JPWO2012098969A1 - 膜モジュールの洗浄方法、造水方法および造水装置 - Google Patents

膜モジュールの洗浄方法、造水方法および造水装置 Download PDF

Info

Publication number
JPWO2012098969A1
JPWO2012098969A1 JP2012504975A JP2012504975A JPWO2012098969A1 JP WO2012098969 A1 JPWO2012098969 A1 JP WO2012098969A1 JP 2012504975 A JP2012504975 A JP 2012504975A JP 2012504975 A JP2012504975 A JP 2012504975A JP WO2012098969 A1 JPWO2012098969 A1 JP WO2012098969A1
Authority
JP
Japan
Prior art keywords
water
membrane module
scale inhibitor
microfiltration
ultrafiltration membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012504975A
Other languages
English (en)
Inventor
智宏 前田
智宏 前田
谷口 雅英
雅英 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2012098969A1 publication Critical patent/JPWO2012098969A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/14Use of concentrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/164Use of bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

原水を精密ろ過/限外ろ過膜モジュールでろ過し、次いで半透膜ユニットで透過水と濃縮水とに分離する造水方法において、精密ろ過/限外ろ過膜モジュールの膜表面および細孔内にスケールが付着・蓄積することによる目詰まりを防止するために、一時的に、前記精密ろ過/限外ろ過膜モジュールにおけるろ過を中断し、前記濃縮水の少なくとも一部を洗浄水として前記精密ろ過/限外ろ過膜モジュールの2次側から供給して前記精密ろ過/限外ろ過膜モジュールの逆圧洗浄を行うとともに、前記洗浄水にスケール防止剤とアルカリ性溶液を含有せしめる造水方法とする。

Description

本発明は、原水を精密ろ過膜/限外ろ過膜(以下、MF/UF膜という。)モジュールでろ過し、そのろ過水を逆浸透膜(RO膜)またはナノろ過膜(NF膜)を備えた半透膜ユニットでろ過する造水方法および造水装置に関するものである。特に、前記造水方法におけるMF/UF膜モジュールの洗浄方法に特徴を有する造水方法、およびそれを好適に実施できる造水装置に関するものである。
近年、上下水道や廃水処理等の水処理用途において、膜によって原水中の不純物を分離除去して清澄な水に変換する膜ろ過法の普及が進んでいる。膜の除去対象物質は、膜の種類によって異なるが、MF/UF膜の場合は、一般的に縣濁物質、細菌、原虫、コロイド物質等が挙げられる。また、RO膜やNF膜(以下、これらを合わせて半透膜という。)の場合は、溶解性有機物、ウィルス、イオン物質等が挙げられる。
原水をMF/UF膜でろ過する場合、ろ過を継続するに伴い、MF/UF膜の表面や膜細孔径内におけるフミン質やタンパク質等の付着量が増大し、ろ過差圧上昇が問題となってくる。
そこで、MF/UF膜 の1次側(供給水側)に気泡を導入し、膜を振動させ、膜同士を触れ合わせることにより膜表面の付着物質を掻き落とす空気洗浄や、MF/UF膜に対してろ過とは逆方向に膜ろ過水あるいは清澄水を圧力で流し、膜表面や膜細孔径内に付着していた付着物質を除去する逆圧洗浄等の物理洗浄が実用化されている。さらに洗浄効果を高めるため、例えば特許文献1では、逆圧洗浄水に次亜塩素酸ナトリウム等の酸化剤を添加して逆圧洗浄を行うことが記載されている。酸化剤は、膜表面や膜細孔内に付着したフミン酸や微生物由来のタンパク質等の有機物を分解・除去する効果がある。
また、原水をMF/UF膜でろ過した後、そのろ過水を半透膜で処理することにより清澄水を製造する方法はIMSプロセスと呼称されている(非特許文献1参照)。IMSプロセスにおいて、特許文献2、3では、水回収率を高めるために本来系外に排出していた逆浸透膜濃縮水の一部をMF膜/UF膜の逆圧洗浄水として利用する方法が提案されている。しかし、酸化剤を用いずに逆浸透膜濃縮水で逆洗する場合、浸透圧ショックにより膜モジュール内の微生物を死滅に至らしめるものの、フミン質や微生物由来のタンパク質等の有機物を分解・除去できないため、ファウリングが早期に進行してしまう問題があった。
そこで、特許文献4では次亜塩素酸ナトリウム等の酸化剤を添加した逆浸透膜濃縮水をMF膜/UF膜の逆圧洗浄水として利用する方法が提案されている。しかし、海水を逆浸透膜処理して得られる濃縮水等の場合、該濃縮水に高濃度のカルシウム、マグネシウムが存在している。そのため、海水膜ろ過水や逆浸透膜濃縮水に次亜塩素酸ナトリウムを添加すると、局所的にpHが高くなり、逆洗水中にスケールが生成する。またこのような逆圧洗浄水を用いて逆圧洗浄を行うと、膜細孔内にスケールが付着・蓄積し、無機ファウリングが著しく進行する。そのため、半透膜ユニットの濃縮水に次亜塩素産ナトリウム等の酸化剤をMF膜/UF膜の逆圧洗浄水として使用することは現実的でないと考えられていた。
特開2001−79366号公報 特開2006−272136号公報 特開2007−181822号公報 特開平9−220449号公報
山村弘之、"水資源有効利用システム用膜の現状と今後の課題"、「膜(MEMBRANE)」、日本膜学会、Vol.28,No.5、p235
本発明の目的は、原水をMF/UF膜モジュールでろ過し、そのろ過水をRO膜またはNF膜を備えた半透膜ユニットで膜ろ過する造水方法において、MF/UF膜の表面および細孔内にスケールが付着・蓄積することによる目詰まりを防止することができるMF/UF膜モジュールの洗浄方法、造水方法および造水装置を提供することにある。
上記課題を解決するため、本発明は次のいずれかの構成を特徴とするものである。
(1) 原水を精密ろ過/限外ろ過膜モジュールでろ過し、次いで半透膜ユニットで透過水と濃縮水とに分離する造水方法において、前記精密ろ過/限外ろ過膜モジュールにおけるろ過の中断時に実施する膜モジュールの洗浄方法であって、前記濃縮水の少なくとも一部を洗浄水とし、スケール防止剤とアルカリ性溶液を含有せしめた前記洗浄水を前記精密ろ過/限外ろ過膜モジュールの2次側から供給して前記精密ろ過/限外ろ過膜モジュールの逆圧洗浄を行う膜モジュールの洗浄方法。
(2) 前記濃縮水の少なくとも一部にスケール防止剤を添加することで、前記洗浄水にスケール防止剤を含有せしめる、前記(1)に記載の膜モジュールの洗浄方法。
(3) 前記精密ろ過/限外ろ過膜モジュールから得られたろ過水の少なくとも一部にスケール防止剤を添加し前記半透膜ユニットで分離することで、前記洗浄水にスケール防止剤を含有せしめる、前記(1)に記載の膜モジュールの洗浄方法。
(4) さらに前記濃縮水の少なくとも一部にもスケール防止剤を添加することで、前記洗浄水にスケール防止剤を含有せしめる、前記(3)に記載の膜モジュールの洗浄方法。
(5) 原水を精密ろ過/限外ろ過膜モジュールでろ過し、次いで半透膜ユニットで透過水と濃縮水とに分離する造水方法であって、一時的に、前記精密ろ過/限外ろ過膜モジュールにおけるろ過を中断し、前記濃縮水の少なくとも一部を洗浄水として前記精密ろ過/限外ろ過膜モジュールの2次側から供給して前記精密ろ過/限外ろ過膜モジュールの逆圧洗浄を行うとともに、前記洗浄水にスケール防止剤とアルカリ性溶液を含有せしめる造水方法。
(6) 前記濃縮水の少なくとも一部にスケール防止剤を添加することで、前記洗浄水にスケール防止剤を含有せしめる、前記(5)に記載の造水方法。
(7) 前記精密ろ過/限外ろ過膜モジュールから得られたろ過水の少なくとも一部にスケール防止剤を添加し前記半透膜ユニットで分離することで、前記洗浄水にスケール防止剤を含有せしめる、前記(5)に記載の造水方法。
(8) さらに前記濃縮水の少なくとも一部にもスケール防止剤を添加することで、前記洗浄水にスケール防止剤を含有せしめる、前記(7)に記載の造水方法。
(9) 精密ろ過/限外ろ過膜モジュールと、前記精密ろ過/限外ろ過膜モジュールのろ過水の少なくとも一部を透過水と濃縮水とに分離する半透膜ユニットと、前記濃縮水の少なくとも一部を洗浄水として前記精密ろ過/限外ろ過膜モジュールの2次側から供給して前記精密ろ過/限外ろ過膜モジュールの逆圧洗浄を行う逆圧洗浄ユニットと、前記洗浄水にスケール防止剤を含有せしめるスケール防止剤供給ユニットと、前記洗浄水にアルカリ性溶液を含有せしめるアルカリ性溶液供給ユニットとを備える造水装置。
(10) 前記スケール防止剤供給ユニットとして、前記濃縮水の少なくとも一部を前記精密ろ過/限外ろ過膜モジュールの2次側から供給するラインにスケール防止剤を供給するユニットを備え、前記アルカリ性溶液供給ユニットとして、前記濃縮水の少なくとも一部を前記精密ろ過/限外ろ過膜モジュールの2次側から供給するラインにアルカリ性溶液を供給するユニットを備える、前記(9)に記載の造水装置。
(11) 前記スケール防止剤供給ユニットとして、前記精密ろ過/限外ろ過膜モジュールのろ過水を半透膜ユニットに供給するラインにスケール防止剤を供給するユニットを備え、前記アルカリ性溶液供給ユニットとして、前記濃縮水の少なくとも一部を前記精密ろ過/限外ろ過膜モジュールの2次側から供給するラインにアルカリ性溶液を供給するユニットを備える、前記(9)に記載の造水装置。
(12) 前記スケール防止剤供給ユニットとして、さらに、前記濃縮水の少なくとも一部を前記精密ろ過/限外ろ過膜モジュールの2次側から供給するラインにスケール防止剤を供給するユニットを備える、前記(11)に記載の造水装置。
なお、本発明において「精密ろ過/限外ろ過膜モジュール」とは、精密ろ過膜モジュールおよび限外ろ過膜モジュールの少なくとも一方という意味である。
本発明によれば、原水をMF/UF膜モジュールでろ過し、次いで半透膜ユニットで透過水と濃縮水とに分離する造水方法において、一時的に、前記MF/UF膜モジュールにおけるろ過を中断し、前記濃縮水の少なくとも一部を洗浄水として前記MF/UF膜モジュールの2次側から供給して前記MF/UF膜モジュールの逆圧洗浄を行うとともに、該洗浄水にスケール防止剤とアルカリ性溶液を含有せしめる。すなわち、MF/UF膜モジュールを、アルカリ性溶液を添加した洗浄水で逆圧洗浄するとともに、該洗浄水に予めスケール防止剤を添加しておく。これにより、逆圧洗浄水中に局所的なpH上昇によりスケールが生成されることを抑制し、膜表面および細孔内にスケールが付着・蓄積することによる目詰まりを防止することができる。
本発明の造水装置の一実施態様を示すフロー図である。 本発明の造水装置の別の実施態様を示すフロー図である。
以下、図面に示す実施形態に基づいて本発明をさらに詳細に説明する。なお、本発明は以下の実施形態に限定されるものではない。
本発明に係る図1に示す造水装置は、例えば、原水を貯留する原水貯留槽1と、原水を供給する原水供給ポンプ2と、原水供給時に開となる原水供給弁3と、原水をろ過する中空糸膜モジュール4(MF/UF膜モジュール)と、逆圧洗浄や空気洗浄する場合に開となるエア抜き弁5と、ろ過時に開となるろ過水弁6と、中空糸膜ろ過水を貯留するろ過水貯留槽7と、中空糸膜モジュール4のろ過水を透過水と濃縮水に分離する半透膜ユニット18と、中空糸膜モジュール4で得られたろ過水を半透膜ユニット18に供給するブースターポンプ19と、半透膜ユニット18の濃縮水を貯留する濃縮水貯留槽20と、半透膜ユニットの濃縮水を系外へ排水する場合に開となる濃縮水排水弁22と、濃縮水を洗浄水として供給して中空糸膜モジュール4を逆圧洗浄する逆洗ポンプ8と、該逆圧洗浄時に開となる逆洗弁9と、逆洗時に濃縮水貯留槽20からの濃縮水が通る逆洗配管10と、中空糸膜モジュール4の1次側の水を排水する場合に開となる排水弁11と、圧縮空気を中空糸膜モジュール4の下部に供給し空気洗浄する場合に開となる空気弁12と、圧縮空気の供給源であるコンプレッサー13を含む空気供給ユニットと、アルカリ性溶液を貯留するアルカリ性溶液貯留槽14と、逆圧洗浄水としての濃縮水にアルカリ性溶液を供給するアルカリ性溶液供給ポンプ15と、スケール防止剤を貯留するスケール防止剤貯留槽16と、逆圧洗浄水としての濃縮水にスケール防止剤を供給する第1スケール防止剤供給ポンプ17と、半透膜ユニット18への供給水にスケール防止剤を供給する第2スケール防止剤供給ポンプ21が設けられている。
ここで、図1に示す装置では、スケール防止剤供給ユニットとして、半透膜ユニット18の濃縮水にスケール防止剤を供給する第1スケール防止剤供給ポンプ17と、半透膜ユニット18への供給水にスケール防止剤を供給する第2スケール防止剤供給ポンプ21とが設けられているが、いずれか一方であっても構わない。
そして、図1に示す装置では、中空糸膜モジュール4のろ過水を一旦、中間タンクであるろ過水貯留槽7に貯留した後、半透膜ユニット18に供給しているが、図2のように中間タンクを介さず、中空糸膜モジュール4のろ過水を直接半透膜ユニット18に供給して透過水と濃縮水とに分離しても構わない。
また、図1に示す装置では、濃縮水貯留槽20に貯留した半透膜ユニット18の濃縮水を洗浄水とし、かつ、逆洗ポンプ8を用いて逆圧洗浄を行っているが、図2のように濃縮水貯留槽20と逆洗ポンプ8を介さず、半透膜ユニット18の高圧濃縮水をそのまま中空糸膜モジュール4に供給して逆圧洗浄を実施しても構わない。
中空糸膜モジュール4としては、図1のような加圧型膜モジュール以外にも、原水の入った膜浸漬槽に浸漬させてポンプやサイフォン等で吸引ろ過する浸漬型膜モジュールでも構わない。また加圧型膜モジュールの場合、外圧式でも内圧式であっても良いが、前処理の簡便さの観点から外圧式である方が好ましい。
中空糸膜モジュール4を構成するMF/UF膜の材質としては、多孔質の中空糸膜であれば特に限定しないが、セラミック等の無機素材、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン、ポリビニルフルオライド、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、クロロトリフルオロエチレン−エチレン共重合体、ポリフッ化ビニリデン、ポリスルホン、酢酸セルロース、ポリビニルアルコール、ポリエーテルスルホン、ポリ塩化ビニルからなる群から選ばれる少なくとも1種類を含んでいると好ましく、さらに膜強度や耐薬品性の点からはポリフッ化ビニリデン(PVDF)がより好ましく、親水性が高く耐汚れ性が強いという点からはポリアクリロニトリルがより好ましい。
中空糸膜モジュール4を構成する膜は、MF膜であってもUF膜であっても構わず、表面細孔径が0.001μm〜10μmの範囲内である膜を適宜選択することができる。
MF/UF膜モジュールとしては、図1に示す中空糸膜モジュール4の他、平膜、管状膜、モノリス膜等を用いたモジュールでも構わない。
MF/UF膜モジュールにおけるろ過方式は、全量ろ過方式、クロスフローろ過方式のどちらでも良いが、エネルギー消費が少ないという観点から全量ろ過が好ましい。ここでMF/UF膜モジュールにおけるろ過流量の制御方法としては、定流量ろ過であっても定圧ろ過であっても差し支えはないが、ろ過水の生産水量の制御のし易さの点から定流量ろ過である方が好ましい。
一方、半透膜ユニット18における半透膜とは、被分離混合液中の一部の成分、例えば溶媒を透過させ他の成分を透過させない半透性を有する膜であり、NF膜やRO膜を包含する。その素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材がよく利用されている。また、その膜構造には、膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜や、非対称膜の緻密層の上に別の素材で形成された非常に薄い分離機能層を有する複合膜などを適宜使用できる。膜形態には中空糸膜、平膜がある。本発明は、これら膜素材、膜構造や膜形態によらず実施することができいずれも効果があるが、代表的な膜としては、例えば酢酸セルロース系やポリアミド系の非対称膜およびポリアミド系、ポリ尿素系の分離機能層を有する複合膜などがあり、造水量、耐久性、塩排除率の観点から、酢酸セルロース系の非対称膜、ポリアミド系の複合膜を用いることが好ましい。
半透膜ユニット18の運転圧力は通常0.1MPa〜15MPaであることが好ましく、供給水の種類、運転方法などで適宜使い分けられる。かん水や超純水などの浸透圧の低い水を供給水とする場合には比較的低圧で、海水淡水化や廃水処理、有用物の回収などの場合には比較的高圧で使用される。
NF膜またはRO膜を備えた半透膜ユニット18としては、特に制約はないが、取り扱いを容易にするため、中空糸膜状や平膜状の半透膜を筐体に納めて流体分離素子(エレメント)としたものを耐圧容器に充填したものを用いることが好ましい。流体分離素子は、平膜で形成する場合、例えば、多数の孔を穿設した筒状の中心パイプの周りに、半透膜を流路材(ネット)とともに円筒状に巻回したものが一般的であり、市販品としては、東レ(株)製逆浸透膜エレメントTM700シリーズやTM800シリーズを挙げることができる。これら流体分離素子は1本で半透膜ユニットを構成してもよいが、複数本の流体分離素子を直列あるいは並列に接続して半透膜ユニットを構成することも好ましい。
このような造水装置において、通常のろ過工程では、原水供給弁3およびろ過水弁6が開の状態で、原水貯留槽1に貯留されている原水が、原水供給ポンプ2によって中空糸膜モジュール4の1次側に供給され、該中空糸膜モジュール4で加圧ろ過される。ろ過時間は原水水質やろ過流束に応じて適宜設定するのが好ましいが、所定のろ過差圧に達するまでろ過を継続させても良い。
中空糸膜モジュール4のろ過水は、一時的にろ過水貯留槽7に貯留された後、ブースターポンプ19によって昇圧され、半透膜ユニット18に供給される。半透膜ユニット18では、供給水が、塩分などの溶質が除去された透過水と、塩分などの溶質が濃縮された濃縮水に分離される。
本発明は、例えば所定時間上記のようなろ過および分離を行った後に、MF/UF膜モジュールにおけるろ過を一時的に中断し、半透膜ユニットの濃縮水を用いて前記MF/UF膜モジュールの逆圧洗浄を行う。すなわち、図1に示す装置においては、少なくとも該中空糸膜モジュール4におけるろ過を一時的に中断し、中空糸膜モジュール4にろ過方向とは逆方向から、半透膜ユニット18から得られた濃縮水を逆流させる逆圧洗浄を行う。この洗浄は、図1に示す装置の場合、半透膜ユニット18の運転を継続しながら実施することができるが、その間の半透膜ユニット18での処理には、ろ過水貯留槽7に貯留しているろ過水を使用するものとする。
中空糸膜モジュール4の逆圧洗浄は、原水供給ポンプ2を停止し、原水供給弁3とろ過水弁6を閉じて、中空糸膜モジュール4のろ過工程を停止してから、エア抜き弁5と逆洗弁9を開とし、逆洗ポンプ8を稼働することで行われる。
また、逆圧洗浄に際しては、MF/UF膜に付着しているフミン質や微生物由来のタンパク質等の有機物を分解・除去するため、半透膜ユニットから得られた濃縮水にアルカリ性溶液を含有せしめて洗浄水とする。
ここで、濃縮水は、例えばカルシウムイオン、マグネシウムイオン、重炭酸イオン、炭酸イオン、硫酸イオンなどのスケール生成成分や、ナトリウムイオンや塩化物イオンなどを有意な濃度で含有する水が、半透膜ユニットで濃縮された水である。そのため、当該水にアルカリ性溶液を添加して局所的にpHが高くなることで、スケールが生成し、目詰まりが起こりやすくなる。本発明者の検討によると、TDS(Total Dissolubed Solids)濃度が1,000mg/L以上になると目詰まりが起こり易くなり始め、10,000mg/Lを超えると目詰まりがより起こり易くなり、30,000mg/Lを超えると目詰まりがさらに起こり易くなることが分かっている。そのため、本発明においては、アルカリ性溶液と共にスケール防止材を含有せしめた濃縮水でMF/UF膜モジュールを逆圧洗浄する。こうすることで、従来廃棄処分が必要だった濃縮水を現実的に有効利用できる。
図1に示す形態においてはアルカリ性溶液貯留槽14のアルカリ性溶液をアルカリ性溶液供給ポンプ15で供給すると共に、スケール防止剤貯留槽16のスケール防止剤を第1スケール防止剤供給ポンプ17で供給することで、濃縮水にアルカリ性溶液とスケール防止剤を含有せしめる。そして、該濃縮水を洗浄水として用いて中空糸膜モジュール4の逆圧洗浄をする。
なお、TDS濃度は、全溶解性物質濃度のことであり、この溶解性物質としては、ナトリウムイオン、カルシウムイオン、マグネシウムイオン、塩化物イオン、炭酸イオン、硫酸イオンなどが含まれる。海水のように塩濃度が高い水は、塩分に対して他の溶解性物質を極微量にしか包含しないため、塩濃度でTDS濃度を代替することができる。
中空糸膜モジュール4の逆圧洗浄は、膜ろ過を続ける途中で例えば定期的に行われ、その頻度は通常15分〜120分に1回程度である。
また、アルカリ性溶液とスケール防止剤を含む洗浄水を用いた逆圧洗浄は、毎回の逆圧洗浄時に適用しても構わないが、必ずしも全逆洗工程で実施する必要はない。薬品コスト削減のためには、1日に数回〜1週間に1回程度の頻度で実施することが好ましい。
2種類の逆圧洗浄(アルカリ性溶液とスケール防止剤を含む洗浄水を用いた逆圧洗浄とアルカリ性溶液とスケール防止剤を含まない洗浄水を用いた逆圧洗浄)の時間は、特に制限するものではないが、いずれも、5秒〜120秒の範囲内とするのが好ましい。1回の逆圧洗浄時間が5秒未満では、十分な洗浄効果が得られず、120秒を超えると中空糸膜モジュール4の稼働効率が低くなる。逆圧洗浄の流束は、特に制限するものではないが、ろ過流束の0.5倍以上であることが好ましい。逆圧洗浄の流束がろ過流束の0.5倍未満では、膜面および細孔内に付着堆積した汚れを十分に除去することが難しい。逆圧洗浄の流束は高い方が膜の洗浄効果が高くなるので好ましいが、中空糸膜モジュール容器の破損や膜の亀裂等の損傷が起こらない範囲内に適宜設定する。
アルカリ性溶液としては、水酸化ナトリウム溶液や次亜塩素酸ナトリウム溶液等が使用できる。中でも、使用し易さ、膜の洗浄効果が高いという点から次亜塩素酸ナトリウム溶液が好ましい。水酸化ナトリウム溶液を用いる場合には、pH10未満の場合では洗浄効果がほとんど得られず、pH12を超える場合では膜を劣化させる可能性が高いことから、pH10以上pH12以下の範囲が好ましい。次亜塩素酸ナトリウム溶液を用いる場合には、洗浄水中の塩素濃度が数mg/L〜数千mg/Lの範囲となるように添加することが好ましい。中でも、後述するように、中空糸膜モジュール4内に次亜塩素酸ナトリウム溶液を保持する場合は、洗浄水中の塩素濃度が50mg/L以上1000mg/L以下となるようにすることが好ましい。これは塩素濃度が低すぎると中空糸膜モジュール4内に保持している間に該次亜塩素酸ナトリウム溶液が全て消費されてしまい洗浄効果が十分に得られないことと、塩素濃度が高すぎると排水を処理するコストが高くなるからである。
スケール防止剤とは、溶液中の金属、金属イオンなどと錯体を形成し、金属あるいは金属塩を可溶化させるもので、有機や無機のイオン性ポリマーあるいはモノマーを使用できる。有機系のポリマーとしては、ポリアクリル酸、スルホン化ポリスチレン、ポリアクリルアミド、ポリアリルアミンなどの合成ポリマーや、カルボキシメチルセルロース、キトサン、アルギン酸などの天然高分子が、モノマーとしてはエチレンジアミン四酢酸(EDTA)などが使用できる。また、無機系のスケール防止剤としてはポリリン酸塩などが使用できる。これらのスケール防止剤の中では入手のしやすさ、溶解性など操作のしやすさ、価格の点から特にポリリン酸塩、エチレンジアミン四酢酸(EDTA)が好適に用いられる。ポリリン酸塩とはヘキサメタリン酸ナトリウムを代表とする分子内に2個以上のリン原子を有し、アルカリ金属、アルカリ土類金属とリン酸原子などにより結合した重合無機リン酸系物質をいう。代表的なポリリン酸塩としては、ピロリン酸四ナトリウム、ピロリン酸二ナトリウム、トリポリリン酸ナトリウム、テトラポリリン酸ナトリウム、ヘプタポリリン酸ナトリウム、デカポリリン酸ナトリウム、メタリン酸ナトリウム、ヘキサメタリン酸ナトリウム、およびこれらのカリウム塩などが挙げられる。これらスケール防止剤を単体で用いても良いが、複数のスケール防止剤を混合しても良い。
スケール防止剤の添加濃度は洗浄水中の少なくともスケール成分を溶解除去できれば十分である。費用や溶解にかかる時間などの操作性を考慮すると、一般的には0.01ppm以上100ppm以下であり、特に一般的な海水レベルの場合においては0.1ppm以上50ppm以下が好ましく、更に好ましくは1ppm以上20ppm以下である。添加濃度が0.01ppmよりも低い場合にはスケールの発生を十分に抑制できない場合があるため、半透膜の性能劣化が起こる可能性がある。また、100ppmを超えるとスケール防止剤それ自体が半透膜表面に付着して透水性能低下を引き起こしたり、水質を悪化させたりすることがあるため好ましくない。ただし、多量にスケール成分や金属類を含有する洗浄水では数十〜数百ppmの添加が必要な場合もある。
スケール防止剤はアルカリ性溶液を添加する手前で洗浄水に添加することが好ましい。スケール防止剤を添加する前にアルカリ性溶液を洗浄水に添加すると、局所的なpH上昇によって洗浄水中にスケール生成する可能性が高くなる。
なお、スケール防止剤は、必ずしも半透膜ユニット18の下流側で濃縮水に添加する必要はない。第2スケール防止剤供給ポンプ21により半透膜ユニット18への供給水、すなわち中空糸膜モジュール4のろ過水にスケール防止剤を添加し、それを半透膜ユニット18で透過水と濃縮水とに分離してもよい。このようにすることで、洗浄に用いられる濃縮水は結果的にスケール防止剤を含有したものとなり、かつ、アルカリ性溶液を添加する時点で濃縮水が既にスケール防止剤が含有していることになる。加えて、原水として硬度成分の多い海水を処理する場合など、半透膜ユニット18への供給水にスケール防止剤を添加しておくことで、半透膜ユニット18でのスケール生成を防ぐことができる。
このように第2スケール防止剤供給ポンプ21のみを用いてスケール防止剤を添加する場合、半透膜ユニット18での濃縮によるスケール析出とアルカリ添加によるスケール析出の両方を考慮し、第2スケール防止剤供給ポンプ21による添加量を決定する必要がある。
勿論、第2スケール防止剤供給ポンプ21により半透膜ユニット18への供給水にスケール防止剤を添加するとともに、第1スケール防止剤供給ポンプ17により半透膜ユニット18で得られた濃縮水にスケール防止剤を添加してもよい。
特に薬品費用削減の観点からは、中空糸膜モジュール4の中空糸膜ろ過水にスケール防止剤を添加し、さらに半透膜ユニット18の濃縮水にもスケール防止剤を添加することが、好ましい。この時、第2スケール防止剤供給ポンプ21では、半透膜ユニット18での濃縮によるスケール析出を防止できる量のスケール防止剤を添加し、第1スケール防止剤供給ポンプ17では、アルカリ性溶液を用いた逆洗を行う際に、アルカリ性溶液の添加によるスケール析出を防止できる量のスケール防止剤を添加することが好ましい。
半透膜ユニット18においては、濃縮によるスケール析出を防止するためにそれぞれの半透膜ユニット供給水に対してスケール防止剤を添加することが有効である。なお、海水からホウ素を効率的に除去する場合など、半透膜ユニット18の供給水にアルカリ性溶液を添加してpHをアルカリ側に調整する場合は、その添加効果を発揮できるように、当該アルカリ性溶液の添加よりも上流側で、半透膜ユニット18の供給水にスケール防止剤を添加することが好ましい。
なお、薬品添加の直後にはインラインミキサーを設けたり、添加口を供給水の流れに直接接触させるなどして、添加口近傍での急激な濃度やpH変化を防止することも好ましい。
洗浄効果を高めるためには、アルカリ性溶液とスケール防止剤を含む洗浄水を用いた逆圧洗浄に続いて、中空糸膜モジュール4内に該アルカリ性溶液とスケール防止剤を含む洗浄水を所定時間保持させることが好ましい。中空糸膜モジュール4内にアルカリ性溶液とスケール防止剤を含む洗浄水を保持する時間は5〜180分間程度であることが好ましく、更には10〜30分間程度がより好ましい。あまり接触時間が短いと洗浄力が弱く、長すぎると装置を停めている時間が長くなり、装置の運転効率が落ちるからである。
さらに、膜表面にファウリング物質が付着蓄積している場合、空気弁12を開にして中空糸膜モジュール4の1次側にコンプレッサー13の圧縮空気を送り込み、膜を振動させる空気洗浄を実施することが好ましい。空気洗浄は、先述した2種類の逆圧洗浄実施中や実施前後、または中空糸膜モジュール4内にアルカリ溶液とスケール防止剤を含む洗浄水を保持させている時間の少なくとも一部で実施することが好ましい。中空糸膜モジュール4の1次側に押し出された水や中空糸膜モジュール4の下部から供給された空気はエア抜き弁5を通って系外に排出される。この場合、圧縮空気の圧力は、高い方が膜の洗浄効果が高くなるので好ましいが、膜が損傷しない範囲内で適宜設定する。
以下に具体的実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。
<実施例1>
図1に示す装置を用意し、造水を行った。中空糸膜モジュール4には、東レ(株)製の分画分子量15万Daのポリフッ化ビニリデン製中空糸UF膜を備えた、膜面積が72mの加圧型中空糸膜モジュール(HFU−2020)1本を用いた。半透膜ユニット18には東レ(株)製逆浸透膜エレメント(TM820−400)4本を用いた。
中空糸膜モジュール4におけるろ過工程では、原水供給弁3とろ過水弁6を開き、原水供給ポンプ2を稼動させ、濁度が4度、TOC(Total Organic Carbon:全有機炭素)濃度が2mg/L、塩濃度3.5%の海水をろ過流束3m/dで全量ろ過した。また、半透膜ユニット18における分離工程では、スケール防止剤貯留槽16内のエチレンジアミン四酢酸(EDTA)を、半透膜ユニット18の供給水における濃度が10ppmとなるように、第2スケール防止剤供給ポンプ21を用いて常時添加しながら、膜ろ過流量60m/d、濃縮水流量120m/d、回収率33%で膜分離した。
中空糸膜モジュール4で30分ろ過した後、原水供給弁3とろ過水弁6を閉じ、原水供給ポンプ2を停止すると同時に、逆洗弁9と空洗弁12とエア抜き弁5を開き、逆洗ポンプ8を稼動させ、半透膜ユニット18の濃縮水を用いた流束3.3m/dの逆圧洗浄と膜モジュールの下方から100L/minで空気を供給する空気洗浄を同時に1分間実施した。その後、逆洗弁9と空洗弁12を閉じ、逆洗ポンプ8を停止すると同時に、排水弁11を開き、中空糸膜モジュール4内の水を系外に全量排出した。その後、原水供給弁3を開き、原水供給ポンプ2を稼動し、原水を中空糸膜モジュール4内に供給後、ろ過水弁6を開き、エア抜き弁5を閉じ、ろ過工程に戻り、先述した工程を繰り返していった。
また1日1回アルカリ性溶液貯留槽14内の次亜塩素酸ナトリウム溶液を半透膜ユニット18の濃縮水に添加した洗浄水を用いた逆圧洗浄を実施した。逆洗弁9と空洗弁12とエア抜き弁5を開き、逆洗ポンプ8、アルカリ性溶液供給ポンプ15を稼動させ、流束3.3m/dの逆圧洗浄と中空糸膜モジュール4の下方から100L/minで空気を供給する空気洗浄を同時に1分間実施した。この時の逆圧洗浄水中の塩素濃度が500mg/Lとなるように、ハック社製ポケット残留塩素計を用いて測定し、次亜塩素酸ナトリウム溶液添加量を適宜調整した。次に、逆洗ポンプ8、アルカリ性溶液供給ポンプ15を停止し、中空糸膜モジュール4内が塩素濃度500mg/Lで20分間保持した。その後、原水供給弁3を開き、原水供給ポンプ2を稼動させ、原水を中空糸膜モジュール4内に供給後、ろ過水弁6を開き、エア抜き弁5を閉じ、ろ過工程に戻り、先述した工程を繰り返した。
その結果、中空糸膜モジュール4のろ過差圧は、運転開始直後60kPaに対し、運転開始から1ヶ月の間も60〜70kPaを推移し、安定運転できた。また、半透膜ユニット18の膜ろ過差圧は、運転開始直後100kPaであったのに対し、1ヶ月後も120kPa程度と安定していた。
<実施例2>
以下の点を変更した以外は実施例1と同様に造水を行った。すなわち、第2スケール防止剤供給ポンプ21を用いてEDTAを添加することはしなかった。代わりに、次亜塩素酸ナトリウム溶液を添加した洗浄水を用いた逆圧洗浄の時に、第1スケール防止剤供給ポンプ17を用いて、該洗浄水における濃度が20ppmとなるようにEDTAを添加した。
その結果、中空糸膜モジュール4のろ過差圧は、運転開始直後60kPaに対し、運転開始から1ヶ月の間も60〜70kPaを推移し、安定運転できた。一方、半透膜ユニット18の膜ろ過差圧は、運転開始直後100kPaであったのに対し、1ヶ月後も140kPa程度と高くなったが比較的安定していた。
<比較例1>
エチレンジアミン四酢酸(EDTA)を全く添加しなかった以外は、実施例1と全く同じとした。
その結果、中空糸膜モジュール4のろ過差圧は、運転開始直後60kPaに対し、スケール成分による目詰まりにより1ヶ月後には150kPaと高くなり、薬液洗浄を実施せざるを得なくなった。半透膜ユニット18の膜ろ過差圧も、運転開始直後100kPaであったのに対し、スケール発生により1ヶ月後には180kPaと高くなった。
本発明の目的は、原水を膜モジュールで膜ろ過する膜分離装置において、膜表面および細孔内にスケールが付着・蓄積することによる目詰まりを防止し、効果的に膜モジュールの洗浄を実現することができる。
1:原水貯留槽
2:原水供給ポンプ
3:原水供給弁
4:中空糸膜モジュール
5:エア抜き弁
6:ろ過水弁
7:ろ過水貯留槽
8:逆洗ポンプ
9:逆洗弁
10:逆洗配管
11:排水弁
12:空気弁
13:コンプレッサー
14:アルカリ性溶液貯留槽
15:アルカリ性溶液供給ポンプ
16:スケール防止剤貯留槽
17:第1スケール防止剤供給ポンプ
18:半透膜ユニット
19:ブースターポンプ
20:濃縮水貯留槽
21:第2スケール防止剤供給ポンプ
22:半透膜濃縮水排水弁

Claims (12)

  1. 原水を精密ろ過/限外ろ過膜モジュールでろ過し、次いで半透膜ユニットで透過水と濃縮水とに分離する造水方法において、前記精密ろ過/限外ろ過膜モジュールにおけるろ過の中断時に実施する膜モジュールの洗浄方法であって、前記濃縮水の少なくとも一部を洗浄水とし、スケール防止剤とアルカリ性溶液を含有せしめた前記洗浄水を前記精密ろ過/限外ろ過膜モジュールの2次側から供給して前記精密ろ過/限外ろ過膜モジュールの逆圧洗浄を行う膜モジュールの洗浄方法。
  2. 前記濃縮水の少なくとも一部にスケール防止剤を添加することで、前記洗浄水にスケール防止剤を含有せしめる、請求項1に記載の膜モジュールの洗浄方法。
  3. 前記精密ろ過/限外ろ過膜モジュールから得られたろ過水の少なくとも一部にスケール防止剤を添加し前記半透膜ユニットで分離することで、前記洗浄水にスケール防止剤を含有せしめる、請求項1に記載の膜モジュールの洗浄方法。
  4. さらに前記濃縮水の少なくとも一部にもスケール防止剤を添加することで、前記洗浄水にスケール防止剤を含有せしめる、請求項3に記載の膜モジュールの洗浄方法。
  5. 原水を精密ろ過/限外ろ過膜モジュールでろ過し、次いで半透膜ユニットで透過水と濃縮水とに分離する造水方法であって、一時的に、前記精密ろ過/限外ろ過膜モジュールにおけるろ過を中断し、前記濃縮水の少なくとも一部を洗浄水として前記精密ろ過/限外ろ過膜モジュールの2次側から供給して前記精密ろ過/限外ろ過膜モジュールの逆圧洗浄を行うとともに、前記洗浄水にスケール防止剤とアルカリ性溶液を含有せしめる造水方法。
  6. 前記濃縮水の少なくとも一部にスケール防止剤を添加することで、前記洗浄水にスケール防止剤を含有せしめる、請求項5に記載の造水方法。
  7. 前記精密ろ過/限外ろ過膜モジュールから得られたろ過水の少なくとも一部にスケール防止剤を添加し前記半透膜ユニットで分離することで、前記洗浄水にスケール防止剤を含有せしめる、請求項5に記載の造水方法。
  8. さらに前記濃縮水の少なくとも一部にもスケール防止剤を添加することで、前記洗浄水にスケール防止剤を含有せしめる、請求項7に記載の造水方法。
  9. 精密ろ過/限外ろ過膜モジュールと、前記精密ろ過/限外ろ過膜モジュールのろ過水の少なくとも一部を透過水と濃縮水とに分離する半透膜ユニットと、前記濃縮水の少なくとも一部を洗浄水として前記精密ろ過/限外ろ過膜モジュールの2次側から供給して前記精密ろ過/限外ろ過膜モジュールの逆圧洗浄を行う逆圧洗浄ユニットと、前記洗浄水にスケール防止剤を含有せしめるスケール防止剤供給ユニットと、前記洗浄水にアルカリ性溶液を含有せしめるアルカリ性溶液供給ユニットとを備える造水装置。
  10. 前記スケール防止剤供給ユニットとして、前記濃縮水の少なくとも一部を前記精密ろ過/限外ろ過膜モジュールの2次側から供給するラインにスケール防止剤を供給するユニットを備え、前記アルカリ性溶液供給ユニットとして、前記濃縮水の少なくとも一部を前記精密ろ過/限外ろ過膜モジュールの2次側から供給するラインにアルカリ性溶液を供給するユニットを備える、請求項9に記載の造水装置。
  11. 前記スケール防止剤供給ユニットとして、前記精密ろ過/限外ろ過膜モジュールのろ過水を半透膜ユニットに供給するラインにスケール防止剤を供給するユニットを備え、前記アルカリ性溶液供給ユニットとして、前記濃縮水の少なくとも一部を前記精密ろ過/限外ろ過膜モジュールの2次側から供給するラインにアルカリ性溶液を供給するユニットを備える、請求項9に記載の造水装置。
  12. 前記スケール防止剤供給ユニットとして、さらに、前記濃縮水の少なくとも一部を前記精密ろ過/限外ろ過膜モジュールの2次側から供給するラインにスケール防止剤を供給するユニットを備える、請求項11に記載の造水装置。
JP2012504975A 2011-01-20 2012-01-12 膜モジュールの洗浄方法、造水方法および造水装置 Pending JPWO2012098969A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011009767 2011-01-20
JP2011009767 2011-01-20
PCT/JP2012/050416 WO2012098969A1 (ja) 2011-01-20 2012-01-12 膜モジュールの洗浄方法、造水方法および造水装置

Publications (1)

Publication Number Publication Date
JPWO2012098969A1 true JPWO2012098969A1 (ja) 2014-06-09

Family

ID=46515599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012504975A Pending JPWO2012098969A1 (ja) 2011-01-20 2012-01-12 膜モジュールの洗浄方法、造水方法および造水装置

Country Status (4)

Country Link
JP (1) JPWO2012098969A1 (ja)
CN (1) CN103328079B (ja)
CL (1) CL2013002072A1 (ja)
WO (1) WO2012098969A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014127313A1 (en) * 2013-02-15 2014-08-21 Advanced Hydro Inc Integrated ultrafiltration and reverse osmosis desalination systems
JP2017113729A (ja) * 2015-12-25 2017-06-29 栗田工業株式会社 膜洗浄剤、膜洗浄液及び膜の洗浄方法
CN106076119A (zh) * 2016-07-27 2016-11-09 北京鑫佰利科技发展有限公司 一种纳滤膜洗涤分盐设备
MX2019002940A (es) 2016-09-15 2019-09-06 Fluence Water Israel Ltd Sistema de desalinizacion en contenedores.
JP6940962B2 (ja) * 2017-03-09 2021-09-29 オルガノ株式会社 中空糸膜装置の洗浄方法、限外ろ過膜装置、超純水製造装置及び中空糸膜装置の洗浄装置
CN107551651A (zh) * 2017-09-22 2018-01-09 江门市河正环保设备有限公司 一种智能过滤装置
JP7270478B2 (ja) * 2019-06-21 2023-05-10 オルガノ株式会社 排水処理設備及び排水処理方法
CN110482742A (zh) * 2019-08-29 2019-11-22 深圳中拓天达环境工程有限公司 电极箔含硼清洗废水处理系统及其处理工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220449A (ja) * 1996-02-15 1997-08-26 Kurita Water Ind Ltd 膜分離装置
JP2001294895A (ja) * 2000-04-13 2001-10-23 Miura Co Ltd 膜洗浄剤
JP4580589B2 (ja) * 2001-06-15 2010-11-17 アムテック株式会社 分離膜の洗浄方法
JP4923428B2 (ja) * 2005-03-29 2012-04-25 東レ株式会社 膜分離方法および膜分離装置
JP2007181822A (ja) * 2006-12-19 2007-07-19 Kobelco Eco-Solutions Co Ltd 飲料水製造用水処理システム及びその運転方法
JP2008229418A (ja) * 2007-03-16 2008-10-02 Kurita Water Ind Ltd 工業用水の処理方法および処理装置

Also Published As

Publication number Publication date
CL2013002072A1 (es) 2014-02-28
CN103328079A (zh) 2013-09-25
WO2012098969A1 (ja) 2012-07-26
CN103328079B (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2012098969A1 (ja) 膜モジュールの洗浄方法、造水方法および造水装置
JP5804228B1 (ja) 水処理方法
JP6003646B2 (ja) 膜モジュールの洗浄方法
JP5549589B2 (ja) 造水システム
WO2012057188A1 (ja) 造水方法および造水装置
JP2011125822A (ja) 膜モジュールの洗浄方法および造水装置
WO2013111826A1 (ja) 造水方法および造水装置
JP2015188786A (ja) 正浸透処理システム
JP6183213B2 (ja) 造水方法および造水装置
JPH09248429A (ja) 分離方法およびその装置
JP5024158B2 (ja) 膜ろ過方法
JP2014171926A (ja) 淡水化方法及び淡水化装置
JP2011104504A (ja) 水処理設備の洗浄方法
WO2012057176A1 (ja) 水処理方法および造水方法
WO2011108589A1 (ja) 多孔質膜モジュールの洗浄方法および造水装置
CN212832954U (zh) 浓缩系统
JP3838689B2 (ja) 水処理システム
JP3963304B2 (ja) 逆浸透分離方法
JP2013034938A (ja) 膜モジュールの洗浄方法
WO2023037877A1 (ja) 正浸透処理方法および正浸透処理装置
JP7427890B2 (ja) 濃縮システム
JP2017074532A (ja) 水処理装置および水処理方法
WO2017154624A1 (ja) 高硬度排水の処理方法
JP2020099870A (ja) 水処理システム及びその運転方法
JP2005270906A (ja) 膜の洗浄方法および膜分離装置