JPWO2012036263A1 - Silicon ingot manufacturing container and silicon ingot manufacturing method - Google Patents

Silicon ingot manufacturing container and silicon ingot manufacturing method Download PDF

Info

Publication number
JPWO2012036263A1
JPWO2012036263A1 JP2012534063A JP2012534063A JPWO2012036263A1 JP WO2012036263 A1 JPWO2012036263 A1 JP WO2012036263A1 JP 2012534063 A JP2012534063 A JP 2012534063A JP 2012534063 A JP2012534063 A JP 2012534063A JP WO2012036263 A1 JPWO2012036263 A1 JP WO2012036263A1
Authority
JP
Japan
Prior art keywords
silicon
container
silicon ingot
melt
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012534063A
Other languages
Japanese (ja)
Other versions
JP5877589B2 (en
Inventor
彰 吉澤
彰 吉澤
孝幸 清水
孝幸 清水
朝日 聰明
聰明 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012534063A priority Critical patent/JP5877589B2/en
Publication of JPWO2012036263A1 publication Critical patent/JPWO2012036263A1/en
Application granted granted Critical
Publication of JP5877589B2 publication Critical patent/JP5877589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B17/00Single-crystal growth onto a seed which remains in the melt during growth, e.g. Nacken-Kyropoulos method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

育成されたシリコンインゴットを容器から容易に取り出すことができるとともに、シリコンインゴットの歩留まりの向上を図ることができるシリコンインゴット製造用容器及びシリコンインゴットの製造方法を提供する。シリコン融液を凝固させてシリコン多結晶を成長させるための上面が開口された有底筒状のシリコンインゴット製造用容器において、該容器の側壁を、鉛直に形成された側面下部と、該側面下部に鉛直方向に対して所定のテーパ角θで上面開口部に向かって拡がるように傾斜して連設された側面中部と、該側面中部に鉛直に連設された側面上部とから構成する。このシリコンインゴット製造用容器に、シリコン融液の表面が傾斜部に位置するようにシリコン原料を投入し、カイロポーラス法により極低速で種結晶を引き上げながらシリコン多結晶を成長させる。Provided are a silicon ingot manufacturing container and a silicon ingot manufacturing method capable of easily taking out the grown silicon ingot from the container and improving the yield of the silicon ingot. In a bottomed cylindrical silicon ingot manufacturing container having an upper surface opened for solidifying silicon melt to grow silicon polycrystal, the side wall of the container has a vertically formed side lower part, and the side lower part The side surface middle portion is provided so as to be inclined toward the upper surface opening at a predetermined taper angle θ with respect to the vertical direction, and the side surface upper portion is provided so as to extend vertically to the side surface middle portion. A silicon raw material is introduced into this silicon ingot manufacturing container so that the surface of the silicon melt is located at the inclined portion, and a silicon polycrystal is grown while pulling up the seed crystal at a very low speed by the chiroporus method.

Description

本発明は、太陽電池グレードのシリコンインゴットを製造するためのシリコンインゴット製造用容器及びシリコンインゴットの製造方法に関する。   The present invention relates to a container for producing a silicon ingot for producing a solar cell grade silicon ingot and a method for producing the silicon ingot.

従来、太陽電池等に用いられるシリコンインゴットの製造方法として、ルツボや鋳型等の容器中にシリコン融液を収容し、このシリコン融液を下方から凝固させてシリコン多結晶を成長させるキャスト法(鋳造法)が知られている(例えば特許文献1〜5)。このキャスト法によれば、シリコン融液が凝固するときに結晶成長の方向が一定に揃うので、粒界による比抵抗の増大を抑制した良質のウェハを製造することができる。また、キャスト法によれば、シリコンインゴットの大量生産が可能となる。   Conventionally, as a method for producing silicon ingots used for solar cells and the like, a casting method (casting) in which a silicon melt is accommodated in a container such as a crucible or a mold, and the silicon melt is solidified from below to grow silicon polycrystals. (Patent Documents 1 to 5). According to this casting method, the direction of crystal growth is uniform when the silicon melt is solidified, so that it is possible to manufacture a high-quality wafer in which an increase in specific resistance due to grain boundaries is suppressed. Moreover, according to the casting method, mass production of silicon ingots becomes possible.

一般に、キャスト法に用いられる容器の内面には離型材が形成されている。キャスト法によりシリコンインゴットを製造する場合、シリコン融液を容器内で凝固させるときにシリコンが容器と反応すると、シリコン結晶が容器に固着してしまいインゴットを取り出しにくくなる。そのため、容器の内面に離型材を形成することにより、シリコン結晶が容器と直接接触しないようにしている。   In general, a release material is formed on the inner surface of a container used in the casting method. When a silicon ingot is manufactured by a casting method, if silicon reacts with the container when the silicon melt is solidified in the container, the silicon crystals are fixed to the container, making it difficult to take out the ingot. Therefore, a release material is formed on the inner surface of the container so that the silicon crystal does not come into direct contact with the container.

また、シリコン融液の密度は2.5g/cmであるが、固体密度は2.33g/cmであるため、シリコン融液を容器内で凝固させるときに約7%体積が膨張することとなる。そして、この体制膨張に伴い容器に応力が生じるため、容器からシリコンインゴットを取り出しにくくなり、さらには容器に形成した離型材が損壊することもある。離型材が損壊すると、シリコン結晶が容器に接触して固着するため、シリコンインゴットの取出性がさらに悪化する。
そこで、シリコン融液を凝固させる際の体積膨張に伴う応力を緩和する技術が必要とされている。例えば、容器の開口部を鉛直方向から外側に傾けることで、容器側面に垂直な応力成分を緩和して、シリコン結晶が容器に食い込みにくくする技術が提案されている(例えば特許文献1)。特許文献1では、容器の開口部に向かって拡がる方向に側面全体を3°以上で傾斜させたテーパ付き容器が開示されている。
Further, although the density of the silicon melt is 2.5 g / cm 3 , the solid density is 2.33 g / cm 3 , so that the volume expands by about 7% when the silicon melt is solidified in the container. It becomes. And since stress arises in a container with this system expansion, it becomes difficult to take out a silicon ingot from a container, and also a mold release material formed in a container may be damaged. When the release material is damaged, the silicon crystal comes into contact with the container and is fixed, so that the take-out property of the silicon ingot is further deteriorated.
Therefore, there is a need for a technique that relieves stress associated with volume expansion when solidifying a silicon melt. For example, a technique has been proposed in which the opening of the container is tilted outward from the vertical direction to relieve the stress component perpendicular to the side surface of the container and make it difficult for silicon crystals to bite into the container (for example, Patent Document 1). Patent Document 1 discloses a tapered container in which the entire side surface is inclined at 3 ° or more in a direction extending toward the opening of the container.

実開昭58−22936号公報Japanese Utility Model Publication No. 58-22936 実公平3−22907号公報Japanese Utility Model Publication No. 3-22907 特開平6−345416号公報JP-A-6-345416 特開平10−182133号公報Japanese Patent Laid-Open No. 10-182133 特表2010−503596号公報Special table 2010-503596 gazette

しかしながら、特許文献1に記載のテーパ付き容器を用いる場合、容器側面のテーパ角が小さすぎると、シリコン凝固時の体積膨張に伴う応力を分散する効果が得られないため、容器からシリコンインゴットを取り出しにくく、離型材が損壊するという問題は解消されない。また、容器側面のテーパ角が大きすぎると、シリコンインゴットの外周部を切断するときのロスが大きくなり、歩留まり(原料採取率)が低下してしまうため望ましくない(図5参照)。
また、キャスト法によりシリコンインゴットを製造する場合、離型材が形成されている容器底部からシリコン結晶を成長させることとなるため、結晶粒界を低減することが困難となる。その結果、キャリアの損失による結晶品質の低下や、結晶粒界の成長による歩留まりの低下を招いてしまう。
However, when using the tapered container described in Patent Document 1, if the taper angle on the side surface of the container is too small, the effect of dispersing the stress associated with the volume expansion during the solidification of silicon cannot be obtained. It is difficult to solve the problem that the release material is damaged. Further, if the taper angle on the side surface of the container is too large, the loss when cutting the outer peripheral portion of the silicon ingot increases, and the yield (raw material collection rate) decreases, which is not desirable (see FIG. 5).
Further, when a silicon ingot is manufactured by a casting method, a silicon crystal is grown from the bottom of a container where a release material is formed, and therefore it is difficult to reduce crystal grain boundaries. As a result, the crystal quality is lowered due to carrier loss, and the yield is lowered due to the growth of crystal grain boundaries.

本発明は、上記課題を解決すべくなされたもので、育成されたシリコンインゴットを容器から容易に取り出すことができるとともに、シリコンインゴットの歩留まりの向上を図ることができるシリコンインゴット製造用容器及びシリコンインゴットの製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a silicon ingot manufacturing container and a silicon ingot that can easily take out a grown silicon ingot from the container and can improve the yield of the silicon ingot. It aims at providing the manufacturing method of.

請求項1に記載の発明は、シリコン融液を凝固させてシリコン多結晶を成長させるための上面が開口された有底筒状のシリコンインゴット製造用容器であって、
該容器の側壁が、鉛直に形成された側面下部と、該側面下部に鉛直方向に対して所定のテーパ角θで上面開口部に向かって拡がるように傾斜して連設された側面中部と、該側面中部に鉛直に連設された側面上部とから構成されていることを特徴とする。
The invention according to claim 1 is a bottomed cylindrical silicon ingot manufacturing container having an open upper surface for solidifying a silicon melt to grow a silicon polycrystal.
The side wall of the container is vertically formed on the lower side of the side, and the side of the side is formed so as to be inclined toward the upper surface opening at a predetermined taper angle θ with respect to the lower side of the side. It is characterized by comprising a side surface upper part vertically connected to the middle part of the side surface.

請求項2に記載の発明は、請求項1に記載のシリコンインゴット製造用容器において、 前記テーパ角θが、10〜80°であることを特徴とする。   The invention described in claim 2 is the container for producing a silicon ingot according to claim 1, wherein the taper angle θ is 10 to 80 °.

請求項3に記載の発明は、請求項2に記載のシリコンインゴット製造用容器において、 前記テーパ角θが、15〜60°であることを特徴とする。   The invention described in claim 3 is the container for producing a silicon ingot according to claim 2, wherein the taper angle θ is 15 to 60 °.

請求項4に記載の発明は、請求項2に記載のシリコンインゴット製造用容器において、 前記テーパ角θが、20〜70°であることを特徴とする。   The invention according to claim 4 is the container for producing a silicon ingot according to claim 2, wherein the taper angle θ is 20 to 70 °.

請求項5に記載の発明は、請求項2に記載のシリコンインゴット製造用容器において、 前記テーパ角θが、20〜45°であることを特徴とする。   The invention according to claim 5 is the container for producing a silicon ingot according to claim 2, wherein the taper angle θ is 20 to 45 °.

請求項6に記載の発明は、請求項1から5の何れか一項に記載のシリコンインゴット製造用容器において、
石英、Si3N4、SiC、グラファイト、アルミナの何れか1種からなる材料又は2種以上を組み合わせた材料で構成されていることを特徴とする。
The invention according to claim 6 is the container for producing a silicon ingot according to any one of claims 1 to 5,
It is characterized by being composed of a material composed of any one of quartz, Si3N4, SiC, graphite, and alumina, or a material combining two or more.

請求項7に記載の発明は、請求項1から6の何れか一項に記載のシリコンインゴット製造用容器に、シリコン融液の表面が前記傾斜部に位置するようにシリコン原料を投入し、
前記シリコン融液を凝固させてシリコン多結晶を成長させることを特徴とする。
The invention according to claim 7 is the silicon ingot manufacturing container according to any one of claims 1 to 6, wherein the silicon raw material is charged so that the surface of the silicon melt is located at the inclined portion,
The silicon melt is solidified to grow a silicon polycrystal.

請求項8に記載の発明は、請求項7に記載のシリコンインゴットの製造方法において、 前記シリコン融液の表面に種結晶を接触させて、
前記種結晶を引き上げながら、前記シリコン融液を表面から凝固させてシリコン多結晶を成長させることを特徴とする。
The invention according to claim 8 is the method for producing a silicon ingot according to claim 7, wherein a seed crystal is brought into contact with the surface of the silicon melt,
While pulling up the seed crystal, the silicon melt is solidified from the surface to grow a silicon polycrystal.

請求項9に記載の発明は、請求項8に記載のシリコンインゴットの製造方法において、 前記シリコン融液が凝固する際の体積膨張に応じた速度で前記種結晶を引き上げることを特徴とする。   The invention according to claim 9 is the method for producing a silicon ingot according to claim 8, wherein the seed crystal is pulled up at a speed corresponding to volume expansion when the silicon melt is solidified.

以下に、本発明を完成するに至った経緯について説明する。
従来、結晶成長法の一つとして、融液表面に種結晶を接触させ、融液面から下方に向けて結晶を成長させるカイロポーラス法が知られている。このカイロポーラス法では、異物の少ない融液面から結晶が成長するので、キャスト法よりも高品質のシリコン結晶が期待できる。本発明者は、離型材が形成されている容器底部から結晶成長させるキャスト法に代えて、カイロポーラス法を利用してシリコンインゴットを製造する方法を確立すべく検討を重ねた。
Below, the background that led to the completion of the present invention will be described.
Conventionally, as one of crystal growth methods, a chiropolos method is known in which a seed crystal is brought into contact with a melt surface, and the crystal is grown downward from the melt surface. In this chiloporous method, crystals grow from the melt surface with little foreign matter, so that a higher quality silicon crystal can be expected than the casting method. The present inventor has repeatedly studied to establish a method for producing a silicon ingot using the chiloporous method instead of the casting method in which the crystal is grown from the bottom of the container in which the release material is formed.

まず、カイロポーラス法を利用してシリコンインゴットを製造するに際し、成長結晶を極低速で引き上げることにより、シリコン凝固時の体積膨張に伴う縦方向の応力を緩和する方法を案出した。しかしながら、この方法でシリコンインゴットを製造した場合、容器の内面に形成された離型材が面状に消失している箇所が多発し、シリコンインゴットの取り出しも困難であった。   First, when manufacturing a silicon ingot using the chiroporous method, a method was devised to relieve the longitudinal stress associated with volume expansion during solidification of silicon by pulling up the grown crystal at a very low speed. However, when a silicon ingot is manufactured by this method, there are many places where the release material formed on the inner surface of the container has disappeared in a planar shape, and it is difficult to take out the silicon ingot.

原因を追究すべくシリコンインゴットを製造した後の容器を観察したところ、シリコンインゴットのトップ周縁、すなわちシリコン融液の表面付近が凝固して結晶化した部分に対応する部位で、離型材が面状に消失していることが明らかとなった。また、シリコンインゴットのトップ周縁に、周方向にわたって高さ0.1〜0.5mm程度の凸部が形成されていることが確認された。
一方、キャスト法によりシリコンインゴットを製造した場合も同様に、シリコンインゴットのトップに対応する部位で離型材が消失していた。これより、結晶成長法によらず、シリコン融液の表面付近が凝固するときの体積膨張に伴う応力が、他の部分が凝固するときの体積膨張に伴う応力より著しく大きくなると考えられた。また、カイロポーラス法を利用した場合においては、シリコン融液の表面付近が凝固するときに、横方向に膨張したシリコン結晶(特にトップ周縁の凸部)が離型材に食い込み、この状態で半ば強引に引き上げられたことにより離型材が剥離したと考えられた。
In order to investigate the cause, the container after the silicon ingot was manufactured was observed. As a result, the mold release material was planar at the top periphery of the silicon ingot, that is, the portion corresponding to the portion where the surface of the silicon melt was solidified and crystallized. It became clear that it disappeared. Moreover, it was confirmed that the convex part about 0.1-0.5 mm in height is formed in the circumferential direction at the top periphery of the silicon ingot.
On the other hand, when the silicon ingot was manufactured by the casting method, the release material disappeared at the portion corresponding to the top of the silicon ingot. From this, it was considered that the stress accompanying the volume expansion when the vicinity of the surface of the silicon melt solidifies is significantly greater than the stress accompanying the volume expansion when the other portion solidifies, regardless of the crystal growth method. In the case of using the chiroporus method, when the vicinity of the surface of the silicon melt is solidified, the laterally expanded silicon crystal (especially the convex portion on the top periphery) bites into the release material, and in this state, it is half-strengthened. It was thought that the release material was peeled off by being pulled up.

そして、シリコン融液の表面が位置することとなる部分に着目して容器の形状を改善することで、シリコン凝固時の体積膨張(特に横方向の体積膨張)に伴う応力を効果的に分散できることを見出し、これによりシリコンインゴットの容器からの取出性と歩留まりを両立させることができるとの知見を得て、本発明を完成した。   And, by focusing on the part where the surface of the silicon melt will be located and improving the shape of the container, it is possible to effectively disperse the stress accompanying volume expansion (particularly lateral volume expansion) during silicon solidification As a result, the inventors have obtained knowledge that it is possible to achieve both the take-out property of the silicon ingot from the container and the yield, thereby completing the present invention.

本発明によれば、シリコン凝固時の体積膨張に伴い容器に生じる応力が緩和されるので、容器内面に形成された離型材が損壊するのを効果的に防止できる。したがって、育成されたシリコンインゴットが容器に固着することもなく、容易に取り出すことができる。
また、シリコンインゴット製造用容器において、シリコン凝固時の体積膨張に伴う応力が大きくなる部分を傾斜部とし、応力が小さい部分(側面下部)については鉛直に形成しているので、シリコンインゴットの外周部を切断するときの加工ロスが小さくなる。したがって、シリコンインゴットの歩留まりの向上を図ることができる。
According to the present invention, stress generated in the container due to volume expansion at the time of silicon solidification is relieved, so that the release material formed on the inner surface of the container can be effectively prevented from being damaged. Therefore, the grown silicon ingot can be easily taken out without being fixed to the container.
Further, in the silicon ingot manufacturing container, the portion where the stress accompanying volume expansion during silicon solidification is increased is the inclined portion, and the portion where the stress is lower (lower side) is formed vertically, so the outer peripheral portion of the silicon ingot Processing loss when cutting is reduced. Therefore, the yield of silicon ingots can be improved.

本発明を適用したシリコンインゴット製造用容器の断面図である。It is sectional drawing of the container for silicon ingot manufacture to which this invention is applied. 本発明を適用したシリコンインゴット製造用容器を用いた結晶成長装置の一例を示す図である。It is a figure which shows an example of the crystal growth apparatus using the container for silicon ingot manufacture to which this invention is applied. 実施形態の結晶成長装置を用いたときのシリコン多結晶の成長過程を示す図である。It is a figure which shows the growth process of the silicon polycrystal when using the crystal growth apparatus of embodiment. 一般的な直胴型のシリコンインゴット製造用容器を用いた結晶成長装置を示す図である。It is a figure which shows the crystal growth apparatus using the container for manufacture of a general straight body type silicon ingot. 従来のテーパ型容器を用いたときに発生するロスを示す図である。It is a figure which shows the loss which generate | occur | produces when using the conventional taper type container. 本発明の実施形態で使用するシリコンインゴット製造用容器側壁の断面(a)、容器上部から底壁面に向かって眺めた場合の容器形状の例(角筒状容器(b)、円筒状容器(c))、およびそれらの好適な厚さや長さの概要説明図である。Section (a) of the side wall of the container for producing silicon ingot used in the embodiment of the present invention, an example of a container shape when viewed from the top of the container toward the bottom wall (rectangular container (b), cylindrical container (c )), And a schematic explanatory diagram of their preferred thicknesses and lengths.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明を適用したシリコンインゴット製造用容器の断面図である。図1に示すシリコンインゴット製造用容器(以下、容器)11は、例えば石英材料を成型してなる、上面が開口された有底の円筒状又は角筒状の容器である。容器11の側壁は、鉛直に形成された側面下部(以下、直胴部)11cと、側面下部11cにテーパ角(鉛直方向に対する傾斜角)θで上面開口部に向かって拡がるように傾斜して連設された側面中部(以下、傾斜部)11bと、傾斜部11bに鉛直に連設された側面上部11aに区画される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a sectional view of a container for producing a silicon ingot to which the present invention is applied. A container (hereinafter referred to as a container) 11 for producing a silicon ingot shown in FIG. 1 is a bottomed cylindrical or rectangular tube container whose upper surface is opened, for example, formed by molding a quartz material. The side wall of the container 11 is inclined so as to expand toward the upper surface opening at a taper angle (inclination angle with respect to the vertical direction) θ at a side lower part (hereinafter referred to as a straight body part) 11c formed vertically. A side surface middle portion (hereinafter referred to as an inclined portion) 11b provided continuously and a side surface upper portion 11a provided vertically connected to the inclined portion 11b are partitioned.

ここで、図6(a)に示すように、容器11の側壁11aおよび底壁11dの厚さをT1とすると、厚さT1は5〜20mm程度が望ましい。5mm未満だと容器材料の脆弱性が問題となる。一方、20mmより大きいと容器の断熱性増加による影響を無視できなくなり、シリコンの溶融時間が増大し、リードタイムや電力コストが増大するため生産性が低下してしまう。同様の理由により、側面下部11cの厚さT2は5〜30mm程度が望ましい。側面下部11cの長さLcは、特に制限はないが、容器内で原料を融解する場合には、側面下部11cより上の長さLa+Lbと、側面下部11cの長さLcとの比(La+Lb)/Lcが「2」以上であることが望ましい。シリコン原料は固体の密度が液体よりも小さいので、融液面位置が少なくともLcの位置(直胴部分11cの最上端)まで来るようにするには、容器内に原料を少なくともLcの2倍の高さの位置まで充填する必要がある。原料の形状により、容器への充填の程度は異なるが、上記の寸法比にしておけば、実用上十分である。なお、上述した容器11の厚さや長さは、角筒状の容器の場合に限定されず、円筒状の容器の場合も同様である。   Here, as shown in FIG. 6A, when the thickness of the side wall 11a and the bottom wall 11d of the container 11 is T1, the thickness T1 is preferably about 5 to 20 mm. If it is less than 5 mm, the vulnerability of the container material becomes a problem. On the other hand, if it is larger than 20 mm, the influence due to the increase in the heat insulating property of the container cannot be ignored, the silicon melting time increases, the lead time and the power cost increase, and the productivity decreases. For the same reason, the thickness T2 of the side surface lower part 11c is desirably about 5 to 30 mm. The length Lc of the side lower portion 11c is not particularly limited, but when the raw material is melted in the container, the ratio of the length La + Lb above the side lower portion 11c to the length Lc of the side lower portion 11c (La + Lb) It is desirable that / Lc is “2” or more. Since the silicon raw material has a solid density smaller than that of the liquid, in order to bring the melt surface position to at least the position of Lc (the uppermost end of the straight body portion 11c), the raw material is placed in the container at least twice as much as Lc. It is necessary to fill up to the height. Although the degree of filling into the container varies depending on the shape of the raw material, the above dimensional ratio is sufficient for practical use. The thickness and length of the container 11 described above are not limited to the case of a rectangular tube-shaped container, and the same applies to the case of a cylindrical container.

また、図6(a)に示すように、容器11の上部および下部の内部寸法をそれぞれm1,m2とすると、両者の差(m1−m2)は2〜50mm,好ましくは10〜20mmの範囲にあることが望ましい。2mmを下回ると結晶成長中のシリコンインゴットが離型材および容器に食い込むのを防ぎきれない。50mmを超えると、容器側面傾斜部およびその側面下部の厚肉部分の断熱性が増加するため、50mm以下の場合と比べてシリコンの溶融時間が増大し、リードタイムや電力コストが増大するため生産性が低下してしまう。従って、例えば150〜270kg程度のSiインゴットを角筒状もしくは円筒状の容器から得る場合、m2を600mm、m1を602〜650mm、好ましくは610mm〜620mmにすると良い。   As shown in FIG. 6 (a), if the internal dimensions of the upper and lower portions of the container 11 are m1 and m2, respectively, the difference (m1−m2) between them is in the range of 2 to 50 mm, preferably 10 to 20 mm. It is desirable to be. If it is less than 2 mm, it is impossible to prevent the silicon ingot during crystal growth from biting into the release material and the container. If it exceeds 50 mm, the thermal insulation of the container side inclined part and the thick part at the bottom of the side will increase, so the silicon melting time will increase and lead time and power costs will increase as compared to the case of 50 mm or less. The nature will decline. Therefore, for example, when obtaining a Si ingot of about 150 to 270 kg from a rectangular or cylindrical container, m2 is 600 mm, m1 is 602 to 650 mm, preferably 610 mm to 620 mm.

容器11にシリコン融液を収容し、このシリコン融液を凝固させてシリコン多結晶を成長させる場合、傾斜部11bに位置するシリコン融液が凝固するときの体積膨張に伴う応力は、傾斜部11bに垂直な成分と平行な成分に分散されることとなる。例えば、テーパ角θを3°以上90°未満とすることで、離型材が剥離しない程度に体積膨張に伴う応力を分散させることができる。実験により、テーパ角θを3°未満とした場合には、育成されたシリコンインゴットが離型材に食い込み、離型材の損壊が確認された。そこで、テーパ角θは3°以上とするのが望ましい。   When the silicon melt is accommodated in the container 11 and the silicon melt is solidified to grow a silicon polycrystal, the stress accompanying the volume expansion when the silicon melt located in the inclined portion 11b is solidified is the inclined portion 11b. It is dispersed into a component perpendicular to the component and a component parallel to the component. For example, by setting the taper angle θ to 3 ° or more and less than 90 °, it is possible to disperse the stress accompanying volume expansion to such an extent that the release material does not peel off. According to the experiment, when the taper angle θ is less than 3 °, the grown silicon ingot bites into the release material, and it is confirmed that the release material is damaged. Therefore, the taper angle θ is desirably 3 ° or more.

図2は、容器11を用いた結晶成長装置の一例を示す図である。
図2に示す結晶成長装置1は、カイロポーラス法によりシリコンインゴットを製造するためのものであり、内面にSi3N4焼結体等の離型材12が形成された容器11を用いている。結晶成長装置1では、容器11がグラファイト製のサセプタ13に支持されており、サセプタ13の外周にはヒータ14が配置されている。また、容器11の中央には結晶引き上げ軸15が配置されており、その先端にはSi単結晶(又はSi多結晶)からなる種結晶16が取り付けられる。
FIG. 2 is a diagram illustrating an example of a crystal growth apparatus using the container 11.
The crystal growth apparatus 1 shown in FIG. 2 is for manufacturing a silicon ingot by the chiroporus method, and uses a container 11 in which a release material 12 such as a Si3N4 sintered body is formed on the inner surface. In the crystal growth apparatus 1, a container 11 is supported by a susceptor 13 made of graphite, and a heater 14 is disposed on the outer periphery of the susceptor 13. A crystal pulling shaft 15 is disposed in the center of the container 11, and a seed crystal 16 made of Si single crystal (or Si polycrystal) is attached to the tip thereof.

結晶成長装置1を用いてカイロポーラス法によりシリコンインゴットを製造する場合、シリコン融液17の表面が傾斜部11bに位置するように、シリコン原料(例えばシリコン融液)を容器11に投入する。そして、シリコン融液17の表面に種結晶16を接触させて、シリコン融液17を表面から凝固させてシリコン多結晶を成長させる。
このとき、種結晶16を極低速で引き上げながらシリコン多結晶を成長させることにより、シリコン凝固時の体積膨張に伴う縦方向の応力を緩和することができる。つまり、種結晶16の引き上げ速度は、シリコン融液17が凝固する際の縦方向の体積膨張に応じて設定される。
When a silicon ingot is manufactured using the crystal growth apparatus 1 by the chiloporous method, a silicon raw material (for example, silicon melt) is charged into the container 11 so that the surface of the silicon melt 17 is positioned at the inclined portion 11b. Then, the seed crystal 16 is brought into contact with the surface of the silicon melt 17, and the silicon melt 17 is solidified from the surface to grow a silicon polycrystal.
At this time, by growing the silicon polycrystal while pulling up the seed crystal 16 at an extremely low speed, it is possible to relieve the longitudinal stress associated with the volume expansion during the solidification of the silicon. That is, the pulling speed of the seed crystal 16 is set according to the volume expansion in the vertical direction when the silicon melt 17 is solidified.

また、シリコン融液17の表面は、容器11の傾斜部11bに位置しているので、融液表面付近が凝固するときの体積膨張に伴い容器11に生じる横方向の応力は分散される。つまり、テーパ角θの大きさに応じて傾斜部11bに垂直な応力成分が小さくなるので、シリコン結晶が離型材12に食い込むのを防止できる。したがって、シリコン多結晶の成長過程において離型材12が損壊しないので、育成されたシリコンインゴットが容器に固着することもなく、容易に取り出すことができる。   Further, since the surface of the silicon melt 17 is located at the inclined portion 11b of the container 11, the lateral stress generated in the container 11 due to volume expansion when the vicinity of the melt surface solidifies is dispersed. That is, since the stress component perpendicular to the inclined portion 11b decreases according to the taper angle θ, the silicon crystal can be prevented from biting into the release material 12. Therefore, since the release material 12 is not damaged during the growth process of the silicon polycrystal, the grown silicon ingot can be easily taken out without being fixed to the container.

なお、容器11の寸法(直胴部11cの内径、テーパ角θ等)や投入するシリコン原料の量(シリコン融液17の表面位置)を適切に設定することで、種結晶16の引き上げ操作によりシリコンインゴットのトップ周縁が容器11(傾斜部11b)の内面に接触しないようにすることもできる。
例えば、傾斜部11bに位置するシリコン融液の表面付近が凝固する際に、種結晶16から容器の直胴部分まで液面上に形成された結晶をLだけ引き上げる場合を考えると、引上げ前後で融液表面の直径は2Ltanθだけ拡径されることになる。したがって、この拡径量(2Ltanθ)が、シリコン凝固時の横方向の体積膨張より大きければ、シリコンインゴットのトップ周縁が容器11(傾斜部11b)の内面に接触しない。
シリコン融液は、凝固する際に横方向に1mm程度膨張することが知られており、また、本発明者等の実験により、シリコンインゴットのトップ周縁には高さα(0.1〜0.5mm程度)の凸部が形成されることが判明しているので、拡径量(2Ltanθ)が(1+α)よりも大きくなるように種結晶16の引上げ量Lとテーパ角θを設定することにより、シリコンインゴットのトップ周縁が容器11(傾斜部11b)の内面に接触しないようにすることができる。例えば、L=10.5(mm)、α=0.1(mm)とした場合、θ≧3°となる。
By appropriately setting the dimensions of the container 11 (inner diameter of the straight body 11c, taper angle θ, etc.) and the amount of silicon raw material to be introduced (surface position of the silicon melt 17), the seed crystal 16 can be pulled up. It is also possible to prevent the top periphery of the silicon ingot from contacting the inner surface of the container 11 (inclined portion 11b).
For example, when the vicinity of the surface of the silicon melt located in the inclined portion 11b is solidified, when the crystal formed on the liquid surface from the seed crystal 16 to the straight body portion of the container is pulled up by L, before and after the pulling, The diameter of the melt surface is expanded by 2L tan θ. Therefore, if this amount of diameter expansion (2Ltanθ) is larger than the volume expansion in the lateral direction at the time of silicon solidification, the top peripheral edge of the silicon ingot does not contact the inner surface of the container 11 (inclined portion 11b).
It is known that the silicon melt expands by about 1 mm in the lateral direction when solidified, and according to experiments by the present inventors, the height α (0.1-0. (About 5 mm) is formed, and by setting the pulling amount L and the taper angle θ of the seed crystal 16 such that the diameter expansion amount (2Ltanθ) is larger than (1 + α). The top periphery of the silicon ingot can be prevented from contacting the inner surface of the container 11 (inclined portion 11b). For example, when L = 10.5 (mm) and α = 0.1 (mm), θ ≧ 3 °.

また、容器11において、シリコン凝固時の体積膨張に伴い大きな応力が生じる部分だけを傾斜部11bとし、応力が小さい側面下部11cについては鉛直に形成しているので、シリコンインゴットの外周部を切断して円柱状又は角柱状に加工するときのロスが小さくなる。したがって、シリコンインゴットの歩留まりの向上を図ることができる。
つまり、図5に示すように、容器の側面全体を傾斜させると、シリコン凝固時の体積膨張に伴う応力を分散することはできるが、シリコンインゴットの底部外径と上部外径の差が大きくなるため、シリコンインゴットを円柱状又は角柱状に加工する際にロスが大きくなる。
Further, in the container 11, only the portion where a large stress is generated due to the volume expansion at the time of silicon solidification is the inclined portion 11b, and the side lower portion 11c where the stress is small is formed vertically, so that the outer peripheral portion of the silicon ingot is cut. Thus, the loss when processing into a columnar or prismatic shape is reduced. Therefore, the yield of silicon ingots can be improved.
That is, as shown in FIG. 5, when the entire side surface of the container is inclined, the stress associated with the volume expansion during silicon solidification can be dispersed, but the difference between the bottom outer diameter and the upper outer diameter of the silicon ingot increases. Therefore, the loss increases when the silicon ingot is processed into a cylindrical shape or a prismatic shape.

例えば、容器の側面全体のテーパ角が10°の角筒状容器を用いて、ボトム径が90mm,高さが110mm,トップ径が128mmのインゴットを得た場合、ロス体積は全体の56%となる。同様に、ボトム径が90mm,高さが110mmのインゴットを作製するために、テーパ角を20°,30°,45°,70°とした場合、角筒状容器とインゴットの上部外径が著しく増大して炉が大型化するうえ、容器底面にあるインゴットのロス率はそれぞれ計算上70%,79%,87%,97%となる。このように、容器の側面全体を傾斜させてテーパ角をつける従前の方法を行う場合、角柱状インゴットの歩留りは著しく低下する。この歩留りを少しでも高めようとすると、切り出し回数が増えてしまうというデメリットも存在する。
これに対して、本発明の実施形態に係る容器11を使用した場合では、インゴットTop側面上部にのみテーパがあり、他の側面部はほぼ直胴であるため、ロス体積率は36%であり、そのテーパ角度を10°,20°,30°,45°,70°と変更しても、ロス体積率は36%のままである。
For example, when an ingot having a bottom diameter of 90 mm, a height of 110 mm, and a top diameter of 128 mm is obtained using a rectangular cylindrical container having a taper angle of 10 ° on the entire side surface of the container, the loss volume is 56% of the whole. Become. Similarly, in order to produce an ingot having a bottom diameter of 90 mm and a height of 110 mm, when the taper angles are 20 °, 30 °, 45 °, and 70 °, the upper outer diameters of the rectangular tube container and the ingot are remarkably large. In addition to increasing the size of the furnace, the loss rates of the ingots on the bottom of the vessel are calculated to be 70%, 79%, 87%, and 97%, respectively. As described above, when the conventional method of inclining the entire side surface of the container to increase the taper angle is performed, the yield of the prismatic ingot is significantly reduced. There is a demerit that the number of cutouts will increase if the yield is increased as much as possible.
On the other hand, in the case where the container 11 according to the embodiment of the present invention is used, the loss volume ratio is 36% because only the upper portion of the side surface of the ingot Top is tapered and the other side surface portion is almost a straight body. Even when the taper angle is changed to 10 °, 20 °, 30 °, 45 °, and 70 °, the loss volume ratio remains 36%.

さらに、カイロポーラス法を利用してシリコンインゴットを製造する際に、種結晶を引き上げながらシリコン多結晶を成長させるため、引き上げ速度を適当に調整することにより、シリコンインゴットのトップ周縁が離型材12と接触しない状態を保持しつつ成長を進めることができる。したがって、シリコンインゴットが離型材12に食い込むのをより効果的に防止できるので、食い込みにより成長結晶の引き上げ操作が阻害されることもない。
また、シリコン凝固時の体積膨張に応じて種結晶16を引き上げることで、体積膨張に伴う縦方向の応力が緩和されるので、シリコン融液が圧縮されることによる不具合も生じない。
Further, when a silicon ingot is manufactured using the chiroporous method, a silicon polycrystal is grown while pulling up the seed crystal. Therefore, by adjusting the pulling speed appropriately, the top periphery of the silicon ingot is separated from the release material 12. Growth can be advanced while maintaining a non-contact state. Therefore, it is possible to more effectively prevent the silicon ingot from biting into the release material 12, and the biting operation does not hinder the growth crystal pulling operation.
Further, by pulling up the seed crystal 16 in accordance with the volume expansion at the time of silicon solidification, the stress in the vertical direction accompanying the volume expansion is relieved, so that a problem due to the compression of the silicon melt does not occur.

なお、テーパ角θを3°以上90°未満とすることで、シリコン凝固時の体積膨張に伴う応力を、離型材12が損壊しない程度に分散させることができるが、テーパ角θが小さすぎると体積膨張に伴う応力の分散効果が小さく、場合によっては離型材12が損壊する虞もある。また、テーパ角θが大きすぎると、傾斜部11bの高さを確保するために傾斜部11bが横に大きく張り出してしまうため、装置の大型化を招き、ロスが増大する要因となる上、テーパ面と直胴部分との境界である湾曲部分にて、離型材が割れやすくなるため、インゴットの取り出しがうまくできなくなる可能性がある。このような観点から、テーパ角θは、10°〜80°、好ましくは20°〜70°、或いは15°〜60°、より好ましくは20°〜45°の範囲で設定するのが望ましい。   In addition, by setting the taper angle θ to 3 ° or more and less than 90 °, the stress accompanying the volume expansion at the time of silicon solidification can be dispersed to the extent that the release material 12 is not damaged, but if the taper angle θ is too small The effect of dispersing stress associated with volume expansion is small, and in some cases, the release material 12 may be damaged. On the other hand, if the taper angle θ is too large, the inclined portion 11b protrudes laterally in order to secure the height of the inclined portion 11b, leading to an increase in the size of the device and an increase in loss, and the taper. Since the release material is easily broken at the curved portion that is the boundary between the surface and the straight body portion, there is a possibility that the ingot cannot be taken out well. From such a viewpoint, the taper angle θ is desirably set in the range of 10 ° to 80 °, preferably 20 ° to 70 °, or 15 ° to 60 °, more preferably 20 ° to 45 °.

[実施例]
実施例1から4では、結晶成長装置1を用いてカイロポーラス法によりシリコンインゴットを製造した。容器11は円筒状であって、その寸法は、直胴部11a上の開口部の内径(m1)が146mm、直胴部11c底部の内径(m2)が125mm、直胴部11cの高さLcが30mm、La+Lbが60mmとなるようにした。傾斜部11bの高さLbは、テーパ角θ=20°,30°,45°,70°のとき、それぞれ29mm,18mm,10mm,4mmとした。
まず、ボロン(濃度:1.0×1016atom/cm)を添加したシリコン融液を円筒状容器11に流し込み、シリコン融液の表面を傾斜部11bの中間点(直胴部11cとの境界から5.25mm)に位置させ、深さ方向の温度勾配が10℃/cmとなるようにシリコン融液を保持した。
[Example]
In Examples 1 to 4, a silicon ingot was manufactured by the chiropoulos method using the crystal growth apparatus 1. The container 11 has a cylindrical shape, and its dimensions are such that the inner diameter (m1) of the opening on the straight body 11a is 146 mm, the inner diameter (m2) of the bottom of the straight body 11c is 125 mm, and the height Lc of the straight body 11c. 30 mm and La + Lb 60 mm. The height Lb of the inclined portion 11b was 29 mm, 18 mm, 10 mm, and 4 mm when the taper angle θ = 20 °, 30 °, 45 °, and 70 °, respectively.
First, a silicon melt to which boron (concentration: 1.0 × 10 16 atoms / cm 3 ) is added is poured into the cylindrical container 11, and the surface of the silicon melt is set at the midpoint of the inclined portion 11 b (with respect to the straight body portion 11 c). The silicon melt was held at 5.25 mm from the boundary so that the temperature gradient in the depth direction was 10 ° C./cm.

そして、結晶方位が<100>で3.5mm角のSi単結晶からなる種結晶16をシリコン融液の表面に接触させ、この種結晶16を1mm/hで手動により引き上げながらシリコン多結晶を成長させた。このとき、容器11および種結晶16を5rpmで回転させ、種結晶16を中心としてシリコン多結晶を同心円状に成長させた。3時間の成長によりシリコン融液を完全に固化させ、実施例に係るシリコンインゴットを得た。なお、容器11の底部の温度が、シリコンの凝固点である1410℃になった時点を結晶成長の終点とみなした。これらの結果を表1に示す。

Figure 2012036263
Then, a seed crystal 16 made of a Si single crystal having a crystal orientation of <100> and a 3.5 mm square is brought into contact with the surface of the silicon melt, and a silicon polycrystal is grown while pulling up the seed crystal 16 manually at 1 mm / h. I let you. At this time, the container 11 and the seed crystal 16 were rotated at 5 rpm, and a silicon polycrystal was grown concentrically around the seed crystal 16. The silicon melt was completely solidified by growth for 3 hours to obtain a silicon ingot according to the example. The time when the temperature of the bottom of the container 11 reached 1410 ° C., the freezing point of silicon, was regarded as the end point of crystal growth. These results are shown in Table 1.
Figure 2012036263

実施例1〜4によるシリコンインゴットの製造では、図3に示すように、成長過程においてシリコン多結晶18が離型材12に食い込んで引き上げ操作が妨げられることはなかった。つまり、傾斜部11bを形成した容器11を用いるとともに、種結晶16を引き上げながらシリコン多結晶を成長させることにより、シリコン融液17に生じる圧縮応力が効果的に緩和されていた。   In the manufacture of silicon ingots according to Examples 1 to 4, as shown in FIG. 3, the silicon polycrystalline 18 did not bite into the release material 12 during the growth process, and the pulling operation was not hindered. That is, the compressive stress generated in the silicon melt 17 was effectively relieved by using the container 11 having the inclined portion 11b and growing the silicon polycrystal while pulling up the seed crystal 16.

また、製造されたシリコンインゴットを容易に容器11から取り出すことができた。また、これまで問題となっていた容器11とシリコンインゴットのトップ周縁との融着は生じなかった。また、直胴状のシリコンインゴットに加工したときにインゴットが割れるなどの実用上の問題は発生しなかった。
さらに、得られたシリコンインゴットにおいては結晶粒界が縦方向に揃っており、キャスト法により製造したシリコンインゴットに比較して結晶品質が向上していた。このように、実施形態の容器11を使用してカイロポーラス法で結晶成長させることによる有効性が確認された。
なお、実施例1〜4では、傾斜部11bのテーパ角θを20°、30°、45°、70°とした場合について示したが、テーパ角θを60°とした場合も同様の結果が得られた。また、テーパ角θを10〜80°の範囲で少しずつ変化させて実験を行って比較した結果、テーパ角θが15〜60°である場合にシリコンインゴットの容器からの取出性がより良好であり、テーパ角θが20〜45°である場合の歩留りが最も優れることが確認された。
Further, the manufactured silicon ingot could be easily taken out from the container 11. Further, the fusion between the container 11 and the top periphery of the silicon ingot, which has been a problem until now, did not occur. Moreover, there was no practical problem such as cracking of the ingot when it was processed into a straight cylinder-shaped silicon ingot.
Further, in the obtained silicon ingot, the crystal grain boundaries were aligned in the vertical direction, and the crystal quality was improved as compared with the silicon ingot produced by the casting method. Thus, the effectiveness by using the container 11 of the embodiment to grow a crystal by the chiloporous method was confirmed.
In Examples 1 to 4, the taper angle θ of the inclined portion 11b is shown as 20 °, 30 °, 45 °, and 70 °. However, the same result is obtained when the taper angle θ is 60 °. Obtained. Moreover, as a result of performing an experiment by changing the taper angle θ little by little in the range of 10 to 80 ° and comparing it, when the taper angle θ is 15 to 60 °, the take-out property of the silicon ingot from the container is better. In other words, it was confirmed that the yield is most excellent when the taper angle θ is 20 to 45 °.

[比較例]
図4は、比較例4で使用した結晶成長装置の概略構成を示す図である。図4では、実施形態の結晶成長装置1と同一又は対応する構成要素に対して20番台の符号を付している。結晶成長装置2では、一般的な直胴型の容器21を用いている点が、実施形態の結晶成長装置1と異なる。
比較例1〜4では、結晶成長装置2を用いてカイロポーラス法によりシリコンインゴットを製造した。円筒状容器21には、内径が125mmの直胴型の容器を使用した。シリコン原料の投入量、シリコン多結晶の成長条件等については実施例と同じとした。
[Comparative example]
FIG. 4 is a diagram showing a schematic configuration of the crystal growth apparatus used in Comparative Example 4. In FIG. 4, the same reference numerals as those in the crystal growth apparatus 1 of the embodiment are assigned to the 20th series. The crystal growth apparatus 2 is different from the crystal growth apparatus 1 of the embodiment in that a general straight barrel type container 21 is used.
In Comparative Examples 1 to 4, silicon ingots were produced by the chiroporous method using the crystal growth apparatus 2. As the cylindrical container 21, a straight barrel container having an inner diameter of 125 mm was used. The input amount of silicon raw material, the growth condition of silicon polycrystal, and the like were the same as in the example.

比較例1では、結晶引き上げ中に容器に引っかかり、その状態で成長が進んだ結果、体積膨張応力が容器の底に集中して容器が破壊された。シリコンインゴットを取り出した後の容器21を確認したところ、容器21の底面及び側面の大半の領域では離型材22の剥離は認められなかったが、シリコンインゴットのトップに対応する部分において、面状に離型材22が消失している領域が多発していた。シリコン融液27の表面付近が凝固するときに、横方向に膨張したシリコン多結晶28が離型材22に食い込み、この状態で半ば強引に引き上げられたことにより離型材22が剥離し、さらにはシリコン多結晶が容器21に固着したために、シリコンインゴットの取り出しが困難になったと考えられる。
比較例2のテーパ角8°の場合、カイロポーラス法での結晶引き上げの際に結晶が容器に引っかかることはなかったが、インゴットTop側面と離型材の摩擦が大きく、取り出しにくい結果となった。
比較例3の場合、容器のテーパ部分と直胴部分の湾曲部分にて離型材が割れてしまったため、その部分でインゴットと容器とが融着してインゴットを取り出すことができなくなった。湾曲部分にて脆弱化な離型材が、体積膨張応力に耐えられなかったと思われる。
In Comparative Example 1, the container was caught during the pulling of the crystal, and as a result of the growth progressing, the volume expansion stress concentrated on the bottom of the container and the container was destroyed. When the container 21 after the silicon ingot was taken out was confirmed, peeling of the release material 22 was not observed in most of the bottom and side surfaces of the container 21, but in the portion corresponding to the top of the silicon ingot, There were many regions where the release material 22 disappeared. When the vicinity of the surface of the silicon melt 27 is solidified, the laterally expanded silicon polycrystal 28 bites into the release material 22, and in this state, the release material 22 is peeled off by being forcibly pulled up. It is considered that it was difficult to take out the silicon ingot because the polycrystal was fixed to the container 21.
In the case of the taper angle of 8 ° in Comparative Example 2, the crystal was not caught by the container when the crystal was pulled by the chiloporous method.
In the case of Comparative Example 3, the release material was broken at the curved portion of the container's tapered portion and the straight body portion, and the ingot and the container were fused at that portion, making it impossible to take out the ingot. It seems that the release material weakened at the curved portion could not withstand the volume expansion stress.

比較例4によるシリコンインゴットの製造では、図4に示すように、成長過程においてシリコン多結晶28が離型材22に食い込み、引き上げ操作が妨げられた。そして、成長結晶の上方への移動が規制された(引き上げ速度が低下した)結果、シリコン凝固時の体積膨張による応力が緩和されずにシリコン融液が圧縮され、融液が容器の中央から激しく噴き上がって容器外に飛散するという現象が生じた(シリコン融液の噴き上げ)。成長過程において噴き上げが発生したため、良好な結晶成長が阻害され、さらには高価な装置部材が損傷してしまった。   In the production of the silicon ingot according to the comparative example 4, as shown in FIG. 4, the silicon polycrystal 28 bites into the release material 22 during the growth process, thereby hindering the pulling operation. As a result of the restricted upward movement of the growth crystal (lowering the pulling speed), the silicon melt is compressed without relaxation of the stress due to volume expansion during the solidification of the silicon, and the melt is intense from the center of the container. The phenomenon of spraying up and splashing outside the container occurred (silicon melt sprayed up). Since squirting occurred during the growth process, good crystal growth was hindered, and furthermore, expensive device members were damaged.

これらの結果を総合すると、シリコンインゴットの容器からの取出しが問題なく可能なテーパ角θは10°〜80°の範囲内である場合であることが判明した。
また、湾曲部分の離型材の剥がれ易さ、横方向のSiの体積膨張応力を考慮すると、テーパ角θが20°〜70°である場合がより望ましいことが分かった。
By combining these results, it has been found that the taper angle θ at which the silicon ingot can be removed from the container without any problem is in the range of 10 ° to 80 °.
In addition, it was found that the taper angle θ is more preferably 20 ° to 70 ° in consideration of easy peeling of the release material at the curved portion and the volume expansion stress of Si in the lateral direction.

以上、本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。   As mentioned above, although the invention made by this inventor was concretely demonstrated based on embodiment, this invention is not limited to the said embodiment, It can change in the range which does not deviate from the summary.

例えば、実施形態では、容器11を石英材料で構成した場合について示したが、石英、Si3N4、SiC、グラファイト、アルミナの何れか1種からなる材料又は2種以上を組み合わせた材料で構成することができる。   For example, in the embodiment, the case where the container 11 is made of a quartz material has been described. However, the container 11 may be made of a material composed of any one of quartz, Si3N4, SiC, graphite, and alumina, or a combination of two or more. it can.

また例えば、容器11によれば、シリコン凝固時の体積膨張に伴う応力が傾斜部11bで分散されるので、キャスト法によりシリコンインゴットを製造する場合にも有効である。キャスト法によりシリコンインゴットを製造する場合も、シリコン融液の表面が傾斜部11bに位置するようにすればよい。容器11の形状を円筒状から角筒状に変えた場合であっても、実施例1〜4、比較例1〜4と同様の結果が得られる。   Further, for example, according to the container 11, since the stress accompanying the volume expansion at the time of silicon solidification is dispersed in the inclined portion 11b, it is also effective when a silicon ingot is manufactured by a casting method. Even when a silicon ingot is manufactured by a casting method, the surface of the silicon melt may be positioned at the inclined portion 11b. Even when the shape of the container 11 is changed from a cylindrical shape to a rectangular tube shape, the same results as in Examples 1 to 4 and Comparative Examples 1 to 4 are obtained.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 結晶成長装置
11 シリコンインゴット製造用容器
11a 側面上部
11b 側面中部(傾斜部)
11c 側面下部(直胴部)
12 離型材
13 サセプタ
14 ヒータ
15 結晶引き上げ軸
16 種結晶
17 シリコン融液
18 シリコン多結晶
θ テーパ角
DESCRIPTION OF SYMBOLS 1 Crystal growth apparatus 11 Silicon ingot manufacturing container 11a Side surface upper part 11b Side surface center part (inclined part)
11c Lower side (straight trunk)
12 Release material 13 Susceptor 14 Heater 15 Crystal pulling shaft 16 Seed crystal 17 Silicon melt 18 Silicon polycrystal θ Taper angle

Claims (9)

シリコン融液を凝固させてシリコン多結晶を成長させるための上面が開口された有底筒状のシリコンインゴット製造用容器であって、
該容器の側壁が、鉛直に形成された側面下部と、該側面下部に鉛直方向に対して所定のテーパ角θで上面開口部に向かって拡がるように傾斜して連設された側面中部と、該側面中部に鉛直に連設された側面上部とから構成されていることを特徴とするシリコンインゴット製造用容器。
A bottomed cylindrical silicon ingot manufacturing container having an open top surface for solidifying a silicon melt and growing silicon polycrystals,
The side wall of the container is vertically formed on the lower side of the side, and the side of the side is formed so as to be inclined toward the upper surface opening at a predetermined taper angle θ with respect to the lower side of the side. A container for producing a silicon ingot, characterized in that the container is composed of an upper part of a side face provided vertically in the middle part of the side face.
前記テーパ角θが、10〜80°であることを特徴とする請求項1に記載のシリコンインゴット製造用容器。   The said taper angle (theta) is 10-80 degrees, The container for silicon ingot manufacture of Claim 1 characterized by the above-mentioned. 前記テーパ角θが、15〜60°であることを特徴とする請求項2に記載のシリコンインゴット製造用容器。   The said taper angle (theta) is 15-60 degrees, The container for silicon ingot manufacture of Claim 2 characterized by the above-mentioned. 前記テーパ角θが、20〜70°であることを特徴とする請求項2に記載のシリコンインゴット製造用容器。   The said taper angle (theta) is 20-70 degrees, The container for silicon ingot manufacture of Claim 2 characterized by the above-mentioned. 前記テーパ角θが、20〜45°であることを特徴とする請求項2に記載のシリコンインゴット製造用容器。   The said taper angle (theta) is 20-45 degrees, The container for silicon ingot manufacture of Claim 2 characterized by the above-mentioned. 石英、Si3N4、SiC、グラファイト、アルミナの何れか1種からなる材料又は2種以上を組み合わせた材料で構成されていることを特徴とする請求項1から5の何れか一項に記載のシリコンインゴット製造用容器。   The silicon ingot according to any one of claims 1 to 5, wherein the silicon ingot is made of a material made of any one of quartz, Si3N4, SiC, graphite, and alumina, or a material that is a combination of two or more. Manufacturing container. 請求項1から6の何れか一項に記載のシリコンインゴット製造用容器に、シリコン融液の表面が前記傾斜部に位置するようにシリコン原料を投入し、
前記シリコン融液を凝固させてシリコン多結晶を成長させることを特徴とするシリコンインゴットの製造方法。
A silicon raw material is charged into the silicon ingot manufacturing container according to any one of claims 1 to 6 so that a surface of a silicon melt is located at the inclined portion,
A method for producing a silicon ingot, wherein the silicon melt is solidified to grow a silicon polycrystal.
前記シリコン融液の表面に種結晶を接触させて、
前記種結晶を引き上げながら、前記シリコン融液を表面から凝固させてシリコン多結晶を成長させることを特徴とする請求項7に記載のシリコンインゴットの製造方法。
A seed crystal is brought into contact with the surface of the silicon melt,
The method for producing a silicon ingot according to claim 7, wherein the silicon melt is solidified from the surface while pulling up the seed crystal to grow a silicon polycrystal.
前記シリコン融液が凝固する際の体積膨張に応じた速度で前記種結晶を引き上げることを特徴とする請求項8に記載のシリコンインゴットの製造方法。   The method for producing a silicon ingot according to claim 8, wherein the seed crystal is pulled up at a speed corresponding to a volume expansion when the silicon melt is solidified.
JP2012534063A 2010-09-16 2011-09-16 Silicon ingot manufacturing container and silicon ingot manufacturing method Active JP5877589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012534063A JP5877589B2 (en) 2010-09-16 2011-09-16 Silicon ingot manufacturing container and silicon ingot manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010207533 2010-09-16
JP2010207533 2010-09-16
JP2012534063A JP5877589B2 (en) 2010-09-16 2011-09-16 Silicon ingot manufacturing container and silicon ingot manufacturing method
PCT/JP2011/071210 WO2012036263A1 (en) 2010-09-16 2011-09-16 Container for producing silicon ingot and method for producing silicon ingot

Publications (2)

Publication Number Publication Date
JPWO2012036263A1 true JPWO2012036263A1 (en) 2014-02-03
JP5877589B2 JP5877589B2 (en) 2016-03-08

Family

ID=45831716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012534063A Active JP5877589B2 (en) 2010-09-16 2011-09-16 Silicon ingot manufacturing container and silicon ingot manufacturing method

Country Status (4)

Country Link
JP (1) JP5877589B2 (en)
CN (1) CN103097291B (en)
TW (1) TWI539042B (en)
WO (1) WO2012036263A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398775B2 (en) * 2011-04-19 2014-01-29 国立大学法人京都大学 Method for producing Si ingot crystal
FR3111360B1 (en) * 2020-06-15 2024-04-12 Commissariat Energie Atomique Process for manufacturing a part by solidifying a semiconductor material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327490A (en) * 1999-05-18 2000-11-28 Mitsubishi Heavy Ind Ltd Method and apparatus for producing silicon crystal
JP2005279663A (en) * 2004-03-29 2005-10-13 Kyocera Corp Apparatus for casting silicon
JP5132882B2 (en) * 2005-12-16 2013-01-30 三菱マテリアルテクノ株式会社 Polycrystalline silicon casting equipment
US20100319613A1 (en) * 2008-02-18 2010-12-23 Sumco Corporation Silicon monocrystal growth method
CN102272359B (en) * 2009-01-09 2014-05-21 住友电气工业株式会社 Apparatus for manufacturing single crystal, method for manufacturing single crystal, and single crystal

Also Published As

Publication number Publication date
TWI539042B (en) 2016-06-21
JP5877589B2 (en) 2016-03-08
WO2012036263A1 (en) 2012-03-22
CN103097291A (en) 2013-05-08
TW201229332A (en) 2012-07-16
CN103097291B (en) 2016-04-20

Similar Documents

Publication Publication Date Title
US8404043B2 (en) Process for producing polycrystalline bulk semiconductor
CN101565185B (en) Method of manufacturing polycrystalline silicon rod
CN100338268C (en) Furnace for growing compound semiconductor single crystal and method of growing the same by using the furnace
JP2011042560A (en) Method and equipment for producing sapphire single crystal
JP5425421B2 (en) Method for manufacturing a wafer of semiconductor material by molding and directional crystallization
JP4142332B2 (en) Single crystal silicon manufacturing method, single crystal silicon wafer manufacturing method, single crystal silicon manufacturing seed crystal, single crystal silicon ingot, and single crystal silicon wafer
CN104088014A (en) Rod-like sapphire crystal growing equipment and rod-like sapphire crystal growing method
WO2001063026A1 (en) Method for producing silicon single crystal
JP5877589B2 (en) Silicon ingot manufacturing container and silicon ingot manufacturing method
TWI737997B (en) Manufacturing method of silicon crystal ingot and manufacturing device of silicon crystal ingot
JP2006232570A (en) METHOD FOR PRODUCING GaAs SINGLE CRYSTAL
JP6390568B2 (en) Crucible for growing gallium oxide single crystal and method for producing gallium oxide single crystal
JPWO2005113436A1 (en) Cooled lump of molten silicon and method for producing the same
JP2005281068A (en) Silicon seed crystal and growth method of silicon single crystal
JP4344021B2 (en) Method for producing InP single crystal
CN105088331B (en) A kind of C is to growing sapphire monocrystalline with small angle crucible
JPH1192284A (en) Production of silicon ingot having polycrystal structure solidified in one direction
JP2004322195A (en) Unidirectionally solidified silicon ingot and method for manufacturing the same, and silicon plate and substrate for solar battery
JP2017178741A (en) Mold for manufacturing silicon ingot
JP2011251892A (en) InP SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JP3674736B2 (en) Method for producing plate-like single crystal
CN111101194A (en) Crystal growth method of monocrystalline silicon crystal bar
CN216338064U (en) Special-shaped graphite crucible
JP4693932B1 (en) Cylindrical silicon crystal manufacturing method and cylindrical silicon crystal manufactured by the manufacturing method
JP7318884B2 (en) Single crystal growth method for iron-gallium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160122

R150 Certificate of patent or registration of utility model

Ref document number: 5877589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250