JPWO2012147685A1 - 有機el素子、透光性基板および有機led素子の製造方法 - Google Patents

有機el素子、透光性基板および有機led素子の製造方法 Download PDF

Info

Publication number
JPWO2012147685A1
JPWO2012147685A1 JP2013512350A JP2013512350A JPWO2012147685A1 JP WO2012147685 A1 JPWO2012147685 A1 JP WO2012147685A1 JP 2013512350 A JP2013512350 A JP 2013512350A JP 2013512350 A JP2013512350 A JP 2013512350A JP WO2012147685 A1 JPWO2012147685 A1 JP WO2012147685A1
Authority
JP
Japan
Prior art keywords
layer
refractive index
light scattering
electrode
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013512350A
Other languages
English (en)
Inventor
谷田 正道
正道 谷田
奈央 石橋
奈央 石橋
中村 伸宏
伸宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2012147685A1 publication Critical patent/JPWO2012147685A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/441Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

透明基板、光散乱層、第1の電極、有機発光層、および第2の電極を有する有機LED素子。前記光散乱層は、ガラスからなるベース材と複数の散乱物質とを有し、前記光散乱層は、前記透明基板の屈折率[N’]よりも大きな屈折率[N”]を有し、前記光散乱層と前記第1の電極の間には、第1の層と第2の層とが配置され、前記第1の層は、前記第2の層よりも前記光散乱層に近く、前記第1の層は、溶融ガラス以外の材料で構成され、第1の屈折率N1を有し、前記第2の層は、溶融ガラス以外の材料で構成され、第2の屈折率N2を有し、前記第1の屈折率N1は、前記透明基板の屈折率[N’]よりも大きく、前記第2の屈折率N2は、前記透明基板の屈折率[N’]、前記光散乱層の屈折率[N”]、およびN1よりも大きい。

Description

本発明は、有機EL素子、透光性基板および有機LED素子の製造方法に関する。
有機EL(エレクトロルミネッセント)素子は、ディスプレイ、バックライト、および照明用途等に広く用いられている。
一般的な有機EL素子は、基板上に設置された第1の電極(陽極)と、第2の電極(陰極)と、これらの電極間に設置された有機層とを有する。電極間に電圧を印加すると、それぞれの電極から、有機層にホールおよび電子が注入される。このホールと電子が有機層内で再結合された際に、結合エネルギーが生じ、この結合エネルギーによって有機層中の有機発光材料が励起される。励起した発光材料が基底状態に戻る際に発光が生じるため、これを利用することにより、発光(EL)素子が得られる。
通常、第1の電極、すなわち陽極には、ITO(Indium Tin Oxide、以下、ITOと称する)のような透明薄膜が使用され、第2の電極、すなわち陰極には、アルミニウムおよび銀等の金属薄膜が使用される。
最近では、ITO電極と基板の間に、散乱物質を有する光散乱層を設置することが提案されている(例えば特許文献1)。このような構成では、有機層で生じた発光の一部は、光散乱層中の散乱物質によって散乱されるため、ITO電極や基板内に閉じ込められる光の量(全反射の光量)が少なくなり、有機EL素子の光取り出し効率を高めることができることが開示されている。
国際公開第WO2009/017035号パンフレット
前述のように、光散乱層を含む有機EL素子が提案されている。しかしながら、特許文献1の有機EL素子の光取り出し効率よりも、さらに高い光取り出し効率が求められる場合がある。
本発明は、このような課題に鑑みなされたものであり、本発明では、従来に比べて光取り出し効率が改善された有機EL素子を提供することを目的とする。また、そのような有機EL素子用の透光性基板および有機LED素子の製造方法を提供することを目的とする。
本発明では、
透明基板と、該透明基板上に形成された光散乱層と、該光散乱層上に形成された透明な第1の電極と、該第1の電極上に形成された有機発光層と、該有機発光層上に形成された第2の電極とを有する有機LED素子であって、
前記光散乱層は、ガラスからなるベース材と、該ベース材中に分散された複数の散乱物質とを有し、前記光散乱層は、前記透明基板の屈折率[N’]よりも大きな屈折率[N”]を有し、
前記光散乱層と前記第1の電極の間には、第1の層と第2の層とが配置され、前記第1の層は、前記第2の層よりも前記光散乱層に近く、
前記第1の層は、溶融ガラス以外の材料で構成され、第1の屈折率Nを有し、
前記第2の層は、溶融ガラス以外の材料で構成され、第2の屈折率Nを有し、
前記第1の屈折率Nは、前記透明基板の屈折率[N’]よりも大きく、
前記第2の屈折率Nは、前記透明基板の屈折率[N’]、前記光散乱層の屈折率[N”]、および前記第1の屈折率Nよりも大きいことを特徴とする有機LED素子が提供される。
ここで、本発明による有機LED素子において、前記光散乱層の屈折率[N”]は、前記第1の屈折率Nよりも大きくても良い。
また、本発明による有機LED素子において、前記第1の層および/または第2の層は、金属酸化物で構成されても良い。
さらに、本発明では、
透明基板と、
前記透明基板上に形成された光散乱層と、
前記光散乱層上に形成された第1の層と、
前記第1の層上に形成された第2の層と、
前記第2の層上に形成された透明な第1の電極と、
を有し、
前記光散乱層は、ガラスからなるベース材と、該ベース材中に分散された複数の散乱物質とを有し、前記光散乱層は、前記透明基板の屈折率[N’]よりも大きな屈折率[N”]を有し、
前記第1の層は、溶融ガラス以外の材料で構成され、第1の屈折率Nを有し、
前記第2の層は、溶融ガラス以外の材料で構成され、第2の屈折率Nを有し、
前記第1の屈折率Nは、前記透明基板の屈折率[N’]よりも大きく、
前記第2の屈折率Nは、前記透明基板の屈折率[N’]、前記光散乱層の屈折率[N”]、およびNよりも大きいことを特徴とする透光性基板が提供される。
また、本発明では、
透明基板と、該透明基板上に形成された光散乱層と、該光散乱層上に形成された透明な第1の電極と、該第1の電極上に形成された有機発光層と、該有機発光層上に形成された第2の電極とを有する有機LED素子の製造方法であって、
前記光散乱層と前記第1の電極の間に、第1の層と第2の層とを形成し、
前記第1の層は、第1の屈折率Nを有し、溶融ガラス以外の材料で前記第2の層よりも前記光散乱層に近い位置にウェットコーティングプロセスにより形成され、
前記第2の層は、第2の屈折率Nを有し、溶融ガラス以外の材料で形成され、
前記光散乱層は、ガラスからなるベース材と、該ベース材中に分散された複数の散乱物質とを有し、前記透明基板の屈折率[N’]よりも大きな屈折率[N”]を有し、
前記第1の屈折率Nは、前記透明基板の屈折率[N’]よりも大きく、
前記第2の屈折率Nは、前記透明基板の屈折率[N’]、前記光散乱層の屈折率[N”]、および前記第1の屈折率Nよりも大きいことを特徴とする有機LED素子の製造方法が提供される。
本発明では、従来に比べて光取り出し効率が改善された有機EL素子を提供することができる。また、そのような有機EL素子用の透光性基板および有機LED素子の製造方法を提供することができる。
本発明による有機EL素子の一構成例を概略的に示した断面図である。 本発明による有機EL素子を製造する際の概略的なフロー図である。 光散乱層の上部に各層を構成する際の問題点を説明するための模式図である。 第1の層をウェットコーティングプロセスで形成したときの層形態の一例を模式的に示した図である。 実施例1において、シミュレーションに使用したLED素子の構成を概略的に示した断面図である。 実施例2において、シミュレーションに使用したLED素子の構成を概略的に示した断面図である。
以下、図面を参照して、本発明について詳しく説明する。
図1には、本発明による有機EL素子の断面図の一例を概略的に示す。
図1に示すように、本発明による有機EL素子100は、透明基板110と、光散乱層120と、第1の層130と、第2の層140と、第1の電極(陽極)150と、有機発光層160と、第2の電極(陰極)170とを、この順に積層することにより構成される。図1の例では、有機EL素子100の下側の表面(すなわち透明基板110の露出面)が光取り出し面180となる。
透明基板110は、例えば、ガラス基板またはプラスチック基板で構成される。透明基板110は、屈折率[N’]を有する。
第1の電極150は、例えばITOのような透明金属酸化物薄膜で構成され、厚さは、50nm〜1.0μm程度である。一方、第2の電極170は、例えばアルミニウムや銀のような金属で構成される。
有機発光層150は、通常の場合、発光層の他、電子輸送層、電子注入層、ホール輸送層、ホール注入層など、複数の層で構成される。
光散乱層120は、ある屈折率を有するガラス製のベース材121と、該ベース材121中に分散された、前記ベース材121とは異なる屈折率を有する複数の散乱物質124とで構成される。光散乱層120の厚さは、例えば5μm〜50μmの範囲である。光散乱層120は、入射光を散乱させ、光散乱層120に隣接する層との界面での光の反射を軽減する役割を有する。
光散乱層120は、屈折率[N”]を有する。屈折率[N”]は、透明基板110の屈折率[N’]よりも大きい。
ここで、本発明による有機EL素子は、光散乱層120と第1の電極150との間に、異なる2つの層(第1の層130および第2の層140)を有するという特徴がある。
第1の層130は、溶融ガラス以外の材料で構成され、第1の屈折率Nを有する。また、第2の層140は、溶融ガラス以外の、第1の層130とは別の材料で構成され、第2の屈折率Nを有する。
また、第1の層130の第1の屈折率Nは、透明基板110の屈折率[N’]よりも大きく、第2の層140の第2の屈折率Nは、透明基板110の屈折率[N’]、光散乱層120の屈折率[N”]、および第1の層130の第1の屈折率Nの中で、最も大きいという特徴がある。
なお、本願において、特に規定のない限り、「屈折率」とは、波長588nmのd線における屈折率Nd(複素屈折率の実部)を意味する。
このような特徴を有する第1の層130および第2の層140を、光散乱層120と第1の電極150の間に配置した場合、第2の層のみを配置した場合と比較して、干渉をより好ましい状態にすることが可能となり、その結果散乱層に入射する光の角度依存性がより望ましい状態が得られる。より具体的に説明すると、陰極170と第2の層140の間での多重反射で起こる干渉が緩和されて、散乱層に入射する光の波長の角度依存性が小さくなることで、角度による色調の変化を抑制できる。
このため、本発明による有機EL素子100では、従来に比べて、光取り出し面180からの光取り出し効率をより高めることが可能となる。
また、透明基板110および/または光散乱層120のベース材121がアルカリ金属を含むガラス(例えばソーダライムガラス等)で構成される場合、第1の層130および/または第2の層140は、光散乱層120と第1の電極150との間のバリア層として機能させても良い。すなわち、第1の層130および第2の層140が存在しない従来の有機EL素子では、光散乱層中のアルカリ金属は、有機EL素子の使用中に、比較的容易に第1の電極の側に移動する。このようなアルカリ金属の移動は、第1の電極の特性(例えば、透明性、導電性など)を劣化させる要因となる。しかしながら、本発明による有機EL素子100では、第1の層130および/または第2の層140をバリア層として機能させた場合、光散乱層120から第1の電極150へのアルカリ金属の移動を抑制することが可能となる。
次に、本発明による有機EL素子を構成する各層の詳細について説明する。
(透明基板110)
透明基板110は、可視光に対する透過率が高い材料で構成される。透明基板110は、例えば、ガラス基板またはプラスチック基板であっても良い。
透明基板110の屈折率[N’]は、例えば1.5〜1.8の範囲であっても良い。
ガラス基板の材料としては、アルカリガラス、無アルカリガラスまたは石英ガラスなどの無機ガラスが挙げられる。また、プラスチック基板の材料としては、ポリエステル、ポリカーボネート、ポリエーテル、ポリスルホン、ポリエーテルスルホン、ポリビニルアルコールならびにポリフッ化ビニリデンおよびポリフッ化ビニルなどのフッ素含有ポリマーが挙げられる。
透明基板110の厚さは、特に限られないが、例えば、0.1mm〜2.0mmの範囲であっても良い。強度および重量を考慮すると、透明基板110の厚さは、0.5mm〜1.4mmであることが好ましい。
(光散乱層120)
光散乱層120は、ベース材121と、該ベース材121中に分散された複数の散乱物質124とを有する。ベース材121は、ある屈折率を有し、散乱物質124は、ベース材とは異なる屈折率を有する。
前述のように、光散乱層120の屈折率[N”]は、透明基板110の屈折率[N’]よりも大きいという特徴を有する。光散乱層120の屈折率[N”]は、例えば1.6〜2.2の範囲である。
散乱物質124は、例えば、気泡、析出結晶、ベース材とは異なる材料粒子、分相ガラス等で構成される。分相ガラスとは、2種類以上のガラス相により構成されるガラスをいう。
ベース材121の屈折率と散乱物質124の屈折率の差は、大きい方が良く、このためには、ベース材121として高屈折率ガラスを使用し、散乱物質124として気泡を使用することが好ましい。
ベース材121用の高屈折率のガラスのため、ネットワークフォーマとして、P、SiO、B、GeO、およびTeOのうちの一種類または二種類以上の成分を選定し、高屈折率成分として、TiO、Nb、WO、Bi、La、Gd、Y、ZrO、ZnO、BaO、PbO、およびSbのうちの一種類または二種類以上の成分を選定しても良い。さらに、ガラスの特性を調整するため、アルカリ酸化物、アルカリ土類酸化物、フッ化物などを、屈折率に影響を及ぼさない範囲で、添加しても良い。
従って、ベース材121を構成するガラス系としては、例えば、B−ZnO−La系、P−B−R’O−R”O−TiO−Nb−WO−Bi系、TeO−ZnO系、B−Bi系、SiO−Bi系、SiO−ZnO系、B−ZnO系、P−ZnO系などが挙げられる。ここで、R’はアルカリ金属元素、R”はアルカリ土類金属元素を示す。なお、以上の材料系は、一例に過ぎず、上記条件を満たすような構成であれば、使用材料は、特に限られない。
ベース材121に、着色剤を添加することにより、発光の色味を変化させることもできる。着色剤としては、遷移金属酸化物、希土類金属酸化物、および金属コロイドなどを、単独でまたは組み合わせて使うことができる。
本発明の有機EL素子100では、ベース材121または散乱物質124に、蛍光性物質を使用することができる。この場合、有機発光層160からの発光に対して波長変換を行い、色味を変化させることが可能となる。また、この場合、有機EL素子の発光色を減らすことができ、発光された光は、散乱されて出射されるので、色味の角度依存性および/または色味の経時変化を抑制することができる。このような構成は、白色発光が必要となるバックライトや照明用途において好適である。
(第1の層130)
前述のように、第1の層130の屈折率Nは、透明基板110の屈折率[N’]よりも大きいという特徴を有する。第1の層130の屈折率Nは、例えば1.55〜2.3の範囲である。なお、第1の層130の屈折率Nは、光散乱層の屈折率[N”]より小さくても、大きくても良い。ただし、第1の層130の屈折率Nは、第2の層140の屈折率Nよりも小さくする必要がある。
第1の層130は、溶融ガラス以外の材料で構成される。第1の層130は、例えば、酸化チタン、酸化ニオブ、酸化ジルコニウム、および酸化タンタルのような金属酸化物で構成されても良い。
第1の層130の形成方法は、特に限られない。第1の層130は、例えばスパッタリング法、PVD法、およびCVD法のようなドライコーティングプロセス、または例えば浸漬法、およびゾルゲル法のようなウェットコーティングプロセスのいずれの方法で形成しても良い。
第1の層130の膜厚は、特に限られない。第1の層130の膜厚は、例えば、100nm〜500μmの範囲であっても良い。特に、第1の層130をウェットコーティングプロセスで形成した場合、処理を繰り返すことにより、比較的厚い膜も、容易に形成することができる。
(第2の層140)
前述のように、第2の層140の屈折率Nは、透明基板110の屈折率[N’]、光散乱層の屈折率[N”]、および第1の層130の屈折率Nよりも大きいという特徴を有する。第2の層140の屈折率Nは、例えば1.65〜2.70の範囲である。
第2の層140は、溶融ガラス以外の材料で構成される。第2の層140は、例えば、酸化物、窒化物、または酸窒化物で構成されても良い。例えば、第2の層140は、チタン系酸化物(TiO)、チタン系窒化物(TiN)、またはチタン系複合酸化物(TiZr)等で構成されても良い。ただし、第2の層140は、第1の層130とは異なる材料で構成される。
なお、第2の層140の材質として、第1の電極150のエッチング処理に使用されるエッチング液に耐性のある材質を使用した場合、第1の電極のパターン化処理の際に、第2の層140以下の層、すなわち、第1の層130および光散乱層120が損傷を受けるという問題を抑制することができる。
第2の層140の形成方法は、特に限られない。第2の層140は、例えばスパッタリング法、PVD法、およびCVD法のようなドライコーティングプロセス、または例えば浸漬法、およびゾルゲル法のようなウェットコーティングプロセスのいずれの方法で形成しても良い。
(第1の電極140)
第1の電極150には、有機発光層160で生じた光を外部に取り出すため、80%以上の透光性が要求される。また、多くの正孔を注入するため、仕事関数が高いことが要求される。
第1の電極150には、例えば、ITO、SnO、ZnO、IZO(Indium Zinc Oxide)、AZO(ZnO−Al:アルミニウムがドーピングされた亜鉛酸化物)、GZO(ZnO−Ga:ガリウムがドーピングされた亜鉛酸化物)、NbドープTiO、およびTaドープTiOなどの材料が用いられる。
第1の電極150の厚さは、100nm以上であることが好ましい。
第1の電極150の屈折率は、1.9〜2.2の範囲である。例えば、第1の電極150としてITOを使用した場合、キャリア濃度を増加させることにより、第1の電極150の屈折率を低下させることができる。市販のITOでは、SnOが10wt%含まれるものが標準となっているが、Sn濃度をさらに増加させることにより、ITOの屈折率を下げることができる。ただし、Sn濃度の増加により、キャリア濃度は増加するが、移動度および透過率は、低下する。従って、全体のバランスを考慮して、Sn量を決める必要がある。
(有機発光層160)
有機発光層160は、発光機能を有する層であり、通常の場合、ホール注入層と、ホール輸送層と、発光層と、電子輸送層と、電子注入層とにより構成される。ただし、有機発光層150は、発光層を有していれば、必ずしも他の層の全てを有する必要はないことは、当業者には明らかである。なお、通常の場合、有機発光層160の屈折率は、1.7〜1.8の範囲である。
ホール注入層は、第1の電極150からのホール注入の障壁を低くするため、イオン化ポテンシャルの差が小さいものが好ましい。電極からホール注入層への電荷の注入効率が高まると、有機EL素子100の駆動電圧が下がり、電荷の注入効率が高まる。
ホール注入層の材料としては、高分子材料または低分子材料が使用される。高分子材料の中では、ポリスチレンスルフォン酸(PSS)がドープされたポリエチレンジオキシチオフェン(PEDOT:PSS)が良く使用され、低分子材料の中では、フタロシアニン系の銅フタロシアニン(CuPc)が広く用いられる。
ホール輸送層は、前述のホール注入層から注入されたホールを発光層に輸送する役割をする。ホール輸送層には、例えば、トリフェニルアミン誘導体、N,N’−ビス(1−ナフチル)−N,N’−ジフェニル−1,1’−ビフェニル−4,4’−ジアミン(NPD)、N,N’−ジフェニル−N,N’−ビス[N−フェニル−N−(2−ナフチル)−4’−アミノビフェニル−4−イル] −1,1’−ビフェニル−4,4’−ジアミン(NPTE)、1,1’−ビス[(ジ−4−トリルアミノ)フェニル]シクロヘキサン(HTM2)、およびN,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1’−ジフェニル−4,4’−ジアミン(TPD)などが用いられる。
ホール輸送層の厚さは、例えば10nm〜150nmの範囲である。ホール輸送層の厚さが薄いほど、有機EL素子を低電圧化できるが、電極間短絡の問題から、通常は、10nm〜150nmの範囲である。
発光層は、注入された電子とホールが再結合する場を提供する役割を有する。有機発光材料としては、低分子系または高分子系のものが使用される。
発光層には、例えば、トリス(8−キノリノラート)アルミニウム錯体(Alq3)、ビス(8−ヒドロキシ)キナルジンアルミニウムフェノキサイド(Alq’2OPh)、ビス(8−ヒドロキシ)キナルジンアルミニウム−2,5−ジメチルフェノキサイド(BAlq)、モノ(2,2,6,6−テトラメチル−3,5−ヘプタンジオナート)リチウム錯体(Liq)、モノ(8−キノリノラート)ナトリウム錯体(Naq)、モノ(2,2,6,6−テトラメチル−3,5−ヘプタンジオナート)リチウム錯体、モノ(2,2,6,6−テトラメチル−3,5−ヘプタンジオナート)ナトリウム錯体およびビス(8−キノリノラート)カルシウム錯体(Caq2)などのキノリン誘導体の金属錯体、テトラフェニルブタジエン、フェニルキナクドリン(QD)、アントラセン、ペリレン、並びにコロネンなどの蛍光性物質が挙げられる。
ホスト材料としては、キノリノラート錯体を使用しても良く、特に、8−キノリノールおよびその誘導体を配位子としたアルミニウム錯体が使用されても良い。
電子輸送層は、電極から注入された電子を輸送する役割をする。電子輸送層には、例えば、キノリノールアルミニウム錯体(Alq3)、オキサジアゾール誘導体(例えば、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール(END)、および2−(4−t−ブチルフェニル) −5−(4−ビフェニル))−1,3,4−オキサジアゾール(PBD)など)、トリアゾール誘導体、バソフェナントロリン誘導体、およびシロール誘導体などが用いられる。
電子注入層は、例えば、第2の電極170との界面に、リチウム(Li)、セシウム(Cs)等のアルカリ金属をドープした層を設けることにより構成される。
(第2の電極170)
第2の電極170には、仕事関数の小さな金属またはその合金が用いられる。第2の電極170は、例えば、アルカリ金属、アルカリ土類金属、および周期表第3属の金属などであっても良い。第2の電極170には、例えば、アルミニウム(Al)、マグネシウム(Mg)、またはこれらの合金などが用いられる。
また、第2の電極170には、アルミニウム(Al)、マグネシウム銀(MgAg)の共蒸着膜、フッ化リチウム(LiF)または酸化リチウム(LiO)の薄膜上に、アルミニウム(Al)を蒸着した積層電極が用いられても良い。さらに、カルシウム(Ca)またはバリウム(Ba)と、アルミニウム(Al)との積層膜が用いられても良い。
(本発明による有機EL素子の製造方法)
次に、図2を参照して、本発明による有機EL素子の製造方法の一例について説明する。図2には、本発明による有機EL素子を製造する際の概略的なフロー図を示す。
図2に示すように、本発明による有機EL素子の製造方法は、透明基板上に光散乱層を形成するステップ(ステップS110)と、前記光散乱層上に、第1の層を設置するステップ(ステップS120)と、前記第1の層上に、第2の層を設置するステップ(ステップS130)と、前記第2の層上に、第1の電極を設置するステップ(ステップS140)と、前記第1の電極上に、有機発光層を設置するステップ(ステップS150)と、前記有機発光層上に、第2の電極を設置するステップ(ステップS160)と、を有する。以下、各ステップについて詳しく説明する。
(ステップS110)
まず、透明基板が準備される。前述のように、通常、透明基板には、ガラス基板やプラスチック基板が用いられる。
次に、透明基板上に、ガラス製のベース材中に散乱物質が分散された光散乱層が形成される。光散乱層の形成方法は、特に限られないが、ここでは、特に、「フリットペースト法」により、光散乱層を形成する方法について説明する。ただし、その他の方法で光散乱層を形成しても良いことは、当業者には明らかである。
フリットペースト法とは、フリットペーストと呼ばれるガラス材料を含むペーストを調製し(調製工程)、このフリットペーストを被設置基板の表面に塗布して、パターン化し(パターン形成工程)、さらにフリットペーストを焼成すること(焼成工程)により、被設置基板の表面に、所望のガラス製の膜を形成する方法である。以下、各工程について簡単に説明する。
(調製工程)
まず、ガラス粉末、樹脂、および溶剤等を含むフリットペーストが調製される。
ガラス粉末は、最終的に光散乱層のベース材を形成する材料で構成される。ガラス粉末の組成は、所望の散乱特性が得られ、フリットペースト化して焼成することが可能なものであれば特に限られない。ガラス粉末の組成は、例えば、Pを20〜30mol%、Bを3〜14mol%、Biを10〜20mol%、TiOを3〜15mol%、Nbを10〜20mol%、WOを5〜15mol%含み、LiOとNaOとKOの総量が10〜20mol%であり、以上の成分の総量が、90mol%以上のものであっても良い。また、SiOは0〜30mol%、Bは10〜60mol%、ZnOは0〜40mol%、Biは0〜40mol%、Pは0〜40mol%、アルカリ金属酸化物は0〜20mol%であり、以上の成分の総量が、90mol%以上のものであっても良い。ガラス粉末の粒径は、例えば、1μm〜100μmの範囲である。
なお、最終的に得られる光散乱層の熱膨張特性を制御するため、ガラス粉末には、所定量のフィラーを添加しても良い。フィラーには、例えば、ジルコン、シリカ、またはアルミナなどの粒子が使用され、粒径は、通常、0.1μm〜20μmの範囲である。
樹脂には、例えば、エチルセルロース、ニトロセルロース、アクリル樹脂、酢酸ビニル、ブチラール樹脂、メラミン樹脂、アルキッド樹脂、およびロジン樹脂などが用いられる。主剤として、エチルセルロースおよびニトロセルロースを使用しても良い。なお、ブチラール樹脂、メラミン樹脂、アルキッド樹脂、およびロジン樹脂を添加すると、フリットペースト塗布膜の強度が向上する。
溶剤は、樹脂を溶解し、粘度を調整する役割を有する。溶剤には、例えば、エーテル系溶剤(ブチルカルビトール(BC)、ブチルカルビトールアセテート(BCA)、ジエチレングリコールジ−n−ブチルエーテル、ジプロピレングリコールブチルエーテル、トリプロピレングリコールブチルエーテル、酢酸ブチルセロソルブ)、アルコール系溶剤(α−テルピネオール、パインオイル、ダワノール)、エステル系溶剤(2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート)、フタル酸エステル系溶剤(DBP(ジブチルフタレート)、DMP(ジメチルフタレート)、DOP(ジオクチルフタレート))がある。主に用いられているのは、α−テルピネオールや2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート)である。なお、DBP(ジブチルフタレート)、DMP(ジメチルフタレート)、DOP(ジオクチルフタレート)は、可塑剤としても機能する。
その他、フリットペーストには、粘度の調整やフリット分散促進のため、界面活性剤を添加しても良い。また、表面改質のため、シランカップリング剤を使用しても良い。
次に、これらのガラス粉末、樹脂、および溶剤等を含む原料を混合し、ガラス原料が均一に分散されたフリットペーストを調製する。
(パターン形成工程)
次に、前述の方法で調製したフリットペーストを、透明基板上に塗布し、パターン化する。塗布の方法およびパターン化の方法は、特に限られない。例えば、スクリーン印刷機を用いて、透明基板上にフリットペーストをパターン印刷しても良い。あるいは、ドクターブレード印刷法またはダイコート印刷法を利用しても良い。
その後、フリットペースト膜は、乾燥される。
(焼成工程)
次に、フリットペースト膜が焼成される。通常、焼成は、2段階のステップで行われる。第1のステップでは、フリットペースト膜中の樹脂が分解、消失され、第2のステップでは、ガラス粉末が焼結、軟化される。
第1のステップは、大気雰囲気下で、フリットペースト膜を200℃〜400℃の温度範囲に保持することにより行われる。ただし、処理温度は、フリットペーストに含まれる樹脂の材料によって変化する。例えば、樹脂がエチルセルロースの場合は、処理温度は、350℃〜400℃程度であり、樹脂がニトロセルロースの場合は、処理温度は、200℃〜300℃程度であっても良い。なお処理時間は、通常、30分から1時間程度である。
第2のステップは、大気雰囲気下で、フリットペースト膜を、含まれるガラス粉末の軟化温度±30℃の温度範囲に保持することにより行われる。処理温度は、例えば、450℃〜600℃の範囲である。また、処理時間は、特に限られないが、例えば、30分〜1時間である。
第2のステップ後に、ガラス粉末が焼結、軟化して、光散乱層のベース材が形成される。また、フリットペースト膜中に内在する気泡によって、ベース材中に均一に分散された散乱物質が得られる。
その後、透明基板を冷却することにより、側面部分が上面から前記底面に向かって、直角よりも緩やかな角度で傾斜した表面を有する光散乱層が形成される。
最終的に得られる光散乱層の厚さは、5μm〜50μmの範囲であっても良い。
(ステップS120)
次に、前記工程で得られた光散乱層上に、第1の層が設置される。
第1の層の設置方法は、特に限られず、例えば、ドライコーティングプロセスまたはウェットコーティングプロセスを利用しても良い。
ただし、第1の層は、ウェットコーティングプロセスで形成することが好ましい。以下、その理由を説明する。
一般に、前述のような工程で得られた光散乱層の表面には、しばしば、ガラス原料などに含まれる異物が残留する場合がある。異物は、大きいものでは、直径10μm程度の寸法を有する。
光散乱層の表面に、このような異物が存在すると、その後の第2の層、第1の電極、有機発光層、および第2の電極の成膜工程において、各層の付きまわりが悪くなるおそれがある。
図3を参照して、この問題をより詳しく説明する。なお、図3では、明確化のため、第1の層130および第2の層140を省略した単純化された層構成を用いて、生じ得る問題を説明する。
図3(a)に示すように、光散乱層120の表面129には、異物181が存在する。異物181は、第1の側面185および第2の側面186を有する。第1の側面185は、上側から下側に向かって、異物181の粒径が減少するように形成されている。同様に、第2の側面186は、上側から下側に向かって、異物181の粒径が減少するように形成される場合がある。
この状態で、第1の電極150を成膜するため、成膜物質を光散乱層120の表面129に堆積させた場合、図3(b)に示すように、成膜物質は、異物181の上部に堆積して、層部分151aを形成するとともに、光散乱層120の表面129の上部に堆積して、層部分151bおよび151cを形成する。
ここで、成膜物質は、異物181の第1の側面185の存在により、光散乱層120の表面129の領域S1には、堆積されにくくなる。このため、層部分151bは、図3(b)に示すように、光散乱層120の表面129の領域S1を完全には覆わない形態で形成される。同様に、成膜物質は、異物181の第2の側面186の存在により、光散乱層120の表面129の領域S2には、堆積されにくくなる。このため、層部分151cは、図3(b)に示すように、光散乱層120の表面129の領域S2を完全には覆わない形態で形成される。
次に、有機発光層160を成膜するため、成膜物質を第1の電極150の上部に堆積させた場合、図3(c)に示すように、成膜物質は、第1の電極の層部分151a、151b、および151cのそれぞれの上部に堆積される。その結果、有機発光層160の層部分161a、161b、および161cが形成される。
なお、この場合も、異物181のため、層部分161bおよび161cは、光散乱層120の表面129の領域S1およびS2の上方には、形成されにくくなる。特に、有機発光層160の層部分161aは、第1の電極150の層部分151aを完全に覆い、層部分151aの側部にも延在するような形態で形成される傾向にある。そしてこの層部分161aが、有機発光層160の成膜物質を堆積させる際に陰となるため、層部分161bおよび161cの形成領域は、第1の電極150の層部分151b、151cに比べて、より狭小化される。
次に、第2の電極170を成膜するため、成膜物質を有機発光層160の上部に堆積させた場合、図3(d)に示すように、成膜物質は、有機発光層160の層部分161a、161b、および161cのそれぞれの上部に堆積される。その結果、第2の電極170の層部分171a、171b、および171cが形成される。
この場合も、異物181のため、層部分171bおよび171cは、光散乱層120の表面129の領域S1およびS2の上方には、形成されにくくなる。特に、第2の電極170の層部分171aは、有機発光層160の層部分161aを完全に覆い、層部分161aの側部にも延在するような形態で形成される傾向にある。そしてこの層部分171aが、第2の電極170の成膜物質を堆積させる際に陰となるため、層部分171bおよび171cの形成領域は、有機発光層160の層部分161b、161cに比べて、より狭小化される。
このような層構成の場合、図3(d)の丸印Aに示す箇所において、第1の電極150の層部分151bと、第2の電極170の層部分171bとが接触する危険性が高くなるという問題が生じる。また、図3(d)の丸印Bに示す箇所においても、第1の電極150の層部分151aと、第2の電極170の層部分171cとが接触する危険性が高くなるという問題が生じる。
このように、光散乱層120上の異物181の存在は、その後各層の成膜工程において、各層の付きまわりを悪くするおそれがある。また、この影響が顕著になると、2つの電極同士が短絡してしまうという問題が生じ得る。さらに、このような短絡が生じた場合、最終的に得られる有機LED素子に、所望の特性が得られなくなってしまう。
しかしながら、第1の層130を、ウェットコーティングプロセスで形成した場合、仮に、光散乱層120上に異物が存在する場合であっても、以降の工程で成膜される、各層の状態を適正化させることができる。
これは、ウェットコーティングプロセスでは、スパッタリング法のようなドライコーティングプロセスとは異なり、異物181によって陰となる領域S1およびS2にも、成膜物質を十分に浸透させることができるためである。
図4には、散乱層120の表面129に異物181が存在する場合に、第1の層130をウェットコーティングプロセスで形成したときの層形態の一例を模式的に示す。
図4に示すように、散乱層120の表面129には、前述の図3に示した形態の異物181が存在している。このため、散乱層120の表面129には、異物181の第1および第2の側面185、186によって、陰となる領域S1およびS2が存在する。
しかしながら、図4では、第1の層130がウェットコーティングプロセスで形成される。この場合、第1の層130を、散乱層120の表面129の上部に、異物181を覆い、さらに、散乱層120の表面129の領域S1およびS2を覆うようにして形成することができる。
このような第1の層130の上部に、第2の層140〜第2の電極160を順次形成した場合、各層は、連続的で比較的平滑な形態に構成することができる。
従って、第1の層130の存在により、前述のような異物181の存在によって生じ得る、各層の付きまわりの問題、特に第1および第2の電極150、170の短絡の危険性を有意に抑制することが可能となる。
以下、ウェットコーティングプロセスの一例として、有機金属溶液と有機金属粒子を含むゾルゲル液を用いて、第1の層を形成する方法について説明する。ただし、これ以外のウェットコーティングプロセスで、第1の層を形成しても良い。
有機金属溶液と有機金属粒子を含むゾルゲル液を使用して第1の層を形成する場合、光散乱層上にゾルゲル液を塗布する工程(塗布工程)と、塗布されたゾルゲル層を乾燥する工程(乾燥工程)と、乾燥されたゾルゲル層を熱処理する工程(熱処理工程)とを経て、第1の層が形成される。以下、各工程について簡単に説明する。
(塗布工程)
まず、光散乱層上にゾルゲル液が塗布される。ゾルゲル液は、有機金属溶液と有機金属粒子を含む。
例えば、有機金属溶液は、チタン、ニオブ、ジルコニウム、タンタル、および/もしくはシリコンのアルコキシドまたは有機錯体である。
有機金属粒子は、例えば、有機チタン、有機ニオブ、有機ジルコニウム、および/もしくは有機タンタルのオリゴマーまたは粒子を含んでも良い。また、ゾルゲル液の溶媒は、特に限られず、溶媒として、水および/または有機溶剤が使用されても良い。
有機金属溶液は、以下の具体例に限定はされないが、例えば、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラノルマルプロポキシド、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンテトライソブトキシド、チタンジイソプロポキシジノルマルブトキド、チタンジターシャリーブトキシジイソプロポキシド、チタンテトラターシャリーブトキシド、チタンテトラペントキシド、チタンテトラヘキソキシド、チタンテトラヘプトキシド、チタンテトライソオクチルオキシド、テトラステアリルアルコキシチタネートなどのチタンアルコキシド、チタンテトラシクロヘキソキシドなどのチタンテトラシクロアルキルオキシド、チタンテトラフェノキシドなどのチタンアリールオキシド、ヒドロキシチタンステアレートなどのチタンアシレート、ジプロポキシチタンビス(アセチルアセトネート)、チタンテトラアセチルアセトネート、チタンジ-2-エチルヘキソキシビス(2-エチル-3-ヒドロキシヘキソキシド)、チタンジイソプロポキシビス(エチルアセトアセテート)、チタンジイソプロポキシビス(トリエタノールアミネート)、チタンラクテートアンモニウム塩、チタンラクテートなどのチタンキレート、ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトラノルマルブトキシドなどのアルコキシジルコニウム、ジルコニウムトリブトキシモノステアレート、塩化ジルコニウム化合物やアミノカルボン酸ジルコニウムなどのジルコニウムアシレート、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムジブトキシビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトネートなどのジルコニウムキレート、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3−(グリシジロキシ)プロピルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-3-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、ヘキシルトリエトキシシラン、ビニルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-ウレイドプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、テトラノルマルプロポキシシラン、テトライソプロポキシシラン、テトラノルマルブトキシシラン、テトライソブトキシシラン、ジイソプロポキシジノルマルブトキシシラン、ジターシャリーブトキシジイソプロポキシシラン、テトラターシャリーブトキシシラン、テトラペントキシシラン、テトラヘキソキシシラン、テトラヘプトキシシラン、テトライソオクチルオキシシラン、テトラステアリルアルコキシシランなどのアルコキシシラン類、ヘキサメチルジシラザン等のシラザン類とアルコール、エーテル、ケトン、炭化水素類の溶剤で構成されるものが例示される。
これら有機金属である、チタン、ニオブ、ジルコニウム、タンタル、シリコンのアルコキシドやキレート化合物類は、縮合させることによって、チタン、ニオブ、ジルコニウム、タンタル、シリコン化合物オリゴマーを用いることがより好ましい。縮合させる方法は特に限定はないが、水をアルコール溶液中で反応させることが好ましい。縮合させることにより、製膜時のクラックを抑制することができ、厚膜を形成することができる。また、特に、有機シラン化合物を混合することにより、製膜時のクラックを抑制することができ、厚膜を形成することができる。また、膜の屈折率を調整することができる。
ゾルゲル液を塗布する方法は、特に限られない。ゾルゲル液は、一般的な塗膜形成装置(アプリケータ等)を使用して、光散乱層上に塗布しても良い。
(乾燥工程)
次に、光散乱層上に塗布されたゾルゲル液が乾燥処理され、ゾルゲル層が形成される。乾燥条件は、特に限られない。乾燥は、例えば、ゾルゲル液が塗布された光散乱層付き透明基板を、80℃〜120℃の温度で、1分〜1時間程度保持することにより、実施しても良い。
(熱処理工程)
次に、乾燥処理されたゾルゲル層が高温に保持される。これにより、ゾルゲル層中の溶媒が完全に蒸発、分解、および/または焼失するとともに、ゾルゲル層中の有機金属化合物が酸化および結合され、第1の層が形成される。
熱処理の条件は、特に限られない。例えば、保持温度は、450℃〜550℃の範囲であり、保持時間は、10分〜24時間の範囲であっても良い。
このような方法で、第1の層130を形成した場合、仮に光散乱層上に、異物が存在していたとしても、ゾルゲル液は、光散乱層上の、異物によって陰になる領域にも浸透する。このため、以上の工程により、最終的に、前述の図4に示したような、光散乱層および異物を全体的に覆う、連続的な第1の層を形成することができる。
以上の工程により、第1の層が形成される。
(ステップS130)
次に、前記工程で得られた第1の層上に、第2の層が設置される。第2の層の設置方法は、特に限られず、例えば、スパッタ法、蒸着法、および気相成膜法等の成膜法を利用しても良い。
第2の層の設置方法は、特に限られない。第2の層は、例えばスパッタリング法、蒸着法、および気相成膜法(PVD法およびCVD法)のようなドライコーティングプロセスで設置しても良い。
(ステップS140)
次に、前記工程で得られた第2の層上に、第1の電極(陽極)が設置される。
第1の電極の設置方法は、特に限られず、例えば、スパッタ法、蒸着法、および気相成膜法等の成膜法を利用しても良い。また、第1の電極は、パターン化しても良い。
前述のように、第1の電極の材料は、ITO等であっても良い。また、第1の電極の厚さは、特に限られず、第1の電極の厚さは、例えば50nm〜1.0μmの範囲であっても良い。
なお、ここまでの工程で得られた、透明基板、光散乱層、第1の層、第2の層、および第1の電極を有する積層体は、「透光性基板」と呼ばれる。次工程で設置される有機発光層の仕様は、最終的に得られる有機EL素子の適用用途によって、様々に変化する。従って、慣用的には、この「透光性基板」は、この状態のまま、中間製品として市場に流通される場合も多く、これ以降の工程が省略される場合も多々ある。
(ステップS150)
有機EL素子を製造する場合は、次に、第1の電極を覆うように、有機発光層が設置される。有機発光層の設置方法は、特に限られず、例えば、蒸着法および/または塗布法を使用しても良い。
(ステップS160)
次に、有機発光層上に第2の電極が設置される。第2の電極の設置方法は、特に限られず、例えば、蒸着法、スパッタ法、気相成膜法等を使用しても良い。
以上の工程により、図1に示したような有機EL素子100が製造される。
ただし、前述の有機EL素子の製造方法は、一例であって、その他の方法で有機EL素子を製造しても良いことは、当業者には明らかである。
以下、本発明の実施例について説明する。
(実施例1)
シミュレーションにより、本発明によるLED素子の光取り出し特性を評価した。
図5には、シミュレーションに使用したLED素子の構成を示す。
図5に示すように、この実施例1に使用したLED素子500は、透明基板510と、光散乱層520と、第1の層530と、第2の層540と、第1の電極550と、有機発光層560と、第2の電極570とをこの順に積層して構成される。このLED素子500は、赤色の発光素子の一例である。
透明基板510は、ソーダライムガラスとした。また、光散乱層520は、molパーセント表示で、Pを23.9%、Bを12.4%、LiOを5.2%、Biを15.6%、Nbを16.4%、ZnOを21.6%、およびZrOを4.9%含有するガラス製のベース材で構成されているものと仮定した。なお、ここでは、透明基板510および光散乱層520は、光が最終的に出射する媒質として考えれば良いので、厚さは、0と仮定した。
第1の層520は、酸化チタン(TiO)とし、厚さは、300nmとした。
第2の層530は、チタンジルコニウム複合酸化物(TiZr)とし、厚さは、10nm〜200nmの範囲で可変とした。
第1の電極550は、第1層551と第2層552の2層構造とし、いずれもITO製とした。また、厚さはいずれも75nmとした。なお、第1の電極550を2層構造としたのは、実際のLED素子において、ITO電極は、上層側と底部側で屈折率が異なることが予想されるためである。
有機発光層560は、ホール輸送層561、発光層562、電子輸送層563、電子注入層564の4層構造であると仮定した。
ホール輸送層561は、厚さが10nm〜200nmの間で可変のα−NPD(N,N’−Di(1−naphthyl)−N,N’−diphenylbenzidine)とした。発光層562は、厚さが20nmで、Alq3と赤の色素(DCJTB)で構成されていると仮定した。電子輸送層563は、厚さが10nm〜200nmの間で可変のAlq3製とした。電子注入層564は、厚さが0.5nmのLiF製とした。
第2の電極570は、厚さが80nmのアルミニウム層であると仮定した。
表1には、シミュレーションに使用した各層のg線(波長436nm)、F線(波長486nm)、d線(波長588nm)、およびC線(波長656nm)における、それぞれの屈折率n(複素屈折率の実部)および消衰係数k(複素屈折率の虚部)の値をまとめて示す。なお、これらの値は、エリプソメトリー法により測定した結果である。
Figure 2012147685

図5に示した層構成のLED素子500において、波長400nm〜800nmの範囲で、透明基板510側から出力される光の放射輝度(W/Sr・m)をシミュレーション計算した。なお、シミュレーションの際には、可変の厚さを有する層については、層の厚さを変数に加え、素子に垂直方向に出射する光の最大の放射輝度が得られるときの厚さの組み合わせを算出した。実際には、散乱層に入射した光は、散乱されたり、散乱層とガラス基板の界面で反射したりするので、基板から垂直方向に取り出される光の輝度と、散乱層に垂直入射する光の輝度は一致しないが、散乱層中に垂直に入射した光の輝度が高ければ、最終的に基板から大気に垂直に出射する光の輝度も高くなると考えられる。屈折率の高いガラス散乱層付き基板上に素子を形成した場合、出射光の角度依存性はCosθ則に従うので、基板から垂直方向に出射される光の輝度が高ければ、出射光全体の光束量も多いと推定することができる。
また、シミュレーションには、FLUXiM社製のSETFOS(販売元:サイバネットシステム社)を使用した。
(結果)
シミュレーションの結果を、以下の表2の「ケース3」の欄に示す。
Figure 2012147685
表2には、比較のため、図5において、第1の層530および第2の層540を有さない場合(ケース1)、ならびに第2の層540は有するが、第1の層530は有さない場合(ケース2)の素子から垂直方向に出射する光の放射輝度を同時に示した。また、各ケースの「倍率」の欄には、ケース1で得られた放射輝度(W/Sr・m)を基準としたときの、各ケースの放射輝度の倍率を示した。
さらに、表2には、各ケースにおいて最大の放射輝度が得られる際の、各層の膜厚もまとめて示した。
表2から、第1および第2の層530、540を設置したケース3では、第1および第2の層530、540を有さないケース1に比べて、放射輝度が約1.3倍向上していることがわかる。このように、第1および第2の層530、540を設置することにより、透明基板510側から出力される光の放射輝度(W/Sr・m)が大きく向上することが確認された。
(実施例2)
実施例1と同様の方法で、本発明によるLED素子の光取り出し特性を評価した。
図6には、シミュレーションに使用したLED素子の構成を示す。
図6に示すように、この実施例2に使用したLED素子600は、透明基板610と、光散乱層620と、第1の層630と、第2の層640と、第1の電極650と、有機発光層660と、第2の電極670とをこの順に積層して構成される。このLED素子600は、緑色の発光素子の一例である。
透明基板610は、ソーダライムガラスとした。また、光散乱層620は、molパーセント表示で、Pを23.9%、Bを12.4%、LiOを5.2%、Biを15.6%、Nbを16.4%、ZnOを21.6%、およびZrOを4.9%含有するガラス製のベース材ベース材で構成されているものと仮定した。なお、前述のように、透明基板610および光散乱層620は、光が最終的に出射する媒質として考えれば良いので、厚さは、0と仮定した。
第1の層620は、酸化チタン(TiO)とし、厚さは、300nmとした。
第2の層630は、チタンジルコニウム複合酸化物(TiZr)とし、厚さは、10nm〜200nmの範囲で可変とした。
第1の電極650は、第1層651と第2層652の2層構造とし、いずれもITO製とした。また、厚さはいずれも75nmとした。
有機発光層660は、ホール輸送層661、発光層662、および電子注入層663の3層構造であると仮定した。
ホール輸送層661は、厚さが10nm〜200nmの間で可変のNPD製とした。発光層662は、厚さが10nm〜200nmの間で可変のAlq3製とした。電子注入層663は、厚さが0.5nmのLiF製とした。
第2の電極670は、厚さが80nmのアルミニウム層であると仮定した。
(結果)
シミュレーションの結果を、以下の表3の「ケース6」の欄に示す。
Figure 2012147685
表3には、比較のため、図6において、第1の層630および第2の層640を有さない場合(ケース4)、第2の層640は有するが、第1の層630は有さない場合(ケース5)を同時に示した。また、各ケースの「倍率」の欄には、ケース4で得られた放射輝度(W/Sr・m)を基準としたときの、各ケースの放射輝度の倍率を示した。
さらに、表3には、各ケースにおいて最大の放射輝度が得られる際の、各層の膜厚もまとめて示した。
表3から、第1および第2の層630、640を設置したケース6では、第1および第2の層630、640を有さないケース4に比べて、放射輝度が約1.1倍向上していることがわかる。このように、第1および第2の層630、640を設置することにより、透明基板610側から出力される光の放射輝度(W/Sr・m)が大きく向上することが確認された。
本出願は、2011年4月28日に日本国特許庁に出願された特願2011−101846に基づくものであり、その出願を優先権主張するものであり、その出願の全ての内容を参照することにより包含するものである。
以上、有機EL素子および透光性基板を実施例により説明したが、本発明は上記実施例に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能であることは言うまでもない。
本発明は、発光デバイス等に使用される有機EL素子に適用することができる。
100 本発明による有機EL素子
110 透明基板
120 光散乱層
121 ベース材
124 散乱物質
129 表面
130 第1の層
140 第2の層
150 第1の電極(陽極)
151a、151b、151c 第1の電極の層部分
160 有機発光層
161a、161b、161c 有機発光層の層部分
170 第2の電極(陰極)
171a、171b、171c 第2の電極の層部分
180 光取り出し面
181 異物
185 異物の第1の側面
186 異物の第2の側面
500 LED素子
510 透明基板
520 光散乱層
530 第1の層
540 第2の層
550 第1の電極
551 第1層
552 第2層
560 有機発光層
561 ホール輸送層
562 発光層
563 電子輸送層
564 電子注入層
570 第2の電極
600 LED素子
610 透明基板
620 光散乱層
630 第1の層
640 第2の層
650 第1の電極
651 第1層
652 第2層
660 有機発光層
661 ホール輸送層
662 発光層
663 電子注入層
670 第2の電極

Claims (5)

  1. 透明基板と、該透明基板上に形成された光散乱層と、該光散乱層上に形成された透明な第1の電極と、該第1の電極上に形成された有機発光層と、該有機発光層上に形成された第2の電極とを有する有機LED素子であって、
    前記光散乱層は、ガラスからなるベース材と、該ベース材中に分散された複数の散乱物質とを有し、前記光散乱層は、前記透明基板の屈折率[N’]よりも大きな屈折率[N”]を有し、
    前記光散乱層と前記第1の電極の間には、第1の層と第2の層とが配置され、前記第1の層は、前記第2の層よりも前記光散乱層に近く、
    前記第1の層は、溶融ガラス以外の材料で構成され、第1の屈折率Nを有し、
    前記第2の層は、溶融ガラス以外の材料で構成され、第2の屈折率Nを有し、
    前記第1の屈折率Nは、前記透明基板の屈折率[N’]よりも大きく、
    前記第2の屈折率Nは、前記透明基板の屈折率[N’]、前記光散乱層の屈折率[N”]、および前記第1の屈折率Nよりも大きいことを特徴とする有機LED素子。
  2. 前記光散乱層の屈折率[N”]は、前記第1の屈折率Nよりも大きいことを特徴とする請求項1に記載の有機LED素子。
  3. 前記第1の層および/または第2の層は、金属酸化物で構成されることを特徴とする請求項1または2に記載の有機LED素子。
  4. 透明基板と、
    前記透明基板上に形成された光散乱層と、
    前記光散乱層上に形成された第1の層と、
    前記第1の層上に形成された第2の層と、
    前記第2の層上に形成された透明な第1の電極と、
    を有し、
    前記光散乱層は、ガラスからなるベース材と、該ベース材中に分散された複数の散乱物質とを有し、前記光散乱層は、前記透明基板の屈折率[N’]よりも大きな屈折率[N”]を有し、
    前記第1の層は、溶融ガラス以外の材料で構成され、第1の屈折率Nを有し、
    前記第2の層は、溶融ガラス以外の材料で構成され、第2の屈折率Nを有し、
    前記第1の屈折率Nは、前記透明基板の屈折率[N’]よりも大きく、
    前記第2の屈折率Nは、前記透明基板の屈折率[N’]、前記光散乱層の屈折率[N”]、およびNよりも大きいことを特徴とする透光性基板。
  5. 透明基板と、該透明基板上に形成された光散乱層と、該光散乱層上に形成された透明な第1の電極と、該第1の電極上に形成された有機発光層と、該有機発光層上に形成された第2の電極とを有する有機LED素子の製造方法であって、
    前記光散乱層と前記第1の電極の間に、第1の層と第2の層とを形成し、
    前記第1の層は、第1の屈折率Nを有し、溶融ガラス以外の材料で前記第2の層よりも前記光散乱層に近い位置にウェットコーティングプロセスにより形成され、
    前記第2の層は、第2の屈折率Nを有し、溶融ガラス以外の材料で形成され、
    前記光散乱層は、ガラスからなるベース材と、該ベース材中に分散された複数の散乱物質とを有し、前記透明基板の屈折率[N’]よりも大きな屈折率[N”]を有し、
    前記第1の屈折率Nは、前記透明基板の屈折率[N’]よりも大きく、
    前記第2の屈折率Nは、前記透明基板の屈折率[N’]、前記光散乱層の屈折率[N”]、および前記第1の屈折率Nよりも大きいことを特徴とする有機LED素子の製造方法。
JP2013512350A 2011-04-28 2012-04-23 有機el素子、透光性基板および有機led素子の製造方法 Pending JPWO2012147685A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011101846 2011-04-28
JP2011101846 2011-04-28
PCT/JP2012/060842 WO2012147685A1 (ja) 2011-04-28 2012-04-23 有機el素子、透光性基板および有機led素子の製造方法

Publications (1)

Publication Number Publication Date
JPWO2012147685A1 true JPWO2012147685A1 (ja) 2014-07-28

Family

ID=47072204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013512350A Pending JPWO2012147685A1 (ja) 2011-04-28 2012-04-23 有機el素子、透光性基板および有機led素子の製造方法

Country Status (4)

Country Link
US (1) US20140048790A1 (ja)
JP (1) JPWO2012147685A1 (ja)
TW (1) TW201301609A (ja)
WO (1) WO2012147685A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6278230B2 (ja) * 2013-09-02 2018-02-14 日本電気硝子株式会社 有機el素子用ガラス基板
FR3020179B1 (fr) * 2014-04-22 2017-10-06 Saint Gobain Electrode supportee transparente pour oled
JP6313255B2 (ja) * 2015-03-20 2018-04-18 富士フイルム株式会社 タッチパネル部材、タッチパネル及びタッチパネル表示装置
JPWO2016152822A1 (ja) * 2015-03-23 2018-01-11 コニカミノルタ株式会社 導電性フィルム及び有機エレクトロルミネッセンス素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513483A (ja) * 2000-11-02 2004-04-30 スリーエム イノベイティブ プロパティズ カンパニー 明るさおよびコントラスト増強直視型発光型ディスプレイ
JP4495978B2 (ja) * 2003-03-07 2010-07-07 日東電工株式会社 有機エレクトロルミネッセンス素子とこの素子を用いた面光源および表示装置
JP4186688B2 (ja) * 2003-04-17 2008-11-26 三菱化学株式会社 エレクトロルミネッセンス素子
JP2007265870A (ja) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子および表示装置
KR101239904B1 (ko) * 2007-08-27 2013-03-06 파나소닉 주식회사 유기 이엘 소자
KR20100138939A (ko) * 2008-03-18 2010-12-31 아사히 가라스 가부시키가이샤 전자 디바이스용 기판, 유기 led 소자용 적층체 및 그의 제조 방법, 유기 led 소자 및 그의 제조 방법
TW201228069A (en) * 2010-07-16 2012-07-01 Agc Glass Europe Translucent conductive substrate for organic light emitting devices

Also Published As

Publication number Publication date
WO2012147685A1 (ja) 2012-11-01
US20140048790A1 (en) 2014-02-20
TW201301609A (zh) 2013-01-01

Similar Documents

Publication Publication Date Title
JP5998124B2 (ja) 有機led素子、透光性基板、および透光性基板の製造方法
JP5742838B2 (ja) 有機led素子、透光性基板、および有機led素子の製造方法
KR101715112B1 (ko) Oled 소자용 적층체, 그 제조방법 및 이를 구비한 oled 소자
WO2012057043A1 (ja) 有機el素子、透光性基板、および有機el素子の製造方法
JP6582981B2 (ja) 透光性基板、有機led素子、透光性基板の製造方法
TWI506836B (zh) 透明導電膜及包含其之有機發光裝置
JP6056765B2 (ja) 有機led素子用の積層基板及び有機led素子
WO2012147685A1 (ja) 有機el素子、透光性基板および有機led素子の製造方法
WO2013137403A1 (ja) 有機led素子、透光性基板、および透光性基板の製造方法
WO2012081442A1 (ja) 有機led素子の製造方法、散乱層で散乱される光の散乱特性をミー散乱およびレイリー散乱の間で制御する方法、ならびに透光性基板を製造する方法
JP2013229186A (ja) 有機led素子、透光性基板、および透光性基板の製造方法
WO2014112414A1 (ja) 透光性基板の製造方法、透光性基板、および有機led素子
JP2014120384A (ja) 有機led素子の製造方法、および有機led素子