JPWO2012066756A1 - Stylus measuring device - Google Patents

Stylus measuring device Download PDF

Info

Publication number
JPWO2012066756A1
JPWO2012066756A1 JP2012511861A JP2012511861A JPWO2012066756A1 JP WO2012066756 A1 JPWO2012066756 A1 JP WO2012066756A1 JP 2012511861 A JP2012511861 A JP 2012511861A JP 2012511861 A JP2012511861 A JP 2012511861A JP WO2012066756 A1 JPWO2012066756 A1 JP WO2012066756A1
Authority
JP
Japan
Prior art keywords
axis direction
guide
axis
linear
stylus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012511861A
Other languages
Japanese (ja)
Other versions
JP5247934B2 (en
Inventor
智志 柴
智志 柴
佐藤 誠一
誠一 佐藤
充 矢作
充 矢作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2012511861A priority Critical patent/JP5247934B2/en
Application granted granted Critical
Publication of JP5247934B2 publication Critical patent/JP5247934B2/en
Publication of JPWO2012066756A1 publication Critical patent/JPWO2012066756A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/28Measuring arrangements characterised by the use of mechanical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/30Supports specially adapted for an instrument; Supports specially adapted for a set of instruments

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

被測定物に対しX軸方向に相対移動自在な門型フレームの上端のビーム32にリニアガイドを介して支持されるY軸ステージ4に触針を支持させた触針式測定装置において、リニアガイドの摩耗による測定精度の悪化を防止する。リニアガイドは、ビーム32の下面に固定した一対のガイドレール51,52と、各ガイドレール51,52の鉛直面に対し傾斜したガイド面51a,52aに移動自在に接触する一対の直動軸受53,54とで構成される。一方の直動軸受54は、Y軸ステージ4に対しX軸方向及び上下方向に遊動自在とする。Y軸ステージ4に、直動軸受54をガイドレール52のガイド面52aに押し付けるようにX軸方向に付勢する付勢手段55を設けると共に、ビーム32側に、直動軸受54を下方に付勢する第2付勢手段56を設けて、両付勢手段55,56の付勢力の合力のベクトル方向をガイド面52aの法線方向に合致させる。In a stylus-type measuring apparatus in which a stylus is supported on a Y-axis stage 4 supported via a linear guide on a beam 32 at the upper end of a portal frame that is movable relative to an object to be measured in the X-axis direction. Prevents measurement accuracy from deteriorating due to wear. The linear guide is a pair of guide rails 51 and 52 fixed to the lower surface of the beam 32, and a pair of linear bearings 53 that are movably in contact with the guide surfaces 51a and 52a inclined with respect to the vertical surfaces of the guide rails 51 and 52. , 54. One linear motion bearing 54 is free to move in the X-axis direction and the vertical direction with respect to the Y-axis stage 4. The Y-axis stage 4 is provided with urging means 55 that urges the linear motion bearing 54 in the X-axis direction so as to press the linear motion bearing 54 against the guide surface 52a of the guide rail 52, and the linear motion bearing 54 is attached downward on the beam 32 side. A second urging means 56 for urging is provided so that the vector direction of the resultant force of the urging forces of both the urging means 55 and 56 matches the normal direction of the guide surface 52a.

Description

本発明は、被測定物の表面に接触する触針を備え、被測定物の表面形状等を測定する触針式測定装置に関する。   The present invention relates to a stylus-type measuring apparatus that includes a stylus that comes into contact with the surface of an object to be measured and measures the surface shape and the like of the object to be measured.

従来、互いに直交する水平2方向をX軸方向及びY軸方向として、被測定物に対しX軸方向に相対移動自在な門型のフレームと、このフレームの上端のY軸方向に長手のビームにリニアガイドを介してY軸方向に移動自在に支持されるY軸ステージとを備え、Y軸ステージに、被測定物の表面に接触する触針を支持させた触針式測定装置は知られている(例えば、特許文献1参照)。   Conventionally, two horizontal directions orthogonal to each other are defined as an X-axis direction and a Y-axis direction, and a portal frame that is movable relative to the object to be measured in the X-axis direction and a beam that is long in the Y-axis direction at the upper end of the frame. There is known a stylus-type measuring apparatus that includes a Y-axis stage supported movably in the Y-axis direction via a linear guide, and that supports a stylus that contacts the surface of the object to be measured. (For example, refer to Patent Document 1).

尚、特許文献1記載のものでは、リニアガイドとして、ガイドレールに沿って移動するスライダをエア圧によりガイドレールに非接触で支持させる静圧式のものを用いている。然し、静圧式のリニアガイドでは、Y軸ステージの支持剛性を十分に確保することが困難である。そのため、リニアガイドとして、ガイドレールに形成したガイド面に移動自在に接触する直動軸受を備える滑り式や転がり式のガイドを用いるものも知られている。   In addition, in the thing of patent document 1, the static pressure type thing which supports the slider which moves along a guide rail to a guide rail by air pressure non-contact is used as a linear guide. However, it is difficult to ensure sufficient support rigidity of the Y-axis stage with the static pressure type linear guide. Therefore, a linear guide that uses a sliding or rolling guide provided with a linear motion bearing that is movably in contact with a guide surface formed on a guide rail is also known.

この場合、一般的には、Y軸方向に長手のビームのX軸方向一方の側面に、Y軸方向に長手の上下一対のガイドレールを固定すると共に、これらガイドレールに形成したガイド面にY軸方向に移動自在に接触する上下一対の直動軸受をY軸ステージに固定している。   In this case, generally, a pair of upper and lower guide rails long in the Y-axis direction is fixed to one side surface of the beam that is long in the Y-axis direction, and the guide surfaces formed on these guide rails have Y A pair of upper and lower linear bearings that are movable in the axial direction are fixed to the Y-axis stage.

然し、このものでは、ある程度の期間使用すると、ガイドレールのガイド面と直動軸受の接触面の摩耗を生じて、両者間に隙間を生ずる。そして、Y軸ステージがこの隙間分上下方向に変位し、Y軸ステージに設けた触針用支持部の上下方向位置が正規位置からずれて、測定精度が悪化する。   However, in this case, when used for a certain period of time, the guide surface of the guide rail and the contact surface of the linear motion bearing are worn and a gap is formed between them. Then, the Y-axis stage is displaced in the vertical direction by this gap, and the vertical position of the stylus support provided on the Y-axis stage is shifted from the normal position, so that the measurement accuracy is deteriorated.

特開平7−218207号公報JP 7-218207 A

本発明は、以上の点に鑑み、リニアガイドの摩耗を生じても測定精度が悪化しないようにした触針式測定装置を提供することをその課題としている。   In view of the above points, an object of the present invention is to provide a stylus-type measuring device that does not deteriorate the measurement accuracy even if the linear guide is worn.

上記課題を解決するために、本発明は、互いに直交する水平2方向をX軸方向及びY軸方向として、被測定物に対しX軸方向に相対移動自在な門型のフレームと、このフレームの上端のY軸方向に長手のビームにリニアガイドを介してY軸方向に移動自在に支持され、Y軸方向に移動する出力部材を有する駆動機構によりY軸方向に往復動されるY軸ステージとを備え、Y軸ステージに、被測定物の表面に接触する触針を支持させた触針式測定装置において、リニアガイドは、ビームの下面にX軸方向に離隔して固定したY軸方向に長手の第1と第2の一対のガイドレールと、第1ガイドレールのX軸方向一方の側面に形成したガイド面にY軸方向に移動自在に接触する第1直動軸受と、第2ガイドレールのX軸方向他方の側面に形成したガイド面にY軸方向に移動自在に接触する第2直動軸受とで構成され、第1と第2の各ガイドレールのガイド面は、第1と第2の各直動軸受が落下しないように、鉛直面に対し傾斜しており、第1直動軸受はY軸ステージに固定され、第2直動軸受はY軸ステージに対しX軸方向及び上下方向に遊動自在とし、Y軸ステージに、第2直動軸受を第2ガイドレールのガイド面に押し付けるようにX軸方向に付勢する第1付勢手段が設けられ、ビーム又はビームに固定の部材に、第2直動軸受を下方に付勢する第2付勢手段が設けられ、第1付勢手段の付勢力と第2付勢手段の付勢力との合力のベクトル方向を第2ガイドレールのガイド面の法線方向に合致させることを特徴とする。   In order to solve the above-described problems, the present invention provides a portal frame that is relatively movable in the X-axis direction with respect to the object to be measured, with the two horizontal directions orthogonal to each other as the X-axis direction and the Y-axis direction. A Y-axis stage that is supported by a beam that is long in the Y-axis direction at the upper end so as to be movable in the Y-axis direction via a linear guide, and is reciprocated in the Y-axis direction by a drive mechanism having an output member that moves in the Y-axis direction; In the stylus type measuring apparatus in which the stylus contacting the surface of the object to be measured is supported on the Y-axis stage, the linear guide is fixed in the Y-axis direction, which is fixed to the lower surface of the beam in the X-axis direction. A pair of longitudinal first and second guide rails, a first linear bearing which is movably in contact with the guide surface formed on one side surface in the X-axis direction of the first guide rail and is movable in the Y-axis direction; and a second guide Gus formed on the other side of the rail in the X-axis direction And a second linear motion bearing that is movable in the Y-axis direction so that the first and second linear motion bearings do not fall on the guide surfaces of the first and second guide rails. The first linear bearing is fixed to the Y-axis stage, and the second linear bearing is free to move in the X-axis direction and the vertical direction with respect to the Y-axis stage. The first urging means for urging the second linear bearing in the X-axis direction so as to press the second linear bearing against the guide surface of the second guide rail is provided, and the second linear bearing is disposed below the beam or a member fixed to the beam. Second urging means for urging the second urging means is provided, and the vector direction of the resultant force of the urging force of the first urging means and the urging force of the second urging means coincides with the normal direction of the guide surface of the second guide rail. It is characterized by making it.

本発明によれば、各ガイドレールのガイド面とガイド面に対する各直動軸受の接触面の摩耗を生じても、第1付勢手段の付勢力により、ガイド面と直動軸受の接触面との間の隙間の発生が防止される。そして、Y軸ステージに固定の第1直動軸受が鉛直面に対し傾斜した第1ガイドレールのガイド面に圧接することで、Y軸ステージは所定の上下方向位置に保持される。また、第1と第2の両付勢手段の付勢力の合力で、第2直動軸受は第2ガイドレールのガイド面の法線方向に押圧されることになり、第2ガイドレールのガイド面と第2直動軸受の接触面の偏摩耗(ガイド面の鉛直面に対する傾斜角が変化するような摩耗)を防止できる。そのため、偏摩耗によるY軸ステージの上下方向の傾きが防止され、Y軸ステージのY軸方向への移動真直度を高精度で確保できる。従って、リニアガイドの摩耗を生じても、Y軸ステージは所定の上下方向位置に保持された状態でY軸方向に真直に移動し、測定精度は悪化しない。   According to the present invention, even if wear of the guide surface of each guide rail and the contact surface of each linear motion bearing against the guide surface occurs, the biasing force of the first biasing means causes the guide surface and the contact surface of the linear motion bearing to Generation of a gap between the two is prevented. Then, the first linear motion bearing fixed to the Y-axis stage is pressed against the guide surface of the first guide rail inclined with respect to the vertical surface, whereby the Y-axis stage is held at a predetermined vertical position. The second linear bearing is pressed in the normal direction of the guide surface of the second guide rail by the resultant force of the first and second urging means, and the second guide rail guide Uneven wear (wear that changes the inclination angle of the guide surface with respect to the vertical surface) can be prevented. Therefore, the vertical tilt of the Y-axis stage due to uneven wear is prevented, and the straightness of movement of the Y-axis stage in the Y-axis direction can be ensured with high accuracy. Therefore, even if the linear guide is worn, the Y-axis stage moves straight in the Y-axis direction while being held at a predetermined vertical position, and the measurement accuracy does not deteriorate.

尚、第1ガイドレールのガイド面と第1直動軸受の接触面の摩耗を生ずると、第1付勢手段の付勢力により第1ガイドレールのガイド面と第1直動軸受との間に隙間を生じないようにY軸ステージがX軸方向に変位する。この場合、駆動機構の出力部材がY軸ステージに固定されていると、Y軸ステージと一体に出力部材もX軸方向に変位して、駆動機構に偏荷重が作用し、耐久性に悪影響が及ぶ。更に、駆動機構の製作精度誤差により出力部材がX軸方向及び上下方向に振れ、この振れがY軸ステージに伝達されて、測定精度に悪影響が及ぶこともある。   If wear occurs on the contact surface of the first guide rail and the first linear motion bearing, the biasing force of the first biasing means causes a gap between the guide surface of the first guide rail and the first linear motion bearing. The Y-axis stage is displaced in the X-axis direction so as not to create a gap. In this case, if the output member of the drive mechanism is fixed to the Y-axis stage, the output member is also displaced in the X-axis direction integrally with the Y-axis stage, and an uneven load acts on the drive mechanism, which adversely affects durability. It reaches. Further, the output member may swing in the X-axis direction and the vertical direction due to a manufacturing accuracy error of the drive mechanism, and this swing may be transmitted to the Y-axis stage, which may adversely affect measurement accuracy.

そのため、本発明においては、Y軸テーブルに対し出力部材をY軸方向に直交する鉛直面に沿った動きの自由度を持つように連結する連結手段を備えることが望ましい。これによれば、Y軸ステージがX軸方向に変位しても出力部材は変位しない。従って、駆動機構に偏荷重が作用することを防止できる。更に、出力部材がX軸方向及び上下方向に振れても、この振れはY軸ステージに伝達されず、測定精度に悪影響が及ぶことはない。   Therefore, in the present invention, it is desirable to include a connecting means for connecting the output member to the Y-axis table so as to have a degree of freedom of movement along a vertical plane orthogonal to the Y-axis direction. According to this, even if the Y-axis stage is displaced in the X-axis direction, the output member is not displaced. Therefore, it is possible to prevent an uneven load from acting on the drive mechanism. Furthermore, even if the output member swings in the X-axis direction and the vertical direction, this swing is not transmitted to the Y-axis stage, and the measurement accuracy is not adversely affected.

ところで、連結手段は、X軸方向及び上下方向の動きの自由度を持つユニバーサルジョイントで構成してもよいが、これでは構造が複雑になってコストアップを招く。そのため、連結手段は、Y軸ステージと出力部材との一方に設けたY軸方向に直交する鉛直な受面と、Y軸ステージと出力部材との他方に設けた球面部と、球面部を受面に押し付けるばねとで構成されることが望ましい。これによれば、受面に球面部が移動自在に点接触して、上述した動きの自由度が得られると共に、構造が簡単になってコストダウンを図ることができる。   By the way, the connecting means may be constituted by a universal joint having freedom of movement in the X-axis direction and the vertical direction, but this makes the structure complicated and causes an increase in cost. For this reason, the connecting means receives the vertical receiving surface perpendicular to the Y-axis direction provided on one of the Y-axis stage and the output member, the spherical surface provided on the other of the Y-axis stage and the output member, and the spherical surface. It is desirable to be comprised with the spring pressed against a surface. According to this, the spherical surface portion is movably brought into point contact with the receiving surface, and the above-described degree of freedom of movement can be obtained, and the structure can be simplified and the cost can be reduced.

本発明の実施形態の触針式測定装置の正面図。The front view of the stylus type measuring device of an embodiment of the present invention. 図1の触針式測定装置の要部の拡大断面図。The expanded sectional view of the principal part of the stylus type measuring apparatus of FIG. 図2のIII−III線で切断した断面図。Sectional drawing cut | disconnected by the III-III line | wire of FIG. 図3のIV−IV線で切断した断面図。Sectional drawing cut | disconnected by the IV-IV line of FIG. 図2のV−V線で切断した断面図。Sectional drawing cut | disconnected by the VV line | wire of FIG. 他の実施形態の図3に対応する断面図。Sectional drawing corresponding to FIG. 3 of other embodiment.

図1は本発明の実施形態の触針式測定装置を示している。この測定装置は、ベース1と、ベース1上に配置した被測定物Wを載置する試料ステージ2と、ベース1上に試料ステージ2を跨ぐようにして配置した門型のフレーム3とを備えている。試料ステージ2は、互いに直交する水平2方向をX軸方向及びY軸方向として、ベース1上に固定したX軸方向に長手の一対のガイドレール2a,2aに移動自在に支持される。そして、図示省略したX軸方向に長手のボールねじの回転によりこのボールねじに螺合するナットを介して試料ステージ2をX軸方向に移動させることで、被測定物Wに対し門型フレーム3がX軸方向に相対移動するようにしている。   FIG. 1 shows a stylus type measuring apparatus according to an embodiment of the present invention. This measuring apparatus includes a base 1, a sample stage 2 on which a workpiece W placed on the base 1 is placed, and a portal frame 3 placed on the base 1 so as to straddle the sample stage 2. ing. The sample stage 2 is supported by a pair of guide rails 2a and 2a that are long in the X-axis direction fixed on the base 1, with the two horizontal directions orthogonal to each other as the X-axis direction and the Y-axis direction. Then, by moving the sample stage 2 in the X-axis direction via a nut screwed to the ball screw by rotation of a ball screw elongated in the X-axis direction (not shown), the portal frame 3 with respect to the object W to be measured. Is relatively moved in the X-axis direction.

門型フレーム3は、ベース1に立設したY軸方向両側のコラム31,31と、両コラム31,31の上端間に横設したY軸方向に長手のビーム32とを有している。尚、試料ステージ2をベース1上に固定し、門型フレーム3をX軸方向に移動自在として、被測定物Wに対し門型フレーム3がX軸方向に相対移動するようにしてもよい。   The portal frame 3 has columns 31 and 31 on both sides in the Y-axis direction standing on the base 1, and a beam 32 elongated in the Y-axis direction horizontally provided between the upper ends of both columns 31 and 31. The sample stage 2 may be fixed on the base 1, and the portal frame 3 may be movable in the X-axis direction so that the portal frame 3 moves relative to the object W to be measured in the X-axis direction.

門型フレーム3の上端のビーム32には、後述するリニアガイド5を介してY軸方向に移動自在にY軸ステージ4が支持されている。Y軸ステージ4は、Y軸方向に移動する出力部材を有する駆動機構によりY軸方向に往復動される。本実施形態において、駆動機構は、図2、図3に示す如く、Y軸方向に長手のボールねじ6とこれに螺合するナット7とを有する送りねじ機構で構成されている。   A Y-axis stage 4 is supported on the beam 32 at the upper end of the portal frame 3 so as to be movable in the Y-axis direction via a linear guide 5 described later. The Y-axis stage 4 is reciprocated in the Y-axis direction by a drive mechanism having an output member that moves in the Y-axis direction. In this embodiment, as shown in FIGS. 2 and 3, the drive mechanism is constituted by a feed screw mechanism having a ball screw 6 that is long in the Y-axis direction and a nut 7 that is screwed thereto.

より具体的に説明すれば、ビーム32の下面にはガイドブロック33が固定されている。ガイドブロック33には、その下面から上方に凹入するY軸方向に長手の凹入部33aが形成されている。そして、ボールねじ6を凹入部33aに収納した状態で、凹入部33aのY軸方向両端部に固定した支持体33bにベアリング61を介してボールねじ6を軸支している。ボールねじ6は、その軸端に固定したプーリ62とこれに巻回するベルト63とを介して図示省略したサーボモータに連結される。また、凹入部33aの天井部に固定したガイドレール71に凹入部33a内でY軸方向に移動自在に支持されるナットホルダ72を設け、このナットホルダ72にナット7を回り止めした状態で保持させている。そして、ボールねじ6の回転によりナット7を介して駆動機構の出力部材たるナットホルダ72がY軸方向に移動し、ナットホルダ72を介してY軸ステージ4がY軸方向に移動されるようにしている。   More specifically, a guide block 33 is fixed to the lower surface of the beam 32. The guide block 33 has a recessed portion 33a that is long in the Y-axis direction and is recessed upward from the lower surface thereof. In a state where the ball screw 6 is housed in the recessed portion 33a, the ball screw 6 is pivotally supported via a bearing 61 on the support 33b fixed to both ends in the Y-axis direction of the recessed portion 33a. The ball screw 6 is connected to a servo motor (not shown) via a pulley 62 fixed to the shaft end and a belt 63 wound around the pulley. Further, a nut holder 72 that is supported so as to be movable in the Y-axis direction within the recessed portion 33a is provided on the guide rail 71 fixed to the ceiling portion of the recessed portion 33a, and the nut 7 is held in a state in which the nut 7 is prevented from rotating. I am letting. Then, the rotation of the ball screw 6 causes the nut holder 72, which is an output member of the drive mechanism, to move in the Y-axis direction via the nut 7, so that the Y-axis stage 4 is moved in the Y-axis direction via the nut holder 72. ing.

Y軸ステージ4には、下方にのびる支持枠4aが取付けられており、この支持枠4aに、被測定物Wの表面に接触する触針8がZ軸センサ81を介して上下方向に変位自在に支持されている。そして、触針8の上下方向変位をZ軸センサ81により検出するようにしている。   A support frame 4 a extending downward is attached to the Y-axis stage 4, and a stylus 8 that contacts the surface of the object W to be measured can be displaced in the vertical direction via the Z-axis sensor 81. It is supported by. The vertical displacement of the stylus 8 is detected by the Z-axis sensor 81.

測定に際しては、触針8を被測定物Wの表面に接触させた状態で門型フレーム3を被測定物Wに対しX軸方向に相対移動させることにより、触針8を被測定物Wの表面に沿ってX軸方向に走査する。そして、この走査中にZ軸センサ81で検出される触針8の上下方向変位に基づいて、被測定物Wの一つのX方向断面に沿った表面形状(凹凸)を測定する。次に、Y軸ステージ4をY軸方向に所定ストローク移動させた後、上記と同様に触針8を被測定物Wの表面に沿ってX軸方向に走査して、被測定物Wの次のX方向断面に沿った表面形状を測定する。これを繰り返して、被測定物Wの所定領域の表面形状を測定する。   For measurement, the portal frame 3 is moved relative to the object W in the X-axis direction while the stylus 8 is in contact with the surface of the object W, so that the stylus 8 of the object W is measured. Scan along the surface in the X-axis direction. Then, based on the vertical displacement of the stylus 8 detected by the Z-axis sensor 81 during this scanning, the surface shape (unevenness) along one X-direction cross section of the workpiece W is measured. Next, after the Y-axis stage 4 is moved by a predetermined stroke in the Y-axis direction, the stylus 8 is scanned in the X-axis direction along the surface of the object to be measured W in the same manner as described above. The surface shape along the X-direction cross section is measured. By repeating this, the surface shape of a predetermined region of the workpiece W is measured.

ところで、Y軸ステージ4を支持するリニアガイド5の摩耗により、Y軸ステージ4の上下方向位置が変化すると、触針8の上下方向変位を検出するZ軸センサ81の検出出力が変化し、測定精度が悪化してしまう。また、Y軸ステージ4のY軸方向への移動真直度が損なわれて、Y軸ステージ4が上下方向に傾いた場合にも、Z軸センサ81の検出出力が変化して、測定精度が悪化する。そこで、本実施形態では、リニアガイド5を、その摩耗を生じてもY軸ステージ4が所定の上下方向位置に保持された状態でY軸方向に真直に移動するように構成している。以下、リニアガイド5について詳述する。   By the way, when the vertical position of the Y-axis stage 4 changes due to wear of the linear guide 5 that supports the Y-axis stage 4, the detection output of the Z-axis sensor 81 that detects the vertical displacement of the stylus 8 changes, and the measurement is performed. Accuracy will deteriorate. In addition, even when the straightness of movement of the Y-axis stage 4 in the Y-axis direction is impaired and the Y-axis stage 4 is tilted in the vertical direction, the detection output of the Z-axis sensor 81 changes and the measurement accuracy deteriorates. To do. Therefore, in this embodiment, the linear guide 5 is configured to move straight in the Y-axis direction while the Y-axis stage 4 is held at a predetermined vertical position even when the linear guide 5 is worn. Hereinafter, the linear guide 5 will be described in detail.

リニアガイド5は、図3、図4に示す如く、ビーム32の下面にX軸方向に離隔して固定したY軸方向に長手の第1と第2の一対のガイドレール51,52を備えている。尚、本実施形態では、ガイドブロック33の下面に、凹入部33aのX軸方向両外側に位置させて、第1と第2の両ガイドレール51,52をねじ止めしている。そのため、ビーム32の下面に両ガイドレール51,52がガイドブロック33を介して固定されることになる。   As shown in FIGS. 3 and 4, the linear guide 5 includes a pair of first and second guide rails 51 and 52 that are long in the Y-axis direction and are fixed to the lower surface of the beam 32 in the X-axis direction. Yes. In the present embodiment, the first and second guide rails 51 and 52 are screwed to the lower surface of the guide block 33 so as to be positioned on both outer sides in the X-axis direction of the recessed portion 33a. Therefore, both guide rails 51 and 52 are fixed to the lower surface of the beam 32 via the guide block 33.

リニアガイド5は、更に、第1ガイドレール51のX軸方向一方の側面(図4の左側の側面)に形成したガイド面51aにY軸方向に移動自在に接触する第1直動軸受53と、第2ガイドレール52のX軸方向他方の側面(図4の右側の側面)に形成したガイド面52aにY軸方向に移動自在に接触する第2直動軸受54とを備えている。尚、第1と第2の各直動軸受53,54は、各ガイドレール51,52のガイド面51a,52aに滑動自在に面接触する滑り軸受で構成されている。また、各ガイドレール51,52のガイド面51a,52aは、各直動軸受53,54が落下しないように、鉛直面に対し傾斜しており、当然のことながら、ガイド面51a,52aに接触する各直動軸受53,54の接触面も鉛直面に対し傾斜している。   The linear guide 5 further includes a first linear bearing 53 that contacts a guide surface 51a formed on one side surface (left side surface in FIG. 4) of the first guide rail 51 so as to be movable in the Y-axis direction. The second guide rail 52 is provided with a second linear bearing 54 that is movably in contact with the guide surface 52a formed on the other side surface in the X-axis direction (right side surface in FIG. 4) in the Y-axis direction. Each of the first and second linear motion bearings 53, 54 is a sliding bearing that is slidably brought into surface contact with the guide surfaces 51a, 52a of the respective guide rails 51, 52. Further, the guide surfaces 51a and 52a of the respective guide rails 51 and 52 are inclined with respect to the vertical surface so that the linear motion bearings 53 and 54 do not fall, and of course, contact with the guide surfaces 51a and 52a. The contact surfaces of the linear motion bearings 53, 54 are also inclined with respect to the vertical surface.

ここで、第1直動軸受53は、Y軸ステージ4にねじで固定されるが、第2直動軸受54は、Y軸ステージ4に対しX軸方向及び上下方向に遊動自在である。具体的には、Y軸ステージ4に、図3に示す如く、第2直動軸受54の外端部を受け入れる溝部41を形成して、この溝部41に第2直動軸受54をX軸方向及び上下方向に遊動自在に係合させている。そして、Y軸ステージ4に、第2直動軸受54を第2ガイドレール52のガイド面52aに押し付けるようにX軸方向に付勢する第1付勢手段55を設けている。また、ビーム32に固定のガイドブロック33に、第2直動軸受54を下方に付勢する第2付勢手段56を設けている。   Here, the first linear motion bearing 53 is fixed to the Y axis stage 4 with screws, but the second linear motion bearing 54 is free to move in the X axis direction and the vertical direction with respect to the Y axis stage 4. Specifically, as shown in FIG. 3, a groove portion 41 that receives the outer end portion of the second linear motion bearing 54 is formed in the Y-axis stage 4, and the second linear motion bearing 54 is placed in the groove portion 41 in the X-axis direction. And, it is engaged freely in the vertical direction. The Y-axis stage 4 is provided with first urging means 55 that urges the second linear motion bearing 54 in the X-axis direction so as to press against the guide surface 52a of the second guide rail 52. The guide block 33 fixed to the beam 32 is provided with second urging means 56 for urging the second linear motion bearing 54 downward.

尚、本実施形態では、第2直動軸受54をY軸方向に3分割し、分割された各第2直動軸受54の夫々について第1付勢手段55を設けている。また、分割された全ての直動軸受54の上面に滑動自在に接触するY軸方向に長手の樹脂板54aを設けている。そして、ガイドブロック33に、この樹脂板54aの上面に当接するようにY軸方向の間隔を存して複数の第2付勢手段56を設け、これら第2付勢手段56により各第2直動軸受54を樹脂板54aを介して下方に付勢している。   In the present embodiment, the second linear motion bearing 54 is divided into three in the Y-axis direction, and the first urging means 55 is provided for each of the divided second linear motion bearings 54. In addition, a resin plate 54a that is long in the Y-axis direction is provided in sliding contact with the upper surfaces of all of the divided linear motion bearings 54. The guide block 33 is provided with a plurality of second urging means 56 at intervals in the Y-axis direction so as to come into contact with the upper surface of the resin plate 54a. The dynamic bearing 54 is urged downward through the resin plate 54a.

第1と第2の各付勢手段55,56は、Y軸ステージ4やガイドブロック33にX軸方向外方や上方から螺入されるスプリングプランジャで構成されている。そして、各付勢手段55,56の付勢力をその螺入深さにより調節し、所要の螺入深さで各付勢手段55,56が固定ナット55a,56aによりY軸ステージ4やガイドブロック33に固定されるようにしている。   Each of the first and second urging means 55 and 56 is constituted by a spring plunger that is screwed into the Y-axis stage 4 or the guide block 33 from the outside in the X-axis direction or from above. Then, the urging force of each urging means 55, 56 is adjusted by the screwing depth, and each urging means 55, 56 is fixed to the Y-axis stage 4 or the guide block by the fixing nuts 55a, 56a at the required screwing depth. 33 to be fixed.

第1付勢手段55の付勢力と第2付勢手段56の付勢力は、これら付勢力の合力のベクトル方向がガイド面52aの法線方向に合致するように調節される。これにより、第2直動軸受54は第2ガイドレール52のガイド面52aの法線方向に押圧されることになり、第2ガイドレール52のガイド面52aと第2直動軸受54の接触面の偏摩耗(鉛直面に対するガイド面52aの傾斜角が変化するような摩耗)を防止することができる。   The urging force of the first urging means 55 and the urging force of the second urging means 56 are adjusted so that the vector direction of the resultant force of these urging forces coincides with the normal direction of the guide surface 52a. Thereby, the second linear motion bearing 54 is pressed in the normal direction of the guide surface 52 a of the second guide rail 52, and the contact surface 52 a of the second guide rail 52 and the contact surface of the second linear motion bearing 54. Can be prevented (wear that changes the inclination angle of the guide surface 52a with respect to the vertical surface).

また、第2直動軸受54のX軸方向外側面には、第1付勢手段55の当接部となる上下方向にのびるV字状の溝54bが形成されている。これにより、第1付勢手段55に対し第2直動軸受54が上下方向に相対移動自在となり、更に、第1付勢手段55に対し第2直動軸受54がY軸方向に相対移動不能になる。従って、第2直動軸受54と溝部41との間に不可避的に生ずる挿入クリアランス分だけ第2直動軸受54がY軸ステージ4に対しY軸方向に動くことを防止できる。   Further, a V-shaped groove 54 b extending in the vertical direction and serving as a contact portion of the first urging means 55 is formed on the outer surface of the second linear motion bearing 54 in the X-axis direction. As a result, the second linear bearing 54 can move in the vertical direction relative to the first biasing means 55, and the second linear bearing 54 cannot move in the Y-axis direction relative to the first biasing means 55. become. Therefore, it is possible to prevent the second linear motion bearing 54 from moving in the Y axis direction with respect to the Y axis stage 4 by an amount corresponding to an insertion clearance inevitably generated between the second linear motion bearing 54 and the groove portion 41.

尚、長期間の使用に耐え得るようにするには、ガイドレール51,52及び直動軸受53,54の材質として、できるだけ摩耗しにくいものを選定する必要がある。例えば、ガイドレール51,52を硬質のセラミック製とし、直動軸受53,54をPTFE,PCTFE等の潤滑性に優れた樹脂製とすれば、摩耗による影響を受けにくくなる。   In order to withstand long-term use, it is necessary to select a material that is not easily worn as much as possible as the material of the guide rails 51 and 52 and the linear motion bearings 53 and 54. For example, if the guide rails 51 and 52 are made of hard ceramic and the linear motion bearings 53 and 54 are made of resin having excellent lubricity such as PTFE and PCTFE, they are hardly affected by wear.

また、Y軸ステージ4に対しナットホルダ72をY軸方向に直交する鉛直面に沿った動きの自由度を持つように連結する連結手段9を設けている。本実施形態では、連結手段9を、Y軸ステージ4に設けたY軸方向に直交する鉛直な受面91と、ナットホルダ72に設けた球面部92と、球面部92を受面91に押し付けるばね93とで構成している。   Further, a connecting means 9 for connecting the nut holder 72 to the Y-axis stage 4 so as to have a degree of freedom of movement along a vertical plane orthogonal to the Y-axis direction is provided. In the present embodiment, the connecting means 9 is pressed against the vertical receiving surface 91 provided on the Y-axis stage 4 and perpendicular to the Y-axis direction, the spherical portion 92 provided on the nut holder 72, and the spherical portion 92 against the receiving surface 91. A spring 93 is used.

より具体的に説明すれば、ナットホルダ72のY軸方向の一部に下方に突出する凸部72aを設けて、Y軸ステージ4に、図5に示す如く、凸部72aを受け入れる略方形の窓孔42を形成している。そして、この窓孔42のY軸方向一方の側面に平面状の頭部を有するねじを螺着し、このねじの頭部で前記受面91を構成している。また、凸部72aのY軸方向一方の側面に球面状の頭部を有するねじを螺着して、このねじの頭部で前記球面部92を構成している。更に、Y軸ステージ4に、窓孔42のY軸方向他方の側面に開口するX軸方向に離隔した一対の透孔43,43を形成し、各透孔43にピン状のばね受け94を挿入している。そして、各ばね受け94と凸部72aのY軸方向他方の側面との間にコイルスプリングから成るばね93を縮設し、このばね93の付勢力で球面部92を受面91に押し付けている。   More specifically, a convex portion 72a projecting downward is provided in a part of the nut holder 72 in the Y-axis direction, and the Y-axis stage 4 has a substantially rectangular shape for receiving the convex portion 72a as shown in FIG. A window hole 42 is formed. A screw having a flat head is screwed onto one side surface of the window hole 42 in the Y-axis direction, and the receiving surface 91 is constituted by the head of the screw. Further, a screw having a spherical head is screwed onto one side surface of the convex portion 72a in the Y-axis direction, and the spherical portion 92 is configured by the head of this screw. Further, the Y-axis stage 4 is formed with a pair of through-holes 43 and 43 that are spaced apart from each other in the X-axis direction and open on the other side surface of the window hole 42 in the Y-axis direction. Inserting. Then, a spring 93 made of a coil spring is contracted between each spring receiver 94 and the other side surface in the Y-axis direction of the convex portion 72 a, and the spherical surface portion 92 is pressed against the receiving surface 91 by the urging force of the spring 93. .

また、ばね93の付勢力を調節する調節手段を設けている。即ち、Y軸ステージ4のY軸方向他方の外側面にねじ止めした板44に、各透孔43に挿入されてばね受け94に当接する、固定ナット95aで固定される調節ねじ95を螺挿している。そして、調節ねじ95によりばね受け94をY軸方向に変位させて、ばね93の付勢力を調節できるようにしている。ここで、ばね93の付勢力は、球面部92の弾性変形を起こす力未満の範囲内で、リニアガイド5で生ずる摩擦力とY軸ステージ4の加減速に必要な力との合計力以上になるように調節される。これにより、ナットホルダ72がY軸方向一方と他方の何れの方向に移動しても球面部92が受面91から離れることはなく、Y軸ステージ4のナットホルダ72に対する追従性が確保される。   Further, an adjusting means for adjusting the urging force of the spring 93 is provided. That is, an adjusting screw 95 that is inserted into each through-hole 43 and abuts against the spring receiver 94 and is screwed into the plate 44 screwed to the other outer surface in the Y-axis direction of the Y-axis stage 4 is screwed. ing. Then, the spring receiver 94 is displaced in the Y-axis direction by the adjusting screw 95 so that the urging force of the spring 93 can be adjusted. Here, the urging force of the spring 93 is within a range that is less than the force that causes the spherical surface portion 92 to be elastically deformed, and is greater than or equal to the total force of the friction force generated by the linear guide 5 and the force required for acceleration / deceleration of the Y-axis stage 4 Adjusted to be. Thereby, even if the nut holder 72 moves in either the Y-axis direction or the other direction, the spherical surface portion 92 does not move away from the receiving surface 91, and the followability of the Y-axis stage 4 to the nut holder 72 is ensured. .

本実施形態によれば、第1と第2の各ガイドレール51,52のガイド面51a,52aと第1と第2の各直動軸受53,54の接触面の摩耗を生じても、第1付勢手段55の付勢力により、ガイド面51a,52aと直動軸受53,54との間の隙間の発生が防止される。そして、第2ガイドレール52を反力受けとしてY軸ステージ4に第2直動軸受54を介して作用する第1付勢手段55の付勢反力により、Y軸ステージ4に固定の第1直動軸受53が鉛直面に対し傾斜した第1ガイドレール51のガイド面51aに圧接する。そのため、この圧接反力の上方への分力で第1ガイドレール51の下面にこれに対向するY軸ステージ4の上面部分が接触し、Y軸ステージ4は所定の上下方向位置に保持される。また、上述したように第2ガイドレール52のガイド面52aと第2直動軸受54の接触面の偏摩耗が防止さるため、Y軸ステージ4のY軸方向への移動真直度が高精度で確保され、Y軸ステージ4が上下方向に傾くことはない。従って、リニアガイド5の摩耗を生じても、Y軸ステージ4は所定の上下方向位置に保持された状態でY軸方向に真直に移動し、Y軸ステージ4の上下方向の位置変化や傾きに起因する測定精度の悪化は生じない。   According to the present embodiment, the first and second guide rails 51 and 52 of the guide surfaces 51a and 52a and the first and second linear motion bearings 53 and 54 are worn even if wear occurs. Due to the urging force of the first urging means 55, the generation of a gap between the guide surfaces 51a, 52a and the linear motion bearings 53, 54 is prevented. Then, the first guide rail 52 is fixed to the Y-axis stage 4 by the urging reaction force of the first urging means 55 acting on the Y-axis stage 4 via the second linear motion bearing 54 with the second guide rail 52 as a reaction force receiver. The linear motion bearing 53 is in pressure contact with the guide surface 51a of the first guide rail 51 inclined with respect to the vertical surface. For this reason, the upper surface portion of the Y-axis stage 4 facing the lower surface of the first guide rail 51 is brought into contact with the lower surface of the first guide rail 51 by the upward force component of the pressure reaction force, and the Y-axis stage 4 is held at a predetermined vertical position. . Further, as described above, since the uneven wear of the contact surface of the guide surface 52a of the second guide rail 52 and the second linear bearing 54 is prevented, the straightness of movement of the Y-axis stage 4 in the Y-axis direction is highly accurate. The Y-axis stage 4 is not tilted in the vertical direction. Therefore, even if the linear guide 5 is worn, the Y-axis stage 4 moves straight in the Y-axis direction while being held at a predetermined vertical position, and the vertical position change or inclination of the Y-axis stage 4 is caused. The resulting measurement accuracy does not deteriorate.

ところで、第1ガイドレール51のガイド面51aと第1直動軸受53の接触面の摩耗を生ずると、第1付勢手段55の付勢力によりガイド面51aと第1直動軸受53との間に隙間を生じないようにY軸ステージ4がX軸方向に変位する。この場合、ナットホルダ72がY軸ステージ4に固定されていると、Y軸ステージ4と一体にナットホルダ72もX軸方向に変位して、ボールねじ6に軸方向に直交する偏荷重が作用し、ボールねじ6の偏摩耗を生じて耐久性に悪影響が及ぶ。更に、ボールねじ6の偏心やボールねじ6のリード部の偏心により、ナット7を介してナットホルダ72がX軸方向及び上下方向に振れ、この振れがY軸ステージ4に伝達されて、測定精度に悪影響が及ぶこともある。   By the way, when wear occurs on the contact surface of the guide surface 51 a of the first guide rail 51 and the first linear motion bearing 53, the biasing force of the first biasing means 55 causes the gap between the guide surface 51 a and the first linear motion bearing 53. The Y-axis stage 4 is displaced in the X-axis direction so that no gap is generated. In this case, when the nut holder 72 is fixed to the Y-axis stage 4, the nut holder 72 is also displaced in the X-axis direction integrally with the Y-axis stage 4, and an offset load perpendicular to the axial direction acts on the ball screw 6. However, uneven wear of the ball screw 6 occurs, and the durability is adversely affected. Furthermore, due to the eccentricity of the ball screw 6 and the eccentricity of the lead portion of the ball screw 6, the nut holder 72 is shaken in the X-axis direction and the vertical direction via the nut 7, and this deflection is transmitted to the Y-axis stage 4 for measurement accuracy. May be adversely affected.

これに対し、本実施形態では、Y軸ステージ4に設けたY軸方向に直交する鉛直な受面91にナットホルダ72が球面部92においてX軸方向及び上下方向に移動自在に点接触するため、即ち、Y軸テーブル4に対しナットホルダ72がY軸方向に直交する鉛直面に沿った動きの自由度を持つように連結されるため、Y軸ステージ4がX軸方向に変位してもナットホルダ72は変位しない。従って、ボールねじ6に軸方向に直交する偏荷重が作用することはなく、ボールねじ6の偏摩耗を防止できる。更に、ボールねじ6の偏心やボールねじ6のリード部の偏心により、ナットホルダ72がX軸方向及び上下方向に振れても、この振れはY軸ステージ4に伝達されず、測定精度に悪影響が及ぶことはない。   On the other hand, in the present embodiment, the nut holder 72 makes point contact with the vertical receiving surface 91 orthogonal to the Y-axis direction provided on the Y-axis stage 4 movably in the X-axis direction and the vertical direction on the spherical surface portion 92. That is, since the nut holder 72 is connected to the Y-axis table 4 so as to have a degree of freedom of movement along a vertical plane orthogonal to the Y-axis direction, the Y-axis stage 4 can be displaced in the X-axis direction. The nut holder 72 is not displaced. Therefore, an uneven load orthogonal to the axial direction does not act on the ball screw 6, and uneven wear of the ball screw 6 can be prevented. Furthermore, even if the nut holder 72 swings in the X-axis direction and the up-down direction due to the eccentricity of the ball screw 6 or the lead part of the ball screw 6, this vibration is not transmitted to the Y-axis stage 4 and the measurement accuracy is adversely affected. Never reach.

ところで、連結手段9をX軸方向と上下方向の動きの自由度を持つユニバーサルジョイントで構成することも可能である。然し、これでは構造が複雑になってコストアップを招く。これに対し、本実施形態の連結手段9は、受面91、球面部92及びばね93で構成されるため、構造を簡素化してコストダウンを図ることができる。尚、本実施形態では、Y軸ステージ4に受面91を設けると共に、ナットホルダ72に球面部92を設けているが、Y軸ステージ4に球面部92を設けると共に、ナットホルダ72に受面91を設けてもよい。   By the way, it is also possible to comprise the connection means 9 with a universal joint having freedom of movement in the X-axis direction and the vertical direction. However, this complicates the structure and increases the cost. On the other hand, since the connection means 9 of this embodiment is comprised by the receiving surface 91, the spherical part 92, and the spring 93, it can simplify a structure and can aim at a cost reduction. In this embodiment, the Y axis stage 4 is provided with the receiving surface 91 and the nut holder 72 is provided with the spherical surface portion 92. However, the Y axis stage 4 is provided with the spherical surface portion 92 and the nut holder 72 has the receiving surface. 91 may be provided.

また、上記第1実施形態では、第1と第2の両直動軸受53,54を滑り軸受で構成しているが、両直動軸受53,54の少なくとも一方を転がり軸受で構成してもよい。例えば、図6に示す第2実施形態の如く、第2直動軸受54を第2ガイドレール52のガイド面52aに転動自在に接触するボールやローラから成る転がり軸受で構成してもよい。尚、第2実施形態では、第1付勢手段55と第2直動軸受54との間に第2直動軸受54を転動自在に保持するカラー54cを介設し、第2直動軸受54を第1付勢手段55によりカラー54cを介してX軸方向に付勢している。第2実施形態の他の構成は上記第1実施形態と同様である。   Further, in the first embodiment, the first and second linear motion bearings 53 and 54 are constituted by sliding bearings, but at least one of the linear motion bearings 53 and 54 may be constituted by a rolling bearing. Good. For example, as in the second embodiment shown in FIG. 6, the second linear bearing 54 may be configured by a rolling bearing made of a ball or a roller that is slidably in contact with the guide surface 52 a of the second guide rail 52. In the second embodiment, a collar 54c is provided between the first urging means 55 and the second linear motion bearing 54 so as to hold the second linear motion bearing 54 so that the second linear motion bearing 54 can freely roll. 54 is urged in the X-axis direction by the first urging means 55 via the collar 54c. Other configurations of the second embodiment are the same as those of the first embodiment.

以上、本発明の実施形態について図面を参照して説明したが、本発明はこれに限定されない。例えば、上記実施形態は、ボールねじ6を用いた送りねじ機構で駆動機構を構成しているが、ラックピニオン機構等の他の機構で駆動機構を構成することも可能である。この場合、ラックやピニオンの歯部の製作精度誤差やベアリンクの偏心で出力部材(ラック)が上下方向に振れることがあり、この振れがY軸ステージ4に伝達されないように、上述した連結手段9を介して出力部材をY軸ステージ4に連結することが望ましい。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to this. For example, in the above-described embodiment, the drive mechanism is configured by the feed screw mechanism using the ball screw 6, but the drive mechanism may be configured by another mechanism such as a rack and pinion mechanism. In this case, the output member (rack) may swing up and down due to manufacturing accuracy errors of the rack and pinion teeth and the eccentricity of the bear link, and the connecting means described above is not transmitted to the Y-axis stage 4. It is desirable to connect the output member to the Y-axis stage 4 via 9.

また、上記実施形態は、Z軸センサ81を介して触針8を上下方向に変位自在に支持させた触針式測定装置に本発明を適用したものであるが、Y軸ステージ4に上下方向に揺動自在なレバーを支持し、このレバーの一端に触針を取付けると共に、レバーの上下方向への揺動変位を検出するセンサを設け、被測定物の表面に接触する触針の上下方向変位をレバーを介してセンサで検出するようにした型式の触針式測定装置にも同様に本発明を適用できる。   In the above embodiment, the present invention is applied to a stylus type measuring device in which the stylus 8 is supported by the Z-axis sensor 81 so as to be displaceable in the vertical direction. A stylus is attached to one end of the lever, and a sensor for detecting the oscillating displacement of the lever in the vertical direction is provided. The vertical direction of the stylus is in contact with the surface of the object to be measured. The present invention can be similarly applied to a stylus type measuring apparatus of a type in which displacement is detected by a sensor via a lever.

W…被測定物、3…門型フレーム、32…ビーム、33…ガイドブロック(ビームに固定の部材)、4…Y軸ステージ、5…リニアガイド、51…第1ガイドレール,52…第2ガイドレール、51a,52a…ガイド面、53…第1直動軸受、54…第2直動軸受、55…第1付勢手段、56…第2付勢手段、6…ボールねじ(駆動機構)、7…ナット(駆動機構)、72…ナットホルダ(出力部材)、8…触針、9…連結手段、91…受面、92…球面部、93…ばね。   W ... object to be measured, 3 ... portal frame, 32 ... beam, 33 ... guide block (member fixed to beam), 4 ... Y-axis stage, 5 ... linear guide, 51 ... first guide rail, 52 ... second Guide rail, 51a, 52a ... guide surface, 53 ... first linear motion bearing, 54 ... second linear motion bearing, 55 ... first biasing means, 56 ... second biasing means, 6 ... ball screw (drive mechanism) , 7 ... nut (drive mechanism), 72 ... nut holder (output member), 8 ... stylus, 9 ... connecting means, 91 ... receiving surface, 92 ... spherical portion, 93 ... spring.

Claims (3)

互いに直交する水平2方向をX軸方向及びY軸方向として、被測定物に対しX軸方向に相対移動自在な門型のフレームと、このフレームの上端のY軸方向に長手のビームにリニアガイドを介してY軸方向に移動自在に支持され、Y軸方向に移動する出力部材を有する駆動機構によりY軸方向に往復動されるY軸ステージとを備え、Y軸ステージに、被測定物の表面に接触する触針を支持させた触針式測定装置において、
リニアガイドは、ビームの下面にX軸方向に離隔して固定したY軸方向に長手の第1と第2の一対のガイドレールと、第1ガイドレールのX軸方向一方の側面に形成したガイド面にY軸方向に移動自在に接触する第1直動軸受と、第2ガイドレールのX軸方向他方の側面に形成したガイド面にY軸方向に移動自在に接触する第2直動軸受とで構成され、
第1と第2の各ガイドレールのガイド面は、第1と第2の各直動軸受が落下しないように、鉛直面に対し傾斜しており、
第1直動軸受はY軸ステージに固定され、第2直動軸受はY軸ステージに対しX軸方向及び上下方向に遊動自在とし、
Y軸ステージに、第2直動軸受を第2ガイドレールのガイド面に押し付けるようにX軸方向に付勢する第1付勢手段が設けられ、ビーム又はビームに固定の部材に、第2直動軸受を下方に付勢する第2付勢手段が設けられ、第1付勢手段の付勢力と第2付勢手段の付勢力との合力のベクトル方向を第2ガイドレールのガイド面の法線方向に合致させることを特徴とする触針式測定装置。
Two horizontal directions perpendicular to each other are defined as an X-axis direction and a Y-axis direction, and a linear frame that is movable in the X-axis direction relative to the object to be measured and a beam that is long in the Y-axis direction at the upper end of this frame And a Y-axis stage that is supported so as to be movable in the Y-axis direction and that is reciprocated in the Y-axis direction by a drive mechanism having an output member that moves in the Y-axis direction. In a stylus measuring device that supports a stylus that contacts the surface,
The linear guide has a pair of first and second guide rails that are long in the Y-axis direction and fixed to the lower surface of the beam in the X-axis direction, and a guide formed on one side surface of the first guide rail in the X-axis direction. A first linear bearing that is movably in contact with the surface in the Y-axis direction, and a second linear bearing that is movably in contact with the guide surface formed on the other side surface in the X-axis direction of the second guide rail in the Y-axis direction; Consists of
The guide surfaces of the first and second guide rails are inclined with respect to the vertical surface so that the first and second linear motion bearings do not fall,
The first linear bearing is fixed to the Y-axis stage, and the second linear bearing is free to move in the X-axis direction and the vertical direction with respect to the Y-axis stage,
The Y-axis stage is provided with first urging means for urging the second linear motion bearing in the X-axis direction so as to press the second linear motion bearing against the guide surface of the second guide rail. Second urging means for urging the dynamic bearing downward is provided, and the vector direction of the resultant force of the urging force of the first urging means and the urging force of the second urging means is determined by the method of the guide surface of the second guide rail. A stylus type measuring device characterized by matching with a linear direction.
前記Y軸テーブルに対し前記出力部材をY軸方向に直交する鉛直面に沿った動きの自由度を持つように連結する連結手段を備えることを特徴とする請求項1記載の触針式測定装置。   The stylus measuring device according to claim 1, further comprising a connecting unit that connects the output member to the Y-axis table so as to have a degree of freedom of movement along a vertical plane perpendicular to the Y-axis direction. . 前記連結手段は、前記Y軸ステージと前記出力部材との一方に設けたY軸方向に直交する鉛直な受面と、Y軸ステージと出力部材との他方に設けた球面部と、球面部を受面に押し付けるばねとで構成されることを特徴とする請求項2記載の触針式測定装置。   The connecting means includes: a vertical receiving surface orthogonal to the Y-axis direction provided on one of the Y-axis stage and the output member; a spherical surface provided on the other of the Y-axis stage and the output member; The stylus measuring device according to claim 2, wherein the stylus measuring device comprises a spring pressed against the receiving surface.
JP2012511861A 2010-11-15 2011-11-10 Stylus measuring device Active JP5247934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012511861A JP5247934B2 (en) 2010-11-15 2011-11-10 Stylus measuring device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010255030 2010-11-15
JP2010255030 2010-11-15
PCT/JP2011/006301 WO2012066756A1 (en) 2010-11-15 2011-11-10 Probe measuring device
JP2012511861A JP5247934B2 (en) 2010-11-15 2011-11-10 Stylus measuring device

Publications (2)

Publication Number Publication Date
JP5247934B2 JP5247934B2 (en) 2013-07-24
JPWO2012066756A1 true JPWO2012066756A1 (en) 2014-05-12

Family

ID=46083708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012511861A Active JP5247934B2 (en) 2010-11-15 2011-11-10 Stylus measuring device

Country Status (5)

Country Link
JP (1) JP5247934B2 (en)
KR (1) KR20120085770A (en)
CN (1) CN102639956A (en)
TW (1) TW201239314A (en)
WO (1) WO2012066756A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197825B (en) * 2014-09-26 2016-10-26 南车株洲电机有限公司 A kind of bearing outer ring profile tolerance detection method
JP6229959B2 (en) * 2016-03-08 2017-11-15 パナソニックIpマネジメント株式会社 Stylus and measuring method
CN107597478A (en) * 2017-11-06 2018-01-19 济南大学 Artificial tooth facing porcelain coating robot and painting method
KR102372409B1 (en) * 2020-12-31 2022-03-07 주토스 주식회사 Method of tightening stone table to minimize vibration of precision measuring table of vibration isolation table

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173425A (en) * 1982-04-06 1983-10-12 Mitsutoyo Mfg Co Ltd Three-dimensional measuring machine
JPS5979108A (en) * 1982-10-27 1984-05-08 Mitsutoyo Mfg Co Ltd Protecting device of scale
JP3430644B2 (en) * 1994-06-20 2003-07-28 株式会社ニコン Coordinate measuring machine
JPH11118473A (en) * 1997-10-17 1999-04-30 Tokyo Seimitsu Co Ltd Data processing device of surface roughness shape measuring instrument
JP4353702B2 (en) * 2001-05-09 2009-10-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Device for measuring or machining an object with a moving stage having a wedge-shaped guide

Also Published As

Publication number Publication date
KR20120085770A (en) 2012-08-01
JP5247934B2 (en) 2013-07-24
WO2012066756A1 (en) 2012-05-24
CN102639956A (en) 2012-08-15
TW201239314A (en) 2012-10-01

Similar Documents

Publication Publication Date Title
KR101732749B1 (en) Cumulative-lead errors measurement device and measurement method for ball screw shaft
CN100395537C (en) Apparatus for measuring a surface profile
EP2251635B1 (en) Probe for three-dimensional shape measuring apparatus and three-dimensional shape measuring apparatus.
JP5247934B2 (en) Stylus measuring device
JP4722400B2 (en) Guide rail support device, guide rail device, drive device and measuring machine
CN114543676A (en) Device and method for detecting radial run-out and circle center motion curve of roller bearing
EP1400776B1 (en) Touch probing device
CN105547184A (en) Flatness error measurement apparatus and two-dimension scanning workbench thereof
CN108534731B (en) Lifting driving device and measuring machine adopting same
JP4071974B2 (en) Linear motion guidance unit
JP2020056700A (en) Hardness tester
US7353616B2 (en) Shape measuring instrument
US7891112B2 (en) Guiding device with measuring scale for guiding a moveable machine element of a machine
CN211855251U (en) Measuring device for a pore structure
JP6752598B2 (en) Length gauge and touch probe with optical scale
JP6025905B2 (en) 3D coordinate measuring machine
JPWO2007023605A1 (en) Surface roughness / contour shape measuring device
JP5717914B1 (en) 3D coordinate measuring machine
JP5676045B2 (en) 3D coordinate measuring machine
CN219026859U (en) Machine tool guide rail detection device
JP7254997B2 (en) Measuring head and method for adjusting its temperature characteristics
KR102576572B1 (en) A straight line transfer device capable of correcting a traveling route and a method for correcting the traveling route
JP5677360B2 (en) 3D coordinate measuring machine
JP3169080U (en) Film thickness angle gauge
JP6478961B2 (en) 3D coordinate measuring machine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5247934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250