合物、鉄族元素M2含有化合物、13族元素含有化合物または前記窒素含有有機化合物の性状によっては、工程2で得られた固形分残渣の組成または凝集状態が不均一であることがある。このような場合であっても、固形分残渣を、混合し、解砕して、より均一、微細な粉末としたものを工程3で用いると、粒径がより均一な触媒を得ることができる。
(工程3)
工程3では、工程2で得られた固形分残渣を熱処理して電極触媒を得る。
この熱処理の際の温度は、500〜1200℃であり、高耐久性かつ高比表面積を得るために好ましくは600〜1150℃であり、より好ましくは700〜1050℃である。
熱処理の温度が上記範囲よりも高すぎると、得られた電極触媒の粒子相互間においての焼結、粒成長がおこり、結果として電極触媒の比表面積が小さくなってしまうため、この粒子を塗布法により触媒層に加工する際の加工性が劣ってしまう。一方、熱処理の温度が上記範囲よりも低過ぎると、高い活性を有する電極触媒を得ることができない。上記範囲内で、熱処理温度が高いほうが触媒の耐久性向上の観点から望ましい。
前記熱処理の方法としては、たとえば、静置法(例えば電気炉を用いる方法)、攪拌法(例えばロータリーキルンを用いる方法)、落下法、粉末捕捉法が挙げられる。
前記静置法で熱処理を行う場合には、昇温速度は、特に限定されないが、好ましくは1℃/分〜100℃/分程度であり、さらに好ましくは5℃/分〜50℃/分である。また、加熱時間は、好ましくは0.1〜10時間、より好ましくは0.2時間〜5時間、さらに好ましくは0.2〜3時間である。静置法において加熱を管状炉で行なう場合、電極触媒粒子の加熱時間は、0.1〜10時間、好ましくは0.2時間〜5時間である。前記加熱時間が前記範囲内であると、均一な電極触媒粒子が形成される傾向がある。
前記攪拌法の場合、前記固形分残渣の加熱時間は、通常10分〜5時間であり、好ましくは10分〜2時間である。本法において、炉に傾斜をつけるなどして連続的に加熱を行う場合は、定常的な炉内のサンプル流量から計算された平均滞留時間を前記加熱時間とする。
前記落下法の場合、前記固形分残渣の加熱時間は、通常0.5〜10分であり、好ましくは0.5〜3分である。前記加熱時間が前記範囲内であると、均一な電極触媒粒子が形成される傾向がある。
前記粉末捕捉法の場合、前記固形分残渣の加熱時間は、0.2秒〜1分、好ましくは0.2〜10秒である。前記加熱時間が前記範囲内であると、均一な電極触媒粒子が形成される傾向にある。触媒活性の特に高い電極触媒を得たい場合には、厳密な温度制御が可能な、電気を熱源とした電気炉を用いることが望ましい。前記熱処理を行う際の雰囲気としては、得られる電極触媒の活性を高める観点から、窒素または不活性ガス雰囲気が好ましい。これらガスの中でも、比較的安価であり、入手しやすい点で窒素、アルゴン、ヘリウムが好ましく、窒素およびアルゴンがさらに好ましい。これらのガスは、1種単独で用いてもよく、2種以上を混合して用いてもよい。
また、前記熱処理の雰囲気中に反応性ガスが存在すると、得られる電極触媒がより高い触媒性能を発現することがある。前記反応性ガスとしては、たとえば、窒素ガス、酸素ガス、水素ガス、メタン等の含炭素ガス、アンモニア等の含窒素ガスが挙げられる。
前記熱処理の雰囲気中に水素ガスが含まれる場合には、水素ガスの濃度は、たとえば100体積%以下、好ましくは0.01〜10体積%、より好ましくは1〜5体積%である。
前記熱処理の雰囲気中に酸素ガスが含まれる場合には、酸素ガスの濃度は、たとえば10体積%以下、好ましくは0.01〜10体積%、より好ましくは0.01〜5体積%である。
また、前記遷移金属M1含有化合物、前記鉄族元素M2含有化合物、13族元素含有化合物、前記窒素含有有機化合物および前記溶媒の何れもが酸素原子を有さない場合には、前記熱処理は、好ましくは酸素ガスを含む雰囲気で行われる。
前記熱処理の後には、熱処理物を解砕してもよい。解砕を行うと、得られた電極触媒を用いて電極を製造する際の加工性、および得られる電極の特性を改善できることがある。
この解砕には、たとえば、ロール転動ミル、ボールミル、小径ボールミル(ビーズミル)、媒体撹拌ミル、気流粉砕機、乳鉢、自動混練乳鉢、槽解機またはジェトミルを用いることができる。
[用途]
本発明の触媒(A)は、白金等の貴金属触媒の代替触媒として使用することができる。ここで、触媒(A)は触媒(C)を含むものとする。ただし、本発明の触媒(A)は、上記条件を満たす限り、白金等の貴金属を含んでいてもよい。できるだけ安価なことが必要な用途においては、本発明の触媒(A)は白金等の貴金属を含まない方が好ましい。また、本発明の触媒(A)は、白金等の貴金属触媒の一部を代替する触媒として使用することもできる。つまり、本発明の触媒(A)と白金等の貴金属触媒とを併用することもできる。
本発明の燃料電池用触媒層は、前記触媒(A)を含むことを特徴としている。
燃料電池用触媒層には、アノード触媒層、カソード触媒層があるが、前記触媒(A)はいずれにも用いることができる。前記触媒(A)は、耐久性に優れ、酸素還元能が大きいので、カソード触媒層に用いることが好ましい。
本発明の燃料電池用触媒層は、好ましくは、電子伝導性粉末をさらに含む。前記触媒(A)を含む燃料電池用触媒層がさらに電子伝導性粉末を含む場合には、還元電流をより高めることができる。電子伝導性粉末は、前記触媒(A)に、電気化学的反応を誘起させるための電気的接点を生じさせるため、還元電流を高めると考えられる。
前記電子伝導性粒子は通常、触媒の担体として用いられる。
前記触媒(A)はある程度の導電性を有するが、触媒(A)により多くの電子を与える、あるいは、反基質が触媒(A)から多くの電子を受け取るために、触媒(A)に、導電性を付与するための担体粒子を混合してもよい。これらの担体粒子は、工程1〜工程3を経て製造された触媒(A)に混合されてもよく、工程1〜工程3のいずれかの段階で混合されてもよい。
電子伝導性粒子の材質としては、炭素、導電性高分子、導電性セラミックス、金属または酸化タングステンもしくは酸化イリジウムなどの導電性無機酸化物が挙げられ、それらを1種単独または組み合わせて用いることができる。特に、炭素からなる電子伝導性粒子は比表面積が大きいため、また、安価に小粒径のものを入手しやすく、耐薬品性、耐高電位性に優れるため、炭素単独または炭素とその他の電子伝導性粒子との混合物が好ましい。すなわち燃料電池用触媒層としては、前記触媒(A)と炭素とを含むことが好ましい。
炭素としては、カーボンブラック、グラファイト、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレン、多孔体カーボン、グラフェンなどが挙げられる。炭素からなる電子伝導性粒子の粒径は、小さすぎると電子伝導パスが形成されにくくなり、また大きすぎると燃料電池用触媒層のガス拡散性の低下や触媒の利用率の低下が起こる傾向があるため、好ましくは10〜1000nmであり、より好ましくは10〜100nmである。
電子伝導性粒子が炭素からなる場合、前記触媒(A)と電子伝導性粒子との重量比(触媒:電子伝導性粒子)は、好ましくは4:1〜1000:1である。
前記導電性高分子としては特に限定は無いが、例えばポリアセチレン、ポリ−p−フェニレン、ポリアニリン、ポリアルキルアニリン、ポリピロール、ポリチオフェン、ポリインドール、ポリ−1,5−ジアミノアントラキノン、ポリアミノジフェニル、ポリ(o−フェニレンジアミン)、ポリ(キノリニウム)塩、ポリピリジン、ポリキノキサリン、ポリフェニルキノキサリン、及びそれらの誘導体等が挙げられる。これらの中でも、ポリピロール、ポリアニリン、ポリチオフェンが好ましく、ポリピロールがより好ましい。これら導電性高分子には高い導電性を得るためのドーパントが含まれていてもよい。
前記高分子電解質としては、燃料電池用触媒層において一般的に用いられているものであれば特に限定されない。具体的には、スルホン酸基を有するパーフルオロカーボン重合体(例えば、ナフィオン(NAFION(登録商標))(デュポン社 5%NAFION(登録商標)溶液(DE521))など)、スルホン酸基を有する炭化水素系高分子化合物、リン酸などの無機酸をドープさせた高分子化合物、一部がプロトン伝導性の官能基で置換された有機/無機ハイブリッドポリマー、高分子マトリックスにリン酸溶液や硫酸溶液を含浸させたプロトン伝導体などが挙げられる。これらの中でも、ナフィオン(NAFION(登録商標))(デュポン社 5%NAFION(登録商標)溶液(DE521))が好ましい。
本発明の燃料電池用触媒層は、アノード触媒層またはカソード触媒層のいずれにも用いることができる。本発明の燃料電池用触媒層は、高い酸素還元能を有し、酸性電解質中において高電位であっても腐蝕しがたい触媒を含むため、燃料電池のカソードに設けられる触媒層(カソード用触媒層)として有用である。特に固体高分子型燃料電池が備える膜電極接合体のカソードに設けられる触媒層に好適に用いられる。
前記触媒(A)を、担体である前記電子伝導性粒子上に分散させる方法としては、気流分散、液中分散等の方法が挙げられる。液中分散は、溶媒中に触媒(A)および電子伝導性粒子を分散したものを、燃料電池用触媒層形成工程に使用できるため好ましい。液中分散としては、オリフィス収縮流による方法、回転せん断流による方法または超音波による方法等があげられる。液中分散の際、使用される溶媒は、触媒や電子伝導性粒子を浸食することがなく、分散できるものであれば特に制限はないが、揮発性の液体有機溶媒または水等が一般に使用される。
また、前記触媒(A)を、前記電子伝導性粒子上に分散させる際、さらに上記電解質と分散剤とを同時に分散させてもよい。
燃料電池用触媒層の形成方法としては、特に制限はないが、たとえば、前記触媒(A)電子伝導性粒子と電解質とを含む懸濁液、すなわちインクを、後述する電解質膜またはガス拡散層に塗布する方法が挙げられる。前記塗布する方法としては、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などが挙げられる。また、前記触媒(A)と電子伝導性粒子と電解質とを含む懸濁液を、塗布法またはろ過法により基材に燃料電池用触媒層を形成した後、転写法で電解質膜に燃料電池用触媒層を形成する方法が挙げられる。
本発明の電極は、前記燃料電池用触媒層と多孔質支持層とを有することを特徴としている。
本発明の電極はカソードまたはアノードのいずれの電極にも用いることができる。本発明の電極は、耐久性に優れ、触媒能が大きいので、カソードに用いるとより産業上の優位性が高い。
多孔質支持層とは、ガスを拡散する層(以下「ガス拡散層」とも記す。)である。ガス拡散層としては、電子伝導性を有し、ガスの拡散性が高く、耐食性の高いものであれば何であっても構わないが、一般的にはカーボンペーパー、カーボンクロスなどの炭素系多孔質材料や、軽量化のためにステンレス、耐食材を被服したアルミニウム箔が用いられる。
本発明の膜電極接合体は、カソードとアノードと前記カソードおよび前記アノードの間に配置された電解質膜とを有する膜電極接合体であって、前記カソードおよび/または前記アノードが、前記電極であることを特徴としている。
前記膜電極接合体における触媒能および耐久性は、たとえば、以下のように算出されるセル電圧および経時的な電圧降下の傾きΔによりそれぞれ評価することができる。
まず、図22に示すように、前記膜電極接合体11を、シール材(ガスケット12)、ガス流路付きセパレーター13、集電板14およびラバーヒータ15で挟んでボルトで固定し、所定の面圧(4N)になるように締め付けて、固体高分子形燃料電池の単セルを作製する。
アノード側に燃料として水素を流量0.1リットル/分で供給し、カソード側に酸化剤として酸素を流量0.1リットル/分で供給し、両側ともに300kPaの背圧をかけながら、前記単セル温度80℃において0.1A/cm2の定電流負荷測定試験を実施する。
セル電圧が高いほど、MEAにおける触媒能が高く、経時的な電圧降下の傾きΔ(mV/h)の値が小さいほど触媒の耐久性が高いことを示している。
セル性能の観点から、セル電圧は0.1V以上が望ましく、より望ましくは0.2V以上、さらに望ましくは0.3V以上である。
セル耐久性の観点から、電圧降下の傾きΔ(mV/h)は、望ましくは3mV/h以下、より望ましくは2mV/h以下、さらに望ましくは1.5mV/h以下である。
電解質膜としては、例えば、パーフルオロスルホン酸系を用いた電解質膜または炭化水素系電解質膜などが一般的に用いられるが、高分子微多孔膜に液体電解質を含浸させた膜または多孔質体に高分子電解質を充填させた膜などを用いてもよい。
また本発明の燃料電池は、前記膜電極接合体を備えることを特徴としている。
燃料電池の電極反応はいわゆる3相界面(電解質‐電極触媒‐反応ガス)で起こる。燃料電池は、使用される電解質などの違いにより数種類に分類され、溶融炭酸塩型(MCFC)、リン酸型(PAFC)、固体酸化物型(SOFC)、固体高分子型(PEFC)等がある。中でも、本発明の膜電極接合体は、固体高分子型燃料電池に使用することが好ましい。
本発明の触媒(A)を用いた燃料電池は、貴金属を一切用いな場合であっても性能が高く、また、白金を触媒として用いた場合と比較してきわめて安価であるという特徴を持つ。本発明の燃料電池は、発電機能、発光機能、発熱機能、音響発生機能、運動機能、表示機能および充電機能からなる群より選ばれる少なくとも一つの機能を有し燃料電池を備える物品の性能、特に携帯可能な物品の性能を向上させることができる。前記燃料電池は、好ましくは物品の表面または内部に備えられる。
<本発明の燃料電池を備えた物品の具体例>
本発明の燃料電池を備えることができる前記物品の具体例としては、ビル、家屋、テント等の建築物、蛍光灯、LED等、有機EL、街灯、屋内照明、信号機等の照明器具、機械、車両そのものを含む自動車用機器、家電製品、農業機器、電子機器、携帯電話等を含む携帯情報端末、美容機材、可搬式工具、風呂用品トイレ用品等の衛生機材、家具、玩具、装飾品、掲示板、クーラーボックス、屋外発電機などのアウトドア用品、教材、造花、オブジェ、心臓ペースメーカー用電源、ペルチェ素子を備えた加熱および冷却器用の電源が挙げられる。
以下に、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されない。
また、実施例および比較例における各種測定は、下記の方法により行った。
[分析方法]
1.元素分析
炭素:試料約0.1gを量り取り、堀場製作所 EMIA−110で測定を行った。
窒素・酸素:試料約0.1gを量り取り、Ni−Cupに封入後、ON分析装置で測定を行った。
金属元素:試料約0.1gを白金皿に量り取り、酸を加えて加熱分解した。この加熱分解物を定容後、希釈し、ICP−MSで定量を行った。
2.BET比表面積
試料を0.15g採取し、全自動BET比表面積測定装置 マックソーブ((株)マウンテック製)で比表面積測定を行った。前処理時間、前処理温度は、それぞれ30分、200℃に設定した。
3.インク分散性
触媒0.3g、ナフィオン(NAFION(登録商標))0.225gを含有する水溶液(5%ナフィオン(NAFION(登録商標)水溶液、和光純薬工業製))4.5g、および伝導性材料としてカーボンブラック(ケッチェンブラックEC300J、LION社製)0.075gから構成される材料を溶媒である2−プロパノール(和光純薬工業製)50mlに混合して得られたインクを超音波分散機(UT−106H型シャープマニファクチャリングシステム社製)で30分間分散後、目視によってインク底面部の触媒分散状態を観察した。
インク分散性を以下の基準で評価した。
良:底面部に触媒の沈殿物が確認されない
不良:底面部に触媒の沈殿物が確認される
4.粉末X線回折(XRD)
理学電機株式会社製ロータフレックスを用いて、試料の粉末X線回折を行った。
各試料の粉末X線回折における回折線ピークの本数は、信号(S)とノイズ(N)の比(S/N)が2以上で検出できるシグナルを1つのピークとしてみなして数えた。なお、ノイズ(N)は、ベースラインの幅とした。
[アノード作製例1]
1.アノード用インクの調製
純水50mlに、白金担持カーボン(TEC10E60E、田中貴金属工業製)0.6gと、プロトン伝導性材料(NAFION(登録商標)0.25gを含有する水溶液(5%ナフィオン(NAFION(登録商標))水溶液、和光純薬工業製))5gとを入れて、超音波分散機(UT−106H型シャープマニファクチャリングシステム社製)で1時間混合することにより、アノード用インク(1)を調製した。
2.アノード触媒層を有する電極の作製
ガス拡散層(カーボンペーパー(TGP−H−060、東レ社製))を、アセトンに30秒間浸漬して脱脂した後、乾燥させ、次いで10%のポリテトラフルオロエチレン(以下「PTFE」とも記す。)水溶液に30秒間浸漬した。
浸漬物を、室温乾燥後、350℃で1時間加熱することにより、カーボンペーパー内部にPTFEが分散し撥水性を有するガス拡散層(以下「GDL」とも記す。)を得た。
次に、5cm×5cmの大きさとした前記GDLの表面に、自動スプレー塗布装置(サンエイテック社製)により、80℃で、上記アノード用インク(1)を塗布した。スプレー塗布を繰り返し行うことにより、単位面積あたりの白金(Pt)量が1mg/cm2であるアノード触媒層(1)を有する電極を作製した。
[実施例1−1]
1.触媒の調製
遷移金属M1含有化合物としてチタンテトライソプロポキシド(純正化学(株)製)9.37g、アルミニウムトリイソプロポキシド(和光純薬(株)製)0.702g及びアセチルアセトン(純正化学)5.12gを酢酸(和光純薬(株)製)32mLとの溶液に加え、室温で攪拌しながら遷移金属M1含有混合物溶液を作製した。また、窒素含有有機化合物としてグリシン(和光純薬(株)製)10.0g及び鉄族元素M2含有化合物として酢酸鉄(Aldrich社製)0.582gを純水120mLに加え、室温で攪拌して完全に溶解させて窒素含有有機化合物含有混合物溶液を作製した。遷移金属M1含有混合物溶液を窒素含有有機化合物含有混合物溶液にゆっくり添加し、透明な触媒前駆体溶液を得た。ロータリーエバポレーターを用い、窒素雰囲気の減圧下で、ウォーターバスの温度を約60℃に設定し、前記触媒前駆体溶液を加熱しながら、溶媒をゆっくり蒸発させた。完全に溶媒を蒸発させて得られた固形分残渣を乳鉢で細かく均一に潰して、粉末を得た。
この粉末を石英炉に入れ、水素ガスを4体積%、窒素ガスを96体積%含む雰囲気下で昇温速度20℃/minで890℃まで加熱し、890℃で15分保持し、自然冷却することにより粉末状の触媒(以下「触媒(1−1)」とも記す。)を得た。この触媒のBET比表面積、元素分析結果およびインク分散性評価を表1に示す。触媒(1−1)ではインク底面部に沈殿物が見られず、高いインク分散性が観察された。
2.燃料電池用電極の製造
触媒(1−1)0.095gとカーボン(キャボット社製 XC−72)0.005gとを、イソプロピルアルコール:純水=2:1の質量比で混合した溶液10gに入れ、超音波で撹拌、懸濁して混合した。この混合物30μlをグラッシーカーボン電極(東海カーボン社製、直径:5.2mm)に塗布し、120℃で1時間乾燥し、カーボン電極表面に1.0mg以上の燃料電池触媒層が形成され。さらに、NAFION(登録商標)(デュポン社 5%NAFION(登録商標)溶液(DE521))を10倍にイソプロピルアルコールで希釈したもの10μlを塗布し、120℃で1時間乾燥し、燃料電池用電極(1)を得た。
3.酸素還元能の評価
作製した燃料電池用電極(1−1)を、酸素雰囲気および窒素雰囲気で、0.5mol/Lの硫酸水溶液中、30℃、1.1Vから開始して卑電位側に5mV/秒の電位走査速度で分極し、それぞれ電流−電位曲線を測定した。電流値をそれぞれ電極面積で除し、酸素雰囲気で観察される電流密度から、窒素雰囲気で観察される電流密度を減じた値を、酸素還元電流密度とした。その際、同濃度の硫酸水溶液中での可逆水素電極を参照電極とした。
酸素還元電位が高いほど、燃料電池用電極における触媒の触媒能が高いことを示す。
上記測定結果から、0.75V(vs.RHE)における、酸素雰囲気での還元電流と窒素雰囲気での還元電流との差を算出した。算出した値を、さらに電極面積で除した値を酸素還元電流密度(mA/cm2)とした。
酸素還元開始電位および酸素還元電流密度により、作製した燃料電池用電極(1−1)の触媒能を評価した。0.2μA/cm2の酸素還元電流密度を示す電位を酸素還元開始電位と定義する。
すなわち、酸素還元開始電位が高いほど、酸素還元電流密度が大きいほど、燃料電池用電極における触媒の触媒能が高いことを示す。
図1に、上記測定により得られた電流−電位曲線を示す。
実施例1−1で作製した触媒(1−1)は、酸素還元開始電位が0.93V(vs.RHE)、0.75V(vs.RHE)での酸素還元電流密度が1.05mA/cm2であり、高い触媒能を有することがわかった。
[実施例1−2]
1.触媒の調製
焼成温度を1000℃にした以外は実施例1−1と同じ方法により、触媒(1−2)を合成した。この触媒のBET比表面積、元素分析結果およびインク分散性評価を表1に示す。触媒(1−2)ではインク底面部に沈殿物が見られず、高いインク分散性が観察された。
2.燃料電池用電極の製造
触媒(1−1)の代わりに前記触媒(1−2)を用いた以外は実施例1−1と同様にして燃料電池用電極(1−2)を得た。
燃料電池用電極(1−1)の代わりに前記燃料電池用電極(1−2)を用いた以外は実施例1−1と同様にして触媒能を評価した。
図2に、上記測定により得られた電流−電位曲線を示す。
実施例1−2で作製した触媒(1−2)は、酸素還元開始電位が0.92V(vs.RHE)、0.75V(vs.RHE)での酸素還元電流密度が1.00mA/cm2であり、高い触媒能を有することがわかった。
[実施例1−3]
焼成温度を1050℃にした以外は実施例1−1と同じ方法により、触媒(1−3)を合成した。この触媒のBET比表面積、元素分析結果およびインク分散性評価を表1に示す。触媒(1−3)ではインク底面部に沈殿物が見られず、高いインク分散性が観察された。
2.燃料電池用電極の製造
触媒(1−1)の代わりに前記触媒(1−3)を用いた以外は実施例1−1と同様にして燃料電池用電極(1−3)を得た。
燃料電池用電極(1−1)の代わりに前記燃料電池用電極(1−3)を用いた以外は実施例1−1と同様にして触媒能を評価した。
図3に、上記測定により得られた電流−電位曲線を示す。
実施例1−3で作製した触媒(1−3)は、酸素還元開始電位が0.91V(vs.RHE)、0.75V(vs.RHE)での酸素還元電流密度が0.72mA/cm2であり、高い触媒能を有することがわかった。
[実施例2]
1.触媒の調製
遷移金属M1含有化合物としてチタンテトライソプロポキシド(純正化学(株)製)9.37g、アルミニウムトリイソプロポキシド(和光純薬(株)製)0.070g及びアセチルアセトン(純正化学)5.12gを酢酸(和光純薬(株)製)32mLとの溶液に加え、室温で攪拌しながら遷移金属M1含有混合物溶液を作製した。また、窒素含有有機化合物としてグリシン(和光純薬(株)製)10.0g及び鉄族元素M2含有化合物として酢酸鉄(Aldrich社製)0.582gを純水120mLに加え、室温で攪拌して完全に溶解させて窒素含有有機化合物含有混合物溶液を作製した。遷移金属M1含有混合物溶液を窒素含有有機化合物含有混合物溶液にゆっくり添加し、透明な触媒前駆体溶液を得た。ロータリーエバポレーターを用い、窒素雰囲気の減圧下で、ウォーターバスの温度を約60℃に設定し、前記触媒前駆体溶液を加熱しながら、溶媒をゆっくり蒸発させた。完全に溶媒を蒸発させて得られた固形分残渣を乳鉢で細かく均一に潰して、粉末を得た。
前記粉末を用いて、焼成温度を1000℃にした以外は実施例1−1と同じ方法により、触媒(2)を合成した。この触媒のBET比表面積、元素分析結果およびインク分散性評価を表1に示す。触媒(2)ではインク底面部に沈殿物が見られず、高いインク分散性が観察された。
2.燃料電池用電極の製造
触媒(1−1)の代わりに前記触媒(2)を用いた以外は実施例1−1と同様にして燃料電池用電極(2)を得た。
燃料電池用電極(1−1)の代わりに前記燃料電池用電極(2)を用いた以外は実施例1−1と同様にして触媒能を評価した。
図4に、上記測定により得られた電流−電位曲線を示す。
実施例2で作製した触媒(2)は、酸素還元開始電位が0.93V(vs.RHE)、0.75V(vs.RHE)での酸素還元電流密度が0.83mA/cm2であり、高い触媒能を有することがわかった。
[実施例3]
1.触媒の調製
遷移金属M1含有化合物としてチタンテトライソプロポキシド(純正化学(株)製)9.37g、アルミニウムトリイソプロポキシド(和光純薬(株)製)0.176g及びアセチルアセトン(純正化学)5.12gを酢酸(和光純薬(株)製)32mLとの溶液に加え、室温で攪拌しながら遷移金属M1含有混合物溶液を作製した。また、窒素含有有機化合物としてグリシン(和光純薬(株)製)10.0g及び鉄族元素M2含有化合物として酢酸鉄(Aldrich社製)0.582gを純水120mLに加え、室温で攪拌して完全に溶解させて窒素含有有機化合物含有混合物溶液を作製した。遷移金属M1含有混合物溶液を窒素含有有機化合物含有混合物溶液にゆっくり添加し、透明な触媒前駆体溶液を得た。ロータリーエバポレーターを用い、窒素雰囲気の減圧下で、ウォーターバスの温度を約60℃に設定し、前記触媒前駆体溶液を加熱かつ攪拌しながら、溶媒をゆっくり蒸発させた。完全に溶媒を蒸発させて得られた固形分残渣を乳鉢で細かく均一に潰して、粉末を得た。
前記粉末を用いて、焼成温度を1000℃にした以外は実施例1−1と同じ方法により、触媒(3)を合成した。この触媒のBET比表面積、元素分析結果およびインク分散性評価を表1に示す。触媒(3)ではインク底面部に沈殿物が見られず、高いインク分散性が観察された。また、図5にXRD測定結果を示す。XRD測定より得られた触媒(4)では3.2478Åの(110)面間隔に相当するピークが出現した。
2.燃料電池用電極の製造
触媒(1−1)の代わりに前記触媒(3)を用いた以外は実施例1−1と同様にして燃料電池用電極(3)を得た。
燃料電池用電極(1−1)の代わりに前記燃料電池用電極(3)を用いた以外は実施例1−1と同様にして触媒能を評価した。
図6に、上記測定により得られた電流−電位曲線を示す。
実施例3で作製した触媒(3)は、酸素還元開始電位が0.95V(vs.RHE)、0.75V(vs.RHE)での酸素還元電流密度が0.75mA/cm2であり、高い触媒能を有することがわかった。
3.燃料電池用膜電極接合体の製造とその発電特性の評価
(1)インクの調製
上記作製した触媒(3)0.2gと、電子伝導性材料としてカーボンブラック(ケッチェンブラックEC300J、LION社製)0.05gとを混合し、さらにプロトン伝導性材料(ナフィオン(NAFION(登録商標))0.142gを含有する水溶液(20%ナフィオン(NAFION(登録商標))水溶液、和光純薬工業製))0.75gを加えて、あわとり練太郎(THINKY社製)で15分混合することにより、カソード用インク(1)を調製した。
(2)燃料電池用触媒層を有する電極の作製
ガス拡散層(カーボンペーパー(TGP−H−060、東レ社製))を、アセトンに30秒間浸漬して脱脂した後、乾燥させ、次いで10%のPTFE水溶液に30秒間浸漬した。
浸漬物を、室温乾燥後、350℃で1時間加熱することにより、カーボンペーパー内部にPTFEが分散し撥水性を有するガス拡散層(以下「GDL」とも記す。)を得た。
次に、5cm×5cmの大きさとした前記GDLの表面に、バーコーター塗布により、80℃で、上記カソード用インク(1)を塗布し、触媒(3)およびカーボンブラックの総量が単位面積あたり2.5mg/cm2であるカソード触媒層(1)をGDL表面に有する電極(以下「カソード(1)」ともいう。)を作製した。
(3)燃料電池用膜電極接合体の作製
電解質膜としてナフィオン(NAFION(登録商標))膜(NR−212、DuPont社製)を用いた。カソードとして上記カソード(1)を用いた。アノードとしてアノード作製例1で作製したGDLの表面にアノード触媒層(1)を有する電極(以下「アノード(1)」ともいう。)をそれぞれ準備した。
前記カソードと前記アノードとの間に前記電解質膜を配置した燃料電池用膜電極接合体(以下「MEA」ともいう。)を以下のように作製した。
前記電解質膜を前記カソード(1)および前記アノード(1)で挟み、カソード触媒層(1)およびアノード触媒層(1)が前記電解質膜に密着するように、ホットプレス機を用いて、温度140℃、圧力3MPaで6分間かけてこれらを熱圧着し、MEA(1)を作製した。
(4)単セルの作製
図22に示すように、MEA(1)を、2つシール材(ガスケット)、2つのガス流路付きセパレーター、2つの集電板および2つのラバーヒータで挟んでボルトで固定し、これらを所定の面圧(4N)になるように締め付けて、固体高分子形燃料電池の単セル(以下「単セル(1)」ともいう。)(セル面積:5cm2)を作製した。
(5)発電特性の評価(触媒能の測定)
上記単セル(1)を80℃、アノード加湿器を80℃、カソード加湿器を80℃に温度調節した。アノード側に燃料として水素を流量0.1リットル/分で供給し、カソード側に酸化剤として酸素を流量0.1リットル/分で供給し、両側ともに300kPaの背圧をかけながら、単セル(1)において、0.1A/cm2の定電流負荷測定試験を実施した。
測定結果を図7に示す。セル電圧が高いほど、MEAにおける触媒能が高く、経時的な電圧降下の傾きΔ(mV/h)の値が小さいほど触媒の耐久性が高いことを示している。電圧降下の傾きΔは、測定開始5時間以降の曲線部を最小二乗法により線形近似することにより求めた。前記単セル(1)での電圧降下の傾きΔは1.2mV/hであり、触媒耐久性が高いことが確認された。
[実施例4]
1.触媒の調製
遷移金属M1含有化合物としてチタンテトライソプロポキシド(純正化学(株)製)9.37g、アルミニウムトリイソプロポキシド(和光純薬(株)製)1.40g及びアセチルアセトン(純正化学)5.12gを酢酸(和光純薬(株)製)32mLとの溶液に加え、室温で攪拌しながら遷移金属M1含有混合物溶液を作製した。また、窒素含有有機化合物としてグリシン(和光純薬(株)製)10.0g及び鉄族元素M2含有化合物として酢酸鉄(Aldrich社製)0.582gを純水120mLに加え、室温で攪拌して完全に溶解させて窒素含有有機化合物含有混合物溶液を作製した。遷移金属M1含有混合物溶液を窒素含有有機化合物含有混合物溶液にゆっくり添加し、透明な触媒前駆体溶液を得た。ロータリーエバポレーターを用い、窒素雰囲気の減圧下で、ウォーターバスの温度を約60℃に設定し、前記触媒前駆体溶液を加熱しながら、溶媒をゆっくり蒸発させた。完全に溶媒を蒸発させて得られた固形分残渣を乳鉢で細かく均一に潰して、粉末を得た。
前記粉末を用いて、焼成温度を1000℃にした以外は実施例1−1と同じ方法により、触媒(4)を合成した。この触媒のBET比表面積、元素分析結果およびインク分散性評価を表1に示す。触媒(4)ではインク底面部に粒が見られず、高いインク分散性が観察された。
2.燃料電池用電極の製造
触媒(1−1)の代わりに前記触媒(4)を用いた以外は実施例1−1と同様にして燃料電池用電極(4)を得た。
燃料電池用電極(1−1)の代わりに前記燃料電池用電極(4)を用いた以外は実施例1−1と同様にして触媒能を評価した。
図8に、上記測定により得られた電流−電位曲線を示す。
実施例4で作製した触媒(4)は、酸素還元開始電位が0.95V(vs.RHE)、0.75V(vs.RHE)での酸素還元電流密度が0.90mA/cm2であり、高い触媒能を有することがわかった。
[実施例5]
遷移金属M1含有化合物としてチタンテトライソプロポキシド(純正化学(株)製)4.685g、アルミニウムトリイソプロポキシド4.212g、及びアセチルアセトン(純正化学)5.12gを酢酸(和光純薬(株)製)32mLとの溶液に加え、室温で攪拌しながら遷移金属M1含有混合物溶液を作製した。また、窒素含有有機化合物としてグリシン(和光純薬(株)製)10.0g及び鉄族元素M2含有化合物として酢酸鉄(Aldrich社製)0.582gを純水120mLに加え、室温で攪拌して完全に溶解させて窒素含有有機化合物含有混合物溶液を作製した。遷移金属M1含有混合物溶液を窒素含有有機化合物含有混合物溶液にゆっくり添加し、透明な触媒前駆体溶液を得た。ロータリーエバポレーターを用い、窒素雰囲気の減圧下で、ウォーターバスの温度を約60℃に設定し、前記触媒前駆体溶液を加熱かつ攪拌しながら、溶媒をゆっくり蒸発させた。完全に溶媒を蒸発させて得られた固形分残渣を乳鉢で細かく均一に潰して、粉末を得た。
前記粉末を用いて、焼成温度を1000℃にした以外は実施例1−1と同じ方法により、触媒(5)を合成した。この触媒のBET比表面積、元素分析結果および分散性評価を表1に示す。触媒(5)ではインク底面部に沈殿物が見られず、高いインク分散性が観察された。
2.燃料電池用電極の製造
触媒(1−1)の代わりに前記触媒(5)を用いた以外は実施例1−1と同様にして燃料電池用電極(5)を得た。
燃料電池用電極(1−1)の代わりに前記燃料電池用電極(5)を用いた以外は実施例1−1と同様にして触媒能を評価した。
図9に、上記測定により得られた電流−電位曲線を示す。
実施例5で作製した触媒(5)は、酸素還元開始電位が0.87V(vs.RHE)、0.75V(vs.RHE)での酸素還元電流密度が0.66mA/cm2であり、高い触媒能を有することがわかった。
[参考例1]
1.触媒の調製
遷移金属M1含有化合物としてチタンテトライソプロポキシド(純正化学(株)製)9.37g、アルミニウムトリイソプロポキシド(和光純薬(株)製)0.351g及びアセチルアセトン(純正化学)5.12gを酢酸(和光純薬(株)製)32mLとの溶液に加え、室温で攪拌しながら遷移金属M1含有混合物溶液を作製した。また、窒素含有有機化合物としてグリシン(和光純薬(株)製)10.0g及び純水120mLに加え、室温で攪拌して完全に溶解させて窒素含有有機化合物含有混合物溶液を作製した。遷移金属M1含有混合物溶液を窒素含有有機化合物含有混合物溶液にゆっくり添加し、透明な触媒前駆体溶液を得た。ロータリーエバポレーターを用い、窒素雰囲気の減圧下で、ウォーターバスの温度を約60℃に設定し、前記触媒前駆体溶液を加熱かつ攪拌しながら、溶媒をゆっくり蒸発させた。完全に溶媒を蒸発させて得られた固形分残渣を乳鉢で細かく均一に潰して、粉末を得た。
前記粉末を用いて、焼成温度を1000℃にした以外は実施例1−1と同じ方法により、触媒(6)を合成した。この触媒のBET比表面積、元素分析結果およびインク分散性評価を表1に示す。触媒(6)では、高いインク分散性が観察された。
2.燃料電池用電極の製造
触媒(1−1)の代わりに前記触媒(6)を用いた以外は実施例1−1と同様にして燃料電池用電極(6)を得た。
燃料電池用電極(1−1)の代わりに前記燃料電池用電極(6)を用いた以外は実施例1−1と同様にして触媒能を評価した。
図10に、上記測定により得られた電流−電位曲線を示す。
参考例1で作製した触媒(6)は、酸素還元開始電位が0.76V(vs.RHE)、0.6V(vs.RHE)での酸素還元電流密度が0.21mA/cm2であった。
3.燃料電池用膜電極接合体の製造とその発電特性の評価
触媒(3)に替えて触媒(6)を用いた以外は実施例3と同様の方法で燃料電池用膜電極接合体(以下「MEA(2)」ともいう。)を作製し、MEA(1)に替えてMEA(2)を用いた以外は実施例3と同様の方法で固体高分子形燃料電池の単セル(以下「単セル(2)」ともいう。)を作製した。
単セル(1)の替わりに単セル(2)を用いたこと以外は実施例3と同様に定電流負荷測定試験を実施した。
測定結果を図11に示す。当該セル電圧が高いほど、MEAにおける触媒能が高く、経時的な電圧降下の傾きΔ(mV/h)の値が小さいほど触媒の耐久性が高いことを示している。前記単セル(2)での電圧降下の傾きΔは1.6mV/hであり、触媒耐久性が高いことが確認された。
[実施例6]
1.触媒の調製
遷移金属M1含有化合物としてチタンテトライソプロポキシド(純正化学(株)製)9.37g、ホウ酸トリイソプロピル(Aldrich社製)0.91ml及びアセチルアセトン(純正化学)5.12gを酢酸(和光純薬(株)製)32mLとの溶液に加え、室温で攪拌しながら遷移金属M1含有混合物溶液を作製した。また、窒素含有有機化合物としてグリシン(和光純薬(株)製)10.0g及び鉄族元素M2含有化合物として酢酸鉄(Aldrich社製)0.582gを純水120mLに加え、室温で攪拌して完全に溶解させて窒素含有有機化合物含有混合物溶液を作製した。遷移金属M1含有混合物溶液を窒素含有有機化合物含有混合物溶液にゆっくり添加し、透明な触媒前駆体溶液を得た。ロータリーエバポレーターを用い、窒素雰囲気の減圧下で、ウォーターバスの温度を約60℃に設定し、前記触媒前駆体溶液を加熱かつ攪拌しながら、溶媒をゆっくり蒸発させた。完全に溶媒を蒸発させて得られた固形分残渣を乳鉢で細かく均一に潰して、粉末を得た。
前記粉末を用いて、焼成温度を1000℃にした以外は実施例1−1と同じ方法により、触媒(7)を合成した。この触媒のBET比表面積、元素分析結果および分散性評価を表1に示す。触媒(7)ではインク底面部に沈殿物が見られず、高いインク分散性が観察された。
2.燃料電池用電極の製造
触媒(1−1)の代わりに前記触媒(7)を用いた以外は実施例1−1と同様にして燃料電池用電極(7)を得た。
燃料電池用電極(1−1)の代わりに前記燃料電池用電極(7)を用いた以外は実施例1−1と同様にして触媒能を評価した。
図12に、上記測定により得られた電流−電位曲線を示す。
実施例6で作製した触媒(7)は、酸素還元開始電位が0.95V(vs.RHE)、0.75V(vs.RHE)での酸素還元電流密度が0.67mA/cm2であり、高い触媒能を有することがわかった。
[実施例7]
1.触媒の調製
遷移金属M1含有化合物としてニオブエトキシド(純正化学(株)製)10.41g、アルミニウムトリイソプロポキシド(和光純薬(株)製)0.7018g及びアセチルアセトン(純正化学)5.12gを酢酸(和光純薬(株)製)32mLとの溶液に加え、室温で攪拌しながら遷移金属M1含有混合物溶液を作製した。また、窒素含有有機化合物としてグリシン(和光純薬(株)製)10.0g及び鉄族元素M2含有化合物として酢酸鉄(Aldrich社製)0.582gを純水120mLに加え、室温で攪拌して完全に溶解させて窒素含有有機化合物含有混合物溶液を作製した。遷移金属M1含有混合物溶液を窒素含有有機化合物含有混合物溶液にゆっくり添加し、透明な触媒前駆体溶液を得た。ロータリーエバポレーターを用い、窒素雰囲気の減圧下で、ウォーターバスの温度を約60℃に設定し、前記触媒前駆体溶液を加熱しながら、溶媒をゆっくり蒸発させた。完全に溶媒を蒸発させて得られた固形分残渣を乳鉢で細かく均一に潰して、粉末を得た。
前記粉末を用いて、焼成温度を1000℃にした以外は実施例1−1と同じ方法により、触媒(8)を合成した。この触媒のBET比表面積、元素分析結果およびインク分散性評価を表1に示す。触媒(8)では、インク底面部に沈殿物が見られず高いインク分散性が観察された。
2.燃料電池用電極の製造
触媒(1−1)の代わりに前記触媒(8)を用いた以外は実施例1−1と同様にして燃料電池用電極(8)を得た。
燃料電池用電極(1−1)の代わりに前記燃料電池用電極(8)を用いた以外は実施例1−1と同様にして触媒能を評価した。
図13に、上記測定により得られた電流−電位曲線を示す。
実施例7で作製した触媒(8)は、酸素還元開始電位が0.98V(vs.RHE)、0.75V(vs.RHE)での酸素還元電流密度が0.57mA/cm2であり、高い触媒能を有することがわかった。
[比較例1]
1.触媒の調製
焼成温度を450℃にした以外は実施例1−1と同じ方法により、触媒(9)を合成した。この触媒のBET比表面積、元素分析結果およびインク分散性評価を表1に示す。触媒(9)ではインク底面部に沈殿物が見られず高いインク分散性が観察された。
2.燃料電池用電極の製造
触媒(1−1)の代わりに前記触媒(9)を用いた以外は実施例1−1と同様にして燃料電池用電極(9)を得た。
燃料電池用電極(1−1)の代わりに前記燃料電池用電極(9)を用いた以外は実施例1−1と同様にして触媒能を評価した。
図14に、上記測定により得られた電流−電位曲線を示す。
比較例1で作製した触媒(9)は、酸素還元開始電位が0.59V(vs.RHE)であり、触媒能が低いことが分かった。
[比較例2]
1.触媒の調製
アルミニウムトリイソプロポキシドを加えなかったこと以外は実施例3と同じ方法により、触媒(10)を合成した。この触媒のBET比表面積、元素分析結果および分散性評価を表1に示す。触媒(10)ではインク底面部に沈殿物が見られず、高いインク分散性が観察された。また、図15にXRD測定結果を示す。XRD測定より得られた触媒(10)の(110)面の面間隔は3.2483Åであった。
2.燃料電池用電極の製造
触媒(1−1)の代わりに前記触媒(10)を用いた以外は実施例1−1と同様にして燃料電池用電極(10)を得た。
燃料電池用電極(1−1)の代わりに前記燃料電池用電極(10)を用いた以外は実施例1−1と同様にして触媒能を評価した。
図16に、上記測定により得られた電流−電位曲線を示す。
比較例2で作製した触媒(10)は、酸素還元開始電位が0.88V(vs.RHE)、0.75V(vs.RHE)での酸素還元電流密度が0.30mA/cm2であり、触媒能が低いことがわかった。
3.燃料電池用膜電極接合体の製造とその発電特性の評価
触媒(3)に替えて触媒(10)を用いた以外は実施例3と同様の方法で燃料電池用膜電極接合体(以下「MEA(3)」ともいう。)を作製し、MEA(1)に替えてMEA(3)を用いた以外は実施例3と同様の方法で固体高分子形燃料電池の単セル(以下「単セル(3)」ともいう。)を作製した。
単セル(1)の替わりに単セル(3)を用いたこと以外は実施例3と同様に定電流負荷測定試験を実施した。
測定結果を図17に示す。当該セル電圧が高いほど、MEAにおける触媒能が高く、経時的な電圧降下の傾きΔ(mV/h)の値が小さいほど触媒の耐久性が高いことを示している。前記単セル(3)での電圧降下の傾きΔは1.7mV/hであった。
[比較例3]
1.触媒の調製
炭化チタン(TiC)5.10g(85mmol)、酸化チタン(TiO2)0.80g(10mmol)、窒化チタン(TiN)0.31g(5mmol)をよく混合して、1800℃で3時間、窒素雰囲気中で加熱することにより、炭窒化チタン5.73gが得られた。焼結体になるため、得られた炭窒化チタンを自動乳鉢で粉砕した。
得られた炭窒化チタン298mgを、1容量%の酸素ガスおよび4容量%の水素ガスを含む、窒素ガスを流しながら、管状炉で、1000℃で10時間加熱することにより、チタン含有焼結体(以下「触媒11」とも記す。)393mgが得られた。
2.燃料電池用電極の製造
触媒(1−1)の代わりに前記触媒(11)を用いた以外は実施例1−1と同様にして燃料電池用電極(11)を得た。
燃料電池用電極(1−1)の代わりに前記燃料電池用電極(11)を用いた以外は実施例1−1と同様にして触媒能を評価した。
図18に、上記測定により得られた電流−電位曲線を示す。
比較例3で作製した触媒(11)は、酸素還元開始電位が0.83V(vs.RHE)、0.75V(vs.RHE)での酸素還元電流密度が0.04mA/cm2であり、触媒能が低いことがわかった。
[比較例4]アルミニウム添加高温固相合成
1.触媒の調製
炭化チタン(TiC)2.55g(42.5mmol)、窒化チタン(TiN)0.30g(5.0mmol)および酸化アルミニウム(Al2O3)0.13g(1.25mmol)をよく混合して得られた混合物を、1600℃で3時間、窒素ガス中で加熱することにより、アルミニウム及びチタニウムを含有する焼結体2.72gが得られた。この焼結体の炭窒化物をボールミルで粉砕して粉末を得た。
得られた粉末1.02gを、1容量%の酸素ガスを含むアルゴンガスを流しながら、管状炉で、1000℃で1時間加熱することにより、アルミニウム及びチタニウムを含有する焼結体(以下「触媒(12)」とも記す。)1.11gを得た。
2.燃料電池用電極の製造
触媒(1−1)の代わりに前記触媒(12)を用いた以外は実施例1−1と同様にして燃料電池用電極(12)を得た。
燃料電池用電極(1−1)の代わりに前記燃料電池用電極(12)を用いた以外は実施例1−1と同様にして触媒能を評価した。
図19に、上記測定により得られた電流−電位曲線を示す。
比較例4で作製した触媒(12)は、酸素還元開始電位が0.76V(vs.RHE)、0.75V(vs.RHE)での酸素還元電流密度が0.01mA/cm2であり、触媒能が低いことがわかった。
[比較例5]
1.触媒の調製
遷移金属M1含有化合物である酸化チタン(アナターゼ型、100m2/g)2gとカーボンブラック(Vulcan XC72 Cabot社)0.75gを乳鉢中でよく混合し、管状炉に入れ、水素ガスを4体積%含む窒素ガスの雰囲気下で昇温速度10℃/minで1700℃まで加熱し、1700℃で3時間保持し、自然冷却することにより粉末状の触媒(以下「触媒13」とも記す。)を製造した。
2.燃料電池用電極の製造
触媒(1−1)の代わりに前記触媒(13)を用いた以外は実施例1−1と同様にして燃料電池用電極(13)を得た。
燃料電池用電極(1−1)の代わりに前記燃料電池用電極(13)を用いた以外は実施例1−1と同様にして触媒能を評価した。
図20に、上記測定により得られた電流−電位曲線を示す。
比較例5で作製した触媒(13)は、酸素還元開始電位が0.59V(vs.RHE)であり、触媒能が低いことがわかった。
[比較例6]
1.触媒の調製
遷移金属M1含有化合物である酸化チタン(アナターゼ型、100m2/g)を管状炉に入れ、水素ガスを4体積%含む窒素ガスの雰囲気下で昇温速度10℃/minで900℃まで加熱し、900℃で1時間保持し、自然冷却することにより粉末状の触媒(以下「触媒11」とも記す。)を製造した。
2.燃料電池用電極の製造
触媒(1−1)の代わりに前記触媒(14)を用いた以外は実施例1−1と同様にして燃料電池用電極(14)を得た。
燃料電池用電極(1−1)の代わりに前記燃料電池用電極(14)を用いた以外は実施例1−1と同様にして触媒能を評価した。
図21に、上記測定により得られた電流−電位曲線を示す。
比較例6で作製した触媒(14)は、酸素還元開始電位が0.35V(vs.RHE)であり、触媒能が低いことがわかった。
Figure 2012172823
11 膜電極接合体(MEA)
12 ガスケット
13 セパレーター
14 集電板
15 ラバーヒータ
特開2004−303664号公報 国際公開第07/072665号パンフレット 米国特許出願公開第2004/0096728号明細書 特開2005−19332号公報 国際公開第2009/031383パンフレット 国際公開第2009/107518パンフレット 特開2009−23887号公報 特開2009−255053号公報 特開2008−258150号公報 特開2003−187812号公報
Electrochemistry Communications Volume 12, Issue 9, September 2010, Pages 1177-1179
[比較例4]アルミニウム添加高温固相合成
1.触媒の調製
炭化チタン(TiC)2.55g(42.5mmol)、窒化チタン(TiN)0.30g(5.0mmol)および酸化アルミニウム(Al 2 3 )0.13g(1.25mmol)をよく混合して得られた混合物を、1600℃で3時間、窒素ガス中で加熱することにより、アルミニウム及びチタニウムを含有する焼結体2.72gが得られた。この焼結体の炭窒化物をボールミルで粉砕して粉末を得た。

Claims (20)

  1. 少なくとも、3〜7族元素から選ばれる少なくとも一種の元素であるM1、鉄族元素から選ばれる少なくとも一種の元素であるM2、13族元素から選ばれる少なくとも一種の元素であるM3、炭素、窒素および酸素を構成元素として有し、前記各元素の原子数の比(M1:M2:M3:炭素:窒素:酸素)をa:b:c:x:y:zとした場合に、0<a<1、0<b≦0.5、0<c<1、0<x≦6、0<y≦2、0<z≦3、a+b+c=1であり、BET比表面積が100m2/g以上である燃料電池用電極触媒。
  2. 前記M1が、チタン、ジルコニウム、ハフニウム、ニオブおよびタンタルからなる群から選ばれる少なくとも一種の元素である請求項1に記載の燃料電池用電極触媒。
  3. 前記M2が鉄である請求項1または2に記載の燃料電池用電極触媒。
  4. 前記M3がホウ素、アルミニウム、ガリウムおよびインジウムからなる群から選ばれる少なくとも一種の元素である請求項1〜3のいずれかに記載の燃料電池用電極触媒。
  5. 前記M1が、チタン、ジルコニウム、ハフニウム、ニオブおよびタンタルからなる群から選ばれる少なくとも一種の元素であり、M2が鉄であり、M3がホウ素、アルミニウム、ガリウムおよびインジウムからなる群から選ばれる少なくとも一種の元素である請求項1に記載の燃料電池用電極触媒。
  6. 前記xが、0.15〜5である請求項1〜5のいずれかに記載の燃料電池用電極触媒。
  7. 前記yが、0.01〜1.5である請求項1〜6のいずれかに記載の燃料電池用電極触媒。
  8. 前記zが、0.1〜2.6である請求項1〜7のいずれかに記載の燃料電池用電極触媒。
  9. XRD測定により算出される(110)面間隔が、
    M3を加えずに該触媒と同様に製造された触媒のXRD測定により算出される(110)面間隔より小さい、請求項1〜8のいずれかに記載の燃料電池用電極触媒。
  10. 少なくとも3〜7族元素から選ばれる少なくとも一種の元素M1を含有する化合物、鉄族元素から選ばれる少なくとも一種の元素M2を含有する化合物、13族元素から選ばれる少なくとも一種の元素M3を含有する化合物、窒素含有有機化合物および溶媒を混合して触媒前駆体溶液を得る工程1、
    前記触媒前駆体溶液から溶媒を除去して固形分残渣を得る工程2、および
    工程2で得られた固形分残渣を500〜1200℃の温度で熱処理して電極触媒を得る工程3
    を含む燃料電池用電極触媒の製造方法。
  11. 前記M1を含有する化合物が、金属硝酸塩、金属有機酸塩、金属酸塩化物、金属アルコキシド、金属ハロゲン化物、金属過塩素酸塩および金属次亜塩素酸塩からなる群から選ばれる1種類以上である請求項10に記載の燃料電池用電極触媒の製造方法。
  12. 前記窒素含有有機化合物が、アミノ基、ニトリル基、イミド基、イミン基、ニトロ基、アミド基、アジド基、アジリジン基、アゾ基、イソシアネート基、イソチオシアネート基、オキシム基、ジアゾ基、およびニトロソ基、ならびにピロール環、ポルフィリン環、イミダゾール環、ピリジン環、ピリミジン環、およびピラジン環から選ばれる1種類以上を分子中に有する請求項10または11に記載の燃料電池用電極触媒の製造方法。
  13. 前記窒素含有有機化合物が、水酸基、カルボキシル基、ホルミル基、ハロカルボニル基、スルホン酸基、リン酸基、ケトン基、エーテル基、およびエステル基から選ばれる1種類以上を分子中に有する請求項10〜12のいずれかに記載の燃料電池用電極触媒の製造方法。
  14. 前記工程3において、前記固形分残渣を、アルゴンガス、ヘリウムガスまたは窒素ガスを含む雰囲気中で熱処理する請求項10〜13のいずれかに記載の燃料電池用電極触媒の製造方法。
  15. 前記工程3において、前記固形分残渣を、水素ガスを含む雰囲気中で熱処理する請求項10〜13のいずれかに記載の燃料電池用電極触媒の製造方法。
  16. 請求項1〜9のいずれかに記載の燃料電池用電極触媒を用いて作製されるインク。
  17. 請求項16に記載のインクを用いて作製される燃料電池用触媒層。
  18. 燃料電池用触媒層とガス拡散層とを有する電極であって、前記燃料電池用触媒層が請求項17に記載の燃料電池用触媒層である電極。
  19. カソードとアノードと前記カソード及び前記アノードの間に配置された電解質膜とを有する膜電極接合体であって、前記カソードが請求項18に記載の電極である膜電極接合体。
  20. 請求項19に記載の膜電極接合体を備える固体高分子型燃料電池。
JP2012548667A 2011-06-14 2012-01-12 燃料電池用電極触媒およびその製造方法 Expired - Fee Related JP5255160B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012548667A JP5255160B1 (ja) 2011-06-14 2012-01-12 燃料電池用電極触媒およびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011132102 2011-06-14
JP2011132102 2011-06-14
JP2012548667A JP5255160B1 (ja) 2011-06-14 2012-01-12 燃料電池用電極触媒およびその製造方法
PCT/JP2012/050529 WO2012172823A1 (ja) 2011-06-14 2012-01-12 燃料電池用電極触媒およびその製造方法

Publications (2)

Publication Number Publication Date
JP5255160B1 JP5255160B1 (ja) 2013-08-07
JPWO2012172823A1 true JPWO2012172823A1 (ja) 2015-02-23

Family

ID=47356825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012548667A Expired - Fee Related JP5255160B1 (ja) 2011-06-14 2012-01-12 燃料電池用電極触媒およびその製造方法

Country Status (6)

Country Link
US (1) US20140120454A1 (ja)
EP (1) EP2722106B1 (ja)
JP (1) JP5255160B1 (ja)
KR (1) KR101544330B1 (ja)
CN (1) CN103619477B (ja)
WO (1) WO2012172823A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136541B2 (en) * 2010-02-10 2015-09-15 Showa Denko K.K. Process for producing fuel cell electrode catalyst, process for producing transition metal oxycarbonitride, fuel cell electrode catalyst and uses thereof
JP5706596B1 (ja) * 2013-07-12 2015-04-22 昭和電工株式会社 酸素還元触媒およびその用途
US10229301B2 (en) 2013-11-28 2019-03-12 Datalogic Ip Tech S.R.L. Optical code reading system with dynamic image regionalization
TWI592213B (zh) * 2016-03-16 2017-07-21 國立清華大學 觸媒層及其製造方法、膜電極組及其製造方法與燃料電池
US11033888B2 (en) * 2017-08-30 2021-06-15 Uchicago Argonne, Llc Nanofiber electrocatalyst
CN115602858A (zh) * 2022-10-12 2023-01-13 北京科技大学(Cn) 一种碳包覆过渡金属氮化物纳米颗粒制备方法及其作为orr催化剂的应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258152A (ja) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd 膜−電極接合体およびこれを用いた燃料電池
CA2680251A1 (en) * 2007-03-09 2008-09-18 Sumitomo Chemical Company, Limited Membrane-electrode assembly and fuel battery using the same
US8642495B2 (en) * 2008-01-18 2014-02-04 Showa Denko K.K. Catalyst, production process therefor and use thereof
CN103700867B (zh) * 2008-03-24 2016-05-25 昭和电工株式会社 催化剂及其制造方法以及其用途
WO2010041655A1 (ja) * 2008-10-06 2010-04-15 昭和電工株式会社 触媒およびその製造方法ならびにその用途
JP4964292B2 (ja) * 2009-12-07 2012-06-27 日清紡ホールディングス株式会社 電極及び電池
KR20120114383A (ko) * 2010-01-29 2012-10-16 에버레디 배터리 컴퍼니, 인크. 이산화망간을 포함하는 촉매 전극을 갖는 전기화학 전지의 제조 방법
US9118083B2 (en) * 2011-01-14 2015-08-25 Showa Denko K.K Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and uses thereof

Also Published As

Publication number Publication date
CN103619477A (zh) 2014-03-05
US20140120454A1 (en) 2014-05-01
CN103619477B (zh) 2016-06-01
EP2722106A4 (en) 2014-12-03
WO2012172823A1 (ja) 2012-12-20
EP2722106B1 (en) 2017-12-13
KR101544330B1 (ko) 2015-08-12
EP2722106A1 (en) 2014-04-23
KR20140022105A (ko) 2014-02-21
JP5255160B1 (ja) 2013-08-07

Similar Documents

Publication Publication Date Title
JP6061998B2 (ja) 燃料電池用電極触媒、遷移金属炭窒酸化物およびその用途
JP5855023B2 (ja) 触媒担体の製造方法、複合触媒の製造方法、複合触媒、およびこれを用いた燃料電池
JP5302468B2 (ja) 酸素還元触媒およびその製造方法、並びに固体高分子形燃料電池
EP2744024B1 (en) Method for producing electrode catalyst for fuel cells
JP5766138B2 (ja) 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
JP5819280B2 (ja) 燃料電池用電極触媒およびその用途
JP5255160B1 (ja) 燃料電池用電極触媒およびその製造方法
JP4944281B1 (ja) 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
JP2012221929A (ja) 膜・電極接合体の製造方法および固体高分子型燃料電池の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

R150 Certificate of patent or registration of utility model

Ref document number: 5255160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees