JPWO2012160761A1 - 撮像光学系、撮像装置およびデジタル機器 - Google Patents

撮像光学系、撮像装置およびデジタル機器

Info

Publication number
JPWO2012160761A1
JPWO2012160761A1 JP2013516183A JP2013516183A JPWO2012160761A1 JP WO2012160761 A1 JPWO2012160761 A1 JP WO2012160761A1 JP 2013516183 A JP2013516183 A JP 2013516183A JP 2013516183 A JP2013516183 A JP 2013516183A JP WO2012160761 A1 JPWO2012160761 A1 JP WO2012160761A1
Authority
JP
Japan
Prior art keywords
lens
optical system
image
imaging optical
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013516183A
Other languages
English (en)
Inventor
田中 宏明
宏明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2012160761A1 publication Critical patent/JPWO2012160761A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses

Abstract

本発明の撮像光学系1は、物体側から順に、絞り15と、正負正負の第1ないし第4レンズ11〜14とから成り、第4レンズ14は、両面が凹面であり、第1レンズ11の物体側面および第2レンズ12の像側面における各曲率半径をr1、r4とした場合に、−1000<(r1+r4)/(r1−r4)<−55の条件式を満たす。

Description

本発明は、撮像光学系に関し、特に、CCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子に好適に適用される撮像光学系に関する。そして、本発明は、この撮影光学系を備える撮像装置およびこの撮像装置を搭載したデジタル機器に関する。
近年、CCD(Charged Coupled Device)型イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像素子の高性能化や小型化が伸展し、これに伴って、このような撮像素子を用いた撮像装置を備えた携帯電話や携帯情報端末等のデジタル機器が普及しつつある。また、これらの撮像装置に搭載される、前記固体撮像素子の受光面上に物体の光学像を形成(結像)するための撮像光学系(撮像レンズ)には、さらなる小型化や高性能化への要求が高まっている。特に、近年では、固体撮像素子における画素の高細化が進展したため、撮像光学系には、より高い解像力が要求されてきている。このような用途の撮像光学系において、2枚構成あるいは3枚構成の光学系に較べて、より高性能化が可能であることから、4枚構成の光学系が提案されている。
このような撮像光学系は、例えば、特許文献1ないし特許文献4に開示されている。特許文献1に開示の結像光学系は、物体側から順に、第1正レンズ、第2負レンズ、第3正レンズ、第4正レンズの順に配置され、第1正レンズないし第2負レンズの合成焦点距離が正、あるいは、第2負レンズないし第4正レンズの合成焦点距離が負であるものである。また、特許文献2に開示の撮影レンズは、最も物体側に開口絞りを配し、以降物体側より順に、正の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、正の屈折力を有する第3レンズおよび正の屈折力を有する第4レンズを配して構成されるものである。また、特許文献3に開示の撮像レンズは、物体側より順に、開口絞り、正の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、正の屈折力を有する第3レンズおよび負の屈折力を有する第4レンズを配列して構成され、前記第2ないし第4レンズが樹脂材料で構成され、レンズ系全体の焦点距離をfとし、第1レンズの焦点距離をf1とし、第2レンズの焦点距離をf2とし、第2レンズのd線におけるアッベ数をνd2とし、第3レンズのd線におけるアッベ数をνd3とする場合に、f/f1<1.5、−2.5<|f/f2|<−1.5、15<νd2−νd3であるものである。また、特許文献4に開示の撮像レンズは、物体側から順に、正のパワーを有する第1レンズと、負のパワーを有する第2レンズと、像側の面が凸面で正のパワーを有する第3レンズと、物体側の面が光軸近傍において凹面または平面であり、負のパワーを有する第4レンズとを備え、全体の焦点距離をfとし、第4レンズの焦点距離をf4とする場合に、0.28<|f4/f|<0.60であるものである。
ところで、前記特許文献1に開示の結像光学系は、いわゆる逆エルノスタータイプであるため、その第4レンズが正レンズである。このため、いわゆるテレフォトタイプのように第4レンズが負レンズである場合に比べ、前記特許文献1に開示の結像光学系は、光学系の主点位置が像側になりバックフォーカスが長くなるため、小型化には不利なタイプである。さらに、前記特許文献1に開示の結像光学系は、負の屈折力を有するレンズが4枚の第1ないし第4レンズのうちの1枚であるため、ペッツバール和の補正が困難となり、画像周辺部では良好な性能を確保することが難しい。
この点、前記特許文献2に開示の撮像レンズは、テレフォトタイプであるが、撮影画角が狭くて収差補正が不充分である。さらに撮像レンズ全系の全長を短縮化すると、前記特許文献2に開示の撮像レンズは、性能の劣化による撮像素子の高画素化に対応することが困難となる。
また、前記特許文献3に記載の撮像レンズは、第4レンズの周辺部が像面方向に大きく張り出す形状となっており、このため、第4レンズと固体撮像素子との間に配置される、光学的ローパスフィルタ、赤外線カットフィルタ、または固体撮像素子パッケージのシールガラス等の平行平板や、固体撮像素子の基板等との接触を避けるために、バックフォーカスを長くする必要がある。事実、前記特許文献3に開示の撮像レンズは、テレフォトタイプであるにもかかわらずバックフォーカスが比較的長く、充分な小型化が達成されていない。また、前記特許文献3に記載の撮像レンズは、前記高画素化に対応するためには収差補正が不充分である。
また、特許文献4に記載の撮像レンズは、F2.8程度の収差補正が可能であるが、画素の高細化が進む携帯端末において、不充分な明るさにしか対応できていない。
特開2004−341013号公報 特開2002−365530号公報 特開2005−292559号公報 特開2009−020182号公報
本発明は、上述の事情に鑑みて為された発明であり、その目的は、より小型であって諸収差がより良好に補正され、そして、F2.4程度の明るい4枚構成の撮像光学系を提供することである。そして、本発明は、この撮像光学系を備える撮像装置およびこの撮像装置を搭載したデジタル機器を提供することである。
本発明の撮像光学系は、物体側から順に、絞り15と、正負正負の第1ないし第4レンズとから成り、第4レンズは、両面が凹面であり、第1レンズの物体側面および第2レンズの像側面における各曲率半径をr1、r4とした場合に、−1000<(r1+r4)/(r1−r4)<−55の条件式を満たす。このような構成の撮像光学系は、F2.4程度の明るい、4枚のレンズ構成であって、より小型であって諸収差をより良好に補正することができる。そして、このような撮像光学系を用いた撮像装置およびデジタル機器は、小型化および高性能化を図ることができる。
上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
実施形態における撮像光学系の説明のための、その構成を模式的に示したレンズ断面図である。 主光線の像面入射角の定義を示す模式図である。 実施形態におけるデジタル機器の構成を示すブロック図である。 デジタル機器の一実施形態を示すカメラ付携帯電話機の外観構成図である。 実施例1における撮像光学系におけるレンズ群の配列を示す断面図である。 実施例2における撮像光学系におけるレンズ群の配列を示す断面図である。 実施例3における撮像光学系におけるレンズ群の配列を示す断面図である。 実施例4における撮像光学系におけるレンズ群の配列を示す断面図である。 実施例5における撮像光学系におけるレンズ群の配列を示す断面図である。 実施例6における撮像光学系におけるレンズ群の配列を示す断面図である。 実施例1における撮像光学系の収差図である。 実施例2における撮像光学系の収差図である。 実施例3における撮像光学系の収差図である。 実施例4における撮像光学系の収差図である。 実施例5における撮像光学系の収差図である。 実施例6における撮像光学系の収差図である。
以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、接合レンズにおけるレンズ枚数は、接合レンズ全体で1枚ではなく、接合レンズを構成する単レンズの枚数で表すこととする。
<用語の説明>
以下の説明において使用されている用語は、本明細書においては、次の通り定義されているものとする。
(a)屈折率は、d線の波長(587.56nm)に対する屈折率である。
(b)アッベ数は、d線、F線(波長486.13nm)、C線(波長656.28nm)に対する屈折率を各々nd、nF、nC、アッベ数をνdとした場合に、
νd=(nd−1)/(nF−nC)
の定義式で求められるアッベ数νdをいうものとする。
(c)レンズについて、「凹」、「凸」または「メニスカス」という表記を用いた場合、これらは光軸近傍(レンズの中心付近)でのレンズ形状を表しているものとする。
(d)接合レンズを構成している各単レンズにおける屈折力(光学的パワー、焦点距離の逆数)の表記は、単レンズのレンズ面の両側が空気である場合におけるパワーである。
(e)複合型非球面レンズに用いる樹脂材料は、基板ガラス材料の付加的機能しかないため、単独の光学部材として扱わず、基板ガラス材料が非球面を有する場合と同等の扱いとし、レンズ枚数も1枚として取り扱うものとする。そして、レンズ屈折率も基板となっているガラス材料の屈折率とする。複合型非球面レンズは、基板となるガラス材料の上に薄い樹脂材料を塗布して非球面形状としたレンズである。
<実施の一形態の撮像光学系の説明>
図1は、実施形態における撮像光学系の説明のための、その構成を模式的に示したレンズ断面図である。図2は、主光線の像面入射角の定義を示す模式図である。なお、以下において、主光線の像面入射角は、図2に示すように、撮像面への入射光線のうち最大画角の主光線の、像面に立てた垂線に対する角度(deg、度)αであり、像面入射角αは、射出瞳位置が像面より物体側にある場合の主光線角度を正方向とする。
図1において、この撮像光学系1は、光学像を電気的な信号に変換する撮像素子17の受光面上に、物体(被写体)の光学像を形成するものであって、物体側より像側へ順に、第1ないし第4レンズ11〜14の4枚のレンズから構成されて成る光学系である。撮像素子17は、その受光面が撮像光学系1の像面と略一致するように配置される(像面=撮像面)。
そして、この撮像光学系1では、第1ないし第4レンズ11〜14が全玉繰り出しで光軸方向に移動することによってフォーカシングが行われる。
さらに、第1レンズ11は、正の屈折力を有し、第2レンズ12は、負の屈折力を有し、第3レンズ13は、正の屈折力を有し、そして、第4レンズ14は、両面が凹面であって負の屈折力を有している。より具体的には、図1に示す例では、第1レンズ11は、両面が凸形状である両凸の正レンズであり、第2レンズ12は、物体側に凸面を向けたメニスカス形状の負メニスカスレンズであり、第3レンズ13は、像側に凸の正メニスカスレンズであり、そして、第4レンズ14は、両凹の負レンズである。これら第1ないし第4レンズ11〜15は、両面が非球面である。さらに、図1に示す例では、第4レンズ14は、その中心(光軸近傍)では負の屈折力を持ち、有効領域端に向かうに従い負の屈折力が弱くなり、光軸AXに沿ったレンズ断面(光軸AXに沿って光軸AXを含むレンズ断面)の輪郭線において光軸AXの交点から前記有効領域端に向かった場合に垂接点IP4、IP4を有している。
これら第1ないし第4レンズ11〜14は、例えばガラスモールドレンズであってもよく、また例えば、プラスチック等の樹脂材料製レンズであってもよい。特に、携帯端末に搭載する場合には軽量化や低コスト化の観点から、また加工性の観点から、樹脂材料製レンズが好ましい。図1に示す例では、これら第1ないし第4レンズ11〜14は、樹脂材料製レンズである。
また、この撮像光学系1は、第1レンズ11における物体側面の曲率半径をr1とし、そして、第2レンズ12における像側面の曲率半径をr4とした場合に、下記(1)の条件式を満たしている。
−1000<(r1+r4)/(r1−r4)<−55 ・・・(1)
そして、この撮像光学系1には、例えば開口絞り等の光学絞り15が第1レンズ11の物体側に配置されている。
さらに、この撮像光学系1の像側、すなわち、第4レンズ14における像側には、フィルタ16や撮像素子17が配置される。フィルタ16は、平行平板状の光学素子であり、各種光学フィルタや、撮像素子17のカバーガラス(シールガラス)等を模式的に表したものである。使用用途、撮像素子、カメラの構成等に応じて、光学的ローパスフィルタ、赤外線カットフィルタ等の光学フィルタを適宜に配置することが可能である。撮像素子17は、この撮像光学系1によって結像された被写体の光学像における光量に応じてR(赤)、G(緑)、B(青)の各成分の画像信号に光電変換して所定の画像処理回路(不図示)へ出力する素子である。これらによって物体側の被写体の光学像が、撮像光学系1によりその光軸AXに沿って所定の倍率で撮像素子17の受光面まで導かれ、撮像素子17によって前記被写体の光学像が撮像される。
このような構成の撮像光学系1は、4枚の第1ないし第4レンズ11〜14から構成されて成り、それぞれの第1ないし第4レンズ11〜14に上記光学特性を持たせて、これら4枚の第1ないし第4レンズ11〜14を物体側から像側へ順に配置することによって、F2.4程度の明るさで、小型でありながら、より良好に諸収差を補正することが可能となる。
より詳しくは、撮像光学系1は、物体側より順に、絞り15と、第1ないし第3レンズ11〜13から成る正レンズ群Gr1と、負の第4レンズ14から成る負レンズ群Gr2とを配置する、いわゆるテレフォトタイプであって、撮像光学系(撮像レンズ)1の全長の短縮化には有利なレンズ構成となっている。
そして、第1ないし第4レンズ11〜14の4枚構成のうちの2枚、図1に示す例では、第2および第4レンズ12、14が負レンズとされることによって、発散作用を有する面をより多くすることができ、ペッツバール和の補正が容易となる。この結果、この撮像光学系1は、画面周辺部まで良好な結像性能を確保することができる。
また、絞り15を第1レンズ11の物体側に配置することによって、この撮像光学系1は、像側光束のテレセントリック性を確保することができる。
さらに、第4レンズ14を両凹の形状とすることによって、第4レンズ14の周辺部が像面方向に大きく張り出すことがなくなるため、第4レンズ14と例えば固体撮像素子等の撮像素子17における受光面との間に配置される、例えば光学的ローパスフィルタ、赤外線カットフィルタ、または撮像素子パッケージのシールガラス等の平行平板(図1に示す例ではフィルタ16)や、撮像素子17の基板等との接触を避けながらも、バックフォーカスを短くすることができ、撮像光学系1の全長の短縮化に有利な構成となっている。
そして、上記条件式(1)は、第1レンズ11の物体側面と第2レンズ12の像側面の曲率半径との関係を規定することによって、撮像光学系1の全長の短縮化と適切な収差補正を達成するための条件式である。この条件式(1)の値がその上限値を下回ることによって、第2レンズ12の像側面の曲率半径が強くなり過ぎず、高次の球面収差やコマ収差の発生が抑えられ、さらに製造誤差の影響も小さくなって量産性も向上するため、好ましい。一方、この条件式(1)の値がその下限値を上回ることによって、第1レンズ11の物体側面に対して、第2レンズ12の像面側の曲率半径が弱くなりすぎることが防がれ、主点位置を物体側に配置することができるため、撮像光学系1の全長を短縮化することができ、好ましい。
このような観点から、条件式(1)は、好ましくは、下記条件式(1A)である。
−800<(r1+r4)/(r1−r4)<−60 ・・・(1A)
なお、小型化とは、本明細書では、撮像光学系全体の中で最も物体側のレンズにおけるレンズ面から、像側焦点までの光軸上での距離をLとし、撮像面対角線長(例えば固体撮像素子等における矩形実行画素領域の対角線長)を2Yとした場合に、L/2Y<1を満たすことをいい、より望ましくはL/2Y<0.9を満たすことである。像側焦点とは、光軸と平行な平行光線が撮像光学系に入射した場合の像点をいう。また、撮像光学系の最も像側の面と像側焦点との間に、例えば、光学的ローパスフィルタ、赤外線カットフィルタまたは固定撮像素子パッケージのシールガラス等の平行平板の部材が配置される場合には、この平行平板部材は、空気換算距離として前記式を計算するものとする。
また、この撮像光学系1では、第1レンズ11は、両面が凸形状である。一般に、光学系の全長の短縮化を図るためには、第1レンズの屈折力(光学的パワー)を強く保つ必要がある。この撮像光学系1は、第1レンズ11を両凸形状とすることによって、光学的パワー配分を両面に分担させることができる。このため、このような構成の撮像光学系1は、片面側の曲率半径が極端に強く(小さく)なるのを防ぐことによって、高次の球面収差やコマ収差の発生を抑えることができる。
また、この撮像光学系1では、第2レンズ12は、物体側に凸面を向けたメニスカス形状である。このような構成の撮像光学系1は、第2レンズ12を物体側に凸面を向けたメニスカス形状とすることによって、主点位置を物体側に配置することが可能になり、撮像光学系1の全長の短縮化を達成することができる。
また、上述の撮像光学系1では、第1ないし第4レンズ11〜14の全ては、樹脂材料で形成された樹脂材料製レンズである。
近年では、固体撮像装置全体の小型化を目的とし、同じ画素数の固体撮像素子であっても、画素ピッチが小さく、結果として撮像面サイズの小さい装置が開発されている。このような撮像面サイズの小さい固体撮像素子用の撮像光学系は、全系の焦点距離を比較的に短くする必要があるため、各レンズの曲率半径や外径がかなり小さくなってしまう。したがって、手間のかかる研磨加工により製造するガラスレンズと比較すれば、全てのレンズを、射出成形により製造されるプラスチックレンズで構成することにより、曲率半径や外径の小さなレンズであっても安価に大量生産が可能となる。また、プラスチックレンズは、プレス温度を低くできることから、成形金型の損耗を抑えることができ、その結果、成形金型の交換回数やメンテナンス回数を減少させ、コスト低減を図ることができる。このため、本実施形態の撮像光学系1は、所定の性能を比較的容易に実現することができ、低コスト化を図ることができる。
また、この撮像光学系1では、第1レンズおよび第2レンズの合成焦点距離をf2とし、そして、撮像光学系1全系の焦点距離をfとした場合に、第1レンズ11および第2レンズ12は、下記(2)の条件式を満たしている。
1<f12/f<1.7 ・・・(2)
この条件式(2)は、第1レンズ11および第2レンズ12の合成焦点距離f12を適切に設定し、より好ましい撮像光学系1全長の短縮化および収差補正を達成するための条件式である。したがって、上記条件式(2)の値がその上限値を下回ることによって、このような構成の撮像光学系1は、第1レンズ11と第2レンズ12との正の合成焦点距離を適度に維持することができ、その全長を短縮化することができる。一方、上記条件式(2)の値がその下限値を上回ることによって、第1レンズ11と第2レンズ12との正の合成焦点距離が短くなり過ぎるのを防ぐことができ、高次の球面収差やコマ収差の発生を抑えることができる。
このような観点から、条件式(2)は、好ましくは、下記条件式(2A)である。
1.15<f12/f<1.5 ・・・(2A)
また、この撮像光学系1では、第4レンズ14は、第4レンズの光軸上の厚さをT4とする場合に、下記(3)の条件式を満たしている。
0.05<T4/f<0.17 ・・・(3)
上述したように、撮像光学系1の第4レンズ14の像側面は、光軸AXから周辺に行くに従って負の屈折力を弱くするとともに、垂接点を有する非球面形状となっている。このため、このような構成の撮像光学系1は、像側光束のテレセントリック特性を確保し易い。また、第3レンズ13の像側面は、レンズ周辺部で過度に負の屈折力を弱くする必要がなくなるため、このような構成の撮像光学系1は、軸外収差を良好に補正することができる。
そして、上記条件式(3)は、第4レンズ14の軸上厚みを適切に設定し、撮像光学系1の像面性を適切に達成するための条件式である。第4レンズ14は、一般に、他レンズと比べ、光軸付近での屈折力と周辺での屈折力とが大きく異なるため、軸上厚みは、像面湾曲に対し大きな影響を与える。このため、上記条件式(3)の値が上記範囲内に入る(上記範囲を充足する)ことによって、このような構成の撮像光学系1は、撮像光学系1の像面性がオーバー側やアンダー側に倒れすぎるのを防ぐことができる。
このような観点から、条件式(3)は、好ましくは、下記条件式(3A)である。
0.08<T4/f<0.15 ・・・(3A)
なお、垂接点とは、レンズの有効半径内であって、光軸に沿ったレンズ断面(光軸に沿って該光軸を含むレンズ断面)の輪郭線の曲線上の個々の点において、非球面頂点の接平面が光軸と垂直な平面となるような非球面上の点のことである。有効領域とは、設計上、光学的にレンズとして使用される領域として設定された領域をいう。
また、この撮像光学系1では、第4レンズ14における物体側面の曲率半径をr7とし、そして、第4レンズ14における像側面の曲率半径をr8とした場合に、第4レンズ14は、下記(4)の条件式を満たしている。
0.1<(r7+r8)/(r7−r8)<1・・・(4)
この条件式(4)は、第4レンズ14の面形状を適切に設定し、バックフォーカスを最適化するための条件式である。したがって、このような構成の撮像光学系1では、上記条件式(4)の値がその上限値を下回ることによって、第4レンズ14の周辺部が像面方向に大きく張り出すことがなくなり、このため、このような構成の撮像光学系1は、第4レンズ14と撮像素子17との間に配置される、例えば光学的ローパスフィルタ、赤外線カットフィルタ、または撮像素子パッケージのシールガラス等の平行平板や、撮像素子17の基板等の部材との接触を避けることができる。一方、上記条件式(4)の値がその下限値を上回ることによって、第4レンズ14の物体側面の屈折力を適度に維持してバックフォーカスを短縮化することによって、このような構成の撮像光学系1は、撮像光学系1の全長の短縮化が可能となる。
このような観点から、条件式(4)は、好ましくは、下記条件式(4A)である。
0.5<(r7+r8)/(r7−r8)<1・・・(4A)
また、この撮像光学系1では、第2レンズ12における像側面の曲率半径をr3とした場合に、第2レンズ12は、下記(5)の条件式を満たしている。
1.6<r3/f<2.2 ・・・(5)
この条件式(5)は、第2レンズ12の物体側面の曲率半径を適切に設定し、撮像光学系1の全長の短縮化と適切な収差補正とを達成するための条件式である。上記条件式(5)の値がその上限値を下回ることによって、第2レンズ12の負の光学的パワーが大きくなり過ぎるのを防ぐことができ、このような構成の撮像光学系1は、撮像光学系1の全長の短縮化が達成できる。一方、上記条件式(5)の値がその下限値を上回ることによって、このような構成の撮像光学系1は、第2レンズ12の物体側面で発生する高次の球面収差やコマ収差を抑えることができる。
このような観点から、条件式(5)は、好ましくは、下記条件式(5A)である。
1.75<r3/f<2.15 ・・・(5A)
また、この撮像光学系1では、第3レンズ13の光軸上の厚さをT3とした場合に、第3レンズは、下記(6)の条件式を満たす。
0.1<T3/f<0.6 ・・・(6)
この条件式(6)は、第3レンズ13の軸上厚さT3を適切に設定し、撮像光学系1の全長の短縮化と収差補正とを達成するための条件式である。上記条件式(6)の値がその下限値を上回ることによって、このような構成の撮像光学系1は、第3レンズ13の焦点距離f3を適度に維持することができ、撮像光学系1の全長の短縮化を達成することができる。一方、上記条件式(6)の値がその上限値を下回ることによって、このような構成の撮像光学系1は、第3レンズ13の焦点距離f3が短くなり過ぎず、高次の球面収差やコマ収差の発生を抑えることができる。
このような観点から、条件式(6)は、好ましくは、下記条件式(6A)である。
0.25<T3/f<0.4 ・・・(6)
また、これら上述の撮像光学系1において、可動する第1ないし第4レンズ11〜14等の駆動には、カムやステッピングモータ等が用いられてもよいし、あるいは、圧電アクチュエータが用いられてもよい。圧電アクチュエータを用いる場合では、駆動装置の体積および消費電力の増加を抑制しつつ、各群を独立に駆動させることも可能で、撮像装置の更なるコンパクト化を図ることができる。
また、上述では、樹脂材料製レンズであったが、これら上述の撮像光学系1において、非球面を有するガラスレンズが用いられてもよい。この場合に、この非球面ガラスレンズは、ガラスモールド非球面レンズや、研削非球面ガラスレンズや、複合型非球面レンズ(球面ガラスレンズ上に非球面形状の樹脂を形成したもの)であってもよい。ガラスモールド非球面レンズは、大量生産に向き、好ましく、複合型非球面レンズは、基板となり得るガラス材料の種類が多いため、設計の自由度が高くなる。特に、高屈折率材料を用いた非球面レンズでは、モールド形成が容易ではないため、複合型非球面レンズが好ましい。また、片面非球面の場合には、複合型非球面レンズの利点を最大限に活用することが可能となる。
また、これら上述の撮像光学系1において、プラスチックレンズを用いる場合では、プラスチック(樹脂材料)中に最大長が30ナノメートル以下の粒子を分散させた素材を用いて成形したレンズであることが好ましい。
一般に透明な樹脂材料に微粒子を混合させると、光が散乱し透過率が低下するので、光学材料として使用することが困難であったが、微粒子の大きさを透過光束の波長よりも小さくすることによって、光は、実質的に散乱しない。そして、樹脂材料は、温度上昇に伴って屈折率が低下してしまうが、無機粒子は、逆に、温度上昇に伴って屈折率が上昇する。このため、このような温度依存性を利用して互いに打ち消し合うように作用させることで、温度変化に対して屈折率変化がほとんど生じないようにすることができる。より具体的には、母材となる樹脂材料に最大長で30ナノメートル以下の無機微粒子を分散させることによって、屈折率の温度依存性を低減した樹脂材料となる。例えば、アクリルに酸化ニオブ(Nb)の微粒子を分散させる。これら上述の撮像光学系1において、比較的屈折力の大きなレンズ、またはすべてのレンズに、このような無機粒子を分散させたプラスチック材料を用いることにより、撮像光学系1全系の温度変化時の像点位置変動を小さく抑えることが可能となる。
このような無機微粒子を分散させたプラスチック材料製レンズは、以下のように成形されることが好ましい。
屈折率の温度変化について説明すると、屈折率の温度変化n(T)は、ローレンツ・ローレンツの式に基づいて、屈折率nを温度Tで微分することによって式Faで表される。
n(T)=((n+2)×(n−1))/6n×(−3α+(1/[R])×(∂[R]/∂T)) ・・・(Fa)
ただし、αは、線膨張係数であり、[R]は、分子屈折である。
樹脂材料の場合では、一般に、屈折率の温度依存性に対する寄与は、式Fa中の第1項に較べて第2項が小さく、ほぼ無視することができる。例えば、PMMA樹脂の場合では、線膨張係数αは、7×10−5であって、式Faに代入すると、n(T)=−12×10−5(/℃)となり、実測値と略一致する。
具体的には、従来は、−12×10−5[/℃]程度であった屈折率の温度変化n(T)を、絶対値で8×10−5[/℃]未満に抑えることが好ましい。さらに好ましくは、絶対値で6×10−5[/℃]未満にすることである。
よって、このような樹脂材料としては、ポリオレフィン系の樹脂材料やポリカーボネイト系の樹脂材料やポリエステル系の樹脂材料が好ましい。ポリオレフィン系の樹脂材料では、屈折率の温度変化n(T)は、約−11×10−5(/℃)となり、ポリカーボネイト系の樹脂材料では、屈折率の温度変化n(T)は、約−14×10−5(/℃)となり、そして、ポリエステル系の樹脂材料では、屈折率の温度変化n(T)は、約−13×10−5(/℃)となる。
<撮像光学系を組み込んだデジタル機器の説明>
次に、上述の撮像光学系1が組み込まれたデジタル機器について説明する。
図3は、実施形態におけるデジタル機器の構成を示すブロック図である。デジタル機器3は、撮像機能のために、撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、制御部35、記憶部36およびI/F部37を備えて構成される。デジタル機器3としては、例えば、デジタルスチルカメラ、ビデオカメラ、監視カメラ(モニタカメラ)、携帯電話機や携帯情報端末(PDA)等の携帯端末、パーソナルコンピュータおよびモバイルコンピュータを挙げることができ、これらの周辺機器(例えば、マウス、スキャナおよびプリンタなど)を含んでよい。特に、本実施形態の撮像光学系1は、携帯電話機や携帯情報端末(PDA)等の携帯端末に搭載する上で充分にコンパクト化されており、この携帯端末に好適に搭載される。
撮像部30は、撮像装置21と撮像素子17とを備えて構成される。撮像装置21は、撮像レンズとして機能する図1に示したような撮像光学系1と、光軸方向にフォーカスのためのレンズを駆動してフォーカシングを行うための図略のレンズ駆動装置等とを備えて構成される。被写体からの光線は、撮像光学系1によって撮像素子17の受光面上に結像され、被写体の光学像となる。
撮像素子17は、上述したように、撮像光学系1により結像された被写体の光学像をR,G,Bの色成分の電気信号(画像信号)に変換し、R,G,B各色の画像信号として画像生成部31に出力する。撮像素子17は、制御部35によって静止画あるいは動画のいずれか一方の撮像、または、撮像素子17における各画素の出力信号の読出し(水平同期、垂直同期、転送)などの撮像動作が制御される。
画像生成部31は、撮像素子17からのアナログ出力信号に対し、増幅処理、デジタル変換処理等を行うと共に、画像全体に対して適正な黒レベルの決定、γ補正、ホワイトバランス調整(WB調整)、輪郭補正および色ムラ補正等の周知の画像処理を行って、画像信号から画像データを生成する。画像生成部31で生成された画像データは、画像データバッファ32に出力される。
画像データバッファ32は、画像データを一時的に記憶するとともに、この画像データに対し画像処理部33によって後述の処理を行うための作業領域として用いられるメモリであり、例えば、揮発性の記憶素子であるRAM(Random Access Memory)などで構成される。
画像処理部33は、画像データバッファ32の画像データに対し、解像度変換等の所定の画像処理を行う回路である。
また、必要に応じて画像処理部33は、撮像素子17の受光面上に形成される被写体の光学像における歪みを補正する公知の歪み補正処理等の、撮像光学系1では補正しきれなかった収差を補正するように構成されてもよい。歪み補正は、収差によって歪んだ画像を肉眼で見える光景と同様な相似形の略歪みのない自然な画像に補正するものである。このように構成することによって、撮像光学系1によって撮像素子17へ導かれた被写体の光学像に歪みが生じていたとしても、略歪みのない自然な画像を生成することが可能となる。また、このような歪みを情報処理による画像処理で補正する構成では、特に、歪曲収差を除く他の諸収差だけを考慮すればよいので、撮像光学系1の設計の自由度が増し、設計がより容易となる。また、このような歪みを情報処理による画像処理で補正する構成では、特に、像面に近いレンズによる収差負担が軽減されるため、射出瞳位置の制御が容易となり、レンズ形状を加工性の良い形状にすることができる。
また、必要に応じて画像処理部33は、撮像素子17の受光面上に形成される被写体の光学像における周辺照度落ちを補正する公知の周辺照度落ち補正処理を含んでもよい。周辺照度落ち補正(シェーディング補正)は、周辺照度落ち補正を行うための補正データを予め記憶しておき、撮影後の画像(画素)に対して補正データを乗算することによって実行される。周辺照度落ちが主に撮像素子17における感度の入射角依存性、レンズの口径食およびコサイン4乗則等によって生じるため、前記補正データは、これら要因によって生じる照度落ちを補正するような所定値に設定される。このように構成することによって、撮像光学系1によって撮像素子17へ導かれた被写体の光学像に周辺照度落ちが生じていたとしても、周辺まで充分な照度を持った画像を生成することが可能となる。
なお、本実施形態では、撮像素子17の撮像面における画素ピッチに対し、色フィルタやオンチップマイクロレンズアレイの配置のピッチを、シェーディングを軽減するように僅かに小さく設定することによって、シェーディング補正が行われてもよい。このような構成では、前記ピッチを僅かに小さく設定することによって、撮像素子17における撮像面の周辺部に行くほど各画素に対し色フィルタやオンチップマイクロレンズアレイが撮像光学系1の光軸側へシフトするため、斜入射の光束を効率的に各画素の受光部に導くことができる。これにより撮像素子17で発生するシェーディングが小さく抑えられる。
駆動部34は、制御部35から出力される制御信号に基づいて図略の前記レンズ駆動装置を動作させることによって、所望のフォーカシングを行わせるように撮像光学系1におけるフォーカスのためのレンズを駆動する。
制御部35は、例えばマイクロプロセッサおよびその周辺回路などを備えて構成され、撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、記憶部36およびI/F部37の各部の動作をその機能に従って制御する。すなわち、この制御部35によって、撮像装置21は、被写体の静止画撮影および動画撮影の少なくとも一方の撮影を実行するよう制御される。
記憶部36は、被写体の静止画撮影または動画撮影によって生成された画像データを記憶する記憶回路であり、例えば、不揮発性の記憶素子であるROM(Read Only Memory)や、書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)や、RAMなどを備えて構成される。つまり、記憶部36は、静止画用および動画用のメモリとしての機能を有する。
I/F部37は、外部機器と画像データを送受信するインタフェースであり、例えば、USBやIEEE1394などの規格に準拠したインタフェースである。
このような構成のデジタル機器3の撮像動作に次について説明する。
静止画を撮影する場合は、制御部35は、撮像装置21に静止画の撮影を行わせるように制御すると共に、駆動部34を介して撮像装置21の図略の前記レンズ駆動装置を動作させ、全玉繰り出しによってフォーカシングを行う。これにより、ピントの合った光学像が撮像素子17の受光面に周期的に繰り返し結像され、R、G、Bの色成分の画像信号に変換された後、画像生成部31に出力される。その画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により画像処理が行われた後、その画像信号に基づく画像がディスプレイ(不図示)に表示される。そして、撮影者は、前記ディスプレイを参照することで、主被写体をその画面中の所望の位置に収まるように調整することが可能となる。この状態でいわゆるシャッターボタン(不図示)が押されることによって、静止画用のメモリとしての記憶部36に画像データが格納され、静止画像が得られる。
また、動画撮影を行う場合は、制御部35は、撮像装置21に動画の撮影を行わせるように制御する。後は、静止画撮影の場合と同様にして、撮影者は、前記ディスプレイ(不図示)を参照することで、撮像装置21を通して得た被写体の像が、その画面中の所望の位置に収まるように調整することができる。前記シャッターボタン(不図示)が押されることによって、動画撮影が開始される。そして、動画撮影時、制御部35は、撮像装置21に動画の撮影を行わせるように制御すると共に、駆動部34を介して撮像装置21の図略の前記レンズ駆動装置を動作させ、フォーカシングを行う。これによって、ピントの合った光学像が撮像素子17の受光面に周期的に繰り返し結像され、R、G、Bの色成分の画像信号に変換された後、画像生成部31に出力される。その画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により画像処理が行われた後、その画像信号に基づく画像がディスプレイ(不図示)に表示される。そして、もう一度前記シャッターボタン(不図示)を押すことで、動画撮影が終了する。撮影された動画像は、動画用のメモリとしての記憶部36に導かれて格納される。
このような構成では、F2.4程度の明るさであって、小型でありながら、より良好に諸収差を補正することができる4枚のレンズ構成の撮像光学系1を用いた撮像装置21およびデジタル機器3が提供される。特に、撮像光学系1は、小型化および高性能化が図られているので、小型化(コンパクト化)を図りつつ高画素な撮像素子17を採用することができる。特に、撮像光学系1が小型で高画素撮像素子に適用可能であるので、高画素化や高機能化が進む携帯端末に好適である。その一例として、携帯電話機に撮像装置21を搭載した場合について、以下に説明する。
図4は、デジタル機器の一実施形態を示すカメラ付携帯電話機の外観構成図である。図4(A)は、携帯電話機の操作面を示し、図4(B)は、操作面の裏面、つまり背面を示す。
図4において、携帯電話機5には、上部にアンテナ51が備えられ、その操作面には、図4(A)に示すように、長方形のディスプレイ52、画像撮影モードの起動および静止画撮影と動画撮影との切り替えを行う画像撮影ボタン53、シャッタボタン55およびダイヤルボタン56が備えられている。
そして、この携帯電話機5には、携帯電話網を用いた電話機能を実現する回路が内蔵されると共に、上述した撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、制御部35および記憶部36が内蔵されており、撮像部30の撮像装置21が背面に臨んでいる。
画像撮影ボタン53が操作されると、その操作内容を表す制御信号が制御部35へ出力され、制御部35は、静止画撮影モードの起動、実行や動画撮影モードの起動、実行等の、その操作内容に応じた動作を実行する。そして、シャッタボタン55が操作されると、その操作内容を表す制御信号が制御部35へ出力され、制御部35は、静止画撮影や動画撮影等の、その操作内容に応じた動作を実行する。
<撮像光学系のより具体的な実施形態の説明>
以下、図1に示したような撮像光学系1、すなわち、図3に示したようなデジタル機器3に搭載される撮像装置21に備えられる撮像光学系1の具体的な構成を、図面を参照しつつ説明する。
図5ないし図10は、実施例1ないし実施例6における撮像光学系におけるレンズの配列を示す断面図である。図11ないし図16は、実施例1ないし実施例6における撮像光学系の収差図である。
実施例1〜6の撮像光学系1A〜1Fは、図5ないし図10のそれぞれに示すように、第1ないし第4レンズL1〜L4が物体側から像側へ順に配置され、フォーカシング(ピント合わせ)の際には、第1ないし第4レンズL1〜L4は、全玉繰り出しで光軸方向AXに一体で移動する。
より詳しくは、実施例1〜6の撮像光学系1A〜1Fは、第1ないし第4レンズL1〜L4が物体側から像側へ順に、次のように構成されている。
第1レンズL1は、正の屈折力を有する両凸の正レンズであり、第2レンズL2は、物体側に凸面を向けた負の屈折力を有する負メニスカスレンズであり、第3レンズL3は、像側に凸面を向けた正の屈折力を有する正メニスカスレンズであり、そして、第4レンズL4は、負の屈折力を有する両凹の負レンズである。これら第1ないし第4レンズL1〜L4は、両面が非球面であり、樹脂材料製レンズである。そして、第4レンズL4の像側面は、その中心(光軸AX)から有効領域端に向かうに従い前記負の屈折力が弱くなり、光軸AXに沿ったレンズ断面(光軸AXに沿って光軸AXを含むレンズ断面)の輪郭線において光軸AXの交点から有効領域端に向かった場合に垂接点IPA4〜IPF4、IPA4〜IPF4を有している。
光学絞りSTは、第1レンズL1の物体側に配設される。光学絞りSTは、各実施例の場合も同様に、開口絞りやメカニカルシャッタや可変絞りであってよい。
そして、第4レンズL4の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子SRのカバーガラス等である。
図5ないし図10において、各レンズ面に付されている番号ri(i=1,2,3,・・・)は、物体側から数えた場合のi番目のレンズ面(ただし、レンズの接合面は1つの面として数えるものとする。)であり、riに「*」印が付されている面は、非球面であることを示す。なお、平行平板FTの両面および撮像素子SRの受光面も1つの面として扱っており、光学絞りSTの面も1つの面として扱っている。このような取り扱いおよび符号の意義は、各実施例についても同様である。ただし、全く同一のものであるという意味ではなく、例えば、各実施例の各図を通じて、最も物体側に配置されるレンズ面には、同じ符号(r1)が付されているが、後述のコンストラクションデータに示すように、これらの曲率などが各実施例を通じて同一であるという意味ではない。
このような構成の下で、物体側から入射した光線は、光軸AXに沿って、順に光学絞りST、第1レンズL1、第2レンズL2、第3レンズL3、第4レンズL4および平行平板FTを通過し、撮像素子SRの受光面に物体の光学像を形成する。そして、撮像素子SRでは、光学像が電気的な信号に変換される。この電気信号は、必要に応じて所定のデジタル画像処理などが施され、デジタル映像信号として例えばデジタルカメラ等のデジタル機器のメモリに記録されたり、インタフェースを介して有線あるいは無線の通信によって他のデジタル機器に伝送されたりする。
各実施例の撮像光学系1A〜1Fにおける、各レンズのコンストラクションデータは、次の通りである。
まず、実施例1の撮像光学系1Aにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例1
単位 mm
面データ
面番号 r d nd νd ER
物面 ∞ ∞
1(絞り) ∞ -0.06 0.74
2* 1.842 0.81 1.54470 56.2 0.77
3* -5.205 0.05 0.88
4* 6.438 0.30 1.63470 23.9 0.92
5* 1.872 0.50 0.93
6* -8.420 1.03 1.54470 56.2 1.12
7* -1.044 0.19 1.36
8* -191.341 0.45 1.54470 56.2 1.52
9* 1.037 0.49 1.97
10 ∞ 0.11 1.51630 64.1 2.22
11 ∞ 2.25
像面 ∞
非球面データ
第2面
K=0.61922E+00、A4=-0.26416E-01、A6=-0.36817E-01、A8=0.20788E-01、A10=-0.22500E-01
第3面
K=-0.67572E+01、A4=-0.11387E-01、A6=-0.26456E-01、A8=0.69959E-01、A10=-0.47760E-01
第4面
K=-0.41325E+01、A4=-0.34785E-01、A6=-0.60106E-02、A8=0.11783E+00、A10=-0.30290E-01、A12=-0.34564E-01
第5面
K=-0.16739E+01、A4=0.79913E-02、A6=0.25187E-01、A8=-0.19002E-02、A10=0.10522E+00、A12=-0.80140E-01
第6面
K=0.48670E+02、A4=0.61034E-01、A6=-0.12844E+00、A8=0.16286E+00、A10=-0.75348E-01、A12=0.15723E-01
第7面
K=-0.48941E+01、A4=-0.14695E+00、A6=0.12510E+00、A8=-0.11833E+00、A10=0.81354E-01、A12=-0.18372E-01
第8面
K=0.40000E+03、A4=-0.21942E+00、A6=0.13554E-01、A8=0.66277E-01、A10=-0.33886E-01、A12=0.64851E-02、A14=-0.31694E-03
第9面
K=-0.57134E+01、A4=-0.16514E+00、A6=0.92086E-01、A8=-0.39873E-01、A10=0.11298E-01、A12=-0.18667E-02、A14=0.13125E-03
各種データ
焦点距離(f) 3.55 (mm)
Fナンバ(Fno) 2.4
撮像面対角線長(2Y) 4.6 (mm)
バックフォーカス(Bf) 0.52 (mm)
レンズ全長(TL) 4.45 (mm)
ENTP 0 (mm)
EXTP -2.25 (mm)
H1 -1 (mm)
H2 -3.03 (mm)
各レンズの焦点距離(mm)
第1レンズL1 2.603
第2レンズL2 -4.268
第3レンズL3 2.086
第4レンズL4 -1.893
次に、実施例2の撮像光学系1Bにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例2
単位 mm
面データ
面番号 r d nd νd ER
物面 ∞ ∞
1(絞り) ∞ -0.06 0.74
2* 1.853 0.80 1.54470 56.2 0.77
3* -5.215 0.05 0.87
4* 6.392 0.31 1.63470 23.9 0.91
5* 1.859 0.49 0.92
6* -8.324 1.03 1.54470 56.2 1.09
7* -1.033 0.19 1.28
8* -437.709 0.45 1.54470 56.2 1.43
9* 1.032 0.50 1.87
10 ∞ 0.11 1.51630 64.1 2.07
11 ∞ 2.10
像面 ∞
非球面データ
第2面
K=0.64162E+00,A4=-0.25436E-01,A6=-0.36892E-01,A8=0.21677E-01,A10=-0.21474E-01
第3面
K=-0.92148E+01,A4=-0.95609E-02,A6=-0.24788E-01,A8=0.71304E-01,A10=-0.49069E-01
第4面
K=-0.46304E+01,A4=-0.35039E-01,A6=-0.70042E-02,A8=0.11904E+00,A10=-0.32540E-01,A12=-0.35312E-01
第5面
K=-0.17602E+01,A4=0.69022E-02,A6=0.26056E-01,A8=-0.15337E-02,A10=0.10274E+00,A12=-0.81082E-01
第6面
K=0.45056E+02,A4=0.61519E-01,A6=-0.12084E+00,A8=0.16524E+00,A10=-0.73974E-01,A12=0.13793E-01
第7面
K=-0.47736E+01,A4=-0.14524E+00,A6=0.12747E+00,A8=-0.11692E+00,A10=0.81714E-01,A12=-0.18215E-01
第8面
K=0.40000E+03,A4=-0.21155E+00,A6=0.14812E-01,A8=0.65105E-01,A10=-0.34010E-01,A12=0.66107E-02,A14=-0.32092E-03
第9面
K=-0.56695E+01,A4=-0.16198E+00,A6=0.91490E-01,A8=-0.39660E-01,A10=0.11280E-01,A12=-0.18677E-02,A14=0.13055E-03
各種データ
焦点距離(f) 3.53 (mm)
Fナンバ(Fno) 2.4
撮像面対角線長(2Y) 4.6 (mm)
バックフォーカス(Bf) 0.52 (mm)
レンズ全長(TL) 4.45 (mm)
ENTP 0 (mm)
EXTP -2.26 (mm)
H1 -0.97 (mm)
H2 -3.02 (mm)
各レンズの焦点距離(mm)
第1レンズL1 2.614
第2レンズL2 -4.241
第3レンズL3 2.063
第4レンズL4 -1.890
次に、実施例3の撮像光学系1Cにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例3
単位 mm
面データ
面番号 r d nd νd ER
物面 ∞ ∞
1(絞り) ∞ -0.06 0.74
2* 1.835 0.81 1.54470 56.2 0.77
3* -5.270 0.05 0.88
4* 6.446 0.30 1.63470 23.9 0.92
5* 1.874 0.51 0.93
6* -8.456 1.03 1.54470 56.2 1.11
7* -1.046 0.18 1.36
8* -244.617 0.45 1.54470 56.2 1.52
9* 1.035 0.49 1.97
10 ∞ 0.11 1.51630 64.1 2.24
11 ∞ 2.27
像面 ∞
非球面データ
第2面
K=0.62322E+00,A4=-0.26849E-01,A6=-0.36216E-01,A8=0.19442E-01,A10=-0.21897E-01
第3面
K=-0.60691E+01,A4=-0.11741E-01,A6=-0.24483E-01,A8=0.67934E-01,A10=-0.47494E-01
第4面
K=-0.30629E+01,A4=-0.34292E-01,A6=-0.53860E-02,A8=0.11835E+00,A10=-0.31083E-01,A12=-0.35107E-01
第5面
K=-0.16148E+01,A4=0.88283E-02,A6=0.24112E-01,A8=-0.12431E-02,A10=0.10861E+00,A12=-0.83273E-01
第6面
K=0.50035E+02,A4=0.61044E-01,A6=-0.13057E+00,A8=0.16302E+00,A10=-0.76267E-01,A12=0.16624E-01
第7面
K=-0.49378E+01,A4=-0.14761E+00,A6=0.12481E+00,A8=-0.11875E+00,A10=0.81339E-01,A12=-0.18395E-01
第8面
K=0.40000E+03,A4=-0.22206E+00,A6=0.13864E-01,A8=0.66675E-01,A10=-0.33862E-01,A12=0.63645E-02,A14=-0.29164E-03
第9面
K=-0.57245E+01,A4=-0.16591E+00,A6=0.92276E-01,A8=-0.39887E-01,A10=0.11306E-01,A12=-0.18737E-02,A14=0.13246E-03
各種データ
焦点距離(f) 3.55 (mm)
Fナンバ(Fno) 2.4
撮像面対角線長(2Y) 4.6 (mm)
バックフォーカス(Bf) 0.52 (mm)
レンズ全長(TL) 4.45 (mm)
ENTP 0 (mm)
EXTP -2.24 (mm)
H1 -1.02 (mm)
H2 -3.04 (mm)
各レンズの焦点距離(mm)
第1レンズL1 2.604
第2レンズL2 -4.275
第3レンズL3 2.090
第4レンズL4 -1.891
次に、実施例4の撮像光学系1Dにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例4
単位 mm
面データ
面番号 r d nd νd ER
物面 ∞ ∞
1(絞り) ∞ -0.06 0.74
2* 1.842 0.82 1.54470 56.2 0.77
3* -5.214 0.05 0.88
4* 6.447 0.30 1.63470 23.9 0.92
5* 1.875 0.50 0.93
6* -8.425 1.03 1.54470 56.2 1.12
7* -1.042 0.19 1.36
8* -176.801 0.45 1.54470 56.2 1.52
9* 1.035 0.49 1.97
10 ∞ 0.11 1.51630 64.1 2.24
11 ∞ 2.27
像面 ∞
非球面データ
第2面
K=0.62107E+00,A4=-0.26315E-01,A6=-0.36696E-01,A8=0.20896E-01,A10=-0.22514E-01
第3面
K=-0.68408E+01,A4=-0.11301E-01,A6=-0.26325E-01,A8=0.69862E-01,A10=-0.47577E-01
第4面
K=-0.42152E+01,A4=-0.34826E-01,A6=-0.61296E-02,A8=0.11791E+00,A10=-0.30615E-01,A12=-0.33979E-01
第5面
K=-0.16858E+01,A4=0.78428E-02,A6=0.25054E-01,A8=-0.17820E-02,A10=0.10411E+00,A12=-0.78809E-01
第6面
K=0.48646E+02,A4=0.60894E-01,A6=-0.12851E+00,A8=0.16273E+00,A10=-0.75630E-01,A12=0.15865E-01
第7面
K=-0.48956E+01,A4=-0.14730E+00,A6=0.12537E+00,A8=-0.11826E+00,A10=0.81325E-01,A12=-0.18400E-01
第8面
K=0.40000E+03,A4=-0.21941E+00,A6=0.13863E-01,A8=0.66225E-01,A10=-0.33859E-01,A12=0.64559E-02,A14=-0.31228E-03
第9面
K=-0.57312E+01,A4=-0.16465E+00,A6=0.91848E-01,A8=-0.39804E-01,A10=0.11298E-01,A12=-0.18707E-02,A14=0.13175E-03
各種データ
焦点距離(f) 3.55 (mm)
Fナンバ(Fno) 2.4
撮像面対角線長(2Y) 4.6 (mm)
バックフォーカス(Bf) 0.52 (mm)
レンズ全長(TL) 4.45 (mm)
ENTP 0 (mm)
EXTP -2.25 (mm)
H1 -1 (mm)
H2 -3.03 (mm)
各レンズの焦点距離(mm)
第1レンズL1 2.605
第2レンズL2 -4.274
第3レンズL3 2.080
第4レンズL4 -1.888
次に、実施例5の撮像光学系1Eにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例5
単位 mm
面データ
面番号 r d nd νd ER
物面 ∞ ∞
1(絞り) ∞ -0.06 0.73
2* 1.860 0.80 1.54470 56.2 0.77
3* -5.201 0.05 0.88
4* 7.177 0.33 1.63470 23.9 0.92
5* 1.922 0.48 0.94
6* -8.415 1.03 1.54470 56.2 1.13
7* -1.014 0.18 1.35
8* -411.733 0.45 1.54470 56.2 1.53
9* 1.017 0.45 1.98
10 ∞ 0.11 1.51630 64.1 2.21
11 ∞ 2.24
像面 ∞
非球面データ
第2面
K=0.64790E+00,A4=-0.25198E-01,A6=-0.36700E-01,A8=0.19492E-01,A10=-0.19750E-01
第3面
K=-0.93736E+01,A4=-0.97166E-02,A6=-0.25706E-01,A8=0.73936E-01,A10=-0.51589E-01
第4面
K=0.26553E+01,A4=-0.31698E-01,A6=-0.73939E-02,A8=0.11582E+00,A10=-0.34375E-01,A12=-0.31283E-01
第5面
K=-0.16396E+01,A4=0.89770E-02,A6=0.26413E-01,A8=-0.66480E-02,A10=0.99281E-01,A12=-0.74104E-01
第6面
K=0.47683E+02,A4=0.60002E-01,A6=-0.11217E+00,A8=0.15822E+00,A10=-0.74908E-01,A12=0.14858E-01
第7面
K=-0.48009E+01,A4=-0.14410E+00,A6=0.13159E+00,A8=-0.11660E+00,A10=0.80392E-01,A12=-0.18493E-01
第8面
K=0.40000E+03,A4=-0.20152E+00,A6=0.15242E-01,A8=0.63266E-01,A10=-0.34233E-01,A12=0.66441E-02,A14=-0.28591E-03
第9面
K=-0.57647E+01,A4=-0.15568E+00,A6=0.88198E-01,A8=-0.38649E-01,A10=0.11175E-01,A12=-0.19011E-02,A14=0.13705E-03
各種データ
焦点距離(f) 3.52 (mm)
Fナンバ(Fno) 2.4
撮像面対角線長(2Y) 4.6 (mm)
バックフォーカス(Bf) 0.57 (mm)
レンズ全長(TL) 4.45 (mm)
ENTP 0 (mm)
EXTP -2.22 (mm)
H1 -0.93 (mm)
H2 -2.95 (mm)
各レンズの焦点距離(mm)
第1レンズL1 2.620
第2レンズL2 -4.238
第3レンズL3 2.017
第4レンズL4 -1.861
次に、実施例6の撮像光学系1Fにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例6
単位 mm
面データ
面番号 r d nd νd ER
物面 ∞ ∞
1(絞り) ∞ -0.06 0.74
2* 1.838 0.81 1.54470 56.2 0.77
3* -5.349 0.05 0.88
4* 6.470 0.30 1.63470 23.9 0.92
5* 1.882 0.50 0.93
6* -8.422 1.02 1.54470 56.2 1.12
7* -1.039 0.19 1.35
8* -359.933 0.45 1.54470 56.2 1.53
9* 1.030 0.51 1.98
10 ∞ 0.15 1.51630 64.1 2.24
11 ∞ 2.28
像面 ∞
非球面データ
第2面
K=0.64587E+00,A4=-0.26148E-01,A6=-0.35239E-01,A8=0.19715E-01,A10=-0.21206E-01
第3面
K=-0.80138E+01,A4=-0.10339E-01,A6=-0.22766E-01,A8=0.68437E-01,A10=-0.48178E-01
第4面
K=-0.46053E+01,A4=-0.34957E-01,A6=-0.56803E-02,A8=0.11818E+00,A10=-0.31044E-01,A12=-0.35791E-01
第5面
K=-0.17006E+01,A4=0.74300E-02,A6=0.22742E-01,A8=-0.15821E-02,A10=0.10891E+00,A12=-0.83496E-01
第6面
K=0.48552E+02,A4=0.61719E-01,A6=-0.12921E+00,A8=0.16470E+00,A10=-0.76050E-01,A12=0.16457E-01
第7面
K=-0.48849E+01,A4=-0.14736E+00,A6=0.12585E+00,A8=-0.11823E+00,A10=0.81714E-01,A12=-0.18179E-01
第8面
K=0.40000E+03,A4=-0.21942E+00,A6=0.13989E-01,A8=0.67012E-01,A10=-0.33825E-01,A12=0.63463E-02,A14=-0.29396E-03
第9面
K=-0.57105E+01,A4=-0.16502E+00,A6=0.92459E-01,A8=-0.39898E-01,A10=0.11322E-01,A12=-0.18707E-02,A14=0.13084E-03
各種データ
焦点距離(f) 3.55 (mm)
Fナンバ(Fno) 2.4
撮像面対角線長(2Y) 4.6 (mm)
バックフォーカス(Bf) 0.48 (mm)
レンズ全長(TL) 4.45 (mm)
ENTP 0 (mm)
EXTP -2.29 (mm)
H1 -1 (mm)
H2 -3.07 (mm)
各レンズの焦点距離(mm)
第1レンズL1 2.616
第2レンズL2 -4.289
第3レンズL3 2.074
第4レンズL4 -1.884
ここで、上記各種データのレンズ全長(TL)は、物体距離無限時でのレンズ全長(第1レンズ物体側面から撮像面までの距離)である。ENTPは、入射瞳から第1面(絞り)までの距離であり、ここでは、入射瞳=絞りであるので、0となる。EXTPは、最終面(カバーガラス像面側)から射出瞳までの距離であり、H1は、第1面(絞り)から物体側主点までの距離であり、H2は、最終面(カバーガラス像面側)から像側主点までの距離である。
上記の面データにおいて、面番号は、図5ないし図10に示した各レンズ面に付した符号ri(i=1,2,3,…)の番号iが対応する。番号iに*が付された面は、非球面(非球面形状の屈折光学面または非球面と等価な屈折作用を有する面)であることを示す。
また、“r”は、各面の曲率半径(単位はmm)、“d”は、無限遠合焦状態(無限距離での合焦状態)での光軸上の各レンズ面の間隔(軸上面間隔)、“nd”は、各レンズのd線(波長587.56nm)に対する屈折率、“νd”は、アッベ数、“ER”は、有効半径(mm)をそれぞれ示している。なお、光学絞りST、平行平面板FTの両面、撮像素子SRの受光面の各面は、平面であるために、それらの曲率半径は、∞(無限大)である。
上記の非球面データは、非球面とされている面(面データにおいて番号iに*が付された面)の2次曲面パラメータ(円錐係数K)と非球面係数Ai(i=4,6,8,10,12,14,16)の値とを示すものである。
各実施例において、非球面の形状は、面頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとする場合に、次式により定義している。
X=(h/R)/[1+(1−(1+K)h/R1/2]+ΣA・h
ただし、Aiは、i次の非球面係数であり、Rは、基準曲率半径であり、そして、Kは、円錐定数である。
なお、請求項、実施形態および各実施例に記載の近軸曲率半径(r)について、実際のレンズ測定の場面において、レンズ中央近傍(より具体的には、レンズ外径に対して10%以内の中央領域)での形状測定値を最小自乗法でフィッティングした際の近似曲率半径を近軸曲率半径であるとみなすことができる。また、例えば2次の非球面係数を使用した場合には、非球面定義式の基準曲率半径に2次の非球面係数も勘案した曲率半径を近軸曲率半径とみなすことができる(例えば参考文献として、松居吉哉著「レンズ設計法」(共立出版株式会社)のP41〜P42を参照)。
そして、上記非球面データにおいて、「En」は、「10のn乗」を意味する。例えば、「E+001」は、「10の+1乗」を意味し、「E-003」は、「10の−3乗」を意味する。
以上のようなレンズ配置、構成のもとでの、各実施例の撮像レンズ1A〜1Fにおける各収差を図11ないし図16のそれぞれに示す。
図11ないし図16には、距離無限遠での収差図が示されており、各図の(A)、(B)および(C)は、それぞれ、この順に、球面収差(正弦条件)(LONGITUDINAL SPHERICAL ABERRATION)、非点収差(ASTIGMATISM
FIELD CURVE)および歪曲収差(DISTORTION)をそれぞれ示す。球面収差の横軸は、焦点位置のずれをmm単位で表しており、その縦軸は、最大入射高で規格化した値で表している。非点収差の横軸は、焦点位置のずれをmm単位で表しており、その縦軸は、像高をmm単位で表している。歪曲収差の横軸は、実際の像高を理想像高に対する割合(%)で表しており、縦軸は、その像高をmm単位で表している。また、非点収差の図中、破線は、タンジェンシャル(メリディオナル)面、実線は、サジタル(ラディアル)面における結果をそれぞれ表している。
球面収差の図には、実線でd線(波長587.56nm)、破線でg線(波長435.84nm)の2つの光の収差をそれぞれ示してある。非点収差および歪曲収差の図は、上記d線(波長587.56nm)を用いた場合の結果である。
上記に列挙した実施例1〜6の撮像光学系1A〜1Fに、上述した条件式(1)〜(6)を当てはめた場合の数値を、それぞれ、表1に示す。
Figure 2012160761
以上、説明したように、上記実施例1〜6における撮像光学系1A〜1Fは、4枚のレンズ構成であって、上述の各条件を満足している結果、F2.4程度の明るさであって、従来の光学系より、より小型化を図りつつ、諸収差をより良好に補正することができる。そして、上記実施例1〜6における撮像光学系1A〜1Fは、撮像装置21およびデジタル機器3に搭載する上で、特に携帯端末5に搭載する上で小型化が充分に達成され、また、高画素な撮像素子17を採用することができる。
例えば、8Mピクセルや10Mピクセルや16Mピクセル等の約8M〜16Mピクセルのクラス(グレード)の高画素な撮像素子17は、撮像素子17のサイズが一定の場合には画素ピッチが短くなるため(画素面積が狭くなるため)、撮像光学系1A〜1Fは、この画素ピッチに応じた解像度が必要となり、その所要の解像度で例えばMTFで撮像光学系1を評価した場合に例えば仕様等によって規定された所定の範囲内に諸収差を抑える必要があるが、上記実施例1〜6における撮像光学系1A〜1Fは、各収差図に示す通り、所定の範囲内で諸収差が抑えられている。したがって、上記実施例1〜6における撮像光学系1A〜1Fは、良好に諸収差を補正しているので、例えば5M〜8Mピクセルのクラスの撮像素子17に好適に用いられる。
なお、上記実施例1〜6では、固体撮像素子の撮像面に入射する光束の主光線入射角は、撮像面周辺部において必ずしも充分に小さくない。しかしながら、上述したように、ハードウェア的にあるいはソフトウェア的に、シェーディングを補正することが可能である。このようなシェーディング対策によってシェーディングに対する要求が緩和されるので、本実施例の撮像光学系1A〜1Fは、より小型化されている。
本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
一態様にかかる撮像光学系は、物体側から像側へ順に、絞りと、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、両面が凹面である負の屈折力を有する第4レンズとから成り、上記(1)の条件式を満たす。このような構成の撮像光学系は、F2.4程度の明るい、4枚のレンズ構成であって、より小型であって諸収差をより良好に補正することができる。
また、他の一態様では、上述の撮像光学系において、好ましくは、前記第1レンズは、両面が凸形状である。
また、他の一態様では、これら上述の撮像光学系において、好ましくは、前記第2レンズは、物体側に凸面を向けたメニスカス形状である。
また、他の一態様では、これら上述の撮像光学系において、好ましくは、前記第1レンズおよび第2レンズは、上記(2)の条件式を満たす。
また、他の一態様では、これら上述の撮像光学系において、好ましくは、前記第4レンズの像側面は、非球面形状であり、その中心では負の屈折力を持ち、有効領域端に向かうに従い負の屈折力が弱くなり、光軸に沿ったレンズ断面の輪郭線において前記光軸の交点から前記有効領域端に向かった場合に垂接点を有し、上記(3)の条件式を満たす。
また、他の一態様では、これら上述の撮像光学系において、好ましくは、前記第4レンズは、上記(4)の条件式を満たす。
また、他の一態様では、これら上述の撮像光学系において、好ましくは、前記第2レンズは、上記(5)の条件式を満たす
また、他の一態様では、これら上述の撮像光学系において、好ましくは、前記第3レンズは、上記(6)の条件式を満たす。
また、他の一態様では、これら上述の撮像光学系において、好ましくは、前記第1ないし第4レンズの全ては、樹脂材料で形成された樹脂材料製レンズであることである。
そして、他の一態様にかかる撮像装置は、これら上述のいずれかの撮像光学系と、光学像を電気的な信号に変換する撮像素子とを備え、前記撮像光学系が前記撮像素子の受光面上に物体の光学像を形成可能とされている。
この構成によれば、小型でありながら、良好に諸収差を補正することができ、F2.4程度の明るい4枚のレンズ構成の撮像光学系を用いた撮像装置を提供することができる。したがって、このような撮像装置は、小型化および高性能化を図ることができる。
また、他の一態様にかかるデジタル機器は、上述の撮像装置と、前記撮像装置に被写体の静止画撮影および動画撮影の少なくとも一方の撮影を行わせる制御部とを備え、前記撮像装置の撮像光学系が、前記撮像素子の撮像面上に前記被写体の光学像を形成可能に組み付けられていることを特徴とする。そして、好ましくは、デジタル機器は、携帯端末から成る。
この構成によれば、小型でありながら、良好に諸収差を補正することができ、F2.4程度の明るい4枚のレンズ構成の撮像光学系を用いたデジタル機器や携帯端末を提供することができる。したがって、このようなデジタル機器や携帯端末は、小型化および高性能化を図ることができる。
この出願は、2011年5月20日に出願された日本国特許出願特願2011−113743を基礎とするものであり、その内容は、本願に含まれるものである。
本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
本発明によれば、撮像光学系、撮像装置およびデジタル機器を提供することができる。

Claims (12)

  1. 物体側から像側へ順に、
    絞りと、
    正の屈折力を有する第1レンズと、
    負の屈折力を有する第2レンズと、
    正の屈折力を有する第3レンズと、
    両面が凹面である負の屈折力を有する第4レンズとから成り、
    下記(1)の条件式を満たすことを特徴とする撮像光学系。
    −1000<(r1+r4)/(r1−r4)<−55 ・・・(1)
    ただし、
    r1:第1レンズにおける物体側面の曲率半径
    r4:第2レンズにおける像側面の曲率半径
  2. 前記第1レンズは、両面が凸形状であること
    を特徴とする請求項1に記載の撮像光学系。
  3. 前記第2レンズは、物体側に凸面を向けたメニスカス形状であること
    を特徴とする請求項1または請求項2に記載の撮像光学系。
  4. 前記第1レンズおよび第2レンズは、下記(2)の条件式を満たすこと
    を特徴とする請求項1ないし請求項3のいずれか1項に記載の撮像光学系。
    1<f12/f<1.7 ・・・(2)
    ただし、
    f12:第1レンズおよび第2レンズの合成焦点距離
    f:撮像光学系全系の焦点距離
  5. 前記第4レンズの像側面は、非球面形状であり、その中心では負の屈折力を持ち、有効領域端に向かうに従い負の屈折力が弱くなり、光軸に沿ったレンズ断面の輪郭線において前記光軸の交点から前記有効領域端に向かった場合に垂接点を有し、下記(3)の条件式を満たすこと
    を特徴とする請求項1ないし請求項4のいずれか1項に記載の撮像光学系。
    0.05<T4/f<0.17 ・・・(3)
    ただし、
    T4:第4レンズの光軸上の厚さ
    f:撮像光学系全系の焦点距離
  6. 前記第4レンズは、下記(4)の条件式を満たすこと
    を特徴とする請求項1ないし請求項5のいずれか1項に記載の撮像光学系。
    0.1<(r7+r8)/(r7−r8)<1・・・(4)
    ただし、
    r7:第4レンズにおける物体側面の曲率半径
    r8:第4レンズにける像側面の曲率半径
  7. 前記第2レンズは、下記(5)の条件式を満たすこと
    を特徴とする請求項1ないし請求項6のいずれか1項に記載の撮像光学系。
    1.6<r3/f<2.2 ・・・(5)
    ただし、
    r3:第2レンズにおける像側面の曲率半径
    f:撮像光学系全系の焦点距離
  8. 前記第3レンズは、下記(6)の条件式を満たすこと
    を特徴とする請求項1ないし請求項7のいずれか1項に記載の撮像光学系。
    0.1<T3/f<0.6 ・・・(6)
    ただし、
    T3:第3レンズの光軸上の厚さ
    f:撮像光学系全系の焦点距離
  9. 前記第1ないし第4レンズの全ては、樹脂材料で形成された樹脂材料製レンズであること
    を特徴とする請求項1ないし請求項8のいずれか1項に記載の撮像光学系。
  10. 請求項1ないし請求項9のいずれか1項に記載の撮像光学系と、
    光学像を電気的な信号に変換する撮像素子とを備え、
    前記撮像光学系が前記撮像素子の受光面上に物体の光学像を形成可能とされていること
    を特徴とする撮像装置。
  11. 請求項10に記載の撮像装置と、
    前記撮像装置に被写体の静止画撮影および動画撮影の少なくとも一方の撮影を行わせる制御部とを備え、
    前記撮像装置の撮像光学系が、前記撮像素子の撮像面上に前記被写体の光学像を形成可能に組み付けられていること
    を特徴とするデジタル機器。
  12. 携帯端末から成ることを特徴とする請求項11に記載のデジタル機器。
JP2013516183A 2011-05-20 2012-05-02 撮像光学系、撮像装置およびデジタル機器 Pending JPWO2012160761A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011113743 2011-05-20
JP2011113743 2011-05-20
PCT/JP2012/002975 WO2012160761A1 (ja) 2011-05-20 2012-05-02 撮像光学系、撮像装置およびデジタル機器

Publications (1)

Publication Number Publication Date
JPWO2012160761A1 true JPWO2012160761A1 (ja) 2014-07-31

Family

ID=47216855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013516183A Pending JPWO2012160761A1 (ja) 2011-05-20 2012-05-02 撮像光学系、撮像装置およびデジタル機器

Country Status (3)

Country Link
JP (1) JPWO2012160761A1 (ja)
TW (1) TW201307888A (ja)
WO (1) WO2012160761A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506332B (zh) * 2013-09-27 2015-11-01 Largan Precision Co Ltd 拾像系統透鏡組、取像裝置及可攜裝置
CN113625424A (zh) * 2021-07-20 2021-11-09 江西晶超光学有限公司 光学系统、取像模组及电子设备
CN117693700A (zh) * 2021-09-26 2024-03-12 Oppo广东移动通信有限公司 成像镜头组件、相机模块和成像设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3939908B2 (ja) * 2000-09-06 2007-07-04 株式会社リコー 原稿読取レンズ・原稿読取レンズユニット・原稿読取モジュール・原稿読取方法・原稿読取装置・画像情報処理装置
JP5096057B2 (ja) * 2007-07-10 2012-12-12 富士フイルム株式会社 撮像レンズ、およびカメラモジュールならびに撮像機器
JP5226291B2 (ja) * 2007-12-20 2013-07-03 オリンパス株式会社 撮像光学系
JP2009282223A (ja) * 2008-05-21 2009-12-03 Konica Minolta Opto Inc 撮像レンズ、撮像ユニット及び携帯端末
TWM347577U (en) * 2008-05-28 2008-12-21 E Pin Optical Industry Co Ltd Four lenses imaging pickup system
JP2011107631A (ja) * 2009-11-20 2011-06-02 Panasonic Corp 撮像レンズ及びそれを用いた撮像装置、並びに、当該撮像装置を搭載した携帯機器
JP5043146B2 (ja) * 2010-04-12 2012-10-10 シャープ株式会社 撮像レンズおよび撮像モジュール
KR101218999B1 (ko) * 2010-06-17 2013-01-04 삼성전기주식회사 촬상 광학계

Also Published As

Publication number Publication date
TW201307888A (zh) 2013-02-16
WO2012160761A1 (ja) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5578275B2 (ja) 撮像光学系、撮像装置およびデジタル機器
JP5574049B2 (ja) 撮像光学系、撮像装置およびデジタル機器
JP5370619B1 (ja) 撮像光学系、撮像装置およびデジタル機器
JP5115647B2 (ja) 撮像装置およびデジタル機器
JP5904208B2 (ja) 撮像レンズ,撮像光学装置及びデジタル機器
JP5304117B2 (ja) 撮像レンズ及び撮像装置並びに携帯端末
JP2012203234A (ja) 撮像光学系、撮像装置およびデジタル機器
WO2013031122A1 (ja) 撮像光学系、撮像装置およびデジタル機器
JP2014123034A (ja) 撮像光学系、撮像装置およびデジタル機器
WO2012164877A1 (ja) 撮像光学系、撮像装置およびデジタル機器
JP2009258286A (ja) 撮像レンズ、撮像ユニット及び携帯端末
WO2013172164A1 (ja) 撮像レンズ
JP2009098492A (ja) 撮像レンズ、撮像装置およびデジタル機器
JP2007127960A (ja) 撮像光学系、撮像レンズ装置及びデジタル機器
JPWO2013111612A1 (ja) 撮像レンズ
JP2014163970A (ja) 撮像光学系ユニットならびに撮像装置およびデジタル機器
JP6287865B2 (ja) 撮像光学系ならびに撮像装置およびデジタル機器
WO2012160761A1 (ja) 撮像光学系、撮像装置およびデジタル機器
WO2012063391A1 (ja) 撮像光学系、撮像装置およびデジタル機器