JPWO2011125316A1 - ガラスフィラー - Google Patents

ガラスフィラー Download PDF

Info

Publication number
JPWO2011125316A1
JPWO2011125316A1 JP2012509309A JP2012509309A JPWO2011125316A1 JP WO2011125316 A1 JPWO2011125316 A1 JP WO2011125316A1 JP 2012509309 A JP2012509309 A JP 2012509309A JP 2012509309 A JP2012509309 A JP 2012509309A JP WO2011125316 A1 JPWO2011125316 A1 JP WO2011125316A1
Authority
JP
Japan
Prior art keywords
glass
composition
oxide
content
acrylic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012509309A
Other languages
English (en)
Inventor
藤原 浩輔
浩輔 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Publication of JPWO2011125316A1 publication Critical patent/JPWO2011125316A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、二酸化珪素(SiO2)、三酸化二ホウ素(B2O3)、酸化アルミニウム(Al2O3)および酸化ナトリウム(Na2O)を含有するガラス組成物からなるガラスフィラーを提供する。各成分の含有率は、質量%で表して、55≦SiO2≦75、5≦B2O3≦10、5≦Al2O3≦15、13≦Na2O≦20に設定される。本発明のガラスフィラーは、アクリル樹脂に配合されるフィラーとして好適に用いられる。

Description

本発明は、ガラスフィラーに関し、より詳しくは、樹脂(特に、アクリル樹脂)に好適に配合することができるガラスフィラーに関する。
アクリル樹脂は、アクリル酸エステルまたはメタクリル酸エステルの重合体である。アクリル樹脂は他の樹脂材料に比較して、透明性、耐衝撃性、耐久性および加工性に優れており、光学材料の素材などに用いられている。
アクリル樹脂の機械的強度や耐熱性などをさらに向上させる場合には、アクリル樹脂にフィラーが配合される。一般的に、熱可塑性樹脂などの補強を目的として用いられるフィラーとしては、鱗片状、繊維状、粉末状、ビーズ状などの形態を有するガラスフィラーが知られている。ガラスフィラーを構成するガラスとしては、Eガラスのような無アルカリ珪酸塩ガラス、Cガラスのような含アルカリ珪酸塩ガラスまたは通常のソーダライムガラスが用いられる。
しかし、アクリル樹脂に配合するガラスフィラーとして上記のガラスを用いた場合には、アクリル樹脂の性能が損なわれることがある。すなわち、アクリル樹脂の屈折率とガラスフィラーの屈折率との差が大きいため、アクリル樹脂とガラスフィラーとの間の界面において光が散乱し、アクリル樹脂の透明性が損なわれ易い。
近年、アクリル樹脂への配合に適したガラスフィラーが開発されている。例えば、特許文献1には、エポキシ樹脂、環状オレフィン樹脂、アクリル樹脂など、屈折率が1.47〜1.56である透明樹脂との光学恒数の整合性が高く、樹脂との親和性が高いガラス繊維が開示されている。
特開2008−255002号公報
しかし、特許文献1に開示されているガラス組成物は、実際にガラスフィラーとして用いるためには、SrO、BaOまたはZnOを実質的に必要とする。特許文献1の実施例には、SrO、BaOおよびZnOを含まないガラス組成物も開示されているが(実施例7,8,10)、本発明者の検討によると、これらのガラス組成物には、失透しやすく耐水性も十分ではない(実施例7)、作業温度(成形温度)が高すぎる(実施例8,10)といった問題があった。
SrOおよびBaOの原料は一般的に高価であり、ガラスの製造コストを上げる一因となる。また、これらの原料は、取り扱いに配慮が必要である。さらに、ZnOは揮発性に富む成分であるため、ガラスの溶融時に飛散する可能性があるうえ、ガラスの組成が変動するためガラス組成物の品質の制御が困難になる。したがって、SrO、BaOおよびZnOを必要としないガラス組成物によってガラスフィラーを構成することが望まれる。
本発明の目的は、SrO、BaOおよびZnOを必要としないガラス組成物からなり、樹脂(特に、アクリル樹脂)に好適に配合することができるガラスフィラーを提供することである。
本発明は、質量%で表して、
55≦SiO2≦75、
5≦B23≦10、
5≦Al23≦15、
13≦Na2O≦20、の成分を含有するガラス組成物からなるガラスフィラーを提供する。
本発明はまた、別の観点から、
ガラス原料を溶融し、質量%で表して、
55≦SiO2≦75、
5≦B23≦10、
5≦Al23≦15、
13≦Na2O≦20、の成分を含有するガラス溶融物を得る工程と、
前記ガラス溶融物をガラスフィラーへと成形する工程とを含むガラスフィラーの製造方法を提供する。
本発明のガラスフィラーを構成するガラス組成物は、二酸化珪素(SiO2)、三酸化二ホウ素(B23)、酸化アルミニウム(Al23)および酸化ナトリウム(Na2O)を含有する。二酸化珪素、三酸化二ホウ素および酸化アルミニウムの含有率は、質量%で表して、55≦SiO2≦75、5≦B23≦10、5≦Al23≦15、に設定されている。このため、ガラスの骨格を形成する機能を十分に発現するとともに、良好な溶融性、高い耐水性および高い耐酸性を実現し、ガラスの屈折率をアクリル樹脂への配合に適した範囲内に調整することができる。酸化ナトリウムの含有率は、質量%で表して、13≦Na2O≦20に設定されている。このため、ガラス形成時における失透温度および粘度を良好にすることができる。酸化ストロンチウムおよび酸化バリウムは、ガラス組成物の必須成分ではない。それゆえ、ガラスの製造コストを抑え、原料を取り扱う際の特別な配慮を省くことができる。酸化亜鉛は、ガラス組成物の必須成分ではない。それゆえ、ガラスの溶融時の飛散を抑え、ガラスの組成変動を抑制し、所定の組成を有するガラス組成物の製造を容易に行うことができる。ガラス組成物における各必須成分の含有率を上述の範囲に設定することにより、ガラスの融点を下げ、ガラスを容易に均質化するとともに、ガラス製造装置に対する負荷を軽減することができる。本発明のガラスフィラーは、良好かつ安定した品質を有するため、樹脂(特に、アクリル樹脂)に好適に配合することができる。
図1Aは実施形態における鱗片状ガラスを模式的に示す斜視図、図1Bは鱗片状ガラスを示す平面図である。 図2は、鱗片状ガラスの製造装置を模式的に示す断面図である。 図3は、チョップドストランドを製造するための紡糸装置を示す説明図である。 図4は、図3の紡糸装置で得られたストランド巻体からチョップドストランドを製造するための装置を示す説明図である。
以下、本発明を具体化した実施形態について詳細に説明する。
[ガラス組成物]
本実施形態のガラスフィラーを構成するガラス組成物は、二酸化珪素(SiO2)、三酸化二ホウ素(B23)、酸化アルミニウム(アルミナ、Al23)および酸化ナトリウム(Na2O)を必須成分として含有する。各成分の含有量はそれぞれ、質量%で表して、55≦SiO2≦75、5≦B23≦10、5≦Al23≦15、13≦Na2O≦20に設定される。
以下、このガラス組成物を構成する各成分について説明する。以下において成分の含有率を示す%表示は全て質量%である。
(SiO2
二酸化珪素(SiO2)は、ガラスの骨格を形成する主成分である。本明細書において、「主成分」とは含有量が最も多い成分であることを意味する。二酸化珪素は、ガラスの失透温度および粘度を調整する成分である。二酸化珪素は、耐水性および耐酸性を向上させる成分でもある。二酸化珪素は、ガラスの屈折率を調整する成分でもある。二酸化珪素の含有率が55%以上であれば、失透温度の上昇を抑制し、失透のないガラスを容易に製造することができる。二酸化珪素の含有率が55%以上であれば、ガラスの耐水性および耐酸性を向上させることができる。二酸化珪素の含有率が55%以上であれば、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することができる。二酸化珪素の含有率が75%以下であれば、ガラスの融点が低くなり、ガラスを均一に溶融し易くなる。
したがって、二酸化珪素の含有率は、55%以上であり、58%以上が好ましく、60%より大きいことがより好ましく、62%以上が特に好ましく、65%より大きいことが最も好ましい。二酸化珪素の含有率は、75%以下であり、74%未満が好ましく、72%以下がより好ましく、70%以下が最も好ましい。二酸化珪素の含有率は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、二酸化珪素の含有率は58〜75%が好ましく、58〜72%がより好ましい。
(B23
三酸化二ホウ素(B23)は、ガラスの骨格を形成する成分であり、ガラス形成時の失透温度および粘度を調整する成分でもある。三酸化二ホウ素を含有することにより、ガラスの融点を下げる効果が得られるため、ガラス原料を均一に溶融し易くなる。三酸化二ホウ素は、耐水性を向上させる成分である一方で、耐酸性を悪化させる成分でもある。三酸化二ホウ素は、ガラスの屈折率を調整する成分でもある。三酸化二ホウ素の含有率が5%以上であれば、失透温度および粘度の調整、ならびに耐水性の改善が容易になる。三酸化二ホウ素の含有率が10%を超えると、ガラスを溶融する際に溶融窯および蓄熱窯の炉壁が浸食され、窯の寿命が著しく低下しうる。
したがって、三酸化二ホウ素の含有率は、5%以上であり、5.5%以上が好ましく、6%より大きいことがより好ましく、6.5%以上が最も好ましい。三酸化二ホウ素の含有率は、10%以下であり、9%以下が好ましく、8%未満がより好ましい。三酸化二ホウ素の含有率は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、三酸化二ホウ素の含有率は5〜9%が好ましく、5.5〜9%がより好ましい。
(Al23
酸化アルミニウム(Al23)は、ガラスの骨格を形成する成分である。酸化アルミニウムは、ガラスの失透温度および粘度を調整する成分である。酸化アルミニウムは、耐水性を向上させる成分である一方で、耐酸性を悪化させる成分でもある。酸化アルミニウムは、ガラスの屈折率を調整する成分でもある。酸化アルミニウムの含有率が5%以上であれば、失透温度および粘度の調整、ならびに耐水性の改善が容易になる。酸化アルミニウムの含有率が15%以下であれば、ガラスの融点が低くなり、ガラスを均一に溶融し易くなるとともに、ガラスの耐酸性も向上する。
したがって、酸化アルミニウムの含有率は、5%以上であり、5%より大きいことが好ましく、6%以上がより好ましく、7%以上がさらに好ましく、8%より大きいことが最も好ましい。酸化アルミニウムの含有率は、15%以下であり、14%以下が好ましく、13%以下がより好ましく、12%未満が最も好ましい。酸化アルミニウムの含有率の範囲は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、酸化アルミニウムの含有率は6〜14%が好ましく、7〜13%がより好ましい。
(Na2O)
酸化ナトリウム(Na2O)は、ガラスの失透温度および粘度を調整する成分である。酸化ナトリウムの含有率が13%以上であれば、失透温度および粘度の調整が容易になる。酸化ナトリウムの含有率が20%以下であれば、ガラス転移温度が高くなり、ガラスの耐熱性が向上するとともに、ガラスの耐水性および耐酸性も向上する。
したがって、酸化ナトリウムの含有率は、13%以上であり、13%より大きいことが好ましく、14%以上がより好ましく、15%より大きいことがさらに好ましい。酸化ナトリウムの含有率は、20%以下であり、19%以下が好ましく、18%以下がより好ましく、17%未満が最も好ましい。酸化ナトリウムの含有率は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、酸化ナトリウムの含有率は14〜19%が好ましく、14〜18%がより好ましい。
(SiO2+Al23
ガラスの屈折率の調整し易さを重視する場合、ガラスの骨格を形成する成分である二酸化珪素および酸化アルミニウムの含有率の和(SiO2+Al23)が重要である。二酸化珪素および酸化アルミニウムの合計含有率(SiO2+Al23)が60%以上であれば、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することができる。二酸化珪素および酸化アルミニウムの合計含有率(SiO2+Al23)が80%以下であれば、ガラスの融点が低くなり、ガラスを均一に溶融し易くなる。
したがって、二酸化珪素および酸化アルミニウムの合計含有率(SiO2+Al23)は、60%以上であり、60%より大きいことが好ましく、64%以上がより好ましく、68%より大きいことがさらに好ましく、72%より大きいことが特に好ましく、73%より大きいことが最も好ましい。二酸化珪素および酸化アルミニウムの合計含有率(SiO2+Al23)は、80%以下が好ましく、79%以下がより好ましく、78%以下がさらに好ましい。二酸化珪素および酸化アルミニウムの合計含有率(SiO2+Al23)は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。
(P25
五酸化二リン(P25)は任意成分である。ガラス組成物は、五酸化二リンをさらに含んでいてもよい。五酸化二リンは、ガラスの骨格を形成する成分であり、ガラス形成時の失透温度および粘度を調整する成分でもある一方で、耐水性を悪化させる成分である。五酸化二リンは、ガラスの屈折率を調整する成分でもある。五酸化二リンの含有率が10%以下であれば、失透温度および粘度の調整、ならびに耐水性の改善が容易になるとともに、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することができる。
したがって、五酸化二リンの含有率は、0.1%以上が好ましく、0.5%以上がより好ましく、1%以上が最も好ましい。五酸化二リンの含有率は、10%以下が好ましく、8%以下がより好ましく、5%以下がさらに好ましい。例えば、五酸化二リンの含有率は0.1〜10%が好ましく、0.1〜8%がより好ましい。
(MgO)
酸化マグネシウム(MgO)は任意成分である。ガラス組成物は、酸化マグネシウムをさらに含んでいてもよい。酸化マグネシウムは、ガラスの失透温度および粘度を調整する成分である。酸化マグネシウムは、ガラスの屈折率を調整する成分でもある。酸化マグネシウムの含有率が5%以下であれば、失透温度の上昇を抑制し、失透のないガラスを容易に製造することができるとともに、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することができる。
したがって、酸化マグネシウムの含有率は、0.1%以上が好ましく、0.5%以上がより好ましい。酸化マグネシウムの含有率は、5%以下が好ましく、5%未満がより好ましく、4%以下がさらに好ましく、3%未満が特に好ましく、2%未満が最も好ましい。酸化マグネシウムの含有率は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、酸化マグネシウムの含有率は0.1〜5%が好ましく、0.1〜4%がより好ましい。
(CaO)
酸化カルシウム(CaO)は任意成分である。ガラス組成物は、酸化カルシウムをさらに含んでいてもよい。酸化カルシウムは、ガラスの失透温度および粘度を調整する成分である。酸化カルシウムは、ガラスの屈折率を調整する成分でもある。酸化カルシウムの含有率が5%以下であれば、失透温度の上昇を抑制し、失透のないガラスを容易に製造することができるとともに、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することができる。
したがって、酸化カルシウムの含有率は、5%以下が好ましく、5%未満がより好ましく、2%以下がさらに好ましく、1%未満が特に好ましく、0.5%未満が最も好ましい。
(MgO+CaO)
上記のように、ガラス組成物は、酸化マグネシウムおよび/または酸化カルシウムをさらに含んでいてもよい。ガラスフィラーの成形し易さを重視する場合、ガラス形成時の失透温度および粘度を調整する成分である酸化マグネシウム(MgO)および酸化カルシウム(CaO)の含有率の和(MgO+CaO)が重要である。酸化マグネシウムおよび酸化カルシウムの合計含有率(MgO+CaO)が5%以下であれば、失透温度の上昇を抑制し、失透のないガラスを容易に製造することができるとともに、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することができる。
したがって、酸化マグネシウムおよび酸化カルシウムの合計含有率(MgO+CaO)は、0.1%以上が好ましく、0.5%以上がより好ましい。酸化マグネシウムおよび酸化カルシウムの合計含有率(MgO+CaO)は、5%以下が好ましく、5%未満がより好ましく、4%以下がさらに好ましく、4%未満が特に好ましく、3%未満が最も好ましく、2%未満であってもよい。酸化マグネシウムおよび酸化カルシウムの合計含有率(MgO+CaO)は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、酸化マグネシウムおよび酸化カルシウムの合計含有率(MgO+CaO)は0.1〜4%が好ましく、0.5〜4%がより好ましい。
(Li2O)
酸化リチウム(Li2O)は任意成分である。酸化リチウムは、ガラスの失透温度および粘度を調整する成分である。酸化リチウムの含有率が5%を超えると、ガラス転移温度が低くなり、ガラスの耐熱性が悪くなるとともに、ガラスの耐水性および耐酸性も悪化する。酸化リチウムの含有率が5%を超えると、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することが難しくなる。
したがって、酸化リチウムの含有率は、5%以下であることが好ましく、2%未満がより好ましく、1%未満がさらに好ましく、0.5%未満が特に好ましく、実質的に含有しないことが最も好ましい。
(K2O)
酸化カリウム(K2O)は任意成分である。酸化カリウムは、ガラスの失透温度および粘度を調整する成分である。酸化カリウムの含有率が5%以下であれば、ガラス転移温度が高くなり、ガラスの耐熱性が向上する。酸化カリウムの含有率が5%以下であれば、ガラスの耐水性および耐酸性も向上するとともに、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することができる。
したがって、酸化カリウムの含有率は、5%以下であることが好ましく、2%未満がより好ましく、1%未満がさらに好ましく、0.5%未満が特に好ましい。
(Na2O+K2O)
ガラスフィラーの成形し易さを重視する場合、ガラス形成時の失透温度および粘度を調整する成分である酸化ナトリウム(Na2O)および酸化カリウム(K2O)の含有率の和(Na2O+K2O)が重要である。酸化ナトリウムおよび酸化カリウムの合計含有率(Na2O+K2O)が13%以上であれば、失透温度および粘度の調整が容易になる。酸化ナトリウムおよび酸化カリウムの合計含有率(Na2O+K2O)が20%以下であれば、ガラス転移温度が高くなり、ガラスの耐熱性が向上するとともに、ガラスの耐水性および耐酸性も向上する。
したがって、酸化ナトリウムおよび酸化カリウムの合計含有率(Na2O+K2O)は、13%以上であり、13%より大きいことが好ましく、14%以上がより好ましく、15%より大きいことがさらに好ましい。酸化ナトリウムおよび酸化カリウムの合計含有率(Na2O+K2O)は、20%以下が好ましく、19%以下がより好ましく、18%以下がさらに好ましく、17%未満が最も好ましい。酸化ナトリウムおよび酸化カリウムの合計含有率(Na2O+K2O)は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、酸化ナトリウムおよび酸化カリウムの合計含有率(Na2O+K2O)は14〜19%が好ましく、14〜18%がより好ましい。
(Li2O+Na2O+K2O)
ガラスフィラーの成形し易さを重視する場合、ガラス形成時の失透温度および粘度を調整する成分であるアルカリ金属酸化物〔酸化リチウム(Li2O)、酸化ナトリウム(Na2O)、酸化カリウム(K2O)〕の含有率の和(Li2O+Na2O+K2O)が重要である。酸化リチウム、酸化ナトリウムおよび酸化カリウムの合計含有率(Li2O+Na2O+K2O)が13%以上であれば、失透温度および粘度の調整が容易になる。酸化リチウム、酸化ナトリウムおよび酸化カリウムの合計含有率(Li2O+Na2O+K2O)が20%以下であれば、ガラス転移温度が高くなり、ガラスの耐熱性が向上するとともに、ガラスの耐水性および耐酸性も向上する。
したがって、酸化リチウム、酸化ナトリウムおよび酸化カリウムの合計含有率(Li2O+Na2O+K2O)は、13%以上であり、13%より大きいことが好ましく、14%以上がより好ましく、15%より大きいことがさらに好ましい。酸化リチウム、酸化ナトリウムおよび酸化カリウムの合計含有率(Li2O+Na2O+K2O)は、20%以下であることが好ましく、19%以下がより好ましく、18%以下がさらに好ましく、17%未満が最も好ましい。酸化リチウム、酸化ナトリウムおよび酸化カリウムの合計含有率(Li2O+Na2O+K2O)は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、酸化リチウム、酸化ナトリウムおよび酸化カリウムの合計含有率(Li2O+Na2O+K2O)は14〜19%が好ましく、14〜18%がより好ましい。
(TiO2
酸化チタン(TiO2)は任意成分である。酸化チタンは、ガラスの失透温度および粘度を調整する成分である。酸化チタンの含有率が5%を超えると、ガラスの失透温度が上昇し過ぎ、ガラスを製造することが難しくなるとともに、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することが難しくなる。
したがって、酸化チタンの含有率は、5%以下であることが好ましく、2%未満がより好ましく、1%未満がさらに好ましく、0.5%未満が特に好ましく、実質的に含有しないことが最も好ましい。
(ZrO2
酸化ジルコニウム(ZrO2)は任意成分である。酸化ジルコニウムは、ガラスの失透温度および粘度を調整する成分である。酸化ジルコニウムの含有率が5%を超えると、ガラスの失透温度が上昇し過ぎ、ガラスを製造することが難しくなるとともに、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することが難しくなる。
したがって、酸化ジルコニウムの含有率は、5%以下であることが好ましく、2%未満がより好ましく、1%未満がさらに好ましく、0.5%未満が特に好ましく、実質的に含有しないことが最も好ましい。
(Fe)
鉄(Fe)は任意成分である。ガラス中に含まれる鉄(Fe)は、通常、Fe3+またはFe2+の状態で存在する。Fe3+はガラスの紫外線吸収特性を向上させる成分であり、Fe2+はガラスの熱線吸収特性を向上させる成分である。鉄は、意図的に含ませなくとも、他の工業用原料から不可避的にガラス組成物に混入する場合がある。鉄の含有量が少なければ、ガラスの着色を防止することができる。透明性の高いアクリル樹脂にガラスフィラーを配合してアクリル樹脂成形体を得る場合、ガラスフィラー中の鉄の含有量が少なければ、アクリル樹脂成形体の透明性を損なうことがない。
したがって、鉄の含有率は小さいほうが好ましく、三酸化二鉄(Fe23)に換算して0.5%以下が好ましく、0.1%以下がより好ましく、実質的に含有しないことがさらに好ましい。
(SO3
三酸化硫黄(SO3)は任意成分であるが、清澄剤として使用してもよい。硫酸塩の原料を使用すると、ガラス組成物中に三酸化硫黄が0.5%以下の含有率で含まれることがある。
(SrO)
酸化ストロンチウム(SrO)は、その原料の取扱いに配慮を要するとともに、高価である。したがって、酸化ストロンチウムは実質的に含有しないことが好ましい。
(BaO)
酸化バリウム(BaO)は、その原料の取扱いに配慮を要するとともに、高価である。したがって、酸化バリウムは実質的に含有しないことが好ましい。
(ZnO)
酸化亜鉛(ZnO)は、揮発しやすいため、ガラスの溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。したがって、酸化亜鉛は実質的に含有しないことが好ましい。
(SrO+BaO+ZnO)
以上の理由から、ガラス組成物は、SrO、BaOおよびZnOを実質的に含有しないことが好ましい。
(F、Cl、Br、I)
フッ素(F)は、揮発し易いため、溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。したがって、フッ素は実質的に含有しないことが好ましい。
塩素(Cl)は、揮発し易いため、溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。したがって、塩素は実質的に含有しないことが好ましい。
臭素(Br)は、揮発し易いため、溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。したがって、臭素は実質的に含有しないことが好ましい。
ヨウ素(I)は、揮発し易いため、溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。したがって、ヨウ素は実質的に含有しないことが好ましい。
フッ素、塩素、臭素およびヨウ素の含有率の合計(F+Cl+Br+I)は、0.01%未満であることが好ましい。
(PbO)
酸化鉛(PbO)は、その原料の取扱いに配慮を要するため、実質的に含有しないことが好ましい。
(Sn)
ガラス中に含まれる錫(Sn)は、通常、Sn2+またはSn4+の状態で存在する。錫は、その原料の取扱いに配慮を要するため、実質的に含有しないことが好ましい。錫(Sn)の含有率は、二酸化錫(SnO2)に換算して0.01%未満であることが好ましい。
(As、Sb)
ガラス中に含まれるヒ素(As)は、通常、As3+またはAs5+の状態で存在する。ヒ素は、その原料の取扱いに配慮を要するため、実質的に含有しないことが好ましい。ヒ素の含有率は、三酸化二ヒ素(As23)に換算して0.01%未満であることが好ましい。
ガラス中に含まれるアンチモン(Sb)は、通常、Sb3+またはSb5+の状態で存在する。アンチモンは、その原料の取扱いに配慮を要するため、実質的に含有しないことが好ましい。アンチモンの含有率は、三酸化二アンチモン(Sb23)に換算して0.01%未満であることが好ましい。
ヒ素を三酸化二ヒ素に換算したときの含有率と、アンチモンを三酸化二アンチモンに換算したときの含有率との合計(As23+Sb23)は、0.01%未満であることが好ましい。
なお、本明細書において、「実質的に含有しない」とは、例えば工業用原料から不可避的に混入する場合を除き、意図的に含ませないことを意味する。実質的に含有しないとは、具体的には、含有率が0.1%未満、好ましくは0.05%未満、より好ましくは0.03%未満、最も好ましくは0.01%未満であることを意味する。
以上のように、本発明のガラスフィラーは、二酸化珪素、三酸化二ホウ素、酸化アルミニウムおよび酸化ナトリウムを必須成分とする。本発明のガラスフィラーは、これらの必須成分のみで構成されていてもよく、あるいは、これらの必須成分の他に、必要に応じて、五酸化二リン、酸化マグネシウム、酸化カルシウム、酸化リチウム、酸化カリウム、酸化チタン、酸化ジルコニウム、酸化鉄(FeO、Fe23)および三酸化硫黄が含まれていてもよい。具体的には、質量%で表して、以下の成分を含んでいてもよい、あるいは以下の成分から実質的に構成されていてもよいことが理解できる。本明細書において、「実質的に構成される」とは、その他の成分を実質的に含有しないことを意味する。
55≦SiO2≦75、
5≦B23≦10、
5≦Al23≦15、
13≦Na2O≦20、
0≦P25≦10、
0≦MgO≦5、
0≦CaO≦5、
0≦Li2O≦5、
0≦K2O≦5、
0≦TiO2≦5、
0≦ZrO2≦5、
0≦Fe23(全Feから換算したFe23)≦0.5、
0≦SO3≦0.5。
[ガラス組成物の物性]
次に、ガラスフィラーを構成するガラス組成物の物性について、以下詳細に説明する。
(溶融特性)
溶融ガラスの粘度が1000dPa・sec(1000poise)となるときの温度は、当該ガラスの作業温度と呼ばれ、ガラスの成形に最も適する温度である。ガラスフィラーとして鱗片状ガラスまたはガラス繊維を製造する場合、ガラスの作業温度が1100℃以上であれば、鱗片状ガラスの厚みまたはガラス繊維径のばらつきを小さくできる。作業温度が1300℃以下であれば、ガラスを溶融する際の燃料費を低減でき、ガラス製造装置が熱による腐食を受け難くなり、装置寿命が延びる。
したがって、作業温度は、1100℃以上が好ましく、1150℃以上がより好ましい。作業温度は、1300℃以下が好ましく、1280℃以下がより好ましく、1260℃以下がさらに好ましく、1250℃以下が最も好ましい。作業温度は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、作業温度は1100〜1300℃が好ましく、1100〜1280℃がより好ましく、1150〜1280℃がさらに好ましい。
作業温度から失透温度を差し引いた温度差ΔTが大きいほど、ガラス成形時に失透が生じ難く、均質なガラスを高い歩留りで製造できる。したがって、ΔTは0℃以上が好ましく、50℃以上がより好ましく、100℃以上がさらに好ましく、150℃以上が特に好ましく、200℃以上が最も好ましく、300℃以上であってもよい。ΔTが600℃以下であれば、ガラス組成の調整が容易になる。したがって、ΔTは600℃以下が好ましく、550℃以下がより好ましく、500℃以下がさらに好ましい。例えば、ΔTは50〜600℃が好ましく、200〜600℃がより好ましく、300〜550℃がさらに好ましい。
なお、失透とは、溶融ガラス素地中に生成して成長した結晶により、白濁を生じることをいう。このような溶融ガラス素地から製造されたガラスフィラーの中には、結晶化した塊が存在することがある。このようなガラスフィラーはアクリル樹脂に配合されるフィラーとして好ましくない。
(光学特性)
ガラスフィラーおよびアクリル樹脂の屈折率が互いに等しければ、ガラスフィラーとアクリル樹脂との間の界面における光の散乱がないため、アクリル樹脂の透明性を維持できる。このため、ガラス組成物の屈折率は、アクリル樹脂の屈折率に近いことが好ましい。アクリル樹脂は、通常、黄色ヘリウムd線(光の波長587.6nm)で測定したときの屈折率ndが、1.490〜1.495程度である。本発明において、ガラス組成物の屈折率ndは、1.480〜1.505が好ましく、1.483〜1.502がより好ましく、1.485〜1.500がさらに好ましい。
ガラス組成物およびアクリル樹脂の屈折率の差は、0.010以下が好ましく、0.007以下がより好ましく、0.005以下がさらに好ましく、0.002以下が最も好ましい。
厳密に言えば、バルク(塊)としてのガラス組成物の屈折率よりもむしろガラスフィラーの屈折率について言及することが適切である。すなわち、ガラスフィラーの屈折率は、アクリル樹脂の屈折率に近いことが好ましい。アクリル樹脂は、通常、黄色ナトリウムD線(光の波長589.3nm)で測定したときの屈折率nDが、1.490〜1.495程度である。したがって、ガラスフィラーの屈折率nDは、1.480〜1.505が好ましく、1.483〜1.502がより好ましく、1.485〜1.500がさらに好ましい。
ガラスフィラーおよびアクリル樹脂の屈折率の差は、0.010以下が好ましく、0.005以下がより好ましく、0.003以下がさらに好ましく、0.002以下が最も好ましい。
(化学的耐久性)
ガラス組成物が含有する各成分の含有率が上述で規定した組成範囲内にあれば、ガラス組成物は耐酸性、耐水性、耐アルカリ性などの化学的耐久性に優れる。
耐水性の指標としては、後述するアルカリ溶出量が採用され、このアルカリ溶出量が小さいほど耐水性が高いことを示す。ガラスフィラーをアクリル樹脂組成物中に分散させる場合、ガラスのアルカリ溶出量が0.2mg以下であれば、アクリル樹脂組成物の強度低下が引き起こされることがない。したがって、ガラス組成物のアルカリ溶出量は、0.2mg以下が好ましく、0.1mg以下がより好ましい。ガラス組成物のアルカリ溶出量は、例えば、0.001〜0.20mgであることが好ましい。このようなガラス組成物により構成されるガラスフィラーは、アクリル樹脂に好適に配合することができる。
[ガラスフィラー]
前記ガラス組成物の溶融物を所定の形状に成形することにより、本発明のガラスフィラーを製造することができる。前記ガラス組成物は、例えば、鱗片状ガラス、チョップドストランド、ミルドファイバー、ガラス粉末、ガラスビーズなど、所定の形状を有するガラスフィラーに成形される。本発明のガラスフィラーは、鱗片状ガラス、チョップドストランド、ミルドファイバー、ガラス粉末およびガラスビーズから選ばれる少なくとも1つに相当する形態を有することが好ましい。ただし、これらの形態は、互いに厳密に区別されるものではない。また、互いに異なる形態を有する2種以上のガラスフィラーを組み合わせてフィラーとして用いてもよい。
図1Aは、鱗片状ガラスを模式的に示す斜視図であり、図1Bはその鱗片状ガラスを示す平面図である。鱗片状ガラス10は、例えば、平均厚さtが0.1〜15μm、平均粒子径aが0.2〜15000μm、アスペクト比(平均粒子径a/平均厚さt)が2〜1000の薄片状粒子である。なお、図1B中のSは、鱗片状ガラス10を平面視したときの面積である。
なお、鱗片状ガラスの平均厚さとは、少なくとも100枚の鱗片状ガラスを抜き取り、それらの鱗片状ガラスについて走査型電子顕微鏡(SEM)を用いて厚さを測定し、その厚さの合計を、測定した鱗片状ガラスの枚数で割った値のことである。鱗片状ガラスの平均粒子径とは、レーザ回折散乱法に基づいて測定された粒度分布において、累積体積百分率が50%に相当する粒子径(D50)のことである。
この鱗片状ガラス10は、例えば、図2に示す製造装置を用いて製造できる。図2に示すように、耐火窯槽12において溶融された、所定の組成を有するガラス素地11は、ブローノズル13に送り込まれたガスにより風船状に膨らみ、中空状ガラス膜14となる。この中空状ガラス膜14を一対の押圧ロール15で粉砕することにより、鱗片状ガラス10が得られる。
ガラスフィラーとして用いられるチョップドストランドは、繊維径1〜50μm、アスペクト比(繊維長/繊維径)2〜1000の寸法を有するガラス繊維である。チョップドストランドは、例えば、図3および図4に示す装置を用いて製造できる。
図3に示すように、耐火窯槽内で溶融され、所定の組成を有するガラス素地は、底部に多数(例えば2400本)のノズルを有するブッシング20から引き出され、多数のガラスフィラメント21を形成する。ガラスフィラメント21には、冷却水が吹きかけられた後、バインダアプリケータ22の塗布ローラ23によりバインダ(集束剤)24が塗布される。バインダ24が塗布された多数のガラスフィラメント21は、補強パッド25により、各々が例えば800本程度のガラスフィラメント21からなる3本のストランド26として集束される。各ストランド26は、トラバースフィンガ27で綾振りされつつコレット28に嵌められた円筒チューブ29に巻き取られる。そして、ストランド26が巻き取られた円筒チューブ29をコレット28から外して、ケーキ(ストランド巻体)30が得られる。
次に、図4に示すように、クリル31にケーキ30を収容し、そのケーキ30からストランド26を引き出して、集束ガイド32によりストランド束33として束ねる。このストランド束33に、噴霧装置34より水または処理液を噴霧する。さらに、このストランド束33を切断装置35の回転刃36で切断して、チョップドストランド37が得られる。
ガラスフィラーとして用いられるミルドファイバーは、繊維径が1〜50μm、アスペクト比(繊維長/繊維径)2〜500の寸法を有するガラス繊維である。このようなミルドファイバーは、公知の方法に従って製造できる。
ガラス粉末は、ガラスを粉砕することによって製造される。ガラスフィラーとして用いるためには、ガラス粉末の平均粒子径が1〜500μmであることが好ましい。ここで、平均粒子径は、ガラス粉末粒子と同じ体積を有する球体の直径として定義するものとする。このようなガラス粉末は、公知の方法に従って製造できる。
ガラスビーズは、ガラス組成物を球形またはそれに近い形となるように成形することによって製造される。ガラスフィラーとして用いるためには、ガラスビーズの粒子径が1〜500μmであることが好ましい。ここで、粒子径は、ガラスビーズ粒子と同じ体積を有する球体の直径として定義するものとする。このようなガラスビーズは、公知の方法に従って製造できる。
[アクリル樹脂組成物]
ガラス組成物から得られたガラスフィラーをアクリル樹脂に配合することにより、優れた性能を有するアクリル樹脂組成物が得られる。本発明のガラスフィラーは、アクリル樹脂との屈折率の差が小さく、アルカリ成分の溶出が少なく、化学的耐久性に優れている。したがって、アクリル樹脂と本発明のガラスフィラーとを含有するアクリル樹脂組成物は、アクリル樹脂と同等の透明性と、アクリル樹脂よりも優れた機械的強度および耐熱性とを兼ね備えている。
アクリル樹脂組成物は、公知の方法に従って製造できる。具体的には、混合機などを用いて加熱しながらアクリル樹脂とガラスフィラーとを溶融混練すればよい。アクリル樹脂としては、公知のものを使用できる。上述したように、アクリル樹脂に配合されるガラスフィラーとして、1種類の形態のガラスフィラーに限らず、複数種の形態のガラスフィラーを組み合わせて用いてもよい。アクリル樹脂組成物の性能を向上させるために、必要に応じて、各種のカップリング剤および添加剤を配合してもよい。溶融混練の温度は、アクリル樹脂の耐熱温度以下であることが好ましい。
このようなアクリル樹脂組成物を成形して得られた成形品は、光学材料、電気機器、自動車部品、建築材料などに好適に使用できる。成形は公知の方法に従って行えばよく、押出成形法、射出成形法、プレス成形法、カレンダー成形によるシート成形法などが採用される。なお、成形時の加熱温度は、アクリル樹脂の耐熱温度以下であることが好ましい。
[実施形態による効果のまとめ]
(1) 本実施形態のガラス組成物は、質量%で表して、二酸化珪素、三酸化二ホウ素および酸化アルミニウムの含有率が、55≦SiO2≦75、5≦B23≦10および5≦Al23≦15を満たすように設定されている。このため、二酸化ケイ素、酸化ホウ素および酸化アルミニウムによるガラスの骨格を形成する機能を十分に発現することができ、溶融性が良く、耐水性や耐酸性を高めることができ、屈折率をアクリル樹脂への配合に適した状態に調整することができる。また、酸化ナトリウムの含有率が、13≦Na2O≦20に設定されている。このため、ガラス形成時における失透温度および粘度を良好にすることができる。そして、各必須成分の配合割合によってガラス組成物の融点を下げることができ、組成の均一化を容易に図ることができる。したがって、本実施形態のガラス組成物からなるガラスフィラーは、アクリル樹脂に配合されるガラスフィラーとして好適に用いられ、良好かつ安定した品質を示すとともに、ガラス製造装置に対する負荷を軽減することができる。
(2) ガラス組成物の屈折率ndが1.480〜1.505であることにより、ガラスフィラーがアクリル樹脂に配合されたとき、光の散乱が抑制され、アクリル樹脂の透明性を保持することができる。
(3) ガラス組成物の作業温度が1100〜1300℃であることにより、ガラスフィラーを製造したときその厚みや繊維径のばらつきを抑えることができるとともに、ガラス製造装置の腐食を抑制し、装置寿命を延長させることができる。
(4) ガラス組成物の作業温度から失透温度を差し引いた温度差ΔTが0〜600℃であることにより、ガラス成形時に失透が生じ難く、均質なガラスを収率良く製造することができるとともに、ガラス組成の調整を容易にすることができる。
(5) ガラス組成物の耐水性の指標であるアルカリ溶出量が0.001〜0.20mgであることにより、ガラスフィラーをアクリル樹脂組成物中に分散させた場合、アクリル樹脂組成物の強度低下が引き起こされることがない。
(6) アクリル樹脂用ガラスフィラーは、前述のガラス組成物から容易に形成することができる。具体的には、アクリル樹脂用ガラスフィラーはガラス組成物を溶融した後、所定形状の形態に加工して成形される。アクリル樹脂用ガラスフィラーの形態としては、鱗片状ガラス、チョップドストランド、ミルドファイバー、ガラス粉末およびガラスビーズから選ばれる少なくとも1種の形態が好適に採用される。
(7) アクリル樹脂組成物は、アクリル樹脂と上記のアクリル樹脂用ガラスフィラーを含有するものである。このアクリル樹脂組成物を成形してなる成形品は、透明性、機械的強度、耐熱性などに優れている。
以下、実施例および比較例を挙げて本発明の実施形態をさらに具体的に説明する。
(実施例1〜35および比較例1〜9)
表1〜表5に示した組成となるように、珪砂等の通常のガラス原料を調合し、実施例および比較例毎にガラス原料のバッチを作製した。電気炉を用いて、各バッチを1400〜1600℃まで加熱して溶融させ、組成が均一になるまで約4時間そのまま維持した。その後、溶融したガラス(ガラス溶融物)を鉄板上に流し出し、電気炉中で室温まで徐冷し、バルクとしてのガラス組成物(板状物)を得た。
得られたガラス組成物について、通常の白金球引き上げ法により粘度と温度との関係を調べ、その結果から作業温度を求めた。ここで、白金球引き上げ法とは、溶融ガラス中に白金球を浸し、その白金球を等速運動で引き上げる際の負荷荷重(抵抗)と、白金球に働く重力および浮力などとの関係を、微小の粒子が流体中を沈降する際の粘度と落下速度との関係を示したストークス(Stokes)の法則にあてはめることにより、粘度を測定する方法である。
粒子径1.0〜2.8mmの大きさに粉砕したガラス組成物を白金ボートに入れ、温度勾配(800〜1400℃)を設けた電気炉中で2時間保持し、結晶の出現した位置に対応する電気炉の最高温度から失透温度を求めた。ここで、粒子径は、ふるい分け法により測定された値である。なお、電気炉内の場所に応じて異なる温度(電気炉内の温度分布)は、予め測定されており、電気炉内の所定の場所に置かれたガラスは、予め測定された、当該所定の場所の温度で加熱される。ΔTは、作業温度から失透温度を差し引いた温度差である。
ガラス組成物について、プルフリッヒ屈折率計を用いることにより、黄色ヘリウムd線(光の波長587.6nm)の屈折率ndを測定した。
アルカリ溶出量の測定は、日本工業規格(JIS)の「化学分析用ガラス器具の試験方法 R 3502‐1995」に準拠した方法により行った。ガラス試料を粉砕して得たガラス粉末をJIS Z 8801に規定の標準網ふるいにかけ、目開き420μmの標準網ふるいを通過し、目開き250μmの標準網ふるいにとどまったガラス粉末を、ガラスの比重と同じグラム数量秤り取った。このガラス粉末を100℃の蒸留水50mLに1時間浸漬した後、この水溶液中のアルカリ成分を0.01Nの硫酸で滴定した。滴定に要した0.01Nの硫酸のミリリットル数に0.31を乗じることにより、Na2Oに換算したアルカリ成分のミリグラム数を求め、このミリグラム数をアルカリ溶出量とした。このアルカリ溶出量が小さいほど耐水性が高いことを示す。
これらの測定結果を表1〜表5に示した。なお、表中のガラス組成は、すべて質量%で表示した値である。
Figure 2011125316
Figure 2011125316
Figure 2011125316
Figure 2011125316
Figure 2011125316
実施例1〜35で得られたガラス組成物の作業温度は、1167℃〜1270℃であった。これは、ガラスフィラーを成形する場合に好適な温度である。実施例1〜35で得られたガラス組成物のΔT(作業温度−失透温度)は、222℃〜469℃であった。これは、ガラスフィラーの製造工程において、ガラスの失透が生じない温度差である。実施例1〜35で得られたガラス組成物の屈折率ndは、1.494〜1.505であった。実施例1〜35で得られたガラス組成物のアルカリ溶出量は、0.02〜0.13mgであった。
他方、比較例1で得られたガラス組成物は、従来の板ガラスの組成を有し、B23およびAl23の含有率が本発明において規定される組成範囲より外にあった。そのため、比較例1で得られたガラス組成物の屈折率ndは1.517であり、実施例1〜35で得られたガラス組成物の屈折率ndに比べて高かった。さらに、比較例1で得られたガラス組成物のアルカリ溶出量は0.43mgであり、実施例1〜35で得られたガラス組成物のアルカリ溶出量に比べて大きかった。
比較例2で得られたガラス組成物は、従来のCガラスの組成を有し、B23、Al23およびNa2Oの含有率が本発明において規定される組成範囲より外にあった。そのため、比較例2で得られたガラス組成物の屈折率ndは1.523であり、実施例1〜35で得られたガラス組成物の屈折率ndに比べて高かった。
比較例3で得られたガラス組成物は、従来のEガラスの組成を有し、SiO2およびNa2Oの含有率が本発明において規定される組成範囲より外にあった。そのため、比較例3で得られたガラス組成物の屈折率ndは1.561であり、実施例1〜35で得られたガラス組成物の屈折率ndに比べて高かった。
比較例4〜6で得られたガラス組成物は、それぞれ特開2008−255002号公報(特許文献1)の実施例7、実施例8および実施例10に記載されている、SrO、BaOおよびZnOを含まないガラスと同様の組成を有する。
比較例4で得られたガラス組成物は、B23、Al23およびNa2Oの含有率が本発明において規定される組成範囲より外にあった。それゆえ、比較例4では、ガラスの失透のために、均質なガラス組成物が得られなかった。比較例4で得られたガラス組成物は、特開2008−255002号公報(特許文献1)の実施例7に開示されたガラスと同様の組成を有する。特許文献1の実施例7には、ガラスの屈折率およびアッベ数が測定され、失透による糸切れを生じることなくガラス繊維化できたと記載されている。しかし、本発明者が追試したところ、失透が生じて紡糸することができなかった。比較例4のガラス組成は、失透性が高く、厳しく限定された条件の下でしか紡糸することができない組成であると考えられる。比較例4で得られたガラス組成物のアルカリ溶出量は0.25mgであり、実施例1〜35で得られたガラス組成物のアルカリ溶出量に比べて大きかった。
比較例5で得られたガラス組成物は、Na2Oの含有率が本発明において規定される組成範囲より外にあった。このため、比較例5で得られたガラス組成物の作業温度は1350℃であり、実施例1〜35で得られたガラス組成物の作業温度に比べて高かった。比較例5で得られたガラス組成物の屈折率ndは1.512であり、実施例1〜35で得られたガラス組成物の屈折率ndに比べて高かった。
比較例6で得られたガラス組成物は、B23、Al23およびNa2Oの含有率が本発明において規定される組成範囲より外にあった。このため、比較例6で得られたガラス組成物の作業温度は1305℃であり、実施例1〜35で得られたガラス組成物の作業温度に比べて高かった。
比較例7で得られたガラス組成物は、Na2Oの含有率が本発明において規定される組成範囲より外にあった。そのため、比較例7で得られたガラス組成物の作業温度は1073℃であり、実施例1〜35で得られたガラス組成物の作業温度に比べて低かった。比較例7で得られたガラス組成物の屈折率ndは1.510であり、実施例1〜35で得られたガラス組成物の屈折率ndに比べて高かった。比較例7で得られたガラス組成物のアルカリ溶出量は3.49mgであり、実施例1〜35で得られたガラス組成物のアルカリ溶出量に比べて大きかった。
比較例8で得られたガラス組成物は、B23の含有率が本発明において規定される組成範囲より外にあった。そのため、比較例8で得られたガラス組成物の作業温度は1313℃であり、実施例1〜35で得られたガラス組成物の作業温度に比べて高かった。
比較例9で得られたガラス組成物は、B23の含有率が本発明において規定される組成範囲より外にあった。そのため、比較例9で得られたガラス組成物の屈折率ndは1.512であり、実施例1〜35で得られたガラス組成物の屈折率ndに比べて高かった。
以上のように、実施例1〜35に示す本発明のガラス組成物は、ガラスフィラーの成形に適した溶融特性を有するとともに、フィラーとしてアクリル樹脂へ配合するために適した屈折率を有することが分かる。
(実施例36〜70)
実施例36〜70では、それぞれ実施例1〜35で得られたガラス組成物を用いて鱗片状ガラスを作製した。すなわち、ガラス組成物(バルク)を電気炉で再溶融した後、冷却しながらペレットに成形した。このペレットを図2に示す製造装置に投入し、平均厚さが0.5〜1μmおよび平均粒子径が100〜500μmである鱗片状ガラスを作製した。鱗片状ガラスの平均厚さは、電子顕微鏡((株)キーエンス、リアルサーフェスビュー顕微鏡、VE−7800)を用い、100枚の鱗片状ガラスの断面から鱗片状ガラスの厚さを測定し、それらの厚さを平均することにより求めた値である。鱗片状ガラスの平均粒子径は、レーザ回折粒度分布測定装置(日機装(株)、粒度分析計、マイクロトラックHRA)によって測定した。
実施例36〜70で得られた鱗片状ガラスの屈折率(nD)を測定した。鱗片状ガラスについて、浸液法により、黄色ナトリウムD線(光の波長589.3nm)の屈折率nDを測定した。この測定結果を表6〜表9に示す。
Figure 2011125316
Figure 2011125316
Figure 2011125316
Figure 2011125316
表6〜表9に示すように、実施例36〜70で得られた鱗片状ガラスの屈折率(nD)は1.488〜1.501の範囲であり、アクリル樹脂の屈折率(nDが1.490〜1.495)に近い値であった。
実施例36〜70で得られた鱗片状ガラス(ガラスフィラー)を各々アクリル樹脂に配合することにより、種々のアクリル樹脂組成物が得られた。
(実施例71〜105)
実施例71〜105では、それぞれ実施例1〜35で得られたガラス組成物を用いて、ガラスフィラーとして用いることのできるチョップドストランドを作製した。すなわち、ガラス組成物(バルク)を電気炉で再溶融した後、冷却しながらペレットに成形した。このペレットを図3および図4に示す製造装置に投入し、平均繊維径が10〜20μm、長さが3mmであるチョップドストランドを作製した。
実施例71〜105で得られたチョップドストランドを各々アクリル樹脂に配合することにより、種々のアクリル樹脂組成物が得られた。
本発明は、上述した実施形態に限定されるものではなく、以下に示す指針に従って変更を加えて実施することもできる。
・ ガラス組成物における二酸化珪素、三酸化二ホウ素および酸化アルミニウムの合計含有率(SiO2+B23+Al23)を調整することにより、ガラスの骨格を良好に維持できるようにガラスを構成することもできる。二酸化珪素、三酸化二ホウ素および酸化アルミニウムの合計含有率(SiO2+B23+Al23)は、例えば、67〜86%である。
・ ガラス組成物における二酸化珪素、三酸化二ホウ素、酸化アルミニウムおよび五酸化ニリンの合計含有率(SiO2+B23+Al23+P25)を調整することにより、ガラスの骨格を良好に維持できるようにガラスを構成することもできる。二酸化珪素、三酸化二ホウ素、酸化アルミニウムおよび五酸化ニリンの合計含有率(SiO2+B23+Al23+P25)は、例えば、67〜86%である。
・ ガラス組成物における酸化マグネシウムおよび酸化ナトリウムの合計含有率(MgO+Na2O)を調整することにより、ガラスの失透温度および粘度を良好に調整できるようにガラスを構成することもできる。酸化マグネシウムおよび酸化ナトリウムの合計含有率(MgO+Na2O)は、例えば、14〜24%である。
・ ガラス組成物における酸化マグネシウム、酸化カルシウムおよび酸化ナトリウムの合計含有率(MgO+CaO+Na2O)を調整することにより、ガラスの失透温度および粘度を良好に調整できるようにガラスを構成することもできる。酸化マグネシウム、酸化カルシウムおよび酸化ナトリウムの合計含有率(MgO+CaO+Na2O)は、例えば、14〜24%である。

Claims (12)

  1. 質量%で表して、
    55≦SiO2≦75、
    5≦B23≦10、
    5≦Al23≦15、
    13≦Na2O≦20、の成分を含有するガラス組成物からなるガラスフィラー。
  2. 前記ガラス組成物がSrO、BaOおよびZnOの成分を実質的に含有しない請求項1に記載のガラスフィラー。
  3. 前記ガラス組成物が酸化マグネシウム(MgO)および/または酸化カルシウム(CaO)をさらに含み、前記酸化マグネシウムおよび前記酸化カルシウムの合計含有率が質量%で表して、
    0.1≦(MgO+CaO)≦5
    である請求項1に記載のガラスフィラー。
  4. 前記ガラス組成物が酸化マグネシウム(MgO)をさらに含み、前記酸化マグネシウムの含有率が質量%で表して、
    0.1≦MgO≦5
    である請求項1に記載のガラスフィラー。
  5. 前記ガラス組成物が五酸化二リン(P25)をさらに含み、前記五酸化二リンの含有率が質量%で表して、
    0.1≦P25≦10
    である請求項1に記載のガラスフィラー。
  6. 前記ガラス組成物の屈折率ndが1.480〜1.505である請求項1に記載のガラスフィラー。
  7. 前記ガラス組成物の作業温度が1100〜1300℃である請求項1に記載のガラスフィラー。
  8. 前記ガラス組成物の作業温度から失透温度を差し引いた温度差ΔTが0〜600℃である請求項1に記載のガラスフィラー。
  9. JIS R 3502−1995に準拠する測定方法による、前記ガラス組成物のアルカリ溶出量が、0.001〜0.20mgである請求項1に記載のガラスフィラー。
  10. 鱗片状ガラス、チョップドストランド、ミルドファイバー、ガラス粉末およびガラスビーズから選ばれる少なくとも1つに相当する形態を有する請求項1に記載のガラスフィラー。
  11. アクリル樹脂と請求項1に記載のガラスフィラーとを含有するアクリル樹脂組成物。
  12. ガラス原料を溶融し、質量%で表して、
    55≦SiO2≦75、
    5≦B23≦10、
    5≦Al23≦15、
    13≦Na2O≦20、の成分を含有するガラス溶融物を得る工程と、
    前記ガラス溶融物をガラスフィラーへと成形する工程とを含むガラスフィラーの製造方法。
JP2012509309A 2010-04-01 2011-03-31 ガラスフィラー Pending JPWO2011125316A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010084748 2010-04-01
JP2010084748 2010-04-01
PCT/JP2011/001961 WO2011125316A1 (ja) 2010-04-01 2011-03-31 ガラスフィラー

Publications (1)

Publication Number Publication Date
JPWO2011125316A1 true JPWO2011125316A1 (ja) 2013-07-08

Family

ID=44762287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012509309A Pending JPWO2011125316A1 (ja) 2010-04-01 2011-03-31 ガラスフィラー

Country Status (2)

Country Link
JP (1) JPWO2011125316A1 (ja)
WO (1) WO2011125316A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5964219B2 (ja) * 2012-11-30 2016-08-03 日本板硝子株式会社 ガラスフィラー
US11951713B2 (en) 2020-12-10 2024-04-09 Corning Incorporated Glass with unique fracture behavior for vehicle windshield

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535216A (en) * 1976-07-02 1978-01-18 Okuno Chem Ind Co Glass enamel composition
JPH01226749A (ja) * 1988-03-08 1989-09-11 Ngk Insulators Ltd セラミック接合ガラス組成物

Also Published As

Publication number Publication date
WO2011125316A1 (ja) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5432711B2 (ja) ガラス組成物
JPWO2008156091A1 (ja) ガラス組成物
JP2011042556A (ja) 光学ガラスの製造方法
WO2014065321A1 (ja) ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維の製造方法
JP2012051773A (ja) 樹脂複合体基板用ガラス
JP5810086B2 (ja) ガラスフィラー
JP2012153582A (ja) ガラス組成物及びその用途
JP5964219B2 (ja) ガラスフィラー
JP5809900B2 (ja) ガラス組成物、並びにこれを用いたポリカーボネート樹脂用ガラスフィラー及びポリカーボネート樹脂組成物
WO2018123327A1 (ja) ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維の製造方法
JP5330754B2 (ja) ガラス組成物およびそれを用いた歯科用組成物
JP2013159546A (ja) ガラスフィラー
WO2011125316A1 (ja) ガラスフィラー
JP2011162415A (ja) ガラス組成物及びその用途
US11577990B2 (en) Glass fiber and method for producing same
JP3771073B2 (ja) ガラス繊維
JP2023510200A (ja) より高い弾性率のための繊維ガラス組成物
JP2002173334A (ja) 光学ガラス
TWI826278B (zh) 玻璃纖維及玻璃纖維用組成物
JPH06157072A (ja) 耐蝕性ガラス繊維
WO2023190983A1 (ja) ガラス繊維
TW202402701A (zh) 玻璃纖維
TW202402697A (zh) 樹脂複合材用玻璃製品