JP2014123034A - 撮像光学系、撮像装置およびデジタル機器 - Google Patents

撮像光学系、撮像装置およびデジタル機器 Download PDF

Info

Publication number
JP2014123034A
JP2014123034A JP2012279415A JP2012279415A JP2014123034A JP 2014123034 A JP2014123034 A JP 2014123034A JP 2012279415 A JP2012279415 A JP 2012279415A JP 2012279415 A JP2012279415 A JP 2012279415A JP 2014123034 A JP2014123034 A JP 2014123034A
Authority
JP
Japan
Prior art keywords
lens
image
optical system
imaging optical
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012279415A
Other languages
English (en)
Inventor
Yasunari Fukuda
泰成 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2012279415A priority Critical patent/JP2014123034A/ja
Publication of JP2014123034A publication Critical patent/JP2014123034A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

【課題】本発明は、小型であって明るいFナンバーである撮像光学系、この撮影光学系を備える撮像装置およびデジタル機器を提供する。
【解決手段】本発明の撮像光学系1は、光学像を電気的な信号に変換する固体撮像素子の受光面上に前記光学像を結像させるための撮像光学系1であって、物体側から像側へ順に、正の屈折力を有し物体側に凸面を向けた第1レンズ11と、負の屈折力を有し像側に凸面を向けた第2レンズ12と、正の屈折力を有する第3レンズ13と、負の屈折力を有し像側に凹面を向けた第4レンズ14と、負の屈折力を有する第5レンズ15とからなり、第1および第2レンズ11、12における近軸での合成焦点距離をf12とし、全系1の焦点距離をfとする場合に、0.5<f12/f<1.3を満たす。
【選択図】図1

Description

本発明は、撮像光学系に関し、特に、CCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子に好適に適用される撮像光学系に関する。そして、本発明は、この撮影光学系を備える撮像装置およびこの撮像装置を搭載したデジタル機器に関する。
近年、CCD(Charged Coupled Device)型イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像素子の高性能化や小型化が伸展し、これに伴って、このような撮像素子を用いた撮像装置を備えた携帯電話や携帯情報端末等のデジタル機器が普及しつつある。また、これらの撮像装置に搭載される、前記固体撮像素子の受光面上に物体の光学像を形成(結像)するための撮像光学系(撮像レンズ)には、さらなる小型化や高性能化への要求が高まっている。前記高性能化の点では、固体撮像素子の小型化に伴いその1画素の開口面積がより小さいことから、特に、より明るいFナンバーが望まれている。このような撮像光学系において、3枚構成あるいは4枚構成の光学系に較べて、より高性能化が可能であることから、5枚構成の光学系が提案されている。
このような撮像光学系は、例えば、特許文献1および特許文献2に開示されている。この特許文献1および特許文献2に開示の撮像レンズは、物体側から像側へ順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、負の屈折力を有する第4レンズと、負の屈折力を有する第5レンズとからなる。
米国特許出願公開第2012/147482号明細書 特開2010−256608号公報
ところで、前記特許文献1に開示の撮像レンズは、第1および第2レンズの屈折力が、小型化および明るいFナンバー化の観点では、必ずしも最適化されておらず、全長の短縮化、すなわち小型化を充分に達成できていなかった。また、前記特許文献2に開示の撮像レンズも、第1および第2レンズの屈折力が、小型化および明るいFナンバー化の観点では、必ずしも最適化されておらず、充分に明るいFナンバーを達成できていない。
本発明は、上述の事情に鑑みて為された発明であり、その目的は、小型であって明るいFナンバーである撮像光学系を提供することである。そして、本発明の他の目的は、この撮影光学系を備える撮像装置およびこの撮像装置を搭載したデジタル機器を提供することである。
本発明は、上記技術的課題を解決するために、以下のような構成を有する撮像光学系、撮像装置およびデジタル機器を提供するものである。なお、以下の説明において使用されている用語は、本明細書において、次の通りに定義されているものとする。
(a)屈折率は、d線の波長(587.56nm)に対する屈折率である。
(b)アッベ数は、d線、F線(波長486.13nm)、C線(波長656.28nm)に対する屈折率を各々nd、nF、nCとし、アッベ数をνdとした場合に、
νd=(nd−1)/(nF−nC)
の定義式で求められるアッベ数νdをいうものとする。
(c)レンズについて、「凹」、「凸」または「メニスカス」という表記を用いた場合、これらは光軸近傍(レンズの中心付近)でのレンズ形状を表しているものとする。
(d)接合レンズを構成している各単レンズにおける屈折力(光学的パワー、焦点距離の逆数)の表記は、単レンズのレンズ面の両側が空気である場合におけるパワーである。
(e)複合型非球面レンズに用いる樹脂材料は、基板ガラス材料の付加的機能しかないため、単独の光学部材として扱わず、基板ガラス材料が非球面を有する場合と同等の扱いとし、レンズ枚数も1枚として取り扱うものとする。そして、レンズ屈折率も基板となっているガラス材料の屈折率とする。複合型非球面レンズは、基板となるガラス材料の上に薄い樹脂材料を塗布して非球面形状としたレンズである。
本発明の一態様にかかる撮像光学系は、光学像を電気的な信号に変換する固体撮像素子の受光面上に前記光学像を結像させるための撮像光学系であって、物体側から像側へ順に、正の屈折力を有し物体側に凸面を向けた第1レンズと、負の屈折力を有し像側に凸面を向けた第2レンズと、正の屈折力を有する第3レンズと、負の屈折力を有し像側に凹面を向けた第4レンズと、負の屈折力を有する第5レンズとからなり、下記(1)の条件式を満たすことを特徴とする。
0.5<f12/f<1.3 ・・・(1)
ただし、f12は、第1および第2レンズにおける近軸での合成焦点距離であり、fは、前記撮像光学系全系の焦点距離である。
この構成によれば、小型で良好に諸収差を補正した撮像光学系を得ることができる。すなわち、このような撮像光学系は、物体側より順に、第1および第2レンズからなる全体として正の屈折力を持つレンズ群と、第3ないし第5レンズからなる全体として負の屈折力を持つレンズ群とを配置する、いわゆるテレフォトタイプのレンズ構成であるので、撮像光学系全長の小型化に有利である。このような撮像光学系は、正の屈折力を持つ第1レンズを物体側に凸面を向けることで前記全長の短縮に有利となり、また、第4レンズを像側に凹面を向けることでさらに前記全長の短縮に有利である。そして、このような撮像光学系は、5枚のレンズのうち3枚のレンズを負レンズとすることで、発散作用を有する面をより多くすることができ、この結果、ペッツバール和の補正が容易となり、画面周辺部まで良好な結像性能を確保することができる。
条件式(1)は、第1および第2レンズの屈折力を適切に設定し前記全長の短縮化と大口径化(明るいFナンバー化)とを同時に達成するために収差を適切に補正するための条件式である。このような撮像光学系は、前記条件式(1)の下限を上回ることで、正レンズの屈折力が強くなり過ぎず、前記全長を短縮しつつ、軸上色収差をはじめ諸収差を負レンズで補正することが可能となる。一方、このような撮像光学系は、前記条件式(1)の上限を下回ることで、負レンズの屈折力が強くなり過ぎず、前記全長を短縮しつつ、軸上色収差をはじめ諸収差を過補正することを防止することが可能となる。
ここで、小型とは、本明細書では、撮像光学系全体の中で最も物体側のレンズにおけるレンズ面から、像側焦点までの光軸上での距離をTLとし、撮像面対角線長(例えば固体撮像素子等における矩形実効画素領域の対角線長)を2Yとした場合に、TL/2Y<0.95を満たすことをいい、より望ましくはL/2Y<0.85を満たすことであり、さらにより望ましくはL/2Y<0.8を満たすことである。像側焦点とは、光軸と平行な平行光線が撮像光学系に入射した場合の像点をいう。また、撮像光学系の最も像側の面と像側焦点との間に、例えば、光学的ローパスフィルタ、赤外線カットフィルタまたは固定撮像素子パッケージのシールガラス等の平行平板の部材が配置される場合には、この平行平板部材は、空気換算距離として前記式を計算するものとする。また、明るいFナンバーとは、Fナンバーが2.8以下であることをいい、より望ましくは、2.4以下であり、さらに望ましくは、2.0以下である。
また、本発明の他の一態様では、上述の撮像光学系において、前記第3レンズは、下記(2)の条件式を満たすことを特徴とする。
1.5<f3/f ・・・(2)
ただし、f3は、第3レンズにおける近軸での焦点距離である。
条件式(2)は、第3レンズの焦点距離を適切に設定し前記全長の短縮化と製造誤差が発生しても性能劣化に強い光学系とを達成するための条件式である。このような撮像光学系は、前記条件式(2)の値が下限を上回ることで第3レンズの正の屈折力が強くなり過ぎず、製造の際における組み付け誤差等が発生した場合でも、性能の劣化を小さくすることができる。
また、本発明の他の一態様では、これら上述の撮像光学系において、前記第2レンズと第3レンズとの間隔は、下記(3)の条件式を満たすことを特徴とする。
0.1<d4/f<0.2 ・・・(3)
ただし、d4は、第2レンズと第3レンズとの光軸上での間隔である。
条件式(3)は、第2レンズと第3レンズとの間隔を適切に設定するための条件式である。このような撮像光学系は、前記条件式(3)の下限を上回ることで、第2レンズで光線を跳ね上げ第3レンズに光線を入射させることができ、前記全長の短縮化が可能となる。一方、このような撮像光学系は、前記条件式(3)の上限を下回ることで前記全長の短縮化が可能となる。
また、本発明の他の一態様では、これら上述の撮像光学系において、前記第2レンズは、下記(4)の条件式を満たすことを特徴とする。
r3/f<−0.95 ・・・(4)
ただし、r3は、第2レンズの物体側面における曲率半径である。
このような撮像光学系は、前記条件式(4)を満足することで、第2レンズの物体側面の屈折力が強くなり過ぎず、製造の際における第1レンズと第2レンズとの相対的な軸ズレが発生した場合でも、劣化の小さい良好な像を得ることができる。
また、本発明の他の一態様では、これら上述の撮像光学系において、前記第2レンズは、下記(5)の条件式を満たすことを特徴とする。
r4/f<−10 ・・・(5)
ただし、r4は、第2レンズの像側面における曲率半径である。
このような撮像光学系は、前記条件式(5)を満足することで、第2レンズの像側面の屈折力が強くなり過ぎず、製造の際における第2レンズと第3レンズの相対的な軸ズレが発生した場合でも、劣化の小さい良好な像を得ることができる。
また、本発明の他の一態様では、これら上述の撮像光学系において、前記第4レンズは、下記(6)の条件式を満たすことを特徴とする。
r8/f<0.5 ・・・(6)
ただし、r8は、第4レンズの像側面における曲率半径である。
このような撮像光学系は、前記条件式(6)を満足することで、強い発散面が得られ、前記全長の短縮化が可能となるとともにペッツバール和を小さくすることができ、画面周辺部まで良好な結像性能を確保することができる。
また、本発明の他の一態様では、これら上述の撮像光学系において、前記第4レンズと第5レンズとの間隔は、下記(7)の条件式を満たすことを特徴とする。
0.1<d8/f<0.3 ・・・(7)
ただし、d8は、第4レンズと第5レンズとの光軸上での間隔である。
条件式(7)は、第4レンズと第5レンズとの空気間隔を適切に設定し撮像光学系全長の短縮化と収差補正とを適切に達成するための条件式である。このような撮像光学系は、前記条件式(7)の値が上限を下回ることで、第4レンズで光線を跳ね上げ第5レンズに光線を入射させることができ、前記全長の短縮化が可能となる。一方、このような撮像光学系は、前記条件式(7)の上限を下回ることで前記全長の短縮化が可能となる。
また、本発明の他の一態様では、これら上述の撮像光学系において、前記第1レンズの物体側に開口絞りをさらに備えることを特徴とする。
このような撮像光学系は、射出瞳位置を撮像素子から離すことができるため、テレセントリック特性を高めることができる。
また、本発明の他の一態様では、これら上述の撮像光学系において、前記第1ないし第5レンズは、樹脂材料製レンズであることを特徴とする。
近年では、固体撮像装置全体の小型化を目的とし、同じ画素数の固体撮像素子であっても、画素ピッチが小さく、結果として撮像面サイズ(受光面サイズ)の小さいものが開発されている。このような撮像面サイズの小さい固体撮像素子向けの撮像光学系は、全系の焦点距離を比較的短くする必要があるため、各レンズの曲率半径や外径がかなり小さくなってしまう。したがって、このような撮像光学系は、手間のかかる研磨加工によって製造するガラスレンズと比較すると、全てのレンズを、射出成形により製造される樹脂材料製レンズで構成することによって、曲率半径や外径の小さなレンズであっても安価に大量生産が可能となる。
また、本発明の他の一態様にかかる撮像装置は、これら上述のいずれかの撮像光学系と、光学像を電気的な信号に変換する撮像素子とを備え、前記撮像光学系が前記撮像素子の受光面上に物体の光学像を形成可能とされていることを特徴とする。
この構成によれば、小型でありながら、明るいFナンバーを実現した5枚のレンズ構成の撮像光学系を用いた撮像装置を提供することができる。したがって、このような撮像装置は、小型であって、光学像を撮像素子の受光面上に明るく形成することができる。
また、本発明の他の一態様にかかるデジタル機器は、上述の撮像装置と、前記撮像装置に被写体の静止画撮影および動画撮影の少なくとも一方の撮影を行わせる制御部とを備え、前記撮像装置の撮像光学系が、前記撮像素子の撮像面上に前記被写体の光学像を形成可能に組み付けられていることを特徴とする。そして、好ましくは、デジタル機器は、携帯端末から成る。
この構成によれば、小型でありながら、明るいFナンバーを実現した5枚のレンズ構成の撮像光学系を用いたデジタル機器や携帯端末を提供することができる。したがって、このようなデジタル機器や携帯端末は、小型であって、光学像を撮像素子の受光面上に明るく形成することができる。
本発明にかかる撮像光学系は、5枚のレンズ構成であって、小型でありながらも明るいFナンバーを実現することができる。そして、本発明によれば、このような撮像光学系を用いた撮像装置およびデジタル機器の提供が可能となる。したがって、このような撮像装置やデジタル機器や携帯端末は、小型であって、光学像を撮像素子の受光面上に明るく形成することができる。
実施形態における撮像光学系の説明のための、その構成を模式的に示したレンズ断面図である。 主光線の像面入射角の定義を示す模式図である。 実施形態におけるデジタル機器の構成を示すブロック図である。 デジタル機器の一実施形態を示すカメラ付携帯電話機の外観構成図である。 実施例1の撮像光学系におけるレンズの配列を示す断面図である。 実施例2の撮像光学系におけるレンズの配列を示す断面図である。 実施例3の撮像光学系におけるレンズの配列を示す断面図である。 実施例4の撮像光学系におけるレンズの配列を示す断面図である。 実施例5の撮像光学系におけるレンズの配列を示す断面図である。 実施例6の撮像光学系におけるレンズの配列を示す断面図である。 実施例7の撮像光学系におけるレンズの配列を示す断面図である。 実施例1における撮像光学系の収差図である。 実施例2における撮像光学系の収差図である。 実施例3における撮像光学系の収差図である。 実施例4における撮像光学系の収差図である。 実施例5における撮像光学系の収差図である。 実施例6における撮像光学系の収差図である。 実施例7における撮像光学系の収差図である。
以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、接合レンズにおけるレンズ枚数は、接合レンズ全体で1枚ではなく、接合レンズを構成する単レンズの枚数で表すこととする。
<実施の一形態の撮像光学系の説明>
図1は、実施形態における撮像光学系の説明のための、その構成を模式的に示したレンズ断面図である。図2は、主光線の像面入射角の定義を示す模式図である。なお、以下において、主光線の像面入射角は、図2に示すように、撮像面への入射光線のうち最大画角の主光線の、像面に立てた垂線に対する角度(deg、度)αであり、像面入射角αは、射出瞳位置が像面より物体側にある場合の主光線角度を正方向とする。
図1において、この撮像光学系1は、光学像を電気的な信号に変換する撮像素子18の受光面上に、物体(被写体)の光学像を結像させて形成するものであって、物体側より像側へ順に、複数のレンズから構成されて成る光学系である。図1に示す例では、撮像光学系1は、第1ないし第5レンズ11〜15の5枚のレンズから成り、正の屈折力を有し物体側に凸面を向けた第1レンズ11と、負の屈折力を有し像側に凸面を向けた第2レンズ12と、正の屈折力を有する第3レンズ13と、負の屈折力を有し像側に凹面を向けた第4レンズ14と、負の屈折力を有する第5レンズ15とから成る。撮像素子18は、その受光面が撮像光学系1の像面と略一致するように配置される(像面=撮像面)。なお、図1で例示した撮像光学系1は、後述する実施例1の撮像光学系1A(図5)と同じ構成である。
そして、この撮像光学系1では、第1ないし第5レンズ11〜15が全玉繰り出しで光軸方向に移動することによってフォーカシングが行われる。
より具体的には、図1に示す例では、第1レンズL1は、正の屈折力を有し、両面が凸形状である両凸の正レンズであり、第2レンズL2は、負の屈折力を有し、像側に凸面を向けるとともに物体側に凹面を向けた負メニスカスレンズであり、第3レンズL3は、正の屈折力を有し、物体側に凹面を向けた正メニスカスレンズであり、第4レンズL4は、負の屈折力を有し、像側に凹面を向けた負メニスカスレンズであり、そして、第5レンズL5は、負の屈折力を有し、像側に凹面を向けた負メニスカスレンズである。このように撮像光学系1では、その第1ないし第5レンズ11〜15の屈折力は、正負正負負である。
第1ないし第5レンズ11〜15は、それぞれ、両面が非球面である。そして、第1ないし第5レンズ11〜15は、それぞれ、例えばガラスモールドレンズであってもよく、また例えば、プラスチック等の樹脂材料製レンズであってもよい。特に、加工性の観点から、第1ないし第5レンズ11〜15は、樹脂材料製レンズが好ましい。すなわち、近年では、固体撮像装置全体の小型化を目的とし、同じ画素数の固体撮像素子であっても、画素ピッチが小さく、結果として撮像面サイズ(受光面サイズ)の小さい素子が開発されている。このような撮像面サイズの小さい固体撮像素子向けの撮像光学系は、全系の焦点距離を比較的短くする必要があるため、各レンズの曲率半径や外径がかなり小さくなってしまう。したがって、このような撮像光学系1は、手間のかかる研磨加工によって製造するガラスレンズと比較すると、全てのレンズを、射出成形により製造される樹脂材料製レンズで構成することによって、曲率半径や外径の小さなレンズであっても安価に大量生産が可能となる。また、携帯端末に搭載する場合には軽量化や低コスト化の観点からも、第1ないし第5レンズ11〜15は、樹脂材料製レンズが好ましい。図1に示す例では、これら第1ないし第5レンズ11〜15は、樹脂材料製レンズである。
そして、この撮像光学系1は、第1および第2レンズ11、12における近軸での合成焦点距離をf12とし、撮像光学系1全系の焦点距離をfとする場合に、下記(1)の条件式を満たしている。
0.5<f12/f<1.3 ・・・(1)
さらに、この撮像光学系1には、例えば開口絞り等の光学絞り16が第1レンズ11の物体側に配置されている。この光学絞り16は、好ましくは、開口絞りである。このような撮像光学系1は、射出瞳位置を撮像素子18から離すことができるため、テレセントリック特性を高めることができる。
またこの撮像光学系1の像側、すなわち、第5レンズ15における像側には、フィルタ17や撮像素子18が配置される。フィルタ17は、平行平板状の光学素子であり、各種光学フィルタや、撮像素子18のカバーガラス(シールガラス)等を模式的に表したものである。使用用途、撮像素子、カメラの構成等に応じて、光学的ローパスフィルタ、赤外線カットフィルタ等の光学フィルタを適宜に配置することが可能である。撮像素子18は、この撮像光学系1によって結像された被写体の光学像における光量に応じてR(赤)、G(緑)、B(青)の各成分の画像信号に光電変換して所定の画像処理回路(不図示)へ出力する素子である。撮像素子18は、例えば、CCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子である。これらによって物体側の被写体の光学像が、撮像光学系1によりその光軸AXに沿って所定の倍率で撮像素子18の受光面まで導かれ、撮像素子18によって前記被写体の光学像が撮像される。
このような撮像光学系1は、小型で良好に諸収差を補正することができる。すなわち、このような撮像光学系1は、物体側より順に、第1および第2レンズ11、12から成る全体として正の屈折力を持つレンズ群と、第3ないし第5レンズ13〜15から成る全体として負の屈折力を持つレンズ群とを配置する、いわゆるテレフォトタイプのレンズ構成であるので、撮像光学系1全長の小型化に有利である。このような撮像光学系1は、正の屈折力を持つ第1レンズ11を物体側に凸面を向けることで前記全長の短縮に有利となり、また、第4レンズ14を像側に凹面を向けることでさらに前記全長の短縮に有利である。そして、このような撮像光学系1は、5枚のレンズのうち3枚のレンズを負レンズとすることで、発散作用を有する面をより多くすることができ、この結果、ペッツバール和の補正が容易となり、画面周辺部まで良好な結像性能を確保することができる。
そして、式f12/fは、撮像光学系1全系の焦点距離fに対する第1および第2レンズ11、12における近軸での合成焦点距離f12の割合、すなわち、全系の屈折力に対する第1および第2レンズ11、12の屈折力の負担割合を示し、条件式(1)は、第1および第2レンズ11、12の屈折力を適切に設定し前記全長の短縮化と大口径化(明るいFナンバー化)とを同時に達成するために収差を適切に補正するための条件式である。このような撮像光学系1は、前記条件式(1)の下限を上回ることで、正レンズの屈折力が強くなり過ぎず、前記全長を短縮しつつ、軸上色収差をはじめ諸収差を負レンズで補正することが可能となる。一方、このような撮像光学系1は、前記条件式(1)の上限を下回ることで、負レンズの屈折力が強くなり過ぎず、前記全長を短縮しつつ、軸上色収差をはじめ諸収差を過補正することを防止することが可能となる。
この観点から、条件式(1)は、好ましくは、下記条件式(1A)であり、より好ましくは、下記条件式(1B)である。
0.8<f12/f<1.3 ・・・(1A)
0.8<f12/f<1.1 ・・・(1B)
また、この撮像光学系1は、第3レンズ13における近軸での焦点距離をf3とする場合に、下記(2)の条件式を満たしている。
1.5<f3/f ・・・(2)
この式f3/fは、撮像光学系1全系の焦点距離fに対する第3レンズ13における近軸での焦点距離f3の割合、すなわち、全系の屈折力に対する第3レンズ13の屈折力の負担割合を示し、条件式(2)は、第3レンズ13の焦点距離f13を適切に設定し前記全長の短縮化と製造誤差が発生しても性能劣化に強い光学系とを達成するための条件式である。このような撮像光学系1は、前記条件式(2)の値が下限を上回ることで第3レンズ13の正の屈折力が強くなり過ぎず、製造の際における組み付け誤差等が発生した場合でも、性能の劣化を小さくすることができる。
この観点から、条件式(2)は、好ましくは、下記条件式(2A)であり、より好ましくは、下記条件式(2B)である。
1.5<f3/f<25 ・・・(2A)
1.5<f3/f<9 ・・・(2B)
また、この撮像光学系1は、第2レンズ12と第3レンズ13との光軸上での間隔をd4とする場合に、第2レンズ12と第3レンズ13との間隔は、下記(3)の条件式を満たしている。
0.1<d4/f<0.2 ・・・(3)
条件式(3)は、第2レンズ12と第3レンズ13との間隔d4を適切に設定するための条件式である。このような撮像光学系1は、前記条件式(3)の下限を上回ることで、第2レンズ12で光線を跳ね上げ第3レンズ13に光線を入射させることができ、前記全長の短縮化が可能となる。一方、このような撮像光学系1は、前記条件式(3)の上限を下回ることで前記全長の短縮化が可能となる。
この観点から、条件式(3)は、好ましくは、下記条件式(3A)であり、より好ましくは、下記条件式(3B)である。
0.1<d4/f<0.15 ・・・(3A)
0.1<d4/f<0.13 ・・・(3B)
また、この撮像光学系1は、第2レンズ12の物体側面における曲率半径をr3とする場合に、第2レンズ12は、下記(4)の条件式を満たしている。
r3/f<−0.95 ・・・(4)
式r3/fは、撮像光学系1全系の屈折力に対する第2レンズ12の物体側面における屈折力の負担割合を示し、条件式(4)は、第2レンズ12の物体側面における曲率半径r3を適切に設定し前記全長の短縮化と製造誤差が発生しても性能劣化に強い光学系とを達成するための条件式である。このような撮像光学系1は、前記条件式(4)を満足することで、第2レンズ12の物体側面の屈折力が強くなり過ぎず、製造の際における第1レンズ11と第2レンズ12との相対的な軸ズレが発生した場合でも、劣化の小さい良好な像を得ることができる。
この観点から、条件式(4)は、好ましくは、下記条件式(4A)であり、より好ましくは、下記条件式(4B)である。
r3/f<−1 ・・・(4A)
−4<r3/f<−1 ・・・(4B)
また、この撮像光学系1は、第2レンズの像側面における曲率半径をr4とする場合に、第2レンズ12は、下記(5)の条件式を満たしている。
r4/f<−10 ・・・(5)
式r4/fは、撮像光学系1全系の屈折力に対する第2レンズ12の像側面における屈折力の負担割合を示し、条件式(5)は、第2レンズ12の像側面における曲率半径r4を適切に設定し前記全長の短縮化と製造誤差が発生しても性能劣化に強い光学系とを達成するための条件式である。このような撮像光学系1は、前記条件式(5)を満足することで、第2レンズ12の像側面の屈折力が強くなり過ぎず、製造の際における第2レンズ12と第3レンズ13の相対的な軸ズレが発生した場合でも、劣化の小さい良好な像を得ることができる。
この観点から、条件式(5)は、好ましくは、下記条件式(5A)であり、より好ましくは、下記条件式(5B)である。
r4/f<−15 ・・・(5A)
r4/f<−20 ・・・(5B)
また、この撮像光学系1は、第4レンズ14の像側面における曲率半径をr8とする場合に、第4レンズ14は、下記(6)の条件式を満たしている。
r8/f<0.5 ・・・(6)
式r8/fは、撮像光学系1全系の屈折力に対する第4レンズ14の像側面における屈折力の負担割合を示し、条件式(6)は、第4レンズ14の像側面における曲率半径r8を適切に設定し前記全長の短縮化と周辺性能まで高い性能とを達成するための条件式である。このような撮像光学系1は、前記条件式(6)を満足することで、強い発散面が得られ、前記全長の短縮化が可能となるとともにペッツバール和を小さくすることができ、画面周辺部まで良好な結像性能を確保することができる。
この観点から、条件式(6)は、好ましくは、下記条件式(6A)であり、より好ましくは、下記条件式(6B)である。
0.3<r8/f<0.5 ・・・(6A)
0.3<r8/f<0.4 ・・・(6B)
また、この撮像光学系1は、第4レンズ14と第5レンズ15との光軸上での間隔をd8とする場合に、第4レンズ14と第5レンズ15との間隔は、下記(7)の条件式を満たしている。
0.1<d8/f<0.3 ・・・(7)
条件式(7)は、第4レンズ14と第5レンズ15との空気間隔を適切に設定し撮像光学系1全長の短縮化と収差補正とを適切に達成するための条件式である。このような撮像光学系1は、前記条件式(7)の値が上限を下回ることで、第4レンズ14で光線を跳ね上げ第5レンズ15に光線を入射させることができ、前記全長の短縮化が可能となる。一方、このような撮像光学系1は、前記条件式(7)の上限を下回ることで前記全長の短縮化が可能となる。
また、これら上述の撮像光学系1において、樹脂材料製レンズを用いる場合では、プラスチック(樹脂材料)中に最大長が30ナノメートル以下の粒子を分散させた素材を用いて成形したレンズであることが好ましい。
一般に透明な樹脂材料に微粒子を混合させると、光が散乱し透過率が低下するので、光学材料として使用することが困難であったが、微粒子の大きさを透過光束の波長よりも小さくすることによって、光は、実質的に散乱しない。そして、樹脂材料は、温度上昇に伴って屈折率が低下してしまうが、無機粒子は、逆に、温度上昇に伴って屈折率が上昇する。このため、このような温度依存性を利用して互いに打ち消し合うように作用させることで、温度変化に対して屈折率変化がほとんど生じないようにすることができる。より具体的には、母材となる樹脂材料に最大長で30ナノメートル以下の無機微粒子を分散させることによって、屈折率の温度依存性を低減した樹脂材料となる。例えば、アクリルに酸化ニオブ(Nb)の微粒子を分散させる。これら上述の撮像光学系1において、比較的屈折力の大きなレンズ、またはすべてのレンズに、このような無機粒子を分散させた樹脂材料を用いることにより、撮像光学系1全系の温度変化時の像点位置変動を小さく抑えることが可能となる。
このような無機微粒子を分散させた樹脂材料製レンズは、以下のように成形されることが好ましい。
屈折率の温度変化について説明すると、屈折率の温度変化n(T)は、ローレンツ・ローレンツの式に基づいて、屈折率nを温度Tで微分することによって式Faで表される。
n(T)=((n+2)×(n−1))/6n×(−3α+(1/[R])×(∂[R]/∂T)) ・・・(Fa)
ただし、αは、線膨張係数であり、[R]は、分子屈折である。
樹脂材料の場合では、一般に、屈折率の温度依存性に対する寄与は、式Fa中の第1項に較べて第2項が小さく、ほぼ無視することができる。例えば、PMMA樹脂の場合では、線膨張係数αは、7×10−5であって、式Faに代入すると、n(T)=−12×10−5(/℃)となり、実測値と略一致する。
具体的には、従来は、−12×10−5[/℃]程度であった屈折率の温度変化n(T)を、絶対値で8×10−5[/℃]未満に抑えることが好ましい。さらに好ましくは、絶対値で6×10−5[/℃]未満にすることである。
よって、このような樹脂材料としては、ポリオレフィン系の樹脂材料やポリカーボネイト系の樹脂材料やポリエステル系の樹脂材料が好ましい。ポリオレフィン系の樹脂材料では、屈折率の温度変化n(T)は、約−11×10−5(/℃)となり、ポリカーボネイト系の樹脂材料では、屈折率の温度変化n(T)は、約−14×10−5(/℃)となり、そして、ポリエステル系の樹脂材料では、屈折率の温度変化n(T)は、約−13×10−5(/℃)となる。
<撮像光学系を組み込んだデジタル機器の説明>
次に、上述の撮像光学系1が組み込まれたデジタル機器について説明する。
図3は、実施形態におけるデジタル機器の構成を示すブロック図である。デジタル機器3は、例えば、図3に示すように、撮像機能のために、撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、制御部35、記憶部36およびインタフェース部(I/F部)37を備える。デジタル機器3として、例えば、デジタルスチルカメラ、ビデオカメラ、監視カメラ(モニタカメラ)、携帯電話機や携帯情報端末(PDA)等の携帯端末、パーソナルコンピュータおよびモバイルコンピュータが挙げられ、これらの周辺機器(例えば、マウス、スキャナおよびプリンタなど)が含まれてもよい。特に、本実施形態の撮像光学系1は、携帯電話機や携帯情報端末(PDA)やタブレット端末(PC)等の携帯端末に搭載する上で充分にコンパクト化および低背化されており、この携帯端末に好適に搭載される。
撮像部30は、撮像装置21の一例であり、撮像レンズとして機能する図1に示したような撮像光学系1と、撮像素子18と、前記撮像光学系1に含まれる、光軸方向にフォーカスのためのレンズを駆動してフォーカシングを行うための図略のレンズ駆動装置等とを備えて構成される。被写体からの光線は、撮像光学系1によって撮像素子18の受光面上に結像され、被写体の光学像となる。
撮像素子18は、上述したように、撮像光学系1により結像された被写体の光学像をR,G,Bの色成分の電気信号(画像信号)に変換し、R,G,B各色の画像信号として画像生成部31に出力する。撮像素子18は、制御部35によって静止画あるいは動画のいずれか一方の撮像、または、撮像素子18における各画素の出力信号の読出し(水平同期、垂直同期、転送)等の撮像動作が制御される。また、撮像素子18は、いわゆる裏面照射型の固体撮像素子であってもよい。この裏面照射型の固体撮像素子は、受光部(PN接合等の光電変換を行う箇所)が配線層よりも撮像レンズ側に配置されている素子であり、このため、前記受光部に到達する実質的な光量が従来構成の固体撮像素子よりも増加するから、低輝度感度が向上する効果や斜め入射による周辺光量落ちを抑制する効果が極めて大きい。
画像生成部31は、撮像素子18からのアナログ出力信号に対し、増幅処理、デジタル変換処理等を行うと共に、画像全体に対して適正な黒レベルの決定、γ補正、ホワイトバランス調整(WB調整)、輪郭補正および色ムラ補正等の周知の画像処理を行って、画像信号から画像データを生成する。画像生成部31で生成された画像データは、画像データバッファ32に出力される。
画像データバッファ32は、画像データを一時的に記憶するとともに、この画像データに対し画像処理部33によって後述の処理を行うための作業領域として用いられるメモリであり、例えば、揮発性の記憶素子であるRAM(Random Access Memory)などで構成される。
画像処理部33は、画像データバッファ32の画像データに対し、解像度変換等の所定の画像処理を行う回路である。
また、必要に応じて画像処理部33は、撮像素子18の受光面上に形成される被写体の光学像における歪みを補正する公知の歪み補正処理等の、撮像光学系1では補正しきれなかった収差を補正するように構成されてもよい。歪み補正は、収差によって歪んだ画像を肉眼で見える光景と同様な相似形の略歪みのない自然な画像に補正するものである。このように構成することによって、撮像光学系1によって撮像素子18へ導かれた被写体の光学像に歪みが生じていたとしても、略歪みのない自然な画像を生成することが可能となる。また、このような歪みを情報処理による画像処理で補正する構成では、特に、歪曲収差を除く他の諸収差だけを考慮すればよいので、撮像光学系1の設計の自由度が増し、設計がより容易となる。また、このような歪みを情報処理による画像処理で補正する構成では、特に、像面に近いレンズによる収差負担が軽減されるため、射出瞳位置の制御が容易となり、レンズ形状を加工性の良い形状にすることができる。
また、必要に応じて画像処理部33は、撮像素子18の受光面上に形成される被写体の光学像における周辺照度落ちを補正する公知の周辺照度落ち補正処理を含んでもよい。本実施形態の撮像光学系1では、撮像素子18の略中央における入射角と撮像素子18の周辺における入射角との差は、小さく、周辺照度落ちが緩和されているが、デジタル機器3は、このような周辺照度落ち補正処理をさらに備えることによって、より良好な画像を得ることができる。周辺照度落ち補正(シェーディング補正)は、周辺照度落ち補正を行うための補正データを予め記憶しておき、撮影後の画像(画素)に対して補正データを乗算することによって実行される。周辺照度落ちが主に撮像素子18における感度の入射角依存性、レンズの口径食およびコサイン4乗則等によって生じるため、前記補正データは、これら要因によって生じる照度落ちを補正するような所定値に設定される。このように構成することによって、撮像光学系1によって撮像素子18へ導かれた被写体の光学像に周辺照度落ちが生じていたとしても、周辺まで充分な照度を持った画像を生成することが可能となる。
なお、本実施形態では、撮像素子18の撮像面における画素ピッチに対し、色フィルタやオンチップマイクロレンズアレイの配置のピッチを、シェーディングを軽減するように僅かに小さく設定することによって、シェーディング補正が行われてもよい。このような構成では、前記ピッチを僅かに小さく設定することによって、撮像素子18における撮像面の周辺部に行くほど各画素に対し色フィルタやオンチップマイクロレンズアレイが撮像光学系1の光軸側へシフトするため、斜入射の光束を効率的に各画素の受光部に導くことができる。これにより撮像素子18で発生するシェーディングが小さく抑えられる。
駆動部34は、制御部35から出力される制御信号に基づいて図略の前記レンズ駆動装置を動作させることによって、所望のフォーカシングを行わせるように撮像光学系1におけるフォーカスのためのレンズを駆動する。
制御部35は、例えばマイクロプロセッサおよびその周辺回路などを備えて構成され、撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、記憶部36およびI/F部37の各部の動作をその機能に従って制御する。すなわち、この制御部35によって、撮像装置21は、被写体の静止画撮影および動画撮影の少なくとも一方の撮影を実行するよう制御される。
記憶部36は、被写体の静止画撮影または動画撮影によって生成された画像データを記憶する記憶回路であり、例えば、不揮発性の記憶素子であるROM(Read Only Memory)、書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)およびRAM等を備えて構成される。つまり、記憶部36は、静止画用および動画用のメモリとしての機能を有する。
I/F部37は、外部機器と画像データを送受信するインタフェースであり、例えば、USB(Universal Serial Bus)やIEEE1394(Institute of Electrical and Electronic Engineers 1394)などの規格に準拠したインタフェースである。
このような構成のデジタル機器3の撮像動作に次について説明する。
静止画を撮影する場合は、制御部35は、撮像部30(撮像装置21)に静止画の撮影を行わせるように制御すると共に、駆動部34を介して撮像部30の図略の前記レンズ駆動装置を動作させ、全玉を移動させることによってフォーカシングを行う。これにより、ピントの合った光学像が撮像素子18の受光面に周期的に繰り返し結像され、R、G、Bの色成分の画像信号に変換された後、画像生成部31に出力される。その画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により画像処理が行われた後、その画像信号に基づく画像がディスプレイ(不図示)に表示される。そして、撮影者は、前記ディスプレイを参照することで、主被写体をその画面中の所望の位置に収まるように調整することが可能となる。この状態でいわゆるシャッターボタン(不図示)が押されることによって、静止画用のメモリとしての記憶部36に画像データが格納され、静止画像が得られる。
また、動画撮影を行う場合は、制御部35は、撮像部30に動画の撮影を行わせるように制御する。後は、静止画撮影の場合と同様にして、撮影者は、前記ディスプレイ(不図示)を参照することで、撮像部30を通して得た被写体の像が、その画面中の所望の位置に収まるように調整することができる。前記シャッターボタン(不図示)が押されることによって、動画撮影が開始される。そして、動画撮影時、制御部35は、撮像部30に動画の撮影を行わせるように制御すると共に、駆動部34を介して撮像部30の図略の前記レンズ駆動装置を動作させ、フォーカシングを行う。これによって、ピントの合った光学像が撮像素子18の受光面に周期的に繰り返し結像され、R、G、Bの色成分の画像信号に変換された後、画像生成部31に出力される。その画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により画像処理が行われた後、その画像信号に基づく画像がディスプレイ(不図示)に表示される。そして、もう一度前記シャッターボタン(不図示)を押すことで、動画撮影が終了する。撮影された動画像は、動画用のメモリとしての記憶部36に導かれて格納される。
このような構成では、小型でありながら、明るいFナンバーを実現した5枚のレンズ構成の撮像光学系1を用いた撮像装置21およびデジタル機器3が提供される。特に、撮像光学系1は、小型化および例えば明るさや収差補正等の高性能化が図られているので、小型化(コンパクト化)を図りつつ高画素数の撮像素子18を採用することができる。特に、撮像光学系1が小型で高画素撮像素子に適用可能であるので、高画素化や高機能化が進む携帯端末に好適である。その一例として、携帯電話機に撮像装置21を搭載した場合について、以下に説明する。
図4は、デジタル機器の一実施形態を示すカメラ付携帯電話機の外観構成図である。図4(A)は、携帯電話機の操作面を示し、図4(B)は、操作面の裏面、つまり背面を示す。
携帯電話機5は、例えば、図4に示すように、所定の情報を表示する表示部51と、所定の指示の入力を受け付ける入力操作部52と、携帯電話網を用いて通信を行って電話機能を実現する図略の通信部53と、図3に示す各部30〜37と、これら各部51〜53、30〜37を収納する薄い板状の筐体HSとを備えている。筐体HSの一方主面(表面)には、表示部51における長方形の表示面が臨み、表示面の一方端側(下側)には、入力操作部52が配設されている。表示部51の表示面には、前記表示面に指先あるいはペンで触れることによって入力を受け付けるタッチパネルが備えられ、入力操作部52で入力することができない指示の入力が、タッチパネルと表示部51に表示される情報と合わせることによって実現されている。例えば、表示部51には、画像撮影モードの起動ボタン、静止画撮影と動画撮影との切り替えを行う画像撮影ボタンおよびシャッタボタン等が表示され、表示されたボタンの位置の表示面を触れることで、当該ボタンが示す指示が携帯電話機5に入力される。なお、前記タッチパネルは、いわゆる静電容量方式等の公知の方式のものであってよい。そして、筐体HSの他方主面(裏面)には、撮像部30(撮像装置21)が臨んでいる。
このような携帯電話機5では、前記画像撮影モードの起動ボタンが操作されると、その操作内容を表す制御信号が制御部35へ出力され、制御部35は、画像撮影の機能を起動し、また、前記画像撮影ボタンが操作されると、その操作内容を表す制御信号が制御部35へ出力され、制御部35は、静止画撮影モードの起動、実行や、動画撮影モードの起動、実行等の、その操作内容に応じた動作を実行する。そして、前記シャッタボタンが操作されると、その操作内容を表す制御信号が制御部35へ出力され、制御部35は、静止画撮影や動画撮影等の、その操作内容に応じた動作を実行する。
<撮像光学系のより具体的な実施形態の説明>
以下、図1に示したような撮像光学系1の具体的な構成を、図面を参照しつつ説明する。なお、下記に示す撮像光学系1A〜1Gは、図3および図4にそれぞれ示したようなデジタル機器3および携帯電話機5に搭載される撮像装置21に備えられる。
図5ないし図11は、実施例1ないし実施例7における撮像光学系におけるレンズの配列を示す断面図である。図12ないし図18は、実施例1ないし実施例7における撮像光学系の収差図である。
実施例1〜7の撮像光学系1A〜1Gは、図5ないし図11のそれぞれに示すように、大略、物体側から像側へ順に、配置される複数のレンズLnを備え、フォーカシング(ピント合わせ)の際には、これら複数のレンズLnは、全玉繰り出しで光軸方向AXに一体で移動する。より具体的には、実施例1〜7の撮像光学系1A〜1Gは、正の屈折力を有し物体側に凸面を向けた第1レンズL1と、負の屈折力を有し像側に凸面を向けた第2レンズL2と、正の屈折力を有する第3レンズL3と、負の屈折力を有し像側に凹面を向けた第4レンズL4と、負の屈折力を有する第5レンズL5とから成る。そして、これら5枚のレンズは、それぞれ、樹脂材料製レンズであって、両面が非球面である非球面レンズである。これら実施例1〜7の撮像光学系1A〜1Gは、第1レンズL1の物体側に配置される光学絞りSTをさらに備え、これら実施例1〜7の撮像光学系1A〜1Gは、前絞り型である。前記光学絞りSTは、各実施例1〜7の場合において、開口絞りやメカニカルシャッタや可変絞りであってよい。
より詳しくは、各実施例1〜7の撮像光学系1A〜1Gは、第1ないし第5レンズL1〜L5が物体側から像側へ順に、次のように構成されている。
これら実施例1〜7の撮像光学系1A〜1Gにおいて、まず、実施例1、6、7の撮像光学系1A、1F、1Gについて説明すると、第1レンズL1は、正の屈折力を有する両凸の正レンズであり、第2レンズL2は、像側に凸面を向けるとともに物体側に凹面を向けた負の屈折力を有する負メニスカスレンズであり、第3レンズL3は、物体側に凹面を向けた正の屈折力を有する正メニスカスレンズであり、第4レンズL4は、像側に凹面を向けた負の屈折力を有する負メニスカスレンズであり、そして、第5レンズL5は、像側に凹面を向けた負の屈折力を有する負メニスカスレンズである。
実施例2、3、5の撮像光学系1B、1C、1Eについて説明すると、実施例2、3、5の撮像光学系1B、1C、1Eは、実施例1、6、7の撮像光学系1A、1F、1Gに対し第3レンズL3が異なる。すなわち、第1、第2、第4および第5レンズL1、L2、L4、L5は、それぞれ、実施例1、6、7の撮像光学系1A、1F、1Gにおける第1、第2、第4および第5レンズL1、L2、L4、L5と同様であり、第3レンズL3は、像側に凸面を向けた正の屈折力を有する正メニスカスレンズである。
そして、実施例4の撮像光学系1Dについて説明すると、実施例4の撮像光学系1Dは、実施例1、6、7の撮像光学系1A、1F、1Gに対し第1および第5レンズL1、L5が異なる。すなわち、第2ないし第4レンズL2〜L4は、それぞれ、実施例1、6、7の撮像光学系1A、1F、1Gにおける第2ないし第4レンズL2〜L4と同様であり、第1レンズL1は、物体側に凸面を向けた正の屈折力を有する正メニスカスレンズであり、そして、第5レンズL5は、両凹面の負レンズである。
そして、各実施例1〜7の場合において、最も像側に配置される第5レンズL5の像側には、フィルタとしての平行平板FTを介して撮像素子ISの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子ISのカバーガラス等である。
図5ないし図11の各図において、各レンズ面に付されている番号ri(i=1,2,3,・・・)は、物体側から数えた場合のi番目のレンズ面(ただし、レンズの接合面は1つの面として数えるものとする。)であり、riに「*」印が付されている面は、非球面であることを示す。なお、光学絞りSTの面および平行平板FTの両面も1つの面として扱っている。このような取り扱いおよび符号の意義は、各実施例についても同様である。ただし、全く同一のものであるという意味ではなく、例えば、各実施例の各図を通じて、最も物体側に配置されるレンズ面には、同じ符号(r1)が付されているが、後述のコンストラクションデータに示すように、これらの曲率等が各実施例1〜7を通じて同一であるという意味ではない。
このような構成の下で、各実施例1〜7の撮像光学系1A〜1Gでは、物体側から入射した光線は、光軸AXに沿って、順に光学絞りST、第1レンズL1、第2レンズL2、第3レンズL3、第4レンズL4、第5レンズL5および平行平板FTを通過し、撮像素子ISの受光面に物体の光学像を形成する。そして、各実施例1〜7の撮像光学系1A〜1Gにおいて、撮像素子ISでは、光学像が電気的な信号に変換される。この電気信号は、必要に応じて所定のデジタル画像処理等が施され、デジタル映像信号として例えばデジタルカメラ等のデジタル機器のメモリに記録されたり、インタフェースを介して有線あるいは無線の通信によって他のデジタル機器に伝送されたりする。
各実施例1〜7の撮像光学系1A〜1Gにおける、各レンズのコンストラクションデータは、次の通りである。
まず、実施例1の撮像光学系1Aにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例1
単位 mm
面データ
面番号 r d nd νd ER
物面 ∞ ∞
1(絞り) ∞ -0.17 0.90
2* 1.533 0.76 1.54470 56.2 0.96
3* -22.065 0.05 1.00
4* -4.281 0.29 1.63470 23.9 0.98
5* -100.000 0.55 0.94
6* -1.384 0.38 1.54470 56.2 0.97
7* -1.424 0.05 1.13
8* 2.282 0.22 1.63470 23.9 1.37
9* 1.816 0.93 1.59
10* 2.242 0.62 1.54470 56.2 2.32
11* 1.387 0.62 2.53
12* ∞ 0.21 1.51630 64.1 3.00
13 ∞ 3.00
像面 ∞
非球面データ
第2面
K=-0.23824E+00,A4=0.94954E-02,A6=-0.87923E-02,A8=-0.14158E-01,A10=0.18786E-01,A12=0.12254E-01,A14=-0.43469E-01
第3面
K=0.70000E+02,A4=-0.64808E-01,A6=-0.21348E-01,A8=-0.83086E-02,A10=-0.18170E-02,A12=-0.51922E-02,A14=-0.29098E-02
第4面
K=-0.18509E+02,A4=-0.14479E-01,A6=0.20920E-01,A8=-0.69242E-02,A10=-0.41302E-02,A12=0.77545E-02,A14=0.10588E-01
第5面
K=-0.70000E+02,A4=0.64726E-01,A6=0.43046E-01,A8=-0.15165E-01,A10=0.34792E-02,A12=0.13992E-01,A14=0.18023E-01
第6面
K=-0.98486E+00,A4=-0.23822E-01,A6=-0.49887E-02,A8=0.23236E-01,A10=0.18630E-01,A12=0.27657E-02,A14=-0.21478E-01
第7面
K=-0.20439E+01,A4=-0.37890E-02,A6=0.22812E-01,A8=0.16634E-01,A10=0.73432E-02,A12=0.19394E-02,A14=-0.49923E-03
第8面
K=-0.30709E+02,A4=-0.27767E-02,A6=-0.38280E-01,A8=0.66459E-02,A10=-0.11281E-02,A12=-0.27478E-03,A14=-0.77690E-03
第9面
K=-0.19796E+02,A4=-0.20537E-01,A6=-0.14352E-01,A8=0.97279E-03,A10=-0.23265E-03,A12=-0.12994E-03,A14=-0.19815E-04
第10面
K=-0.36833E+02,A4=-0.61947E-01,A6=0.64178E-02,A8=0.37084E-03,A10=-0.10757E-04,A12=-0.37283E-05,A14=-0.21170E-06
第11面
K=-0.13504E+02,A4=-0.31048E-01,A6=0.50682E-03,A8=-0.13112E-03,A10=-0.27083E-05,A12=0.14293E-05,A14=0.21484E-06
各種データ
焦点距離(f) 4.36(mm)
Fナンバ(Fno) 2.43
半画角(w) 32.8(mm)
像高(最大)(2Y) 5.712(mm)
バックフォーカス(Bf) 0.14(mm)
レンズ全長(TL) 4.74(mm)
ENTP 0(mm)
EXTP -2.59(mm)
H1 -2.59(mm)
H2 -4.22(mm)
各レンズの焦点距離(mm)
第1レンズL1 2.661
第2レンズL2 -7.055
第3レンズL3 37.642
第4レンズL4 -17.237
第5レンズL5 -8.946
次に、実施例2の撮像光学系1Bにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例2
単位 mm
面データ
面番号 r d nd νd ER
物面 ∞ ∞
1(絞り) ∞ -0.12 0.76
2* 1.484 0.54 1.54470 56.2 0.78
3* -9.629 0.01 0.84
4* -4.190 0.25 1.63470 23.9 0.85
5* -59.729 0.48 0.84
6* -1.434 0.57 1.54470 56.2 0.87
7* -1.376 0.05 1.09
8* 2.475 0.22 1.63470 23.9 1.36
9* 1.636 0.63 1.63
10* 1.880 0.80 1.54470 56.2 2.31
11* 1.446 0.62 2.55
12* ∞ 0.21 1.51630 64.1 3.00
13 ∞ 3.00
像面 ∞
非球面データ
第2面
K=-0.31574E+00,A4=0.10174E-01,A6=-0.16942E-01,A8=-0.51726E-01,A10=0.51172E-01,A12=0.23557E-01,A14=-0.40980E+00
第3面
K=0.66151E+02,A4=-0.99841E-01,A6=-0.38753E-01,A8=-0.21348E-01,A10=-0.83119E-02,A12=-0.34325E-01,A14=-0.35193E-01
第4面
K=-0.17813E+02,A4=-0.25698E-01,A6=0.47230E-01,A8=-0.16676E-01,A10=-0.81106E-02,A12=0.59280E-01,A14=0.11201E+00
第5面
K=-0.53654E+01,A4=0.78143E-01,A6=0.67528E-01,A8=-0.37143E-01,A10=0.24780E-01,A12=0.50171E-01,A14=0.19377E-01
第6面
K=-0.22955E+00,A4=-0.96383E-01,A6=-0.33875E-01,A8=0.65475E-01,A10=0.71673E-01,A12=0.21990E-01,A14=-0.43918E-01
第7面
K=-0.16082E+01,A4=-0.44550E-01,A6=-0.49001E-03,A8=0.19090E-01,A10=0.20015E-01,A12=0.11612E-01,A14=-0.32428E-02
第8面
K=-0.69973E+02,A4=0.30694E-01,A6=-0.60705E-01,A8=0.21388E-01,A10=-0.75025E-02,A12=0.79974E-03,A14=-0.47256E-03
第9面
K=-0.27026E+02,A4=0.11754E-01,A6=-0.26254E-01,A8=0.42140E-02,A10=-0.27968E-03,A12=-0.19060E-03,A14=0.62208E-04
第10面
K=-0.15427E+02,A4=-0.73137E-01,A6=0.11523E-01,A8=0.57632E-03,A10=-0.11168E-03,A12=-0.19798E-04,A14=0.25095E-05
第11面
K=-0.82046E+01,A4=-0.32556E-01,A6=0.22812E-02,A8=-0.28156E-03,A10=-0.62290E-05,A12=0.29674E-05,A14=0.25096E-06
各種データ
焦点距離(f) 3.7(mm)
Fナンバ(Fno) 2.43
半画角(w) 37.2(mm)
像高(最大)(2Y) 5.712(mm)
バックフォーカス(Bf) 0.18(mm)
レンズ全長(TL) 4.48(mm)
ENTP 0(mm)
EXTP -2.58(mm)
H1 -1.26(mm)
H2 -3.52(mm)
各レンズの焦点距離(mm)
第1レンズL1 2.402
第2レンズL2 -7.113
第3レンズL3 14.056
第4レンズL4 -8.457
第5レンズL5 -32.901
次に、実施例3の撮像光学系1Cにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例3
単位 mm
面データ
面番号 r d nd νd ER
物面 ∞ ∞
1(絞り) ∞ -0.11 0.92
2* 1.674 0.70 1.54470 56.2 0.97
3* -16.087 0.05 1.03
4* -5.645 0.26 1.63470 23.9 1.02
5* -100.000 0.49 0.97
6* -1.762 0.54 1.54470 56.2 0.97
7* -1.414 0.05 1.18
8* 2.066 0.25 1.63470 23.9 1.52
9* 1.352 0.60 1.86
10* 1.644 0.66 1.54470 56.2 2.52
11* 1.249 0.62 2.60
12* ∞ 0.21 1.51630 64.1 3.00
13 ∞ 3.00
像面 ∞
非球面データ
第2面
K=-0.40551E+00,A4=0.34800E-02,A6=-0.15778E-01,A8=-0.14970E-01,A10=0.10326E-01,A12=0.13400E-02,A14=-0.41882E-01
第3面
K=0.69852E+02,A4=-0.65462E-01,A6=-0.25285E-01,A8=-0.81386E-02,A10=-0.35119E-02,A12=-0.60158E-02,A14=-0.19464E-02
第4面
K=-0.31798E+02,A4=-0.77768E-02,A6=0.18832E-01,A8=-0.47412E-02,A10=0.88682E-03,A12=0.10101E-01,A14=0.94316E-02
第5面
K=-0.70000E+02,A4=0.58274E-01,A6=0.28254E-01,A8=-0.15424E-01,A10=0.10517E-02,A12=0.75876E-02,A14=0.93827E-02
第6面
K=-0.38651E+00,A4=-0.42434E-01,A6=-0.14113E-01,A8=0.22654E-01,A10=0.17670E-01,A12=0.47283E-02,A14=-0.10669E-01
第7面
K=-0.16780E+01,A4=-0.16195E-01,A6=0.88927E-02,A8=0.10581E-01,A10=0.98899E-02,A12=0.33250E-02,A14=-0.63318E-03
第8面
K=-0.39237E+02,A4=0.56101E-02,A6=-0.22763E-01,A8=0.45647E-02,A10=-0.15264E-02,A12=0.89805E-04,A14=-0.16497E-03
第9面
K=-0.16448E+02,A4=-0.32946E-02,A6=-0.10524E-01,A8=0.10568E-02,A10=-0.11932E-03,A12=-0.47399E-04,A14=0.72808E-05
第10面
K=-0.17102E+02,A4=-0.53824E-01,A6=0.49412E-02,A8=0.35507E-03,A10=-0.49689E-05,A12=-0.28249E-05,A14=-0.17152E-06
第11面
K=-0.98779E+01,A4=-0.21633E-01,A6=-0.52675E-03,A8=-0.20900E-03,A10=0.51470E-06,A12=0.11102E-05,A14=0.46421E-06
各種データ
焦点距離(f) 3.7(mm)
Fナンバ(Fno) 2
半画角(w) 37.2(mm)
像高(最大)(2Y) 5.712(mm)
バックフォーカス(Bf) 0.14(mm)
レンズ全長(TL) 4.50(mm)
ENTP 0(mm)
EXTP -2.54(mm)
H1 -1.4(mm)
H2 -3.55(mm)
各レンズの焦点距離(mm)
第1レンズL1 2.822
第2レンズL2 -9.436
第3レンズL3 8.497
第4レンズL4 -7.151
第5レンズL5 -23.252
次に、実施例4の撮像光学系1Dにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例4
単位 mm
面データ
面番号 r d nd νd ER
物面 ∞ ∞
1(絞り) ∞ -0.22 0.90
2* 1.428 0.78 1.54470 56.2 0.92
3* 10.663 0.05 0.94
4* -7.382 0.28 1.63470 23.9 0.94
5* -7.822 0.45 0.90
6* -1.256 0.52 1.54470 56.2 0.88
7* -1.407 0.11 1.09
8* 3.209 0.17 1.63470 23.9 1.25
9* 2.115 0.59 1.53
10* -78.458 0.88 1.54470 56.2 2.12
11* 4.029 0.62 2.36
12* ∞ 0.21 1.51630 64.1 3.00
13 ∞ 3.00
像面 ∞
非球面データ
第2面
K=-0.26923E+00,A4=0.65330E-02,A6=-0.83378E-02,A8=-0.12131E-01,A10=0.20225E-01,A12=0.11715E-01,A14=-0.47411E-01
第3面
K=0.38331E+02,A4=-0.66139E-01,A6=-0.28478E-01,A8=-0.15870E-01,A10=-0.64589E-02,A12=-0.72131E-02,A14=-0.14972E-02
第4面
K=-0.18356E+02,A4=-0.11475E-01,A6=0.28029E-01,A8=0.34029E-03,A10=0.11406E-02,A12=0.10065E-01,A14=0.92704E-02
第5面
K=0.66750E+02,A4=0.47877E-01,A6=0.46919E-01,A8=-0.96554E-02,A10=0.11035E-02,A12=0.10817E-01,A14=0.16117E-01
第6面
K=-0.90516E+00,A4=-0.25920E-01,A6=-0.25176E-01,A8=-0.25018E-02,A10=-0.11299E-01,A12=-0.38344E-01,A14=-0.97258E-01
第7面
K=-0.29774E+01,A4=0.11247E-01,A6=0.26493E-01,A8=0.16415E-01,A10=0.69639E-02,A12=0.35039E-02,A14=0.19880E-02
第8面
K=-0.70000E+02,A4=-0.34387E-01,A6=-0.47812E-01,A8=0.57501E-02,A10=-0.14744E-02,A12=-0.12131E-02,A14=-0.18052E-02
第9面
K=-0.19858E+02,A4=-0.39459E-01,A6=-0.16192E-01,A8=0.14701E-02,A10=0.77246E-04,A12=-0.82670E-04,A14=-0.79263E-04
第10面
K=-0.70000E+02,A4=-0.52738E-01,A6=0.77111E-02,A8=0.44872E-03,A10=-0.17300E-04,A12=-0.61765E-05,A14=-0.87697E-06
第11面
K=-0.55547E+02,A4=-0.30255E-01,A6=-0.48863E-03,A8=-0.23935E-03,A10=-0.10502E-04,A12=0.24462E-05,A14=0.99895E-06
各種データ
焦点距離(f) 4.48(mm)
Fナンバ(Fno) 2.48
半画角(w) 32.0(mm)
像高(最大)(2Y) 5.712(mm)
バックフォーカス(Bf) 0.14(mm)
レンズ全長(TL) 4.72(mm)
ENTP 0(mm)
EXTP -2.73(mm)
H1 -2.51(mm)
H2 -4.33(mm)
各レンズの焦点距離(mm)
第1レンズL1 2.939
第2レンズL2 -274.891
第3レンズL3 101.522
第4レンズL4 -10.389
第5レンズL5 -7.009
次に、実施例5の撮像光学系1Eにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例5
単位 mm
面データ
面番号 r d nd νd ER
物面 ∞ ∞
1(絞り) ∞ -0.11 0.78
2* 1.626 0.58 1.54470 56.2 0.82
3* -9.919 0.05 0.88
4* -3.987 0.25 1.63470 23.9 0.88
5* -94.724 0.46 0.91
6* -1.645 0.53 1.54470 56.2 0.95
7* -1.388 0.05 1.14
8* 2.114 0.26 1.63470 23.9 1.48
9* 1.508 0.67 1.75
10* 1.462 0.68 1.54470 56.2 2.57
11* 1.184 0.62 2.64
12 ∞ 0.21 1.51630 64.1 3.00
13 ∞ 3.00
像面 ∞
非球面データ
第2面
K=-0.32524E+00,A4=0.81220E-02,A6=-0.16125E-01,A8=-0.28617E-01,A10=0.31699E-01,A12=0.19617E-01,A14=-0.14044E+00
第3面
K=-0.14037E+02,A4=-0.77309E-01,A6=-0.27841E-01,A8=-0.93270E-02,A10=-0.21849E-02,A12=-0.14630E-01,A14=-0.10901E-01
第4面
K=-0.16961E+02,A4=-0.19259E-01,A6=0.29372E-01,A8=-0.12113E-01,A10=-0.48536E-02,A12=0.22562E-01,A14=0.38032E-01
第5面
K=-0.70000E+02,A4=0.68020E-01,A6=0.46197E-01,A8=-0.19815E-01,A10=0.15226E-01,A12=0.22509E-01,A14=0.23556E-02
第6面
K=-0.49793E+00,A4=-0.60868E-01,A6=-0.10547E-01,A8=0.53279E-01,A10=0.46699E-01,A12=0.13173E-01,A14=-0.18424E-01
第7面
K=-0.13139E+01,A4=-0.36651E-01,A6=0.82201E-02,A8=0.16972E-01,A10=0.13274E-01,A12=0.64761E-02,A14=-0.15077E-02
第8面
K=-0.40515E+02,A4=0.24503E-01,A6=-0.38740E-01,A8=0.11266E-01,A10=-0.31711E-02,A12=0.20860E-03,A14=-0.27528E-03
第9面
K=-0.22704E+02,A4=0.21402E-02,A6=-0.15668E-01,A8=0.24057E-02,A10=-0.35894E-03,A12=-0.16336E-03,A14=0.39812E-04
第10面
K=-0.12631E+02,A4=-0.62674E-01,A6=0.76364E-02,A8=0.39163E-03,A10=-0.40966E-04,A12=-0.71150E-05,A14=0.61285E-06
第11面
K=-0.76987E+01,A4=-0.29803E-01,A6=0.19358E-02,A8=-0.32097E-03,A10=-0.91040E-05,A12=0.28907E-05,A14=0.43512E-06
各種データ
焦点距離(f) 3.47(mm)
Fナンバ(Fno) 2.22
半画角(w) 39.1(mm)
像高(最大)(2Y) 5.712(mm)
バックフォーカス(Bf) 0.14(mm)
レンズ全長(TL) 4.43(mm)
ENTP 0(mm)
EXTP -2.61(mm)
H1 -0.91(mm)
H2 -3.33(mm)
各レンズの焦点距離(mm)
第1レンズL1 2.611
第2レンズL2 -6.565
第3レンズL3 9.429
第4レンズL4 -9.977
第5レンズL5 -81.502
次に、実施例6の撮像光学系1Fにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例6
単位 mm
面データ
面番号 r d nd νd ER
物面 ∞ ∞
1(絞り) ∞ -0.13 0.87
2* 1.530 0.77 1.54470 56.2 0.94
3* -23.721 0.05 0.98
4* -4.280 0.30 1.63470 23.9 0.97
5* -80.402 0.56 0.94
6* -1.595 0.29 1.54470 56.2 0.98
7* -1.685 0.06 1.11
8* 2.195 0.22 1.63470 23.9 1.31
9* 1.812 0.93 1.56
10* 2.222 0.62 1.54470 56.2 2.29
11* 1.402 0.62 2.52
12 ∞ 0.21 1.51630 64.1 3.00
13 ∞ 3.00
像面 ∞
非球面データ
第2面
K=-0.28880E+00,A4=0.60337E-02,A6=-0.94631E-02,A8=-0.14193E-01,A10=0.18802E-01,A12=0.12187E-01,A14=-0.43651E-01
第3面
K=0.58558E+02,A4=-0.64449E-01,A6=-0.22038E-01,A8=-0.87889E-02,A10=-0.18844E-02,A12=-0.49536E-02,A14=-0.24733E-02
第4面
K=-0.17519E+02,A4=-0.14394E-01,A6=0.21903E-01,A8=-0.61998E-02,A10=-0.38893E-02,A12=0.76190E-02,A14=0.10190E-01
第5面
K=0.70000E+02,A4=0.63867E-01,A6=0.41498E-01,A8=-0.17001E-01,A10=0.18804E-02,A12=0.12920E-01,A14=0.17540E-01
第6面
K=-0.10222E+01,A4=-0.22927E-01,A6=-0.66622E-02,A8=0.21419E-01,A10=0.17515E-01,A12=0.24907E-02,A14=-0.21056E-01
第7面
K=-0.21053E+01,A4=-0.18291E-02,A6=0.24796E-01,A8=0.17825E-01,A10=0.79015E-02,A12=0.20964E-02,A14=-0.57470E-03
第8面
K=-0.31327E+02,A4=-0.62446E-02,A6=-0.39496E-01,A8=0.63616E-02,A10=-0.12498E-02,A12=-0.38472E-03,A14=-0.87500E-03
第9面
K=-0.19511E+02,A4=-0.18353E-01,A6=-0.14295E-01,A8=0.94366E-03,A10=-0.19263E-03,A12=-0.86949E-04,A14=0.70475E-05
第10面
K=-0.28198E+02,A4=-0.62006E-01,A6=0.65047E-02,A8=0.37946E-03,A10=-0.10983E-04,A12=-0.40602E-05,A14=-0.30301E-06
第11面
K=-0.10377E+02,A4=-0.27975E-01,A6=0.13104E-03,A8=-0.18784E-03,A10=-0.64353E-05,A12=0.15829E-05,A14=0.33625E-06
各種データ
焦点距離(f) 4.27(mm)
Fナンバ(Fno) 2.45
半画角(w) 32.3(mm)
像高(最大)(2Y) 5.712(mm)
バックフォーカス(Bf) 0.06(mm)
レンズ全長(TL) 4.60(mm)
ENTP 0(mm)
EXTP -2.57(mm)
H1 -2.66(mm)
H2 -4.21(mm)
各レンズの焦点距離(mm)
第1レンズL1 2.667
第2レンズL2 -7.133
第3レンズL3 435.164
第4レンズL4 -21.194
第5レンズL5 -9.497
次に、実施例7の撮像光学系1Gにおける、各レンズのコンストラクションデータを以下に示す。
数値実施例7
単位 mm
面データ
面番号 r d nd νd ER
物面 ∞ ∞
1(絞り) ∞ -0.12 0.80
2* 1.571 0.67 1.54470 56.2 0.81
3* -16.764 0.06 0.77
4* -4.149 0.32 1.63470 23.9 0.76
5* -56.554 0.82 0.82
6* -1.185 0.36 1.54470 56.2 0.97
7* -1.186 0.05 1.16
8* 2.411 0.24 1.63470 23.9 1.46
9* 1.836 0.77 1.67
10* 2.094 0.61 1.54470 56.2 2.23
11* 1.317 0.62 2.54
12 ∞ 0.21 1.51630 64.1 3.00
13 ∞ 3.00
像面 ∞
非球面データ
第2面
K=-0.35152E+00,A4=0.34312E-02,A6=-0.10098E-01,A8=-0.19591E-01,A10=0.10178E-01,A12=-0.36103E-03,A14=-0.64563E-01
第3面
K=0.70000E+02,A4=-0.80347E-01,A6=-0.34110E-01,A8=-0.12673E-01,A10=-0.56514E-02,A12=-0.14429E-01,A14=-0.87449E-02
第4面
K=-0.18219E+02,A4=-0.13653E-01,A6=0.20526E-01,A8=-0.15511E-01,A10=-0.12631E-01,A12=0.83133E-02,A14=0.19362E-01
第5面
K=-0.70000E+02,A4=0.92994E-01,A6=0.44226E-01,A8=-0.20709E-01,A10=-0.38405E-02,A12=0.66212E-02,A14=0.13811E-01
第6面
K=-0.95072E+00,A4=-0.20301E-01,A6=-0.39973E-02,A8=0.18984E-01,A10=0.14699E-01,A12=0.15566E-02,A14=-0.23961E-01
第7面
K=-0.15428E+01,A4=-0.15584E-01,A6=0.14320E-01,A8=0.12697E-01,A10=0.58551E-02,A12=0.12982E-02,A14=-0.83333E-03
第8面
K=-0.38146E+02,A4=-0.23015E-02,A6=-0.31377E-01,A8=0.59767E-02,A10=-0.19446E-02,A12=-0.67754E-04,A14=-0.21698E-03
第9面
K=-0.24763E+02,A4=-0.15509E-01,A6=-0.15392E-01,A8=0.14062E-02,A10=-0.11126E-03,A12=-0.15658E-03,A14=0.81506E-05
第10面
K=-0.38337E+02,A4=-0.60275E-01,A6=0.66804E-02,A8=0.32290E-03,A10=-0.19961E-04,A12=-0.54765E-05,A14=0.64280E-08
第11面
K=-0.14339E+02,A4=-0.21173E-01,A6=-0.23974E-02,A8=0.42242E-03,A10=-0.76417E-06,A12=-0.34430E-05,A14=0.88032E-07
各種データ
焦点距離(f) 4.3(mm)
Fナンバ(Fno) 2.68
半画角(w) 32.7(mm)
像高(最大)(2Y) 5.712(mm)
バックフォーカス(Bf) 0.11(mm)
レンズ全長(TL) 4.74(mm)
ENTP 0(mm)
EXTP -2.65(mm)
H1 -2.42(mm)
H2 -4.19(mm)
各レンズの焦点距離(mm)
第1レンズL1 2.671
第2レンズL2 -7.071
第3レンズL3 20.500
第4レンズL4 -14.472
第5レンズL5 -8.991
ここで、上記各種データのレンズ全長(TL)は、物体距離無限時でのレンズ全長(第1レンズ物体側面から撮像面までの距離)であって、平行平板は、空気換算長として計算されている。ENTPは、入射瞳から第1面までの距離であり、入射瞳=絞りである場合には0となる。EXTPは、最終面(カバーガラス像面側)から射出瞳までの距離であり、H1は、第1面から物体側主点までの距離であり、H2は、最終面(カバーガラス像面側)から像側主点までの距離である。
上記の面データにおいて、面番号は、図5ないし図11に示した各レンズ面に付した符号ri(i=1,2,3,…)の番号iが対応する。番号iに*が付された面は、非球面(非球面形状の屈折光学面または非球面と等価な屈折作用を有する面)であることを示す。
また、“r”は、各面の曲率半径(単位;mm)を、“d”は、無限遠合焦状態(無限距離での合焦状態)での光軸上の各レンズ面の間隔(軸上面間隔、単位;mm)を、“nd”は、各レンズのd線(波長587.56nm)に対する屈折率を、“νd”は、アッベ数を、そして、”ER”は、有効半径(単位;mm)をそれぞれ示している。なお、光学絞りST、平行平面板FTの両面および撮像素子ISの受光面の各面は、平面であるために、それらの曲率半径は、∞(無限大)である。
上記の非球面データは、非球面とされている面(面データにおいて番号iに*が付された面)の2次曲面パラメータ(円錐係数K)と非球面係数Ai(i=4,6,8,10,12,14,16)の値とを示すものである。
各実施例において、非球面の形状は、面頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとする場合に、次式により定義している。
X=(h/R)/[1+(1−(1+K)h/R1/2]+ΣA・h
ただし、Aiは、i次の非球面係数であり、Rは、基準曲率半径であり、そして、Kは、円錐定数である。
なお、請求項、実施形態および各実施例に記載の近軸曲率半径(r)について、実際のレンズ測定の場面において、レンズ中央近傍(より具体的には、レンズ外径に対して10%以内の中央領域)での形状測定値を最小自乗法でフィッティングした際の近似曲率半径を近軸曲率半径であるとみなすことができる。また、例えば2次の非球面係数を使用した場合には、非球面定義式の基準曲率半径に2次の非球面係数も勘案した曲率半径を近軸曲率半径とみなすことができる(例えば参考文献として、松居吉哉著「レンズ設計法」(共立出版株式会社)のP41〜P42を参照)。
そして、上記非球面データにおいて、「En」は、「10のn乗」を意味する。例えば、「E+001」は、「10の+1乗」を意味し、「E-003」は、「10の−3乗」を意味する。
図12ないし図18には、距離無限遠での収差図が示されており、各図の(A)、(B)、(C)、(D)および(E)は、それぞれ、この順に、球面収差(正弦条件)、非点収差、歪曲収差、メリディオナルコマ収差(最大像高Y=2.856)およびメリディオナルコマ収差(像高Y=1.255)を示す。
球面収差の横軸は、焦点位置のずれをmm単位で表しており、その縦軸は、最大入射高で規格化した値で表している。非点収差の横軸は、焦点位置のずれをmm単位で表しており、その縦軸は、像高をmm単位で表している。歪曲収差の横軸は、実際の像高を理想像高に対する割合(%)で表しており、縦軸は、その像高をmm単位で表している。メリディオナルコマ収差の横軸は、入射瞳位置をmm単位で表しており、その縦軸は、横収差である。また、球面収差、非点収差および歪曲収差は、d線(波長587.56nm)を用いた場合の結果である。非点収差の図中、破線は、タンジェンシャル(メリディオナル)面(M)、実線は、サジタル(ラディアル)面(S)における各結果をそれぞれ表している。そして、メリディオナルコマ収差の図中、実線は、d線、破線は、g線、一点鎖線は、C線における各結果をそれぞれ表している。
上記に列挙した各実施例1〜7の撮像光学系1A〜1Gに、上述した条件式(1)〜(7)を当てはめた場合の数値を、それぞれ、表1に示す。
Figure 2014123034
以上、説明したように、上記実施例1〜7における撮像光学系1A〜1Gは、5枚のレンズ構成であって、上述の各条件を満足している結果、従来の光学系より、小型化を図りつつ、明るいFナンバーを実現することができる。そして、上記実施例1〜7における撮像光学系1A〜1Gは、撮像装置21およびデジタル機器3に搭載する上で、特に携帯端末5に搭載する上で小型化が充分に達成され、また、高画素な撮像素子18を採用することができる。
例えば、8Mピクセルや10Mピクセルや16Mピクセル等の約8M〜16Mピクセルのクラス(グレード)の高画素な撮像素子18は、撮像素子18のサイズが一定の場合には画素ピッチが短くなるため(画素面積が狭くなるため)、撮像光学系1A〜1Gは、この画素ピッチに応じた透過光量が必要となるが、上記実施例1〜7における撮像光学系1A〜1Gは、明るいFナンバーが実現されている。したがって、上記実施例1〜7における撮像光学系1A〜1Gは、例えば8M〜16Mピクセルのクラスの撮像素子18に好適に用いられる。
本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
AX 光軸
1、1A〜1G 撮像光学系
3 デジタル機器
5 携帯電話機
11、L1 第1レンズ
12、L2 第2レンズ
13、L3 第3レンズ
14、L4 第4レンズ
15、L5 第5レンズ
17、IS 撮像素子
21 撮像装置

Claims (12)

  1. 光学像を電気的な信号に変換する固体撮像素子の受光面上に前記光学像を結像させるための撮像光学系であって、
    物体側から像側へ順に、
    正の屈折力を有し物体側に凸面を向けた第1レンズと、
    負の屈折力を有し像側に凸面を向けた第2レンズと、
    正の屈折力を有する第3レンズと、
    負の屈折力を有し像側に凹面を向けた第4レンズと、
    負の屈折力を有する第5レンズとからなり、
    下記(1)の条件式を満たすこと
    を特徴とする撮像光学系。
    0.5<f12/f<1.3 ・・・(1)
    ただし、
    f12;第1および第2レンズにおける近軸での合成焦点距離
    f:前記撮像光学系全系の焦点距離
  2. 前記第3レンズは、下記(2)の条件式を満たすこと
    を特徴とする請求項1に記載の撮像光学系。
    1.5<f3/f ・・・(2)
    ただし、
    f3;第3レンズにおける近軸での焦点距離
  3. 前記第2レンズと第3レンズとの間隔は、下記(3)の条件式を満たすこと
    を特徴とする請求項1または請求項2に記載の撮像光学系。
    0.1<d4/f<0.2 ・・・(3)
    ただし、
    d4;第2レンズと第3レンズとの光軸上での間隔
  4. 前記第2レンズは、下記(4)の条件式を満たすこと
    を特徴とする請求項1ないし請求項3のいずれか1項に記載の撮像光学系。
    r3/f<−0.95 ・・・(4)
    ただし、
    r3;第2レンズの物体側面における曲率半径
  5. 前記第2レンズは、下記(5)の条件式を満たすこと
    を特徴とする請求項1ないし請求項4のいずれか1項に記載の撮像光学系。
    r4/f<−10 ・・・(5)
    ただし、
    r4;第2レンズの像側面における曲率半径
  6. 前記第4レンズは、下記(6)の条件式を満たすこと
    を特徴とする請求項1ないし請求項5のいずれか1項に記載の撮像光学系。
    r8/f<0.5 ・・・(6)
    ただし、
    r8;第4レンズの像側面における曲率半径
  7. 前記第4レンズと第5レンズとの間隔は、下記(7)の条件式を満たすこと
    を特徴とする請求項1ないし請求項6のいずれか1項に記載の撮像光学系。
    0.1<d8/f<0.3 ・・・(7)
    ただし、
    d8;第4レンズと第5レンズとの光軸上での間隔
  8. 前記第1レンズの物体側に開口絞りをさらに備えること
    を特徴とする請求項1ないし請求項7のいずれか1項に記載の撮像光学系。
  9. 前記第1ないし第5レンズは、樹脂材料製レンズであること
    を特徴とする請求項1ないし請求項8のいずれか1項に記載の撮像光学系。
  10. 請求項1ないし請求項9のいずれか1項に記載の撮像光学系と、
    光学像を電気的な信号に変換する撮像素子とを備え、
    前記撮像光学系が前記撮像素子の受光面上に物体の光学像を形成可能とされていること
    を特徴とする撮像装置。
  11. 請求項10に記載の撮像装置と、
    前記撮像装置に被写体の静止画撮影および動画撮影の少なくとも一方の撮影を行わせる制御部とを備え、
    前記撮像装置の撮像光学系が、前記撮像素子の撮像面上に前記被写体の光学像を形成可能に組み付けられていること
    を特徴とするデジタル機器。
  12. 携帯端末から成ることを特徴とする請求項11に記載のデジタル機器。
JP2012279415A 2012-12-21 2012-12-21 撮像光学系、撮像装置およびデジタル機器 Pending JP2014123034A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012279415A JP2014123034A (ja) 2012-12-21 2012-12-21 撮像光学系、撮像装置およびデジタル機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012279415A JP2014123034A (ja) 2012-12-21 2012-12-21 撮像光学系、撮像装置およびデジタル機器

Publications (1)

Publication Number Publication Date
JP2014123034A true JP2014123034A (ja) 2014-07-03

Family

ID=51403557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012279415A Pending JP2014123034A (ja) 2012-12-21 2012-12-21 撮像光学系、撮像装置およびデジタル機器

Country Status (1)

Country Link
JP (1) JP2014123034A (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153712A (ja) * 2013-02-06 2014-08-25 Genius Electronic Optical Co 撮像レンズ
JP2014182380A (ja) * 2013-03-19 2014-09-29 Genius Electronic Optical Co 携帯機器の光学撮像レンズ
CN105607227A (zh) * 2014-11-19 2016-05-25 先进光电科技股份有限公司 光学成像系统
JP2016148838A (ja) * 2015-02-13 2016-08-18 玉晶光電股▲ふん▼有限公司 撮像レンズ
TWI553371B (zh) * 2014-11-19 2016-10-11 先進光電科技股份有限公司 光學成像系統(四)
US20160313537A1 (en) * 2015-04-23 2016-10-27 Apple Inc. Camera lens system with five lens components
US9874721B2 (en) 2015-02-09 2018-01-23 Apple Inc. Camera lens system
CN107632367A (zh) * 2016-07-18 2018-01-26 先进光电科技股份有限公司 光学成像系统
CN109459840A (zh) * 2019-01-11 2019-03-12 浙江舜宇光学有限公司 成像镜头
US10274700B2 (en) 2015-05-21 2019-04-30 Apple Inc. Camera lens system
US10353177B2 (en) 2015-02-17 2019-07-16 Largan Precision Co., Ltd. Image capturing lens assembly, image capturing device and electronic device
TWI674449B (zh) * 2018-09-26 2019-10-11 大立光電股份有限公司 攝像光學系統、取像裝置及電子裝置
US11092785B2 (en) 2019-05-17 2021-08-17 Largan Precision Co., Ltd. Optical imaging lens assembly comprising five lenses of +−−+−, +−0+−, +−++−, +−+−−, or +−−−− refractive powers, image capturing unit and electronic device
CN113640961A (zh) * 2017-12-26 2021-11-12 康达智株式会社 摄像镜头
WO2022218557A1 (en) * 2021-04-15 2022-10-20 Photonic Sensors & Algorithms S.l. Telephoto lens assembly and optical lens system for electronic portable devices

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9274314B2 (en) 2013-02-06 2016-03-01 Genius Electronic Optical Co., Ltd. Imaging lens, and portable electronic apparatus including the same
JP2014153712A (ja) * 2013-02-06 2014-08-25 Genius Electronic Optical Co 撮像レンズ
JP2014182380A (ja) * 2013-03-19 2014-09-29 Genius Electronic Optical Co 携帯機器の光学撮像レンズ
US9223117B2 (en) 2013-03-19 2015-12-29 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9599794B2 (en) 2014-11-19 2017-03-21 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
CN105607227A (zh) * 2014-11-19 2016-05-25 先进光电科技股份有限公司 光学成像系统
TWI553371B (zh) * 2014-11-19 2016-10-11 先進光電科技股份有限公司 光學成像系統(四)
US9651758B2 (en) 2014-11-19 2017-05-16 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
US9874721B2 (en) 2015-02-09 2018-01-23 Apple Inc. Camera lens system
US9851540B2 (en) 2015-02-13 2017-12-26 Genius Electronic Optical (Xiamen) Co., Ltd. Imaging lens, and electronic apparatus including the same
JP2016148838A (ja) * 2015-02-13 2016-08-18 玉晶光電股▲ふん▼有限公司 撮像レンズ
US11921262B2 (en) 2015-02-17 2024-03-05 Largan Precision Co., Ltd. Image capturing lens assembly, image capturing device and electronic device
US10353177B2 (en) 2015-02-17 2019-07-16 Largan Precision Co., Ltd. Image capturing lens assembly, image capturing device and electronic device
US11353688B2 (en) 2015-02-17 2022-06-07 Largan Precision Co., Ltd. Image capturing lens assembly, image capturing device and electronic device
US10642004B2 (en) 2015-02-17 2020-05-05 Largan Precision Co., Ltd. Image capturing lens assembly, image capturing device and electronic device
US20160313537A1 (en) * 2015-04-23 2016-10-27 Apple Inc. Camera lens system with five lens components
US9817213B2 (en) * 2015-04-23 2017-11-14 Apple Inc. Camera lens system with five lens components
US10274700B2 (en) 2015-05-21 2019-04-30 Apple Inc. Camera lens system
CN107632367A (zh) * 2016-07-18 2018-01-26 先进光电科技股份有限公司 光学成像系统
CN113640961A (zh) * 2017-12-26 2021-11-12 康达智株式会社 摄像镜头
US10852514B2 (en) 2018-09-26 2020-12-01 Largan Precision Co., Ltd. Photographing optical system, image capturing unit and electronic device
TWI674449B (zh) * 2018-09-26 2019-10-11 大立光電股份有限公司 攝像光學系統、取像裝置及電子裝置
CN109459840A (zh) * 2019-01-11 2019-03-12 浙江舜宇光学有限公司 成像镜头
US11092785B2 (en) 2019-05-17 2021-08-17 Largan Precision Co., Ltd. Optical imaging lens assembly comprising five lenses of +−−+−, +−0+−, +−++−, +−+−−, or +−−−− refractive powers, image capturing unit and electronic device
WO2022218557A1 (en) * 2021-04-15 2022-10-20 Photonic Sensors & Algorithms S.l. Telephoto lens assembly and optical lens system for electronic portable devices

Similar Documents

Publication Publication Date Title
JP5574049B2 (ja) 撮像光学系、撮像装置およびデジタル機器
JP5578275B2 (ja) 撮像光学系、撮像装置およびデジタル機器
JP5370619B1 (ja) 撮像光学系、撮像装置およびデジタル機器
JP5752856B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5735712B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP2014123034A (ja) 撮像光学系、撮像装置およびデジタル機器
TWI485424B (zh) Camera lens
CN205281005U (zh) 摄影透镜以及具备摄影透镜的摄影装置
JP2012203234A (ja) 撮像光学系、撮像装置およびデジタル機器
WO2013058111A1 (ja) 撮像レンズ
CN104704415B (zh) 摄像光学系统、摄像装置以及数字设备
JP2009258286A (ja) 撮像レンズ、撮像ユニット及び携帯端末
CN103890630B (zh) 摄像光学系统、摄像装置以及数字设备
KR20080088413A (ko) 촬상 렌즈, 촬상 장치 및 휴대 단말
US9547158B2 (en) Imaging lens and imaging apparatus equipped with the imaging lens
JP2009282223A (ja) 撮像レンズ、撮像ユニット及び携帯端末
JP6287865B2 (ja) 撮像光学系ならびに撮像装置およびデジタル機器
WO2012160761A1 (ja) 撮像光学系、撮像装置およびデジタル機器