JPH0297647A - Steel for valve stem having excellent torsional strength and its manufacture - Google Patents

Steel for valve stem having excellent torsional strength and its manufacture

Info

Publication number
JPH0297647A
JPH0297647A JP24856788A JP24856788A JPH0297647A JP H0297647 A JPH0297647 A JP H0297647A JP 24856788 A JP24856788 A JP 24856788A JP 24856788 A JP24856788 A JP 24856788A JP H0297647 A JPH0297647 A JP H0297647A
Authority
JP
Japan
Prior art keywords
less
steel
torsional strength
recrystallized
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24856788A
Other languages
Japanese (ja)
Inventor
Yoshinobu Motokura
義信 本蔵
Hiroshi Yokota
博史 横田
Kazuo Arai
一生 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP24856788A priority Critical patent/JPH0297647A/en
Publication of JPH0297647A publication Critical patent/JPH0297647A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve the torsional strength, low temp./ toughness, high temp. strength, etc., of the title steel by subjecting a steel contg. specified C, Si, Mn, Ni, Cr, N and Nb to two-stage controlled rolling and forming its structure into the recrystallization treated double constitutional one. CONSTITUTION:A steel constituted of, by weight, <=0.03% C, <=20% Si, <=10% Mn, 6 to 20% Ni, 16 to 30% Cr, 0.1 to 0.3% N, 0.02 to 0.25% Nb and the balance Fe is melted. The steel is rolled at 1000 to 1200 deg.C rough rolling temp. at >=50% working ratio and is thereafter cooled for 16sec to 5min. The steel is then rolled at 800 to 1000 deg.C finish rolling temp. at >=30% working ratio and is thereafter cooled at >=4 deg.C/min cooling speed to form its structure into the recrystallization treated double constitutional one.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は化学、海水、原子力等各種プラン1〜やL P
 t;タンカーに用いられるバタフライ弁のバルブステ
ノ、用材料およびその製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is applicable to various plans 1 to LP such as chemical, seawater, and nuclear power.
t; This invention relates to a valve stethoscope for butterfly valves used in tankers, materials for the same, and methods for manufacturing the same.

[b℃来の技術] バルブステムはバタフライ弁を開閉する際にバタフライ
弁の回動軸となる部材である。バタフライ弁は各種化学
ブラントやL F’ Gタンカーなどに1吏川されるた
め、バルブステムに要求される特性としては、ねじり強
度、低温靭性、高温強度、耐食性および溶接性であるが
中でもねじり強度が重要な特性である。なお、溶接性は
高温時にステライト盛りをして使用するため必要とされ
るものであり、Ni系でないと7g接性を確保するのが
困難である。
[Technology from 2007] A valve stem is a member that becomes a rotation axis of a butterfly valve when the butterfly valve is opened and closed. Since butterfly valves are used in various types of chemical blunts and L F' G tankers, the characteristics required of valve stems include torsional strength, low temperature toughness, high temperature strength, corrosion resistance, and weldability, especially torsional strength. is an important characteristic. Note that weldability is required because it is used with stellite mounding at high temperatures, and it is difficult to secure 7g contact unless it is Ni-based.

従来のバルブステム材f1としては、常温のみて使用さ
れる場合は、5US431で代入されるマルチンサイト
系ステンレス鋼が使用されている。
As the conventional valve stem material f1, when used only at room temperature, martinsite stainless steel substituted by 5US431 is used.

しかし、この5US431を使用した場合、ねじり強度
は35 kgf/ am’と十分であるが、低温靭性(
−196℃)が0に等しく、高温強度(600℃103
時間、ラブチャー)が7 kgf/輸鵬2と低く、また
耐食性および溶接性においても劣るので、用途が限定さ
れる。
However, when using 5US431, the torsional strength is sufficient at 35 kgf/am', but the low temperature toughness (
-196℃) is equal to 0, high temperature strength (600℃103
It has a low corrosion resistance and weldability of 7 kgf/export 2, and its applications are limited.

そこで低温用のバルブステム材料としては5US304
.5US304N!で代表されるオーステナイト系ステ
ンレス鋼ガ使用されている。しかし、5US304およ
び5US304Nzでは、ねじり強度が10〜20 k
gf/ a+s+2と低いので、軸径を太くして使用す
るため、重量が増加し弁が大形化するという問題点があ
った。
Therefore, 5US304 is the material for the valve stem for low temperatures.
.. 5US304N! Austenitic stainless steels, typically represented by , are used. However, 5US304 and 5US304Nz have a torsional strength of 10 to 20 k
Since gf/a+s+2 is low, the diameter of the shaft must be increased, which poses problems in that the weight increases and the valve becomes larger.

また、高温用のバルブステム材料としては、インコロイ
800に代表される高Ni合金がある。
Furthermore, high-Ni alloys such as Incoloy 800 are available as valve stem materials for high temperatures.

しかし、このインコロイ800においてはねじり強度が
十分でない上に高価であるという欠点がある。
However, this Incoloy 800 has drawbacks in that it does not have sufficient torsional strength and is expensive.

[発明が解決しようとする課題] −mにオーステナイト系ステンレス鋼はフェライト系ス
テンレス鋼と異なって比例限(弾性限)におけるねじり
強度が低い、しかし、低温靭性、高温強度、耐食性およ
び溶接性の面からはオーステナイト系ステンレス鋼が最
適である0本発明はバルブステム用材料の前記のごとき
問題点に鑑みてなされたもので、オーステナイト系ステ
ンレス鋼のねじり強度を向上させ、バルブステム用鋼と
して有用な材料とその製造方法を提供することを目的と
する。
[Problems to be solved by the invention] - Unlike ferritic stainless steel, austenitic stainless steel has low torsional strength in the proportional limit (elastic limit), but it has low torsional strength in terms of low temperature toughness, high temperature strength, corrosion resistance, and weldability. Therefore, austenitic stainless steel is most suitable.The present invention was made in view of the above-mentioned problems with materials for valve stems. The purpose is to provide materials and methods for their production.

[課題を解決するための手段] 本発明のねじり強度の優れたバルブステム用鋼は、必須
成分として重量比にしてC;0 、o 3%以下、S 
i;2.0%以下、Mn;10.0%以下、Ni;6〜
20%、Cr;16〜30%、N、0.1〜0.3%、
Nr;0.02〜0.25%を含有し、残部Feならび
に不純物元素からなり、かつその組織が再結晶加工二重
構造組織からなるもので、さらに耐食性を改善するため
に必要に応じてMo;4゜0%以下、Cu;4.0%以
下、S、0.002%以下のうち1種ないし2種以上を
含有し、さらに切削性を改善させるために必要に応じて
Se;0.080%以下、Te;0.080%以下、S
 ;o 、o 80%以下、P、0.100%以下のう
ち1種ないし2種以上を含有し、さらに熱間加工性を劣
化させることなく切削性を改善するために必要に応じて
B i;0.300%以下と、Pb、0.300%以下
、B、0.0100%以下を1種ないし2種以上を含有
し、さらに強度を向上させるために必要に応じてV、T
i、W、Ta、Hf、Zr、Alをそれぞれ0.30%
以下をlF!i以上含有し、さらに熱間加工性を改善す
るため必要に応じてB;0.0005〜0.0100%
、Ca;0.0005%〜0.0100%、Mg;0.
0005〜0.0100%、希土類元素0.0005〜
0.0100%のうち1種ないし2種以上を含有するこ
とを要旨とする。
[Means for Solving the Problems] The steel for valve stems of the present invention having excellent torsional strength contains as essential components C; 0, O 3% or less, and S
i: 2.0% or less, Mn: 10.0% or less, Ni: 6-
20%, Cr; 16-30%, N, 0.1-0.3%,
Contains Nr: 0.02 to 0.25%, the remainder consists of Fe and impurity elements, and its structure is a recrystallized double structure structure, and Mo is added as necessary to improve corrosion resistance. 4.0% or less, Cu; 4.0% or less, S, 0.002% or less, and further contains Se; 0.0% or less if necessary to improve machinability. 080% or less, Te; 0.080% or less, S
Contains one or more of o, o 80% or less, P, 0.100% or less, and further contains B i as necessary to improve machinability without deteriorating hot workability. 0.300% or less, Pb, 0.300% or less, B, 0.0100% or less, and further contains V, T as necessary to improve strength.
0.30% each of i, W, Ta, Hf, Zr, and Al
lf below! Contains i or more, and B as necessary to further improve hot workability; 0.0005 to 0.0100%
, Ca; 0.0005% to 0.0100%, Mg; 0.
0005~0.0100%, rare earth elements 0.0005~
The gist is to contain one or more of 0.0100%.

また、本発明のねじり強度の優れたバルブステム用鋼の
製造方法は、重量比にしてcHo.03%以下、S i
;2.0%以下、Mn;10.0%以下、Ni;6〜2
0%、Cr;16〜30%、N、0.1〜0.3%、N
r;0.02〜0.25%を含有し、あるいはこれにM
o;4.0%以下、Cu;4.0%以下、S、0.00
2%以下のうち1種ないし2種以上を含有し、残部Fe
ならびに不純物元素からなる鋼を、1100〜1300
℃に加熱し、粗圧延温度1000〜1200℃で加工量
50%以上の圧延を施し、粗圧延後10秒〜5分冷却し
、ついで仕上圧延温度800〜1000℃で加工!13
0%以上の圧延を行い、圧延後の冷却速度を4℃/分以
上で冷却することにより、その組織が再結晶前ニー重構
造組織とすることを要旨とする。
Further, the method for producing the steel for valve stems having excellent torsional strength according to the present invention has a cHo. 03% or less, Si
; 2.0% or less, Mn; 10.0% or less, Ni; 6-2
0%, Cr; 16-30%, N, 0.1-0.3%, N
r; Contains 0.02 to 0.25%, or M
o; 4.0% or less, Cu; 4.0% or less, S, 0.00
Contains one or more of 2% or less, the balance being Fe
and steel consisting of impurity elements, 1100 to 1300
℃, then rolled at a rough rolling temperature of 1000-1200℃ with a processing amount of 50% or more, cooled for 10 seconds to 5 minutes after rough rolling, and then processed at a finish rolling temperature of 800-1000℃! 13
The gist is that by performing rolling of 0% or more and cooling at a cooling rate of 4° C./min or more after rolling, the structure becomes a knee-heavy structure before recrystallization.

本発明は再結晶加工2重構造がオーステナイト系ステン
レス鋼に低温靭性、高温強度、耐食性および溶接性を保
持したままねじり強度の向上をもたらすという新たな知
見に基づくものである。再結晶加工2重構造組織は本発
明の組成を有する合金を本発明の製造方法により処理し
たときに得られるものである。一般にオーステナイト系
ステンレス鋼の組織は、光学顕微鏡で観察される100
μ程度のミクロ組織と、電子顕微鏡で観察される1重程
度のサブ組織から成立j7ている。オーステナイト系ス
テンレス鋼は固溶化熱処理をして使用するのが通常であ
って、固溶化熱処理後の組織の200倍のむのを第2図
(イ)に、2万倍のものを第2図(ロ)に示す、また、
従来知られている制御圧延組織は第3図(イ)く口)に
示すように、(イ)のミクロ組繊は混粒の加工組織にな
っており、く口)のサブ組織も加工組織である。
The present invention is based on the new finding that the recrystallized double structure improves the torsional strength of austenitic stainless steel while maintaining its low-temperature toughness, high-temperature strength, corrosion resistance, and weldability. The recrystallized double structure is obtained when an alloy having the composition of the present invention is processed by the manufacturing method of the present invention. Generally, the structure of austenitic stainless steel is 100% as observed with an optical microscope.
It is composed of a microstructure of approximately μ size and a substructure of approximately 1 layer, which is observed with an electron microscope. Austenitic stainless steel is usually used after being solution heat treated, and Figure 2 (A) shows a structure 200 times larger than the structure after solution heat treatment, and Figure 2 shows a structure 20,000 times larger than the structure after solution heat treatment. As shown in (b),
The conventionally known controlled rolling structure is shown in Figure 3 (A), where the microstructure in (A) is a processed structure of mixed grains, and the substructure in (A) is also a processed structure. It is.

本発明の再結晶加I 2重n4造組織を得るための温度
と時間の関係を示した図に表したのが第1図である。先
ず加熱温度1100〜1300℃でNb析出物を完全に
固溶化する0次いで1000〜1200℃加工150%
以上の粗圧延を行う、粗圧延後の冷却時間は10秒〜5
分であって、粗圧延最終ロールから仕上圧延開始までに
すみやかに所定の温度に冷却し、再結晶させて微細な再
結晶組織を得る。仕上圧延は800〜1000℃加工量
30%以上で行う、仕上圧延後の冷却速度は4”C/w
in以上とする。
FIG. 1 is a diagram showing the relationship between temperature and time for obtaining the recrystallized I2-fold N4 structure of the present invention. First, Nb precipitates are completely dissolved at a heating temperature of 1,100 to 1,300°C. Then, 150% processing is performed at 1,000 to 1,200°C.
The above rough rolling is performed, and the cooling time after rough rolling is 10 seconds to 5 seconds.
The material is quickly cooled to a predetermined temperature from the final roll of rough rolling to the start of finish rolling, and recrystallized to obtain a fine recrystallized structure. Finish rolling is performed at 800-1000℃ with a processing amount of 30% or more, and the cooling rate after finish rolling is 4"C/w
In or more.

本発明および比較例の製造方法によって製造されたm微
鏡組織の写真を第4図〜第8図に示す。
Photographs of m-microstructures manufactured by the manufacturing methods of the present invention and comparative examples are shown in FIGS. 4 to 8.

仕上圧延開始温度は1050℃、980℃、900℃1
850℃、700℃でそれぞれの写真の(イ)は200
倍、(ロ)は2万倍である0本発明で言う再結晶加工2
重jr4造組織は第5図〜第7図の写真から明らかなよ
うに、ミクロ組織は数十μの再結晶組織からなり、さら
にそれらは数μのサブ再結晶組織から成り立っている。
Finish rolling start temperature is 1050℃, 980℃, 900℃1
(A) in each photo is 200 at 850℃ and 700℃
Multiply (b) is 20,000 times 0 Recrystallization processing according to the present invention 2
As is clear from the photographs in FIGS. 5 to 7, the heavy JR4 microstructure consists of a recrystallized structure of several tens of microns, which in turn consists of a sub-recrystallized structure of several microns.

このサブ組織のサブ結晶粒は高密度の転位を有している
加工組織である。
The subgrains of this substructure are a processed structure having a high density of dislocations.

ここで仕上圧延開始温度を1000℃より高くすると、
第4図に示すようにサブ結晶粒には転位が殆ど見られな
くなりねじり強度アンプが殆どなくなる。一方800℃
より低くすると、第8図から明らかなように、サブ再結
晶組織の形成が見られなくなり、ねじり強度の向上が得
られない。
Here, if the finish rolling start temperature is made higher than 1000°C,
As shown in FIG. 4, almost no dislocations are observed in the sub-crystal grains, and the torsional strength amplifier is almost eliminated. On the other hand, 800℃
If it is lower, as is clear from FIG. 8, no sub-recrystallized structure is formed, and no improvement in torsional strength can be obtained.

本発明はオーステナイト系ステンレス鋼において、前記
の制御圧延によって優れた特性を得るためには、C量を
下げ、N、Nbを添加することが重要であるとの知見に
基づいたものである。本発明組成によれば、再結晶温度
を著しく高めて制御圧延を容易にし、1■圧延後におい
て微細結晶組織を得やすくする。また、仕上圧延時に(
Cr、Nb)Nが超微細に転位または下部再結晶粒界上
に歪誘起析出して、分散強化と共に固溶Nr;Nおよび
〈Cr、Nb)Nが転位の回復を抑制するため、下部再
結晶組織中の転位密度を増大せしめて、著しい強度向ト
を実現する。CについてはNb(C,N)析出を促進し
、熱間加工性を損なうと同時に(Cr、Nh)Hの析出
強化能を;戊退させる。さらにCr2゜C,の析出をも
促進して、耐食性を低下させるので、C址を下げること
が最も重要である。
The present invention is based on the knowledge that in order to obtain excellent properties through the above-mentioned controlled rolling in austenitic stainless steel, it is important to lower the amount of C and add N and Nb. According to the composition of the present invention, the recrystallization temperature is significantly raised to facilitate controlled rolling, and it becomes easier to obtain a fine crystal structure after 1 inch of rolling. Also, during finish rolling (
Cr, Nb)N is strain-induced to precipitate on dislocations or lower recrystallization grain boundaries in an ultrafine manner, and as well as dispersion strengthening, solid solution Nr;N and <Cr, Nb)N suppress dislocation recovery. By increasing the dislocation density in the crystal structure, a significant increase in strength is achieved. C promotes Nb(C,N) precipitation, impairs hot workability, and at the same time detracts from the precipitation strengthening ability of (Cr, Nh)H. Furthermore, it also promotes the precipitation of Cr2°C, which lowers the corrosion resistance, so it is most important to lower the C content.

本発明鋼に含有されるC、NおよびNbのマイクロアロ
イ元素の作用についてさらに詳述すると以下の通りであ
る。
The effects of the microalloy elements of C, N and Nb contained in the steel of the present invention will be described in more detail below.

先ず強度について述べると、固溶化熱処理組織において
は、Nは固溶強化に寄与する。また、Nb(C,N)が
析出して結晶粒をV&細化することによって、強度向上
に寄与する。本発明の再結晶加工2重構造組繊を有する
本発明組成の鋼においては、N、Nbとの効果は固溶化
熱処理組織における通常知られているN、Nbの効果の
約2倍大きくなる。この2ニジい効果は本発明者等の研
究によると仕上圧延時に導入される転位組織および亜粒
界」二に(CrN b)Nが超微細に歪誘起析出して、
それらを固着し、転位の回復を遅らせ、転位密度を増大
せしめるためであることが明らかにされている。
First, regarding strength, in a solution heat treated structure, N contributes to solid solution strengthening. In addition, Nb (C, N) precipitates and makes the crystal grains V& finer, thereby contributing to improving the strength. In the steel of the present invention composition having the recrystallized double structure fibers of the present invention, the effect of N and Nb is approximately twice as large as the normally known effect of N and Nb in a solution heat treated structure. According to research conducted by the present inventors, this two-difficult effect is caused by ultrafine strain-induced precipitation of (CrNb)N and the dislocation structure and subgrain boundaries introduced during finish rolling.
It has been clarified that this is to fix them, delay recovery of dislocations, and increase dislocation density.

次ぎに耐食性について述べると、Cが0.03%以下で
N、Nbを31Jt含んだ本発明鋼の制御圧延材の耐食
性は、粒界にCr2.C,が形成されず、しかもNの耐
食性向上作用によって、固溶強化熱処理した18Cr−
8Ni鋼の耐食性よりも浸れていることを見出だした0
粒界C: r 23 Csが形成されない理由は、Cが
少なくNの高いステンレス鋼の場合CrBCsに代わっ
てCr2j (C、N )6が析出するが、この析出物
の析出速度が著しく遅い。またNbによってそもそも少
ないCがNbCとなって固i8Cは殆ど存在しないため
である。
Next, regarding the corrosion resistance, the corrosion resistance of the control-rolled steel of the present invention containing 0.03% or less of C and 31 Jt of N and Nb is as follows: Cr2. The 18Cr-
It was found that the corrosion resistance of 8Ni steel was higher than that of Ni steel.
Grain boundary C: The reason why r 23 Cs is not formed is that in stainless steel with low C and high N content, Cr2j (C,N)6 precipitates in place of CrBCs, but the precipitation rate of this precipitate is extremely slow. This is also because due to Nb, C, which is small in the first place, becomes NbC, and there is almost no solid i8C.

以上述べたように低C,N、Nbのマイクロアロイ元素
が、制御圧延材の強度向上と耐食性の改善に不可欠であ
ること、これらの元素と制御圧延との組み合わせによっ
てのみ優れたねじり強度を持つオーステナイト系ステン
レス鋼が得られることを見出だすと共に、これをバルブ
ステム用材料として用いたものである。
As mentioned above, microalloy elements with low C, N, and Nb are essential for improving the strength and corrosion resistance of controlled rolled materials, and only by combining these elements with controlled rolling can excellent torsional strength be achieved. It was discovered that austenitic stainless steel could be obtained, and this was used as a material for valve stems.

以下に本発明鋼の成分限定理由について説明する。The reasons for limiting the composition of the steel of the present invention will be explained below.

C;O、o 3%以下 Cは制御圧延後の耐食性、制御圧延時の熱間加工性を著
しく損なう本発明においては重要な元素であり、少なく
とも0.03%以下にする必要がある。また、Cが多い
ほどNb(C,N)が大きく成長し、(Cr、Nb)N
の微細析出を妨害し、強度低下の原因となるので、その
上限を0.03%とした。
C; O, o 3% or less C is an important element in the present invention, as it significantly impairs corrosion resistance after controlled rolling and hot workability during controlled rolling, and must be at least 0.03% or less. Also, the more C there is, the more Nb(C,N) grows, and (Cr,Nb)N
The upper limit was set at 0.03% because it interferes with the fine precipitation of carbon and causes a decrease in strength.

S i;2.0%以下 Siは脱酸剤として添加する他に強度をも改善する元素
であるが、反面溶接時の高温割れ性、凝固時のN固溶量
を減少させる元素でもあり、良好な鋼塊を得るには2.
0%以下にする必要があり、その上限を2.0%とした
Si: 2.0% or less Si is an element that is added as a deoxidizing agent and also improves strength, but on the other hand, it is also an element that reduces hot cracking during welding and the amount of N solid solution during solidification. To obtain a good steel ingot 2.
It is necessary to keep the amount below 0%, and the upper limit is set at 2.0%.

Mn;10.0%以下 Mnは脱酸剤として添加する他Nの溶解度を増加させる
元素であるが、反面含有量が増加すると耐食性、熱間加
工性を損なうのでその上限を10.0%とした。
Mn: 10.0% or less Mn is an element that is added as a deoxidizing agent and increases the solubility of N, but on the other hand, as the content increases, corrosion resistance and hot workability are impaired, so the upper limit is set at 10.0%. did.

N i;6〜20% Niはオーステナイト系ステンレス鋼の基本元素であり
、優れた耐食性と低温靭性およびオーステナイト組織を
得るためには6%以上の含有が必要である。しかし、N
i量が増加しすぎると溶接時の溶接割れ性、熱間加工性
などを低下させるので、その上限を20%とした。
Ni; 6-20% Ni is a basic element of austenitic stainless steel, and must be contained in an amount of 6% or more in order to obtain excellent corrosion resistance, low-temperature toughness, and an austenitic structure. However, N
If the amount of i increases too much, weld cracking properties during welding, hot workability, etc. will be reduced, so the upper limit was set at 20%.

Cr;16〜30% Crはステンレス鋼の基本元素であり、優れた耐食性を
得るためには少なくとも16%以上の含有が必要である
。しかし、Cr量が増加しすぎると高温でのδ/γ組織
のバランスを損なうのでその上限を30%とした。
Cr: 16-30% Cr is a basic element of stainless steel, and in order to obtain excellent corrosion resistance, it must be contained at least 16% or more. However, if the Cr content increases too much, the balance of the δ/γ structure at high temperatures will be impaired, so the upper limit was set at 30%.

N、0.10〜0.30% Nは侵入型の固溶強化および(CrNb)N析出による
結晶粒の微細化、析出強化作用によるねじり強度の向上
および高温強度の向上を有するなど本発明においては最
も主要な強化元素であり、かつ制御圧延後の耐食性改善
に寄与する元素でもあり、これらの効果を得るには0.
10%以上の含有が必要であり、下限を0.10%とし
た。しかし、N含有量が増加すると熱間加工性を低下し
、さらに凝固時、溶接時にブローホールが発生しやすく
、なるので、その上限を0.30%とした。
N, 0.10-0.30% N has interstitial solid solution strengthening, grain refinement due to (CrNb)N precipitation, and improved torsional strength and high-temperature strength due to precipitation strengthening. is the most important strengthening element and is also an element that contributes to improving corrosion resistance after controlled rolling, and to obtain these effects, 0.
It is necessary to contain 10% or more, and the lower limit is set to 0.10%. However, as the N content increases, hot workability decreases and blowholes are more likely to occur during solidification and welding, so the upper limit was set at 0.30%.

Nr;0.02〜0.25% Nbは残存CをNbCとして固定し、制御圧延後の耐食
性を改善し、かつ(CrN b) N析出による結晶粒
の微細化によるねじり強度の向上および高温強度の向上
、さらには制御圧延後の強度を改善する本発明において
は主要な元素であり、少なくとも0.02%以上の含有
が必要である。しかし、Nbは高価な元素でもあり、か
つ必要以上に含有させると熱間加工性を損なうので上限
を0.25%とした。
Nr: 0.02-0.25% Nb fixes residual C as NbC, improves corrosion resistance after controlled rolling, and improves torsional strength and high-temperature strength due to grain refinement due to (CrNb)N precipitation. In the present invention, which improves the strength and strength after controlled rolling, it is a major element and must be contained in an amount of at least 0.02%. However, Nb is also an expensive element, and if it is included more than necessary, it impairs hot workability, so the upper limit was set at 0.25%.

Mo;4.0%以下、Cu;4.0%以下MO−Cuは
いずれも本発明鋼の耐食性をさらに改善する元素である
。しかし、Mo、Cuは高価な元素でもあり、かつ、4
%を越えて含有させると熱間加工性を損なうので上限を
それぞれ4%とした。
Mo: 4.0% or less, Cu: 4.0% or less MO--Cu are all elements that further improve the corrosion resistance of the steel of the present invention. However, Mo and Cu are also expensive elements, and
If the content exceeds 4%, hot workability will be impaired, so the upper limit was set at 4%.

S、0.002%以下 Sはその含有量を大幅に低減することにより耐食性を向
上させる元素であり、かつ制御圧延後の延性、低温靭性
を向上させるものであり、その含有量は少ないほど望ま
しく、少なくとも0.002%以下、望ましくは0.0
01%以下にすることが好ましい。
S, 0.002% or less S is an element that improves corrosion resistance by significantly reducing its content, and also improves ductility and low-temperature toughness after controlled rolling, and the lower its content is, the more desirable it is. , at least 0.002% or less, preferably 0.0
It is preferable to make it 0.01% or less.

5eH0,080%以下、s ;0 、Os o%以下
S、Seは本発明鋼の被剛性を改善する元素であり、S
は0.020%を越えて、Seは0.005%以上含有
させる必要がある。しかし、S、Seともにo、oso
%を越えて含有させると熱間加工性、耐食性を低下させ
るので上限をo、os。
5eH0,080% or less, s;0, Os o% or lessS, Se are elements that improve the stiffness of the steel of the present invention;
must exceed 0.020%, and Se must be contained at 0.005% or more. However, both S and Se are o and oso.
If the content exceeds 0.0%, the hot workability and corrosion resistance will decrease, so the upper limit should be set to o, os.

%としな。%.

Te;0.080%以下 TeはM n Sの介在物を球状化し圧延方向と直角方
向の靭性を改善し異方性の低下を防止するのに必要な元
素であり少なくとも0.0050%以上含イiされるこ
とが望ましい。o 、o s o%以上添加すると熱間
加工性を阻害するので上限を0.080%とした。
Te: 0.080% or less Te is an element necessary to spheroidize MnS inclusions, improve toughness in the direction perpendicular to the rolling direction, and prevent a decrease in anisotropy, and it should be contained at least 0.0050% or more. It is desirable that this is done. If more than 0% is added, hot workability will be inhibited, so the upper limit was set at 0.080%.

P、0.100%以下 Pは被削性を改善するため添加される元素であり、少な
くとも0.04%以−J二含有されることが望ましい。
P, 0.100% or less P is an element added to improve machinability, and is preferably contained at least 0.04% or more.

しかし、0.100?べ以上になると熱間加工性が損な
われるので、上限を0.100%としな。
But 0.100? If the content exceeds 10%, hot workability will be impaired, so the upper limit should be set at 0.100%.

Bi:0.300%工゛l下、Pb:0.300%以下
BiおよびPbは被削性を改善するために必要な元素で
あり少なくとも003%以上が含有されることが望まし
い、しかし、0.300%を越えると熱間加工性が阻害
されるので、その上限を0300%とした。
Bi: 0.300%, Pb: 0.300% or less Bi and Pb are elements necessary to improve machinability, and it is desirable to contain at least 0.3% or more. If it exceeds .300%, hot workability will be inhibited, so the upper limit was set at .0300%.

B、O,0100%以下 BはB1とPbを添加したときに、熱間加工性が低下す
るのを防止するために添加されるが、前記効果を得るた
めには少なくとも0.00050%以上が添加されるこ
とが望ましい。しかし、00100%を越えて添加して
も、その効果の向上は期待されないので、」1限をo、
otoo%とした。
B, O, 0100% or less B is added to prevent hot workability from deteriorating when B1 and Pb are added, but in order to obtain the above effect, at least 0.00050% or more is added. It is desirable that it be added. However, even if it is added in excess of 100%, no improvement in the effect is expected.
It was set as too%.

V、Ti、W、Ta、lit、Zr、Al;0.30%
以下 V、Ti、W、Ta、Hf、Zr、A、lはねじり強度
および高温強度を向上させるために添加される元素であ
るが、0630%を越えて含有させても、その効果の向
上が望めないので、上限を0.3096とした。
V, Ti, W, Ta, lit, Zr, Al; 0.30%
Below, V, Ti, W, Ta, Hf, Zr, A, and l are elements added to improve torsional strength and high-temperature strength, but even if the content exceeds 0.630%, the effect will not be improved. Since this is not possible, the upper limit was set at 0.3096.

B、0.0005 No、0100%、Ca;0.00
05〜0.0100%、Mg:0.0005〜0.01
00%、希土類元素;0.0005〜0.0100% B、Ca、M8、および希土類元素は熱間加工性と改善
するため必要な元素であって、熱間加工性を改善するた
めには少なくとも0.0005%以りの添加が必要であ
る。しかし、0.0100%以上添加してらその効果の
向上が望めないので、上限を0.0100!!石とした
B, 0.0005 No. 0100%, Ca; 0.00
05-0.0100%, Mg: 0.0005-0.01
00%, rare earth elements; 0.0005 to 0.0100% B, Ca, M8, and rare earth elements are elements necessary to improve hot workability, and in order to improve hot workability, at least It is necessary to add 0.0005% or more. However, if more than 0.0100% is added, no improvement in the effect can be expected, so the upper limit is set at 0.0100! ! It turned into stone.

また、制御圧延において、加熱温度を1100〜130
0℃としたのは、圧延時の変形抵抗を小さくすると共に
、N b析出物を鋼中に十分に固溶させるためで!)る
。1100℃未満では変形抵抗が大きく、かつNb析出
物と完全に固溶させることが困難であるためであり、1
300℃を越えて加熱すると粒界の一部がL8融または
結晶粒が粗大化して圧延が困難になるためである。
In addition, in controlled rolling, the heating temperature is set to 1100 to 130.
The temperature was set at 0°C in order to reduce the deformation resistance during rolling and to sufficiently dissolve Nb precipitates in the steel! ). This is because the deformation resistance is large below 1100°C and it is difficult to form a complete solid solution with Nb precipitates.
This is because, if heated above 300° C., part of the grain boundaries will become L8 fused or the crystal grains will become coarse, making rolling difficult.

粗圧延温度を1000〜1200℃としたのは、微細再
結晶組織を得るためであり、1000℃未満では微細再
結晶組織を得ることができないからであり、1200℃
以上では再結晶により結晶粒が粗大化するためである。
The reason why the rough rolling temperature was set to 1000 to 1200°C is to obtain a fine recrystallized structure, and it is not possible to obtain a fine recrystallized structure below 1000°C.
This is because the crystal grains become coarser due to recrystallization.

粗圧延において加工量を50%以上としたのは、加工量
50%以下では格子欠陥のエネルギーが少なくla、t
lllt41mが得られないからである。
The reason why the amount of processing is set to 50% or more in rough rolling is that when the amount of processing is less than 50%, the energy of lattice defects is small, la, t.
This is because lllt41m cannot be obtained.

仕上圧延温度を800〜1000℃としたのは、再結晶
加工2重構造組織を得るためである。800℃以下では
加工組織になってしまい、再結晶加工2重構造組織を得
ることができないからであり、1000℃を越えると再
結晶により再結晶組織となってしまうので、1000℃
と上限とした。
The reason why the finish rolling temperature was set to 800 to 1000°C is to obtain a recrystallized double structure structure. This is because if it is below 800°C, it becomes a processed structure and it is not possible to obtain a recrystallized double structure structure, and if it exceeds 1000°C, it becomes a recrystallized structure due to recrystallization.
and the upper limit.

仕上圧延において加工量を30%以上としたのは、30
%以下では加工歪が小さいために再結晶加工2重構造組
織が得られないためである。
In finish rolling, the processing amount was 30% or more.
% or less, the processing strain is small and a recrystallized double structure cannot be obtained.

粗圧延後に10秒〜5分の冷却を行うのは、粗圧延を行
ってから再結晶を起こさせるのに必要な時間だからであ
る。また、什」二圧延後冷却速度を4℃/分以上とした
のは、4℃/分以下の徐冷ではCr23C、またはCr
 2 Nが粒界に析出し耐食性を低下するためである。
The reason why cooling is performed for 10 seconds to 5 minutes after rough rolling is because it is the time required to cause recrystallization after rough rolling. In addition, the reason why the cooling rate after rolling was set at 4°C/min or more was because slow cooling at 4°C/min or less was Cr23C or Cr23C.
This is because 2N precipitates at grain boundaries and reduces corrosion resistance.

[実施例] 次に本発明鋼およびその製造方法の特徴を従来鋼、比較
鋼と比べて実施例でもって明らかにする。
[Example] Next, the characteristics of the steel of the present invention and its manufacturing method will be clarified by comparing it with conventional steel and comparative steel through examples.

第1表はこれら供試鋼の化学成分(重j!l % )を
示す、第1表の供試鋼について本発明方法による制御圧
延および比較のために他の方法による制御圧延を施し、
組織、ねじり強度、孔食電位、切削性、熱間加工性、低
温靭性、高温強度について測定し、その結果を第2表に
示した。
Table 1 shows the chemical composition (weight j!l %) of these test steels.The test steels in Table 1 were subjected to controlled rolling by the method of the present invention and controlled rolling by other methods for comparison.
The structure, torsional strength, pitting potential, machinability, hot workability, low temperature toughness, and high temperature strength were measured, and the results are shown in Table 2.

組織については、光学E微鏡組織は10%修酸電解エツ
チングを行った後、光学顕微鏡にて観察した。また、電
顕組織は薄膜を作成後、透過電子顕微鏡にて観察した。
Regarding the structure, the optical E microstructure was subjected to 10% oxidized acid electrolytic etching and then observed using an optical microscope. Further, the electron microscopic structure was observed using a transmission electron microscope after forming the thin film.

ねじり強度については、常温でねじり速度10”/wi
nという条件で比例限までねじり試験を行い、その時の
強度を測定したものである。
Regarding torsional strength, twisting speed is 10”/wi at room temperature.
A torsion test was conducted to the proportional limit under the condition of n, and the strength at that time was measured.

熱間加工性については、グリ−プル装置を用いて110
0℃で、引張速度501/秒という条件で高速高温引張
試験を行い、その絞り値を測定したものである。
Regarding hot workability, 110
A high-speed high-temperature tensile test was conducted at 0° C. and a tensile rate of 501/sec, and the aperture value was measured.

耐食性については、30℃、3.5%NaCl水溶液中
での孔食電位を測定したものである。
Corrosion resistance was measured by measuring pitting potential in a 3.5% NaCl aqueous solution at 30°C.

切削性については20−輪の試験片を、5KH9の5+
mmφのドリルを用いて回転数725 rps、送り速
度0 、16 aml revでドリル寿命試験を行い
、その結果を示した。
Regarding machinability, a 20-wheel test piece was used, and a 5KH9 5+
A drill life test was conducted using a mmφ drill at a rotational speed of 725 rps, a feed rate of 0, and 16 aml rev, and the results are shown.

低温靭性については、JIS3号Uノツチ(2m−)試
験片の5mm厚のもので、−196℃(77K)でのシ
ャルピー衝撃値を測定した。
Regarding low-temperature toughness, the Charpy impact value at -196°C (77K) was measured using a 5mm thick JIS No. 3 U-notch (2m-) test piece.

高温強度については、600℃のクリープ・ラブチャー
試験における103時間での破断応力を測定した。
Regarding high temperature strength, the breaking stress at 103 hours in a creep-Labuture test at 600°C was measured.

(以下余白) 第1表および第2表から知られるように、No。(Margin below) As is known from Tables 1 and 2, no.

1〜3およびNo、11〜12は第1発明鋼の組成のも
のを本発明方法により制御圧延したものであるが、ねじ
り強度、低温靭性、高温強度、孔食電位、切削性、熱間
加工性についてそれぞれ満足すべき結果を得た。これに
対しNo、4〜10は第1発明鋼の組成を持ったものに
ついて本発明方法以外の加工を施したもので、仕上圧延
温度が高く1050℃であるNo、4は再結晶組織しか
得られず、ねじり強度が低い、仕上圧延温度が低く70
0℃であるNo、5は加工組織しか得られず異方性が甚
だしく大きい、No、6は圧延後固溶化熱処理をしたも
ので、ねじり強度において劣る。No、7は900℃で
一段階の制御圧延を施したもので、加工組織であり異方
性が甚だしく大きい、No、8は700℃で1段階の制
御圧延をしたもので、加工組織で異方性が甚だしく大き
い、No、9は仕上圧延後の冷却速度が3℃/分である
もので、孔食電位において劣る。No、10は仕上圧延
における加工率が10%と低いものであるが、十分なね
じり強度が得られていない。
Nos. 1 to 3 and Nos. 11 to 12 are steels with the composition of the first invention steel, which were subjected to controlled rolling according to the method of the present invention, but the torsional strength, low temperature toughness, high temperature strength, pitting potential, machinability, hot workability were Satisfactory results were obtained for each gender. On the other hand, No. 4 to No. 10 are steels having the composition of the first invention steel that have been processed using methods other than the method of the present invention, and No. 4, which has a high finish rolling temperature of 1050°C, only obtains a recrystallized structure. low torsional strength, low finish rolling temperature 70
No. 5, which has a temperature of 0° C., provides only a processed structure and has extremely large anisotropy. No. 6, which is subjected to solution heat treatment after rolling, is inferior in torsional strength. No. 7 was subjected to one-step controlled rolling at 900°C, and has a processed structure with extremely high anisotropy. No. 8 was subjected to one-step controlled rolling at 700°C, and has a processed structure with extremely large anisotropy. No. 9, which has extremely high orientation, has a cooling rate of 3° C./min after finish rolling, and is inferior in pitting corrosion potential. No. 10 has a low processing rate of 10% in finish rolling, but sufficient torsional strength is not obtained.

No、13〜16は本発明鋼の組成範囲外の成分を持つ
比較例で、本発明方法による制御圧延を施したものであ
るが、No、13はCが多く、孔食電位が悪い、No、
14はCrが組成範囲より少ないものであるが、孔食電
位が劣る。No、15はNを組成範囲以下含むものであ
るが、ねじり強度、孔食電位が劣る。No、16はNb
を組成範囲以下含むものであるが、ねじり強度、孔食電
位が劣る。
Nos. 13 to 16 are comparative examples having components outside the composition range of the steel of the present invention, and were subjected to controlled rolling according to the method of the present invention. ,
No. 14 has less Cr than the composition range, but its pitting potential is inferior. No. 15 contains N within the composition range, but is inferior in torsion strength and pitting corrosion potential. No. 16 is Nb
However, the torsional strength and pitting potential are inferior.

No、17〜21は本発明の第2発明鋼の組成のものを
本発明方法により制御圧延したものであるが、再結晶加
工2重構造組織が得られ、ねじり強度、孔食電位、低温
靭性、高温強度共に優れた結果を得た。特に孔食電位に
ついて優れ、耐食性の優れていることが確認された。N
o、22〜23は第2発明鋼の組成のものを本発明方法
でない処理を施したもので、No、22は孔食電位、低
温靭性および高温強度において劣り、No、23は95
0℃で一段階制御圧延を施したもので、ねじり強度は優
れているものの異方性が甚だしく大きいことが確認され
た。
Nos. 17 to 21 are steels with the composition of the second invention steel of the present invention that were subjected to controlled rolling according to the method of the present invention, and a recrystallized double structure structure was obtained, and the torsional strength, pitting corrosion potential, and low-temperature toughness were improved. Excellent results were obtained in both high-temperature strength and high-temperature strength. In particular, it was confirmed that the material was excellent in terms of pitting potential and corrosion resistance. N
No. 22 to 23 are steels with the composition of the second invention that have been subjected to a treatment other than the method of the present invention. No. 22 is inferior in pitting potential, low-temperature toughness, and high-temperature strength, and No. 23 is 95.
One-step controlled rolling was performed at 0°C, and although the torsional strength was excellent, it was confirmed that the anisotropy was extremely large.

No、24〜28は切削性を改善するためSe、Te、
S、Pを添加した第3発明鋼であるが、本発明方法によ
る制御圧延により、再結晶加工二重構造組織となり、ね
じり強度、孔食電位、低温靭性、高温強度共に優れた結
果を得た。また、切削性についても測定した結果、優れ
た結果の得られることが確認された。
No. 24 to 28 contain Se, Te, and Te to improve machinability.
The third invention steel added S and P, but by controlled rolling according to the method of the invention, it became a recrystallized double-structure structure and obtained excellent results in terms of torsional strength, pitting potential, low temperature toughness, and high temperature strength. . Furthermore, as a result of measuring the machinability, it was confirmed that excellent results were obtained.

No、29〜31は切削性を改善するためBi、Pb、
Bを添加した第4発明鋼であるが、本発明方法による制
御圧延により、再結晶加工二重構造組織となり、ねじり
強度、孔食電位、低温靭性、高温強度共に優れた結果を
得た。また、切削性、熱間加工性についても測定した結
果、熱間加工性を低下させることなく切削性を向上させ
ることが確認された。
No. 29 to 31 contain Bi, Pb, and
The fourth invention steel added B had a recrystallized double-structure structure by controlled rolling according to the method of the invention, and excellent results were obtained in both torsional strength, pitting potential, low-temperature toughness, and high-temperature strength. Furthermore, as a result of measuring machinability and hot workability, it was confirmed that machinability was improved without reducing hot workability.

No、32〜40は強度を向上するためV、Ti、W、
Ts、Hr、Zr、A1を添加した第5発明鋼であるが
、本発明方法による制御圧延により、再結、高加工二重
構造組織となり、ねじり強度、孔食電位、低温靭性、高
温強度共に優れた結果を得た。
No. 32 to 40 contain V, Ti, W,
This is the fifth invention steel to which Ts, Hr, Zr, and A1 are added, but by controlled rolling according to the method of the present invention, it becomes a re-solidified, highly processed double structure structure, and the torsional strength, pitting potential, low temperature toughness, and high temperature strength are improved. Excellent results were obtained.

No、41〜45は熱間加工性を改善するためB、Ca
、Mg、希土類元素を添加した第6発明鋼であるが、本
発明方法による制御圧延により、再結晶加工二重構造組
織となり、ねじり強度、孔食電位、低温靭性、高温強度
共に優れた結果を得た。また、熱間加工性についても測
定した結果、熱間加工性において優れていることが確認
された。
No. 41 to 45 contain B and Ca to improve hot workability.
, Mg, and rare earth elements are added to the sixth invention steel, but by controlled rolling according to the method of the present invention, it becomes a recrystallized double-structured structure, resulting in excellent results in terms of torsional strength, pitting potential, low-temperature toughness, and high-temperature strength. Obtained. Furthermore, as a result of measuring hot workability, it was confirmed that the product had excellent hot workability.

No、46〜48は強度、耐食性、被剛性、熱間加工性
を改善する上記すべての元素を添加した第7発明鋼であ
るが、本発明方法による制御圧延により、再結晶加工二
重構造組織となり、ねじり強度、孔食電位、低温靭性、
高温強度共に優れた結果を得た。また、被剛性、熱間加
工性についても優れた結果の得られることが確認された
Nos. 46 to 48 are the seventh invention steels to which all the above-mentioned elements are added to improve strength, corrosion resistance, rigidity, and hot workability. Torsional strength, pitting potential, low temperature toughness,
Excellent results were obtained in both high-temperature strength and strength. It was also confirmed that excellent results were obtained in terms of stiffness and hot workability.

[発明の効果] 本発明のバルブステム用鋼およびその製造方法は以上説
明したように、オーステナイト系ステンレス鋼のC量を
低下すると共に適量のN、Nbを添加し、2段階制御圧
延により組織を再結晶加工2重構造組織としたものは、
オーステナイト系ステンレス鋼のねじり強度を著しく向
上することを新たに知見すると共に、これをバルブステ
ム用鋼として新たな用途の開発に成功したものである。
[Effects of the Invention] As explained above, the valve stem steel of the present invention and its manufacturing method reduce the C content of austenitic stainless steel, add appropriate amounts of N and Nb, and improve the structure by two-step controlled rolling. The recrystallized double structure structure is
We have discovered that the torsional strength of austenitic stainless steel can be significantly improved, and we have successfully developed a new use for this as a valve stem steel.

本発明のパルプステム用鋼はねじり強度、低温靭性、高
温強度、耐食性および溶接性のすべての要求特性を満足
するものであり、化学、海水、原子力等の各種プラント
に用いられるバタフライ弁のベルブスデム用材料として
極めて有用なものである。
The steel for pulp stems of the present invention satisfies all the required properties of torsional strength, low temperature toughness, high temperature strength, corrosion resistance and weldability, and is suitable for bell stems of butterfly valves used in various plants such as chemical, seawater, and nuclear power plants. It is extremely useful as a material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法による制御圧延工程を温度と時間の
関係について示した図、第2(イ)(ロ)図は固溶化熱
処理を施した後の再結晶組織を表す顕微鏡写真の模写図
、第3図(イ)(ロ)は900℃で仕ト圧延後の加工組
織を表ず顕@鏡写真の模写図5第4(イ)(ロ)図は仕
上圧延開始温度1050℃の再結晶組織を表す顕微鏡写
真の模写図、第5図(イ〉〈口)は仕上圧延開始温度9
80℃の再結晶加工2重構造組織を表す顕微鏡写真の模
写図、第6図くイ)(口〉は仕上圧延開始温度900℃
の再結晶加工2重構造組織を表す顕微鏡写真の模写図、
第7図〈イ)(ロ)は仕上圧延開始温度850℃の再結
晶加工2重構造組織を表す顕微鏡写真の模写図、第8図
(イ)〈口)は仕上圧延開始温度が700℃の加工組織
を表す顕微鏡写真の模写図である。
Figure 1 is a diagram showing the relationship between temperature and time in the controlled rolling process according to the method of the present invention, and Figures 2 (a) and (b) are reproductions of micrographs showing the recrystallized structure after solution heat treatment. , Figures 3 (a) and (b) do not show the worked structure after final rolling at 900°C. A copy of the micrograph showing the crystal structure, Figure 5 (A) is at the finish rolling start temperature 9
A copy of a microscopic photograph showing the double structure structure after recrystallization at 80°C, Figure 6)
A replica of a micrograph showing the double structure structure of the recrystallized process,
Figures 7 (a) and (b) are reproductions of micrographs showing the double structure structure after recrystallization at a finish rolling start temperature of 850°C, and Figures 8 (a) and (b) are reproductions of micrographs showing a recrystallized double structure structure at a finish rolling start temperature of 700°C. It is a replica of a micrograph showing a processed structure.

Claims (9)

【特許請求の範囲】[Claims] (1)重量比にしてC;0.03%以下、Si;2.0
%以下、Mn;10.0%以下、Ni;6〜20%、C
r;16〜30%、N;0.1〜0.3%、Nb;0.
02〜0.25%を含有し、残部Feならびに不純物元
素からなり、かつその組織が再結晶加工二重構造組織か
らなるねじり強度の優れたバルブステム用鋼。
(1) C: 0.03% or less, Si: 2.0 in terms of weight ratio
% or less, Mn; 10.0% or less, Ni; 6 to 20%, C
r: 16-30%, N: 0.1-0.3%, Nb: 0.
A steel for valve stems containing 02 to 0.25%, the balance consisting of Fe and impurity elements, and having an excellent torsional strength consisting of a recrystallized double structure structure.
(2)重量比にしてC;0.03%以下、Si;2.0
%以下、Mn;10.0%以下、Ni;6〜20%、C
r;16〜30%、N;0.1〜0.3%、Nb;0.
02〜0.25%を含有し、さらにMo;4.0%以下
、Cu;4.0%以下、S;0.002%以下のうち1
種ないし2種以上を含有し、残部Feならびに不純物元
素からなり、かつその組織が再結晶加工二重構造組織か
らなるねじり強度の優れたバルブステム用鋼。
(2) C: 0.03% or less, Si: 2.0 in terms of weight ratio
% or less, Mn; 10.0% or less, Ni; 6 to 20%, C
r: 16-30%, N: 0.1-0.3%, Nb: 0.
02 to 0.25%, and further contains 1 of Mo: 4.0% or less, Cu: 4.0% or less, and S: 0.002% or less.
A steel for valve stems having excellent torsional strength, containing one or more seeds, the remainder being Fe and impurity elements, and having a recrystallized double structure structure.
(3)重量比にしてC;0.03%以下、Si;2.0
%以下、Mn;10.0%以下、Ni;6〜20%、C
r;16〜30%、N;0.1〜0.3%、Nb;0.
02〜0.25%を含有し、さらにSe;0.080%
以下、Te;0.080%以下、S;0.080%以下
、P;0.100%以下のうち1種ないし2種以上を含
有し、残部Feならびに不純物元素からなり、かつその
組織が再結晶加工二重構造組織からなるねじり強度の優
れたバルブステム用鋼。
(3) C: 0.03% or less, Si: 2.0 in terms of weight ratio
% or less, Mn; 10.0% or less, Ni; 6 to 20%, C
r: 16-30%, N: 0.1-0.3%, Nb: 0.
02 to 0.25%, and further Se; 0.080%
Contains one or more of Te: 0.080% or less, S: 0.080% or less, P: 0.100% or less, and the remainder consists of Fe and impurity elements, and the structure is regenerated. Steel for valve stems with excellent torsional strength consisting of a crystal-processed double-structure structure.
(4)重量比にしてC;0.03%以下、Si;2.0
%以下、Mn;10.0%以下、Ni;6〜20%、C
r;16〜30%、N;0.1〜0.3%、Nb;0.
02〜0.25%を含有し、さらにBi;0.300%
以下と、Pb;0.300%以下のうち1種ないし2種
と、B;0.0100%以下を含有し、残部Feならび
に不純物元素からなり、かつその組織が再結晶加工二重
構造組織からなるねじり強度の優れたバルブステム用鋼
(4) C: 0.03% or less, Si: 2.0 in terms of weight ratio
% or less, Mn; 10.0% or less, Ni; 6 to 20%, C
r: 16-30%, N: 0.1-0.3%, Nb: 0.
02 to 0.25%, and further Bi; 0.300%
Contains one or two of the following, Pb: 0.300% or less, and B: 0.0100% or less, with the balance consisting of Fe and impurity elements, and whose structure is a recrystallized double structure structure. Steel for valve stems with excellent torsional strength.
(5)重量比にしてC;0.03%以下、Si;2.0
%以下、Mn;10.0%以下、Ni;6〜20%、C
r;16〜30%、N;0.1〜0.3%、Nb;0.
02〜0.25%を含有し、さらにV、Ti、W、Ta
、Hf、Zr、Alをそれぞれ0.30%以下を1種以
上含有し、残部Feならびに不純物元素からなり、かつ
その組織が再結晶加工二重構造組織からなるねじり強度
の優れたバルブステム用鋼。
(5) C: 0.03% or less, Si: 2.0 in terms of weight ratio
% or less, Mn; 10.0% or less, Ni; 6 to 20%, C
r: 16-30%, N: 0.1-0.3%, Nb: 0.
02 to 0.25%, and further contains V, Ti, W, Ta
, Hf, Zr, and Al in an amount of 0.30% or less each, and the balance is Fe and impurity elements, and the structure is a recrystallized double structure structure, and has excellent torsional strength. .
(6)重量比にしてC;0.03%以下、Si;2.0
%以下、Mn;10.0%以下、Ni;6〜20%、C
r;16〜30%、N;0.1〜0.3%、Nb;0.
02〜0.25%を含有し、B;0.0005〜0.0
100%、Ca;0.0005%〜0.0100%、M
g;0.0005〜0.0100%、希土類元素0.0
005〜0.0100%のうち1種ないし2種以上を含
有し、残部Feならびに不純物元素からなり、かつその
組織が再結晶加工二重構造組織からなるねじり強度の優
れたバルブステム用鋼。
(6) C: 0.03% or less, Si: 2.0 in terms of weight ratio
% or less, Mn; 10.0% or less, Ni; 6 to 20%, C
r: 16-30%, N: 0.1-0.3%, Nb: 0.
Contains 02-0.25%, B; 0.0005-0.0
100%, Ca; 0.0005% to 0.0100%, M
g; 0.0005-0.0100%, rare earth element 0.0
A steel for valve stems having excellent torsional strength, containing one or more of 0.005 to 0.0100%, the remainder consisting of Fe and impurity elements, and having a recrystallized double structure structure.
(7)重量比にしてC;0.03%以下、Si;2.0
%以下、Mn;10.0%以下、Ni;6〜20%、C
r;16〜30%、N;0.1〜0.3%、Nb;0.
02〜0.25%を含有し、さらにMo;4.0%以下
、Cu;4.0%以下、S;0.002%以下のうち1
種ないし2種以上と、Se;0.080%以下、Te;
0.080%以下、S;0.080%以下、P;0.1
00%以下のうち1種ないし2種以上と、Bi;0.3
00%以下、Pb;0.300%以下のうち1種ないし
2種およびB;0.0100%以下と、V、Ti、W、
Ta、Hf、Zr、Alをそれぞれ0.30%以下を1
種以上と、B;0.0005〜0.0100%、Ca;
0.0005%〜0.0100%、Mg;0.0005
〜0.0100%、希土類元素0.0005〜0.01
00%のうち1種ないし2種以上を含有し、残部Feな
らびに不純物元素からなり、かつその組織が再結晶加工
二重構造組織からなるねじり強度の優れたバルブステム
用鋼。
(7) C: 0.03% or less, Si: 2.0 in terms of weight ratio
% or less, Mn; 10.0% or less, Ni; 6 to 20%, C
r: 16-30%, N: 0.1-0.3%, Nb: 0.
02 to 0.25%, and further contains 1 of Mo: 4.0% or less, Cu: 4.0% or less, and S: 0.002% or less.
A species or two or more species, Se; 0.080% or less, Te;
0.080% or less, S; 0.080% or less, P; 0.1
00% or less and one or more of them and Bi: 0.3
00% or less, Pb; one or two of 0.300% or less and B; 0.0100% or less, V, Ti, W,
0.30% or less of each of Ta, Hf, Zr, and Al is 1
More than species, B; 0.0005 to 0.0100%, Ca;
0.0005% to 0.0100%, Mg; 0.0005
~0.0100%, rare earth elements 0.0005~0.01
A steel for valve stems having excellent torsional strength, containing one or more of 0.00%, the remainder consisting of Fe and impurity elements, and having a recrystallized double structure structure.
(8)重量比にしてC;0.03%以下、Si;2.0
%以下、Mn;10.0%以下、Ni;6〜20%、C
r;16〜30%、N;0.1〜0.3%、Nb;0.
02〜0.25%を含有し、残部Feならびに不純物元
素からなる鋼を、1100〜1300℃に加熱し、粗圧
延温度1000〜1200℃で加工量50%以上の圧延
を施し、粗圧延後10秒〜5分冷却し、ついで仕上圧延
温度800〜1000℃で加工量30%以上の圧延を行
い、圧延後の冷却速度を4℃/分以上で冷却し、その組
織が再結晶加工二重構造組織からなるねじり強度の優れ
たバルブステム用鋼の製造方法。
(8) C: 0.03% or less, Si: 2.0 in terms of weight ratio
% or less, Mn; 10.0% or less, Ni; 6 to 20%, C
r: 16-30%, N: 0.1-0.3%, Nb: 0.
A steel containing 02 to 0.25% and the balance consisting of Fe and impurity elements is heated to 1100 to 1300°C and rolled with a working amount of 50% or more at a rough rolling temperature of 1000 to 1200°C. After cooling for 5 seconds to 5 minutes, rolling is performed at a finish rolling temperature of 800 to 1000°C with a processing amount of 30% or more, and the cooling rate after rolling is 4°C/min or more, so that the structure is recrystallized double structure. A method for manufacturing valve stem steel with excellent torsional strength.
(9)重量比にしてC;0.03%以下、Si;2.0
%以下、Mn;10.0%以下、Ni;6〜20%、C
r;16〜30%、N;0.1〜0.3%、Nr;0.
02〜0.25%を含有し、さらにMo;4.0%以下
、Cu;4.0%以下、S;0.002%以下のうち1
種ないし2種以上を含有し、残部Feならびに不純物元
素からなる鋼を、1100〜1300℃に加熱し、粗圧
延温度1000〜1200℃で加工量50%以上の圧延
を施し、粗圧延後10秒〜5分冷却し、ついで仕上圧延
温度800〜1000℃で加工量30%以上の圧延を行
い、圧延後の冷却速度を4℃/分以上で冷却し、その組
織が再結晶加工二重構造組織からなるねじり強度の優れ
たバルブステム用鋼の製造方法。
(9) C: 0.03% or less, Si: 2.0 in weight ratio
% or less, Mn; 10.0% or less, Ni; 6 to 20%, C
r: 16-30%, N: 0.1-0.3%, Nr: 0.
02 to 0.25%, and further contains 1 of Mo: 4.0% or less, Cu: 4.0% or less, and S: 0.002% or less.
A steel containing one or more seeds and the remainder consisting of Fe and impurity elements is heated to 1100 to 1300°C, and rolled at a rough rolling temperature of 1000 to 1200°C with a working amount of 50% or more, and for 10 seconds after rough rolling. After cooling for ~5 minutes, rolling is performed at a finish rolling temperature of 800 to 1000°C with a processing amount of 30% or more, and the cooling rate after rolling is 4°C/min or more, so that the structure becomes a recrystallized double structure structure. A method for producing valve stem steel with excellent torsional strength.
JP24856788A 1988-09-30 1988-09-30 Steel for valve stem having excellent torsional strength and its manufacture Pending JPH0297647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24856788A JPH0297647A (en) 1988-09-30 1988-09-30 Steel for valve stem having excellent torsional strength and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24856788A JPH0297647A (en) 1988-09-30 1988-09-30 Steel for valve stem having excellent torsional strength and its manufacture

Publications (1)

Publication Number Publication Date
JPH0297647A true JPH0297647A (en) 1990-04-10

Family

ID=17180064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24856788A Pending JPH0297647A (en) 1988-09-30 1988-09-30 Steel for valve stem having excellent torsional strength and its manufacture

Country Status (1)

Country Link
JP (1) JPH0297647A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018240A1 (en) * 1993-12-30 1995-07-06 Tadahiro Ohmi Austenitic stainless steel, piping system and fluid-contacting parts
CN101775551A (en) * 2010-03-09 2010-07-14 江苏亚盛金属制品有限公司 Manufacture method of novel marine corrosion resistance stainless steel and steel cable thereof
EP2692887A1 (en) * 2011-03-31 2014-02-05 Kubota Corporation Cast austenitic stainless steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018240A1 (en) * 1993-12-30 1995-07-06 Tadahiro Ohmi Austenitic stainless steel, piping system and fluid-contacting parts
CN101775551A (en) * 2010-03-09 2010-07-14 江苏亚盛金属制品有限公司 Manufacture method of novel marine corrosion resistance stainless steel and steel cable thereof
EP2692887A1 (en) * 2011-03-31 2014-02-05 Kubota Corporation Cast austenitic stainless steel
US20140056751A1 (en) * 2011-03-31 2014-02-27 Kubota Corporation Cast austenitic stainless steel
EP2692887A4 (en) * 2011-03-31 2015-01-21 Kubota Kk Cast austenitic stainless steel

Similar Documents

Publication Publication Date Title
EP2770081B1 (en) Nickel-base alloys and methods of heat treating nickel base alloys
EP0639691B1 (en) Rotor for steam turbine and manufacturing method thereof
US4138278A (en) Method for producing a steel sheet having remarkably excellent toughness at low temperatures
JPS6024353A (en) Heat-resistant 12% cr steel
US5000801A (en) Wrought stainless steel having good corrosion resistance and a good resistance to corrosion in seawater
JPS60208459A (en) High strength stainless steel and its manufacture
US5383983A (en) Martensitic stainless steel suitable for use in oil wells
JPH04147948A (en) Rotary shaft for high temperature steam turbine
JPH0297647A (en) Steel for valve stem having excellent torsional strength and its manufacture
JPS6199660A (en) High strength welded steel pipe for line pipe
JPH0297649A (en) Austenitic stainless steel excellent in strength and toughness at very low temperature and its production
JP2000204434A (en) Ferritic heat resistant steel excellent in high temperature strength and its production
JPS6132384B2 (en)
JPH0297648A (en) Austenitic stainless steel excellent in creep rupture strength and its production
JPH0297651A (en) Free cutting austenitic stainless steel excellent in controlled rollability and its production
JPS61104054A (en) High-strength and high-toughness welded clad steel pipe for line pipe
JP2787044B2 (en) High strength stainless steel and its manufacturing method
JPS61186453A (en) High strength and high toughness quenched and tempered low-carbon steel plate for boiler or pressure vessel having superior resistance to weld crack, erosion and creep
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPS589962A (en) High-strength stainless steel with superior intergranular corrosion cracking resistance and workability
JP3254102B2 (en) High strength low alloy cast steel and its heat treatment method
JPH08239739A (en) Heat tratment for ni-base alloy excellent in corrosion resistance
JP3411756B2 (en) Manufacturing method of cast steel for pressure vessel and pressure vessel
JPS6353244A (en) Stainless steel excellent in strength and corrosion resistance and having small anisotropy and its production
JPH04116125A (en) Production of free cutting pb steel excellent in warm ductility