JPWO2012132679A1 - Austenitic cast stainless steel - Google Patents

Austenitic cast stainless steel Download PDF

Info

Publication number
JPWO2012132679A1
JPWO2012132679A1 JP2013507281A JP2013507281A JPWO2012132679A1 JP WO2012132679 A1 JPWO2012132679 A1 JP WO2012132679A1 JP 2013507281 A JP2013507281 A JP 2013507281A JP 2013507281 A JP2013507281 A JP 2013507281A JP WO2012132679 A1 JPWO2012132679 A1 JP WO2012132679A1
Authority
JP
Japan
Prior art keywords
mass
austenitic stainless
cast steel
stainless cast
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013507281A
Other languages
Japanese (ja)
Other versions
JP5863770B2 (en
Inventor
坂本 伸之
伸之 坂本
実 日根野
実 日根野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2013507281A priority Critical patent/JP5863770B2/en
Publication of JPWO2012132679A1 publication Critical patent/JPWO2012132679A1/en
Application granted granted Critical
Publication of JP5863770B2 publication Critical patent/JP5863770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/20Measures not previously mentioned for influencing the grain structure or texture; Selection of compositions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D30/00Cooling castings, not restricted to casting processes covered by a single main group
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

フェライト相の体積率が0.1〜5.0%であるオーステナイト系ステンレス鋳鋼。An austenitic stainless cast steel having a ferrite phase volume ratio of 0.1 to 5.0%.

Description

本発明は、オーステナイト系ステンレス鋳鋼に関する。   The present invention relates to an austenitic stainless cast steel.

オーステナイト系ステンレス鋳鋼は耐食性、強度、溶接性等に特に優れているため、化学プラントや発電プラントの配管やバルブ等において広く使用されている。オーステナイト系ステンレス鋳鋼は、例えば冶金学的には約10〜20%のα相と約90〜80%のγ相(オーステナイト相)の二相から形成されている。   Since austenitic stainless cast steel is particularly excellent in corrosion resistance, strength, weldability and the like, it is widely used in piping and valves of chemical plants and power plants. Austenitic stainless cast steel is formed, for example, from the metallurgical viewpoint of two phases of about 10 to 20% α phase and about 90 to 80% γ phase (austenite phase).

オーステナイト系ステンレス鋼の鋳鋼品として、CF8Cが公知である。例えば、CF8Cオーステナイト系ステンレス鋼鋳鋼品は、最大で0.08質量%のC(炭素)、最大で2.0質量%のSi(ケイ素)、最大で1.5質量%のMn(マンガン)、18.0〜21.0質量%のCr(クロム)、9.0〜12.0質量%のNi(ニッケル)、最大で1.0質量%のNb(ニオブ)、を含んでいる。   CF8C is known as a cast steel product of austenitic stainless steel. For example, a CF8C austenitic stainless steel cast product has a maximum of 0.08 mass% C (carbon), a maximum of 2.0 mass% Si (silicon), a maximum of 1.5 mass% Mn (manganese), 18.0 to 21.0 mass% Cr (chromium), 9.0 to 12.0 mass% Ni (nickel), and 1.0 mass% Nb (niobium) at the maximum.

CF8Cは約12.0%のフェライト相を含有する。フェライト相は、例えば公知のフェライトスコープでオーステナイト系ステンレス鋼中のフェライト含有量を測定する、或いは、成分元素に基づくシェフラー状態図から算出でき、体積率(パーセント(%))で表示する。   CF8C contains about 12.0% ferrite phase. For example, the ferrite phase can be calculated from a Schaeffler phase diagram based on the constituent elements by measuring the ferrite content in the austenitic stainless steel with a known ferrite scope, and is displayed in volume ratio (percent (%)).

当該フェライト相は、溶接割れの防止、応力腐食割れの軽減に有効であるとされる。しかし、フェライト相の含有量が多くなると、例えばCF8Cを長期間高温に暴露した場合、当該フェライト相が鉄とクロムの化合物であるシグマ相(σ相)に変態して脆化する虞がある。   The ferrite phase is said to be effective in preventing weld cracking and reducing stress corrosion cracking. However, when the content of the ferrite phase increases, for example, when CF8C is exposed to a high temperature for a long period of time, the ferrite phase may be transformed into a sigma phase (σ phase) that is a compound of iron and chromium and embrittled.

特許文献1には、CF8Cを改変した合金であるCF8C−Plusが開示されており、当該CF8C−Plusはフェライト相を含まないことが記載してある。特許文献1では、CF8C−Plusは、0.05〜0.15質量%のC、0.2〜1.0質量%のSi、0.5〜10.0質量%のMn、18.0〜25.0質量%のCr、10.0〜15.0質量%のNi、0.1〜1.5質量%のNb、0.05〜0.5質量%のN、を含むとされている。   Patent Document 1 discloses CF8C-Plus, which is an alloy obtained by modifying CF8C, and describes that the CF8C-Plus does not contain a ferrite phase. In patent document 1, CF8C-Plus is 0.05-0.15 mass% C, 0.2-1.0 mass% Si, 0.5-10.0 mass% Mn, 18.0 25.0 mass% Cr, 10.0-15.0 mass% Ni, 0.1-1.5 mass% Nb, 0.05-0.5 mass% N .

CF8C−Plusにフェライト相が存在しないことは、材料から作製した構成部品の寿命の間、材料の鋳造時の特性を維持するために重要であるとされている。   The absence of a ferrite phase in CF8C-Plus is considered important to maintain the properties of the material during casting for the life of the component made from the material.

特表2009−545675号公報Special table 2009-545675

CF8Cは使用環境下で長期間高温に暴露した場合、シグマ相が析出して時効脆化を生じ、時効延性が不十分となる虞があった。また、特許文献1に記載のCF8C−Plusにおいても、耐酸化性について更なる改善が求められていた。   When CF8C is exposed to a high temperature for a long period of time in a use environment, the sigma phase is precipitated to cause aging embrittlement and the aging ductility may be insufficient. Further, in CF8C-Plus described in Patent Document 1, further improvement in oxidation resistance has been demanded.

従って、本発明の目的は、時効延性および耐酸化性に優れたオーステナイト系ステンレス鋳鋼を提供することにある。   Accordingly, an object of the present invention is to provide an austenitic stainless cast steel excellent in aging ductility and oxidation resistance.

上記目的を達成するため、以下の[1]〜[6]に示す発明を提供する。
[1] フェライト相の体積率が0.1〜5.0%であるオーステナイト系ステンレス鋳鋼。
[2] C:0.01〜0.10質量%、Si:0.6〜1.0質量%、Mn:2.0〜2.8質量%、N:0.1〜0.4質量%を含有する上記[1]に記載のオーステナイト系ステンレス鋳鋼。
[3] Cr:18.0〜24.0質量%、Ni:8.0〜15.0質量%、Nb:0.2〜0.7質量%を含有する上記[1]または[2]に記載のオーステナイト系ステンレス鋳鋼。
[4] フェライト相の体積率が0.1〜5.0%であり、
C:0.01〜0.10質量%、Si:0.6〜1.0質量%、Mn:2.0〜2.8質量%、N:0.1〜0.4質量%、Cr:18.0〜24.0質量%、Ni:8.0〜15.0質量%、Nb:0.2〜0.7質量%、を含有し、
残部がFeおよび不可避不純物であるオーステナイト系ステンレス鋳鋼。
[5] 1150〜1350℃の温度範囲から、30℃/分以上の冷却温度で、600〜800℃の温度範囲まで冷却して得られた上記[1]〜[4]の何れか一項に記載のオーステナイト系ステンレス鋳鋼。
[6] 上記[1]〜[5]の何れか一項に記載のオーステナイト系ステンレス鋳鋼を用いて形成されたバルブ。
In order to achieve the above object, the following inventions [1] to [6] are provided.
[1] Austenitic stainless cast steel having a ferrite phase volume ratio of 0.1 to 5.0%.
[2] C: 0.01 to 0.10% by mass, Si: 0.6 to 1.0% by mass, Mn: 2.0 to 2.8% by mass, N: 0.1 to 0.4% by mass The austenitic stainless cast steel according to [1] above, containing
[3] In the above [1] or [2] containing Cr: 18.0 to 24.0 mass%, Ni: 8.0 to 15.0 mass%, and Nb: 0.2 to 0.7 mass% The austenitic stainless cast steel described.
[4] The volume fraction of the ferrite phase is 0.1 to 5.0%,
C: 0.01-0.10 mass%, Si: 0.6-1.0 mass%, Mn: 2.0-2.8 mass%, N: 0.1-0.4 mass%, Cr: 18.0 to 24.0 mass%, Ni: 8.0 to 15.0 mass%, Nb: 0.2 to 0.7 mass%,
An austenitic stainless cast steel with the balance being Fe and inevitable impurities.
[5] In any one of the above [1] to [4] obtained by cooling from a temperature range of 1150 to 1350 ° C. to a temperature range of 600 to 800 ° C. at a cooling temperature of 30 ° C./min or more. The austenitic stainless cast steel described.
[6] A valve formed using the austenitic stainless cast steel according to any one of [1] to [5].

本発明のオーステナイト系ステンレス鋳鋼は、例えば後述の実施例にて示したように、時効延性・引張強度・耐酸化性について優れたものとなる。特に、時効延性については、本発明の実施例は比較例の2.4倍程度となっていた。同様に、耐酸化性については、本発明の実施例は比較例の9.5倍程度に改善されたものと認められた。   The austenitic stainless cast steel of the present invention is excellent in aging ductility, tensile strength, and oxidation resistance, for example, as shown in Examples described later. In particular, the aging ductility of the examples of the present invention was about 2.4 times that of the comparative examples. Similarly, regarding the oxidation resistance, it was recognized that the example of the present invention was improved to about 9.5 times the comparative example.

当該オーステナイト系ステンレス鋳鋼がこのような優れた特性を有する理由として、フェライト相の体積率が0.1〜5.0%となっている点、含有成分であるC、Si、Mn、Cr、Ni、Nb、Nの含有量が重要であると考えられる。各成分について詳述する。   The reason why the austenitic stainless cast steel has such excellent characteristics is that the volume fraction of the ferrite phase is 0.1 to 5.0%, and the contained components C, Si, Mn, Cr, Ni , Nb, N content is considered important. Each component will be described in detail.

フェライト相の体積率を0.1〜5.0%とすることで、長期間高温に暴露した場合であっても、シグマ相の析出量を少なくすることができる。当該シグマ相の析出量が少なくなることで、オーステナイト系ステンレス鋳鋼が脆化し難くなり、時効延性に優れたオーステナイト系ステンレス鋳鋼となる。   By setting the volume fraction of the ferrite phase to 0.1 to 5.0%, the amount of sigma phase deposited can be reduced even when exposed to high temperatures for a long period of time. By reducing the precipitation amount of the sigma phase, the austenitic stainless cast steel becomes difficult to become brittle, and an austenitic stainless cast steel excellent in aging ductility is obtained.

Cは、融点を低下させ、溶湯の流動性、即ち鋳造性を改善する作用がある。また、Cは耐食性の観点から低いほど好ましく、多量に添加されると母材の耐食性を低下させる。これらを踏まえ、本発明では高温延性を改善するため、Cの添加量を0.01〜0.10質量%としている。   C has the effect of lowering the melting point and improving the fluidity of the molten metal, that is, the castability. Further, C is preferably as low as possible from the viewpoint of corrosion resistance, and when added in a large amount, the corrosion resistance of the base material is lowered. Based on these, in the present invention, in order to improve high temperature ductility, the amount of C added is set to 0.01 to 0.10% by mass.

Siは、溶湯の脱酸剤および流動性改善、耐酸化性、溶接性の改善に有効な元素である。しかし、過剰に加えるとオーステナイト組織が不安定になり、鋳造性の劣化を招きまた、加工性、溶接性の阻害や溶接割れを助長する。そのため、本発明ではSiの添加量を0.6〜1.0質量%としている。   Si is an element effective for improving the deoxidizer and flowability, oxidation resistance, and weldability of the molten metal. However, if added excessively, the austenite structure becomes unstable, which causes deterioration of castability, and promotes hindrance to workability and weldability and weld cracking. Therefore, in the present invention, the addition amount of Si is set to 0.6 to 1.0 mass%.

Mnは、溶湯の脱酸剤として有効であり、鋳造時の湯流れ性を向上させて生産性を改善する。さらに、溶接割れの低減に有効である。過度の添加は耐酸化性を損なうことから、本発明ではMnの添加量を2.0〜2.8質量%としている。Mnがこの範囲であれば、後述の実施例で示したように、耐酸化性に優れたオーステナイト系ステンレス鋳鋼を得ることができる。   Mn is effective as a deoxidizer for molten metal, and improves the flowability during casting to improve productivity. Furthermore, it is effective in reducing weld cracking. Since excessive addition impairs oxidation resistance, the amount of Mn added is set to 2.0 to 2.8% by mass in the present invention. If Mn is in this range, as shown in the examples described later, austenitic stainless cast steel having excellent oxidation resistance can be obtained.

Nは、高温強度および耐熱疲労性を改善する元素であり、強力なオーステナイト生成元素であり、オーステナイト基地を安定にする。また、結晶粒微細化に有効な元素である。この結晶粒微細化により、構造物として重要な材料の延性の確保が可能になり、また、オーステナイト系ステンレス鋳鋼に特有な被削性が悪いという欠点を改善できる。特に、部品を連結するために穿孔加工を施される部材では、穿孔加工性が良好となる。Nを多量に添加すると、脆化を促進する一方、有効なCr量が減少し耐酸化性を劣化させる。そのため、本発明ではNの添加量を0.1〜0.4質量%としている。   N is an element that improves high-temperature strength and heat fatigue resistance, is a strong austenite-forming element, and stabilizes the austenite base. It is also an effective element for grain refinement. This refinement of crystal grains makes it possible to ensure the ductility of materials that are important as structures, and to improve the disadvantage of poor machinability that is characteristic of austenitic cast stainless steel. In particular, in a member that is subjected to a drilling process for connecting parts, the drilling processability is improved. When a large amount of N is added, embrittlement is promoted, while an effective amount of Cr is reduced and oxidation resistance is deteriorated. Therefore, in this invention, the addition amount of N is 0.1-0.4 mass%.

Crは、耐酸化性を改善し、フェライト組織を安定にする元素であるが、その効果を確実にするため18.0質量%以上とする。一方、多量の添加は、高温使用過程で、Cr炭化物の過剰析出による鋼の時効延性の低下をきたすので、24.0質量%を上限とする。   Cr is an element that improves the oxidation resistance and stabilizes the ferrite structure, but is made 18.0% by mass or more in order to ensure the effect. On the other hand, the addition of a large amount causes a decrease in the aging ductility of the steel due to excessive precipitation of Cr carbide in the course of high temperature use, so the upper limit is 24.0% by mass.

Niは、安定なオーステナイト基地を形成し、オーステナイト相を安定化させ、鋼の高温強度、耐酸化性を高める。良好な鋳造性・耐食性及び溶接性を考慮して、本発明ではNiの添加量を8.0〜15.0質量%としている。   Ni forms a stable austenite base, stabilizes the austenite phase, and improves the high temperature strength and oxidation resistance of the steel. In consideration of good castability / corrosion resistance and weldability, in the present invention, the addition amount of Ni is set to 8.0 to 15.0 mass%.

Nbは、Cと結合して微細な炭化物を形成し、高温強度を改善する。また、Cr炭化物の生成を抑制することによって、耐酸化性を向上させる。これらの効果を有効に発揮させるためには、含有量は0.2%以上必要である。しかし、多量に添加すると、高温割れ感受性を著しく高め、内部品質を悪化させることから、本発明ではNbの添加量を0.2〜0.7質量%としている。   Nb combines with C to form fine carbides and improves high temperature strength. Moreover, oxidation resistance is improved by suppressing the production | generation of Cr carbide. In order to exhibit these effects effectively, the content must be 0.2% or more. However, when added in a large amount, the hot cracking sensitivity is remarkably increased and the internal quality is deteriorated. Therefore, in the present invention, the amount of Nb added is set to 0.2 to 0.7% by mass.

また、本発明のオーステナイト系ステンレス鋳鋼は、1150〜1350℃の温度範囲から、30℃/分以上の冷却温度で、600〜800℃の温度範囲まで冷却することによって製造することができる。上記条件で本発明のオーステナイト系ステンレス鋳鋼を製造することで、鋳放しでも優れた強度特性を有するため、固溶化熱処理を省略することができる。
製造されたオーステナイト系ステンレス鋳鋼は、例えば、化学プラントや発電プラントの配管やバルブなどの材料として使用される。
The austenitic stainless cast steel of the present invention can be produced by cooling from a temperature range of 1150 to 1350 ° C. to a temperature range of 600 to 800 ° C. at a cooling temperature of 30 ° C./min or more. By producing the austenitic stainless cast steel of the present invention under the above-mentioned conditions, since it has excellent strength characteristics even as cast, the solution heat treatment can be omitted.
The produced austenitic stainless cast steel is used, for example, as a material for piping and valves of chemical plants and power plants.

オーステナイト系ステンレス鋳鋼において、耐酸化性(mm/年)を調べた結果を示すグラフである。It is a graph which shows the result of having investigated oxidation resistance (mm / year) in austenitic stainless cast steel.

以下、本発明の実施形態を図面に基づいて説明する。
本発明のオーステナイト系ステンレス鋳鋼は、フェライト相の体積率が0.1〜5.0%、好ましくは0.5〜3.0%となるように構成される。本発明のオーステナイト系ステンレス鋳鋼は、成分として、C、Si、Mn、Cr、Ni、Nb、Nなどを含有する。
Cは0.01〜0.10質量%、好ましくは0.02〜0.04質量%、
Siは0.6〜1.0質量%、好ましくは0.7〜0.9質量%、
Mnは2.0〜2.8質量%、好ましくは2.2〜2.4質量%、
N:0.1〜0.4質量%、好ましくは0.15〜0.25質量%、
Cr:18.0〜24.0質量%、好ましくは19.5〜21.5質量%、
Ni:8.0〜15.0質量%、好ましくは10.5〜12.5質量%、
Nb:0.2〜0.7質量%、好ましくは0.2〜0.4質量%、の含有量とする。
本発明のオーステナイト系ステンレス鋳鋼、および、参考としてCF8CおよびCF8C−Plusにおける上記成分の組成(質量%)の範囲を表1に示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The austenitic stainless cast steel of the present invention is configured so that the volume fraction of the ferrite phase is 0.1 to 5.0%, preferably 0.5 to 3.0%. The austenitic stainless cast steel of the present invention contains C, Si, Mn, Cr, Ni, Nb, N and the like as components.
C is 0.01 to 0.10% by mass, preferably 0.02 to 0.04% by mass,
Si is 0.6 to 1.0 mass%, preferably 0.7 to 0.9 mass%,
Mn is 2.0 to 2.8% by mass, preferably 2.2 to 2.4% by mass,
N: 0.1 to 0.4% by mass, preferably 0.15 to 0.25% by mass,
Cr: 18.0 to 24.0 mass%, preferably 19.5 to 21.5 mass%,
Ni: 8.0 to 15.0% by mass, preferably 10.5 to 12.5% by mass,
Nb: 0.2 to 0.7 mass%, preferably 0.2 to 0.4 mass%.
Table 1 shows the range of the composition (mass%) of the above components in the austenitic stainless cast steel of the present invention and, as a reference, CF8C and CF8C-Plus.

Figure 2012132679
Figure 2012132679

本発明のオーステナイト系ステンレス鋳鋼においてフェライト相の体積率を0.1〜5.0%とすることで、長期間高温に暴露した場合であっても、シグマ相の析出量を少なくすることができる。よって、本発明のオーステナイト系ステンレス鋳鋼は脆化し難くなり、時効延性に優れる。
また、本発明のオーステナイト系ステンレス鋳鋼では、Mnの含有量をCF8Cより高めており、Cの含有量を低めに設定している。これにより、高温での強度・耐酸化性を向上させることができる。
By setting the volume fraction of the ferrite phase to 0.1 to 5.0% in the austenitic stainless cast steel of the present invention, the amount of precipitation of the sigma phase can be reduced even when exposed to high temperatures for a long time. . Therefore, the austenitic stainless cast steel of the present invention is not easily embrittled and is excellent in aging ductility.
In the austenitic stainless cast steel of the present invention, the Mn content is set higher than that of CF8C, and the C content is set lower. Thereby, strength and oxidation resistance at high temperatures can be improved.

本発明のオーステナイト系ステンレス鋳鋼には、上述した組成以外にもW、B、Al、Mo、Co、Ti、Zr、Cu,希土類元素(La,Ce,Y,Pd,Nd等)などを含ませることができ、残部はFeおよび不可避不純物である。   The austenitic stainless cast steel of the present invention contains W, B, Al, Mo, Co, Ti, Zr, Cu, rare earth elements (La, Ce, Y, Pd, Nd, etc.) and the like in addition to the above-described composition. The balance is Fe and inevitable impurities.

上記の金属成分を、溶解炉にて溶解し、1150〜1350℃の温度範囲から、30℃/分以上の冷却温度で、600〜800℃の温度範囲まで冷却することで、本発明のオーステナイト系ステンレス鋳鋼を作製することができる。この条件で本発明のオーステナイト系ステンレス鋳鋼を製造することで、鋳放しでも優れた強度特性を有するため、固溶化熱処理を省略することができる。   The above-mentioned metal component is melted in a melting furnace and cooled to a temperature range of 600 to 800 ° C. at a cooling temperature of 1150 to 1350 ° C. or more at a cooling temperature of 30 ° C./min or more. Stainless cast steel can be produced. By producing the austenitic stainless cast steel of the present invention under these conditions, the solution has excellent strength characteristics even when cast, so that the solution heat treatment can be omitted.

製造されたオーステナイト系ステンレス鋳鋼は、例えば、化学プラントや発電プラントの配管やバルブなどにおいて使用される。   The produced austenitic stainless cast steel is used, for example, in piping and valves of chemical plants and power plants.

〔実施例1〕
本発明の実施例について説明する。
本発明のオーステナイト系ステンレス鋳鋼(実施例1−1〜1−6)、CF8C(比較例1−1〜1−5の主成分の組成(質量%)をそれぞれ表2,3に示す。
[Example 1]
Examples of the present invention will be described.
The compositions (mass%) of the main components of the austenitic stainless cast steel of the present invention (Examples 1-1 to 1-6) and CF8C (Comparative Examples 1-1 to 1-5) are shown in Tables 2 and 3, respectively.

Figure 2012132679
Figure 2012132679

Figure 2012132679
Figure 2012132679

これら実施例および比較例について、時効延性(700℃―620時間)、引張強度(900℃)、0.2%耐力(900℃)、耐酸化性(1000℃)を調べ、さらに高温低サイクル疲労試験(両振三角波、歪速度0.1%/秒、700℃、全ひずみ0.5%)を行なった。   For these examples and comparative examples, aging ductility (700 ° C.-620 hours), tensile strength (900 ° C.), 0.2% proof stress (900 ° C.), oxidation resistance (1000 ° C.) were examined, and high temperature low cycle fatigue The test (double oscillation triangle wave, strain rate 0.1% / second, 700 ° C., total strain 0.5%) was performed.

なお、実施例および比較例ともに鋳造は、通常の置注鋳造法によって行なった。熱処理については、実施例1,2はas cast(鋳放し)によって行い、その他の実施例および比較例はSHT(固溶化熱処理法)によって行った。時効延性、引張強度、0.2%耐力、耐酸化性を調べた結果を表4に示した。   In both the examples and the comparative examples, casting was performed by a conventional in-place casting method. Regarding heat treatment, Examples 1 and 2 were performed by as cast (as cast), and other Examples and Comparative Examples were performed by SHT (Solution Solution Heat Treatment). Table 4 shows the results of examining the aging ductility, tensile strength, 0.2% proof stress, and oxidation resistance.

Figure 2012132679
Figure 2012132679

この結果、時効延性については、実施例では20.4%以上であるのに対して、比較例では17.2%以下であった。
引張強度については、実施例では113〜134Mpaであり、比較例では93〜127Mpaであった。
0.2%耐力については、実施例では87〜91Mpaであり、比較例では70〜84Mpaであった。
耐酸化性については、実施例では0.489mm/年 以下であり、比較例では1.278mm/年 以上であった。
As a result, the aging ductility was 20.4% or more in the example, whereas it was 17.2% or less in the comparative example.
About the tensile strength, it was 113-134 Mpa in the Example, and it was 93-127 Mpa in the comparative example.
About 0.2% yield strength, it was 87-91 Mpa in the Example, and it was 70-84 Mpa in the comparative example.
The oxidation resistance was 0.489 mm / year or less in the example and 1.278 mm / year or more in the comparative example.

即ち、0.2%耐力については、実施例および比較例では顕著な差異は認められなかったものの、時効延性・引張強度・耐酸化性については、実施例のほうが優れていることが判明した。特に、時効延性については、実施例の平均値が24.8%、比較例の平均値が10.4%となっており、実施例は比較例の2.4倍程度となっていた。同様に、耐酸化性については、実施例の平均値が0.290mm/年、比較例の平均値が2.770mm/年となっており、実施例は比較例の9.5倍程度に改善されたものと認められた。
上述した結果は、本発明のオーステナイト系ステンレス鋳鋼のフェライト相の体積率が0.2%である場合であるが、フェライト相の体積率の下限を0.1%とした場合であっても同様の結果が得られるものと考えられる。
That is, regarding the 0.2% proof stress, although no significant difference was observed between the examples and the comparative examples, it was found that the examples were superior in terms of aging ductility, tensile strength, and oxidation resistance. In particular, regarding the aging ductility, the average value of the example was 24.8%, the average value of the comparative example was 10.4%, and the example was about 2.4 times that of the comparative example. Similarly, regarding oxidation resistance, the average value of the example is 0.290 mm / year and the average value of the comparative example is 2.770 mm / year, and the example is improved to about 9.5 times the comparative example. It was recognized that
The above-described results are obtained when the volume fraction of the ferrite phase of the austenitic stainless cast steel of the present invention is 0.2%, but the same applies even when the lower limit of the volume fraction of the ferrite phase is 0.1%. It is thought that the result of is obtained.

〔実施例2〕
実施例1では、本発明のオーステナイト系ステンレス鋳鋼のフェライト相の体積率は0.2%であった(実施例1−1〜1−6)が、これに限らず、フェライトト相の体積率を1〜3%とした場合についても時効延性、引張強度、0.2%耐力、耐酸化性を調べた(実施例2−1〜2−4)。これらは実施例1と同様の条件で行なった。実施例2−1〜2−4の各成分を表5に示し、結果を表6に示した。
[Example 2]
In Example 1, the volume fraction of the ferrite phase of the austenitic stainless cast steel of the present invention was 0.2% (Examples 1-1 to 1-6), but not limited thereto, the volume fraction of the ferrite phase. Also in the case of 1 to 3%, aging ductility, tensile strength, 0.2% proof stress, and oxidation resistance were examined (Examples 2-1 to 2-4). These were performed under the same conditions as in Example 1. Each component of Examples 2-1 to 2-4 is shown in Table 5, and the results are shown in Table 6.

Figure 2012132679
Figure 2012132679

Figure 2012132679
Figure 2012132679

この結果、実施例2−1〜2−4における時効延性の平均値は24.6%、耐酸化性の平均値は0.159mm/年となっており、これらの値は実施例1と同様に比較例より優れていると認められた。本発明のオーステナイト系ステンレス鋳鋼のフェライト相の体積率の上限を5%とした場合であっても同様の結果が得られると考えられる。   As a result, the average value of aging ductility in Examples 2-1 to 2-4 was 24.6%, and the average value of oxidation resistance was 0.159 mm / year. These values were the same as in Example 1. It was recognized that it was superior to the comparative example. Even if the upper limit of the volume fraction of the ferrite phase of the austenitic stainless cast steel of the present invention is 5%, it is considered that the same result can be obtained.

〔実施例3〕
Mnの含有量が約1.0〜4.5質量%であるオーステナイト系ステンレス鋳鋼において、耐酸化性(mm/年)を調べた。本発明のオーステナイト系ステンレス鋳鋼は、Mnの含有量が2.26質量%(実施例3−1)、2.33質量%(実施例3−2)の態様について調べた。比較例のオーステナイト系ステンレス鋳鋼は、Mnの含有量が1.04質量%(比較例3−1)、1.17質量%(比較例3−2)、1.81質量%(比較例3−3)、4.37質量%(比較例3−4)、4.48質量%(比較例3−5)の態様について調べた。これら実施例および比較例において、それぞれの成分を表7に示した。結果を表8および図1に示した。
Example 3
The oxidation resistance (mm / year) of austenitic stainless cast steel having a Mn content of about 1.0 to 4.5% by mass was examined. The austenitic stainless cast steel of the present invention was examined for an embodiment in which the Mn content was 2.26% by mass (Example 3-1) and 2.33% by mass (Example 3-2). The austenitic stainless cast steel of the comparative example has a Mn content of 1.04% by mass (Comparative Example 3-1), 1.17% by mass (Comparative Example 3-2), and 1.81% by mass (Comparative Example 3- 3) The aspect of 4.37 mass% (Comparative Example 3-4) and 4.48 mass% (Comparative Example 3-5) was examined. In these Examples and Comparative Examples, the respective components are shown in Table 7. The results are shown in Table 8 and FIG.

Figure 2012132679
Figure 2012132679

Figure 2012132679
Figure 2012132679

図1より、本発明のオーステナイト系ステンレス鋳鋼では、Mnの含有量が2.0〜2.8質量%であれば、耐酸化性を1mm/年 以下に抑制できるものと認められた。   From FIG. 1, in the austenitic stainless cast steel of the present invention, it was recognized that the oxidation resistance could be suppressed to 1 mm / year or less if the Mn content was 2.0 to 2.8% by mass.

本発明は、オーステナイト系ステンレス鋳鋼の製造に利用できる。   The present invention can be used for producing austenitic cast stainless steel.

Claims (6)

フェライト相の体積率が0.1〜5.0%であるオーステナイト系ステンレス鋳鋼。   An austenitic stainless cast steel having a ferrite phase volume ratio of 0.1 to 5.0%. C:0.01〜0.10質量%、Si:0.6〜1.0質量%、Mn:2.0〜2.8質量%、N:0.1〜0.4質量%を含有する請求項1に記載のオーステナイト系ステンレス鋳鋼。   C: 0.01 to 0.10% by mass, Si: 0.6 to 1.0% by mass, Mn: 2.0 to 2.8% by mass, N: 0.1 to 0.4% by mass The austenitic stainless cast steel according to claim 1. Cr:18.0〜24.0質量%、Ni:8.0〜15.0質量%、Nb:0.2〜0.7質量%を含有する請求項1または2に記載のオーステナイト系ステンレス鋳鋼。   The austenitic stainless cast steel according to claim 1 or 2, containing Cr: 18.0 to 24.0 mass%, Ni: 8.0 to 15.0 mass%, and Nb: 0.2 to 0.7 mass%. . フェライト相の体積率が0.1〜5.0%であり、
C:0.01〜0.10質量%、Si:0.6〜1.0質量%、Mn:2.0〜2.8質量%、N:0.1〜0.4質量%、Cr:18.0〜24.0質量%、Ni:8.0〜15.0質量%、Nb:0.2〜0.7質量%、を含有し、
残部がFeおよび不可避不純物であるオーステナイト系ステンレス鋳鋼。
The volume fraction of the ferrite phase is 0.1 to 5.0%,
C: 0.01-0.10 mass%, Si: 0.6-1.0 mass%, Mn: 2.0-2.8 mass%, N: 0.1-0.4 mass%, Cr: 18.0 to 24.0 mass%, Ni: 8.0 to 15.0 mass%, Nb: 0.2 to 0.7 mass%,
An austenitic stainless cast steel with the balance being Fe and inevitable impurities.
1150〜1350℃の温度範囲から、30℃/分以上の冷却温度で、600〜800℃の温度範囲まで冷却して得られた請求項1〜4の何れか一項に記載のオーステナイト系ステンレス鋳鋼。   The austenitic stainless cast steel according to any one of claims 1 to 4, obtained by cooling from a temperature range of 1150 to 1350 ° C to a temperature range of 600 to 800 ° C at a cooling temperature of 30 ° C / min or more. . 請求項1〜5の何れか一項に記載のオーステナイト系ステンレス鋳鋼を用いて形成されたバルブ。
The valve | bulb formed using the austenitic stainless cast steel as described in any one of Claims 1-5.
JP2013507281A 2011-03-31 2012-02-24 Austenitic cast stainless steel Active JP5863770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507281A JP5863770B2 (en) 2011-03-31 2012-02-24 Austenitic cast stainless steel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011079965 2011-03-31
JP2011079965 2011-03-31
PCT/JP2012/054523 WO2012132679A1 (en) 2011-03-31 2012-02-24 Cast austenitic stainless steel
JP2013507281A JP5863770B2 (en) 2011-03-31 2012-02-24 Austenitic cast stainless steel

Publications (2)

Publication Number Publication Date
JPWO2012132679A1 true JPWO2012132679A1 (en) 2014-07-24
JP5863770B2 JP5863770B2 (en) 2016-02-17

Family

ID=46930439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013507281A Active JP5863770B2 (en) 2011-03-31 2012-02-24 Austenitic cast stainless steel

Country Status (7)

Country Link
US (1) US20140056751A1 (en)
EP (1) EP2692887B1 (en)
JP (1) JP5863770B2 (en)
KR (1) KR20140044318A (en)
CN (1) CN103429778B (en)
CA (1) CA2830586A1 (en)
WO (1) WO2012132679A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109454220A (en) * 2018-11-24 2019-03-12 共享铸钢有限公司 A kind of production method of austenitic stainless steel material steel-casting

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108200771B (en) 2016-03-28 2021-02-12 Lg电子株式会社 Stainless steel and pipe made of the same
WO2018117683A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Austenitic stainless steel having excellent processability and surface characteristics, and manufacturing method therefor
KR102030162B1 (en) 2016-12-23 2019-11-08 주식회사 포스코 Austenitic stainless steel having excellent formability and surface properties and manufacturing method of the same
CN110093561B (en) * 2019-05-13 2021-06-18 襄阳市立强机械有限公司 As-cast nonmagnetic austenitic stainless steel and preparation method thereof
JP6793866B1 (en) 2020-06-17 2020-12-02 株式会社クボタ Gas valve and propane gas flow control method
CN113699453B (en) * 2021-08-30 2023-03-10 上海海塔机械制造有限公司 Heat-resistant high-nitrogen steel and production method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218418A (en) * 1975-08-02 1977-02-12 Jgc Corp Stainless cast steel for low temperature use
JPS5487627A (en) * 1977-12-23 1979-07-12 Kubota Ltd Stainless steel for extreme low temperature excellent in weld ability
JPS5547370A (en) * 1978-09-30 1980-04-03 Kubota Ltd Stainless cast steel for cryogenic temperature use
JPS60121098A (en) * 1983-12-05 1985-06-28 Kawasaki Steel Corp Prevention of hydrogen peeling crack in build-up welding of austenitic stainless steel
JPS6353244A (en) * 1986-08-25 1988-03-07 Aichi Steel Works Ltd Stainless steel excellent in strength and corrosion resistance and having small anisotropy and its production
JPS63169362A (en) * 1986-12-29 1988-07-13 Aichi Steel Works Ltd Nonmagnetic tool steel
JPH0297647A (en) * 1988-09-30 1990-04-10 Aichi Steel Works Ltd Steel for valve stem having excellent torsional strength and its manufacture
JPH0297648A (en) * 1988-09-30 1990-04-10 Aichi Steel Works Ltd Austenitic stainless steel excellent in creep rupture strength and its production
JP2574917B2 (en) * 1990-03-14 1997-01-22 株式会社日立製作所 Austenitic steel excellent in stress corrosion cracking resistance and its use
JP2915691B2 (en) * 1992-05-08 1999-07-05 日本冶金工業株式会社 High ductility austenitic-ferrite dual phase heat resistant steel and method for producing the same
JPH0830248B2 (en) * 1993-05-27 1996-03-27 工業技術院長 Stainless cast steel for seawater pumps at nuclear power plants
JP3336820B2 (en) * 1995-07-25 2002-10-21 株式会社日立製作所 Seawater corrosion resistant austenitic cast stainless steel and seawater pump
US20060266439A1 (en) 2002-07-15 2006-11-30 Maziasz Philip J Heat and corrosion resistant cast austenitic stainless steel alloy with improved high temperature strength
JP3954954B2 (en) * 2002-10-25 2007-08-08 新日本製鐵株式会社 Manufacturing method of austenitic stainless steel and strip slab
CA2528743C (en) * 2003-06-10 2010-11-23 Sumitomo Metal Industries, Ltd. Austenitic stainless steel for hydrogen gas and a method for its manufacture
EP1637785B9 (en) * 2004-09-15 2011-01-05 Sumitomo Metal Industries, Ltd. Steel tube excellent in exfoliation resistance of scale on inner surface
RU2461641C2 (en) * 2007-12-20 2012-09-20 ЭйТиАй ПРОПЕРТИЗ, ИНК. Austenitic stainless steel with low content of nickel and including stabilising elements
CN101845605B (en) * 2009-03-24 2013-01-02 宝山钢铁股份有限公司 Austenitic stainless steel plate with excellent strength at medium and low temperature and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109454220A (en) * 2018-11-24 2019-03-12 共享铸钢有限公司 A kind of production method of austenitic stainless steel material steel-casting

Also Published As

Publication number Publication date
KR20140044318A (en) 2014-04-14
CA2830586A1 (en) 2012-10-04
CN103429778B (en) 2016-01-06
CN103429778A (en) 2013-12-04
JP5863770B2 (en) 2016-02-17
EP2692887A4 (en) 2015-01-21
US20140056751A1 (en) 2014-02-27
WO2012132679A1 (en) 2012-10-04
EP2692887B1 (en) 2017-07-19
EP2692887A1 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5863770B2 (en) Austenitic cast stainless steel
JP6393993B2 (en) Ni-base superalloy with high temperature strength and capable of hot forging
JP5755153B2 (en) High corrosion resistance austenitic steel
JP5657523B2 (en) Ultra-supercritical boiler header alloy and manufacturing method
CA2914774C (en) Duplex ferritic austenitic stainless steel
JP5838933B2 (en) Austenitic heat resistant steel
JP6225598B2 (en) Austenitic stainless steel welding material
KR20090078813A (en) Duplex stainless steel alloy and use of this alloy
JP5846076B2 (en) Austenitic heat-resistant alloy
JP6513495B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP2014208875A (en) Austenitic heat-resistant cast steel and method for producing the same
JP6733211B2 (en) Ni-based superalloy for hot forging
JP5553636B2 (en) Weld filler
WO2017168972A1 (en) Chromium-based two-phase alloy and product using said two-phase alloy
JP2014039953A (en) Weld material for two-phase stainless steel
JP6337514B2 (en) Precipitation hardening type Fe-Ni alloy and manufacturing method thereof
JP2018048367A (en) Ni-based heat-resistant alloy member
JP2017137534A (en) Nickel-based alloy
JP2017206717A (en) Austenitic heat-resistant alloy member
JP2015187304A (en) Heat resistant alloy excellent in high temperature strength, method for producing the same, and heat resistant alloy spring
JP6322145B2 (en) Duplex steel with improved notched impact strength and machinability
JP2018127672A (en) Austenitic heat resistant alloy member
JP2018123359A (en) Ni-BASED HEAT RESISTANT ALLOY MEMBER
JP2015108177A (en) Nickel-based alloy
JP6379872B2 (en) Austenitic heat-resistant alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151222

R150 Certificate of patent or registration of utility model

Ref document number: 5863770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150