JPWO2011068166A1 - ブレオマオシン水解酵素の活性を指標としたアトピー性皮膚炎による乾燥肌改善剤のスクリーニング方法 - Google Patents

ブレオマオシン水解酵素の活性を指標としたアトピー性皮膚炎による乾燥肌改善剤のスクリーニング方法 Download PDF

Info

Publication number
JPWO2011068166A1
JPWO2011068166A1 JP2011544291A JP2011544291A JPWO2011068166A1 JP WO2011068166 A1 JPWO2011068166 A1 JP WO2011068166A1 JP 2011544291 A JP2011544291 A JP 2011544291A JP 2011544291 A JP2011544291 A JP 2011544291A JP WO2011068166 A1 JPWO2011068166 A1 JP WO2011068166A1
Authority
JP
Japan
Prior art keywords
activity
expression
skin
irf
atopic dermatitis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011544291A
Other languages
English (en)
Other versions
JP5858788B2 (ja
Inventor
利彦 日比野
利彦 日比野
弥生 鎌田
弥生 鎌田
真実 山本
真実 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP2011544291A priority Critical patent/JP5858788B2/ja
Publication of JPWO2011068166A1 publication Critical patent/JPWO2011068166A1/ja
Application granted granted Critical
Publication of JP5858788B2 publication Critical patent/JP5858788B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6881Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids from skin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/95Proteinases, i.e. endopeptidases (3.4.21-3.4.99)
    • G01N2333/964Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue
    • G01N2333/96425Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals
    • G01N2333/96427Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general
    • G01N2333/9643Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general with EC number
    • G01N2333/96466Cysteine endopeptidases (3.4.22)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/20Dermatological disorders
    • G01N2800/202Dermatitis

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Plant Pathology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本発明は、候補薬剤が、対照薬剤と比較してブレオマオシン水解酵素の発現及び/又は活性を有意に亢進する場合に、当該候補薬剤を、乾燥肌、特にアトピー性皮膚炎による乾燥肌の改善剤と評価する、乾燥肌改善剤をスクリーニング評価する方法を提供する。

Description

本発明は、乾燥肌、特にアトピー性皮膚炎による乾燥肌の改善剤をスクリーニング評価する方法、アトピー性皮膚炎による乾燥肌を改善又は予防する方法、さらにはアトピー性皮膚炎による乾燥肌の診断方法、を提供する。
表皮の顆粒層のケラチン線維は、角化する際にフィラグリンと呼ばれるタンパク質に結合して凝集し、“ケラチンパターン”と称される特異的な形態をつくる。顆粒細胞内のケラトヒアリン顆粒にはフィラグリンの前駆物質であるプロフィラグリン(フィラグリン単位が10乃至12個縦に並んだもの)が多量に存在するが、角化の際、フィラグリンモノマーが生成されるとともに脱リン酸化によりケラチン線維を凝集させる。その後、ペプチジルアルギニンデイミナーゼ(PAD)という酵素の作用によって脱イミノ化され、ケラチンと遊離した後、角層上層でアミノ酸などに分解される。これらのアミノ酸は天然保湿因子(natural moisturizing factor ; NMF)と呼ばれ、角層水分量の保持に重要な役割を担い、また紫外線吸収能をもつことで知られる(Blank I.H. J.I. Dermatol., 18, 433 (1952); Blank I.H. J.I. Dermatol., 21, 259 (1953))。
NMFの主成分であるアミノ酸がフィグラリンに由来することが明らかになって以来、乾燥肌を呈する病態とフィグラリンの関連性についての研究が進められている。近年、老人性乾皮症、アトピー性疾患などの乾燥肌において角層中のアミノ酸が減少していることが明らかになっている(Horii I. et al., Br. J. Dermatol., 121, 587-592(1989); Tanaka M. et al., Br. J. Dermatol., 139, 618-621(1989))。
PADはフィラグリンのアルギニン残基に作用して脱イミノ化させ、シトルリン残基に変換させる。このようにフィラグリンが脱イミノ化されることでフィラグリンとケラチン繊維との親和性が弱まり、ケラチン繊維が遊離し、その結果フィラグリンはプロテアーゼの作用を受け易くなり、最終的にNMFにまで分解されるものと考えられる。
本発明者は、PADで脱イミノ化したフィラグリンを分解する酵素として、カルパイン−1を特定しており、その分解産物としての小さいペプチド断片がブレオマイシン水解酵素(BH)によってアミノ酸単位、即ちNMFにまで分解されることを明らかにしている(Journal of Investigative Dermatology (2008), Volume 128, ABSTRACTS, S90, 539, 第30回日本分子生物学会年会・第80回日本生化学会大会 合同大会 講演要旨集、第583頁、JOURNAL OF BIOLOGICAL CHEMISTRY 284, NO. 19, pp. 12829-12836, 2009、3P−0251、及び特願2008−135944号(以下第944号出願と称する))。
最近の研究で、アトピー性皮膚炎の一部は、プロフィラグリン遺伝子の異常により生じることが知られており、アトピー性皮膚炎患者の5-50%程度で当該遺伝子の異常が見られる(Smith FJD, et al. Nat Genet 38:337-42 (2006); Aileen Sandilands1, et al., J. I. Dermatol., 127, 1282-1284 (2007) 及びNomura T, et al., J. I. Dermatol., 128(6):1436-41 (2008))。しかしながら、アトピー性皮膚炎患者の皮膚では、必ずしもフィラグリンの発現が劇的に低下しているわけではない。
Blank I.H. J.I. Dermatol., 18, 433 (1952) Blank I.H. J.I. Dermatol., 21, 259 (1953) Horii I. et al., Br. J. Dermatol., 121, 587-592(1989) Tanaka M. et al., Br. J. Dermatol., 139, 618-621(1989) Kamata et al., J. Biochem., 141, 69-76, 2007 Journal of Investigative Dermatology (2008), Volume 128, ABSTRACTS, S90, 539 第30回日本分子生物学会年会・第80回日本生化学会大会 合同大会 講演要旨集、第583頁、3P−0251 JOURNAL OF BIOLOGICAL CHEMISTRY 284, NO. 19, pp. 12829-12836, 2009 Smith FJD, et al. Nat Genet 38:337-42 (2006) Aileen Sandilands1, et al., J. I. Dermatol., 127, 1282-1284
本発明は、NMF産生酵素の発現の変動による新たな肌荒れメカニズムに基づいて、アトピー性皮膚炎による乾燥肌を改善又は予防する薬剤をスクリーニングする方法や、アトピー性皮膚炎による乾燥肌を評価する方法、アトピー性皮膚炎による乾燥肌を改善又は予防する方法、さらには、アトピー性皮膚炎による乾燥肌を診断する方法、を提供することを課題とする。
上記第944号出願において、本発明者は、ブレオマイシン水解酵素の活性亢進がNMFの産生を介して皮膚バリアー機能を改善することを明らかにした。このように、ブレオマイシン水解酵素はNMF産生の最終段階で働いていると考えられる。しかし、興味深いことに、アトピー性皮膚炎により生じる乾燥肌に関しては、多くのアトピー性皮膚炎患者で依然としてフィラグリンの発現が見られることから、フィラグリン遺伝子の異常とは別の原因で生じることが予想される。
本発明者は、ヒト皮膚におけるブレオマイシン水解酵素の発現低下が、MMF産生機構の異常によって生じる皮膚バリアー機能の低下のみならず、主に免疫異常に起因するアトピー性皮膚炎や当該皮膚炎によって生じる乾燥皮膚等とも関係しているとの仮説のもと、乾燥肌ヒト試験による当該酵素の発現の変動を検証し、そしてその発現制御機構の解析等を行った。その結果、本発明者は、ブレオマイシン水解酵素の発現低下がアトピー性皮膚炎によって生じる乾燥肌と関連しており、且つ当該酵素をコードする遺伝子の5’フランキング領域内に当該酵素の発現を顕著に誘導する制御領域が存在することを見出した。詳しくは、本発明者は、BHの5’‐フランキング領域をクローニングした。その欠失分析では、−216bp上流の中にBHプロモーター活性に重要な領域が同定された。電気泳動移動度シフト・アッセイでは、試験管内において、MZF‐1、Sp‐1、及びインターフェロン調節因子(IRF)‐1/2がこの領域に結合できることを明らかにした。そのうえ、MZF‐1及びSp‐1モチーフの部位特異的突然変異誘発では、BHプロモーター活性が大きく低下した。これらのデータは、BH発現がMZF‐1及びSp‐1を介して上方制御されることを示唆した。興味深いことに、Th1サイトカインであるインターフェロン(IFN)‐γは、BHの発現を有意に減少させた。部位特異的突然変異誘発と低分子干渉RNAを用いた分析では、BH発現に対するIFN‐γの抑制効果を立証した。その一方、Th2サイトカインであるIL‐4は、BH発現に対して直接的な作用を全く示さなかった。しかしながら、それは培養ケラチノサイトにおいてMZF‐1及びSp‐1を下方制御したので、IL‐4がBH調整のサプレッサーとして働くことができることが示唆された。最後に、ADを患っている患者の皮膚においてBHの発現を調べた。BH活性と発現はAD病変皮膚において大きく減少していたので、ADにおけるフィラグリン分解経路の欠陥が示唆された。以上にとおり、本発明者は、BHの転写が分化中及び炎症中の両方で調節されているであろうことを見出し、本願発明を完成させるに至った。
従って、本願は以下の発明を包含する。
(1)候補薬剤が、対照薬剤と比較してブレオマオシン水解酵素の発現及び/又は活性を有意に亢進する場合に、当該候補薬剤をアトピー性皮膚炎による乾燥肌の改善剤と評価する、アトピー性皮膚炎による乾燥肌の改善剤をスクリーニング評価する方法。
(2)ブレオマイシン水解酵素をコードする遺伝子の転写活性が対照のものと比較して有意に亢進している場合に、前記発現及び/又は活性が有意に亢進していると判断される、(1)の方法。
(3)ブレオマイシン水解酵素をコードする遺伝子の転写調節領域に対する、転写因子IRF-1, IRF-2, MZF-1, SP-1, 及び/又はGATA-1の結合活性が対照のものと比較して有意に亢進している場合に、前記転写活性が有意に亢進していると判断される、(2)の方法。
(4)皮膚組織におけるブレオマオシン水解酵素の発現及び/又は活性を有意に亢進させることによる、アトピー性皮膚炎による乾燥肌を改善又は予防する方法。
(5)ブレオマイシン水解酵素をコードする遺伝子の転写活性を亢進させることで前記発現及び/又は活性が有意に亢進される、(4)の方法。
(6)ブレオマイシン水解酵素をコードする遺伝子の転写調節領域に対する、転写因子IRF-1, IRF-2, MZF-1, SP-1, 及び/又はGATA-1の結合活性を亢進させることで前記発現及び/又は活性が有意に亢進される、(5)の方法。
(7)皮膚組織におけるブレオマオシン水解酵素の発現及び/又は活性が、対照の皮膚のものと比べ有意に低下している場合に、アトピー性皮膚炎による乾燥肌の傾向があると診断し、対照の皮膚のものと比べ同程度以上であるなら、アトピー性皮膚炎による乾燥肌の傾向がないと診断する、アトピー性皮膚炎による乾燥肌の素因を診断する方法。
(8)ブレオマイシン水解酵素をコードする遺伝子の転写活性が対照のものと比較して有意に低下している場合に、前記発現及び/又は活性が有意に低下していると判断される、(7)の方法。
(9)転写因子IRF-1, IRF-2, MZF-1, SP-1, 及び/又はGATA-1の結合活性が対照のものと比較して有意に低下している場合に、前記転写活性が低下していると判断される、(8)の方法。
本発明により確立された、ブレオマオシン水解酵素の発現の変動による新たな肌荒れメカニズム、特にブレオマオシン水解酵素の発現及び/又は活性を指標とするスクリーニング系に基づき、アトピー性皮膚炎による乾燥肌の新規な改善剤の探索が可能となる。更に、本願発明の方法は、アトピー性皮膚炎によらない通常の乾燥肌の改善剤の探索にも適用可能であると考えられる。事実、本願の実施例では、ブレオマオシン水解酵素の発現及び/又は活性が低い群では、有意にバリアー機能(経皮水分蒸散量:TEWL)が低下し、角層水分量も低下していた。
テープストリッピングにより得られたヒト皮膚抽出液中のブレオマイシン酵素量とテープストリッピングの回数との関係を示すウェスタンブロット図。 ヒト皮膚抽出液中のブレオマイシン酵素量と乾燥肌との関係を示すウェスタンブロット図。T,A:乾燥を感じない被験者由来のサンプル;N:やや乾燥を感じる被験者由来のサンプル及び;M:乾燥を感じる被験者由来のサンプル。 ヒトの腕の角層抽出液中のブレオマイシン水解酵素量とその酵素活性との関係を示すグラフ。横軸の番号は被験者の識別番号を表す。 図3で得られたブレオマイシン水解酵素量と活性との関係についての最小二乗法による一次近似。 ヒトの腕の角層抽出液中のブレオマイシン水解酵素と皮膚パラメーター(A:遊離アミノ酸、B:活性、C:TEWL)に関する統計的解析。BH low: ブレオマイシン水解酵素量<10、活性<1.5(nmol/min/ml); BH high: ブレオマイシン水解酵素量≧10、活性≧1.5(nmol/min/ml)。 肌分類用アンケートフローチャート。 図6のフローチャートに従い分類された被験者の角層の皮膚パラメーター測定結果。 正常皮膚におけるブレオマイシン水解酵素及びフィラグリンの局在を示す組織染色図。 アトピー患者皮膚におけるブレオマイシン水解酵素及びフィラグリンの局在を示す組織染色図。 定量的PCRを用いたケラチノサイトの分化とブレオマイシン水解酵素の発現量との関係を示すグラフ。縦軸の値は、80%コンフルエントの発現量を1とした場合の相対量を表す。 ブレオマイシン水解酵素をコードする遺伝子の5’フランキング領域を示す模式図。 ヒト表皮ケラチノサイトを用いたBHプロモーターのルシフェラーゼアッセイの結果を示すグラフ。 転写因子SP1, MZF1及びGATA1の発現とUV照射との関係を示すグラフ。 正常ヒト表皮角化細胞におけるブレオマイシン水解酵素及びプロテアーゼの発現とUV照射との関係を示すグラフ。 BHの5’‐フランキング領域の連続的な5’‐欠失突然変異株をPCRによって作成するために使用したプライマー。 BH及び関連因子の転写レベルを定量的リアルタイムRT‐PCRによって分析するために使用したプライマー。 電気泳動移動度シフト分析に使用したプローブ。 (A)ヒトBHの5’−フランキング領域の模式図を示す。5’‐フランキング領域内の推定転写因子結合部位はGenome Net MOTIFプログラムによる検索で明らかにした。(B)欠失分析で決定されたBHのプロモーター領域。(C)BHの最小プロモーターの配列及び推定転写因子結合部位を含む−216/−1領域のヌクレオチド配列を示す推定転写因子結合部位に下線を付した。 (A)部位特異的突然変異誘発によるBHプロモーターにおける転写因子結合部位の特性決定。推定転写因子結合部位の欠失構築体の模式図及び培養ケラチノサイトにおけるそのルシフェラーザ活性を示す。部位特異的突然変異誘発は−616/+1領域のヌクレオチド配列をまたぐ構築体で実施した。(B)BHプロモーターのcis-作用エレメントに対するMZF‐1、Sp‐1、GATA‐1、又はIRF‐1/2の結合を示す。実験は、培養ケラチノサイトからの核抽出物、及び推定転写因子結合部位MZF‐1、Sp‐1、GATA‐1、又はIRF‐1/2を含むビオチン化二本鎖オリゴヌクレオチドプローブを用いる電気泳動移動度シフト・アッセイ(EMSA)で行った。レーン1は核抽出物でのビオチニル化プローブの結合プロフィール、レーン2は2倍過剰量の非ラベル化プローブと競合させた後のビオチニル化プローブの結合プロフィールを示す。 (A)BH発現のリアルタイムRT−PCR分析。BH遺伝子発現に対するTh1、Th2、及びTh17サイトカインの効果を示す。(B)IRF‐1/2結合部位の突然変異分析。IFN‐γの存在下での培養ケラチノサイトにおけるBHプロモーター活性を示す。ケラチノサイトをBHプロモーター領域のインタクトIRF‐1/2結合部位を含むpGL3−216でトランスフェクションし、IFN‐γで24時間処理した(上パネル)。ケラチノサイトを△pGL3−616(IRF‐1/2欠失突然変異体)でトランスフェクションし、10ng/mlのIFN‐γ又はIL−4の存在下又は不在下で24時間処理した(下パネル)。(C)IRF‐1/2がBHのIFN‐γ誘発性下方調節の必須メディエーターであるかどうか判断するための低分子干渉RNA(siRNA)を使用したIRF‐1及びIRF‐2遺伝子発現の測定。ケラチノサイトをIRF‐1又はIRF‐2のsiRNA(40nM)でトランスフェクションし、24時間培養し、10ng/mlのIFN‐γで処理し、さらに24時間培養してからRNA単離を行った。右パネルにはIRF‐1及びIRF‐2のサイレンシングの効果を示す。 (A)表皮における転写調節の機構を調査するためのリアルタイムPCR法による増殖型又は分化型細胞におけるBH、カルパインI、及び推定転写因子の発現分析。(B)培養ケラチノサイトにおける転写因子MZF‐1、Sp‐1、GATA‐1、IRF‐1及びIRF‐2発現パターン分析。 (A)推定転写因子IRF‐1及びIRF‐2の発現に対するIFN‐γの効果。(B)推定転写因子IRF‐1、IRF‐2、MZF−1及びSp−1の発現に対するIL‐4の効果。 (A)正常表皮での、抗BH抗体と抗フィラグリン抗体での二重染色により示される、顆粒層におけるBHとフィラグリンの同時局在。(B)AD患者の病変皮膚と非病変皮膚からの抽出物のBH活性。
本発明は第一の観点において、候補薬剤が、対照薬剤と比較してブレオマオシン水解酵素の発現及び/又は活性を有意に亢進する場合に、当該候補薬剤をアトピー性皮膚炎による乾燥肌の改善剤と評価する、アトピー性皮膚炎による乾燥肌の改善剤をスクリーニング評価する方法、を提供する。
ブレオマイシン水解酵素は分子量250〜280kDa(六量体)の細胞質システインペプチド加水分解酵素であり、当初知られていた機能は、癌の組み合わせ化学療法に頻繁に使用される糖ペプチドブレオマイシンの代謝不活性化である。システインタンパク質分解酵素パパインスーパーファミリーの特徴的な活性部位残基を含み、コード遺伝子はヒトでは遺伝子座17q11.2に存在する(Takeda et al., J Biochem., 119, 29-36, 1996)。あらゆる組織に存在し、皮膚におけるその存在も知られていたが(Kamata et al., J. Biochem., 141, 69-76, 2007)、フィラグリンとの関係については本発明者が明らかにするまで全く知られていなかった。
組織染色の結果から、ブレオマイシン水解酵素は、フィラグリンと同様に、正常皮膚では表皮上層で多く発現していることが明らかになった(図8)。一方、アトピー性皮膚炎患者では、アトピー皮疹部で当該酵素及びフィラグリンの発現が低下する(図9)。これは、プロフィラグリン遺伝子の異常ではなく、その分解酵素系の異常がアトピー性皮膚炎の原因となることを強く示唆するものである。また、アトピー皮膚炎患者の皮膚では、病変部のみならず、非病変部でもブレオマイシン水解酵素活性は有意に低い(データは示さない)。
更に、ブレオマイシン水解酵素の発現量の変動について培養ケラチノサイトを用いて検討した結果、当該酵素は、分化していないケラチノサイトではあまり発現していないのに対し、コンフルエントに達し分化が進んだケラチノサイトで高発現していること、基底細胞ではほとんど発現せず、分化が進み表皮細胞へと移行してから高発現することが分かった(図10)。この結果は、上記細胞染色の結果を裏づけている。
本発明に係るブレオマイシン水解酵素の発現及び/又は活性の測定は、当該酵素の発現及び/又は活性を測定することのできる任意の方法に従い、例えばブレオマイシン水解酵素に特異的な抗体を利用する免疫測定方法、例えば酵素ラベルを利用するELISA法、放射性ラベルを利用するRIA法、免疫比濁法、ウェスタンブロット法、ラテックス凝集法、赤血球凝集法等に従い、定量的又は定性的に実施することができる。免疫測定法の方式には競合法やサンドイッチ法が挙げられる。より具体的には、上記活性の測定は、例えば、シトルリンがブレオマイシン水解酵素にほぼ特異的な基質であるという性質を利用し、その蛍光合成基質であるCit−MCAの分解を蛍光分光光度計で評価することで行うことができる。ブレオマイシン水解酵素量の測定は、当該酵素をコードする遺伝子の発現量の測定により行うこともできる。この場合、好ましくは、ブレオマイシン水解酵素の発現量は細胞内のブレオマイシン水解酵素をコードするmRNAの量を測定することにより決定する。mRNAの抽出、その量の定量的又は定性的測定も当業界において周知であり、例えばPCR法、3SR法、NASBA法、TMA法など、さまざまな周知の方法により実施することができる。他に、ブレオマイシン水解酵素はin situハイブリダイゼーション法やその生物活性の測定を通じて定性的に決定することができる。
本発明のアトピー性皮膚炎による乾燥肌の改善剤をスクリーニング評価する方法において、候補薬剤が、対照薬剤と比較してブレオマオシン水解酵素の発現及び/又は活性を有意に亢進する場合に、当該薬剤はアトピー性皮膚炎による乾燥肌の改善剤と評価される。本発明の方法に従いスクリーニングされる薬剤は、乾燥肌、特に、アトピー性皮膚炎に起因する乾燥肌に有効と考えられる。
日本皮膚科学会アトピー性皮膚炎診療ガイドラインによると、「アトピー性皮膚炎」とは、増悪・寛解を繰り返す、掻痒のある湿疹を主病変とする疾患であり、当該疾患は、掻痒の有無、特徴的皮疹として、紅斑,湿潤性紅斑,丘疹,漿液性丘疹,鱗屑,痂皮等の急性病変や、浸潤性紅斑・苔癬化病変,痒疹,鱗屑,痂皮等の慢性病変の有無に基づいて診断することができる。本明細書で使用する場合、「アトピー性皮膚炎による乾燥肌」とは、フィラグリン遺伝子の異常を含め、上記定義により確定診断がなされたアトピー性皮膚炎を伴う乾燥肌を意味する。
本発明のスクリーニング方法は、試験する薬剤の存在下でブレオマイシン水解酵素をコードするmRNAの発現が亢進するのを通常のPCRにより測定する方法、当該酵素発現に関与するプロモーター領域をルシフェラーゼ遺伝子ベクターに挿入し、プロモーターアッセイ系として発現の強弱を直接測定する方法などがある。後者の場合、BHのプロモーター領域はBH発現が最大となる-216bpから-816bpの領域を使用することが好ましい。また、発現量の測定には、ルシフェラーゼのみならず、業界で一般に使用されているアザミグリーンなどの蛍光蛋白を使用すること可能である。これらの融合遺伝子を含むベクターを細胞に導入し、薬剤の存在下で細胞を培養し、通常24時間後に細胞を溶解し、ルシフェラーゼ活性を測定することにより、薬剤のBH発現に及ぼす作用を測定できる。用いる細胞は、市販の正常表皮細胞(NHEK:クラボーなど)や不死化したHaCaT細胞などが使用できるが、これに限定されるものではない。ルシフェラーゼ活性の測定には、ロッシュダイアグノスティカのリスフェラーゼアッセイキットなどを使用することにより実施することが好ましい。
本明細書で使用する場合、「対照薬剤と比較してブレオマオシン水解酵素の発現及び/又は活性を有意に亢進」とは、乾燥肌改善効果、特にアトピー性皮膚炎による乾燥肌に対し改善効果がない対照薬剤と比較して、測定されたブレオマイシン水解酵素の発現量又は活性、あるいはその両方が、例えば、それぞれ120%以上、又は150%以上、又は200%以上である場合をいう。
ブレオマイシン水解酵素の発現及び/又は活性の亢進は、当該酵素をコードする遺伝子の転写活性を亢進することによっても達成することができる。ブレオマイシン水解酵素をコードする遺伝子の5’−フランキング領域、特に転写調節領域と、当該領域に結合する転写因子とを図11に示す。ブレオマイシン水解酵素が発現するには、上記転写調節領域は当該酵素のコード配列から216bp〜1216bp下流までの領域を有していればよい。高いブレオマイシン水解酵素活性を得る観点から、当該転写調節領域は816bp下流までの領域を含んでいることが好ましい。
ブレオマイシン水解酵素の発現には、当該酵素のコード配列から少なくとも216bp下流までの領域を含んでいればよい。図11に記載の転写因子の中でも、この領域に含まれるIRF-1, IRF-2, MZF-1, SP-1, GATA-1の結合活性を亢進することで、ブレオマイシン水解酵素の発現は特に亢進すると考えられる。事実、ブレオマイシン水解酵素は、紫外線(UV)照射によってその発現が亢進されるところ(データは示さない)、MZF-1, GATA-1の発現亢進とUVの強度及び照射時間との間には相関関係が見られる(図13)。
ここで、候補薬剤によりブレオマイシン水解酵素をコードする遺伝子の転写活性、又は当該遺伝子の転写調節領域に対する転写因子の結合活性は、対照薬剤と比較して有意に、例えばそれぞれ120%以上、又は150%以上、又は200%以上亢進される場合、ブレオマイシン水解酵素の発現量及び/又は活性が有意に亢進されているとみなすことができる。
ブレオマオシン水解酵素の発現及び/又は活性は、サイトカインによっても影響を受ける。例えば、アトピー性皮膚炎に関与していることが知られている、Th2サイトカインの一種であるインターロイキン−4(IL-4)は、ブレオマイシン水解酵素の発現をダウンレギュレートする。これは、アトピー性皮膚炎患者の皮膚で見られるブレオマイシン水解酵素の低発現を裏付けるものである。一方、IL-4と反対にIgE産生を抑制する働きを有するTh1サイトカインの代表、インターフェロンγは、ブレオマオシン水解酵素の発現を有意に亢進する。また、Th2サイトカインで炎症性サイトカインの代表である腫瘍細胞壊死因子アルファ(TNFα)も当該酵素の発現を有意に亢進させる。これらの物質のみならず、ブレオマオシン水解酵素の発現及び/又は活性は、UV照射によっても亢進される。結果は示さないが、体表面の中でも、紫外線照射を受けやすい頬などの皮膚におけるブレオマイシン水解酵素の活性は、UV照射によって亢進されることが確認されている。
本発明は第二の観点において、皮膚組織におけるブレオマオシン水解酵素の発現及び/又は活性を有意に亢進させることによる、アトピー性皮膚炎による乾燥肌を改善又は予防する方法、を提供する。
本発明のアトピー性皮膚炎による乾燥肌を改善又は予防する方法においては、皮膚におけるブレオマイシン水解酵素の発現及び/又は活性を、例えば当該処置方法を施す前の皮膚における発現及び/又は活性と比べ、有意に亢進させる。「有意に亢進」とは、例えばブレオマイシン水解酵素の発現及び/又は活性を120%以上、又は150%以上、又は200%以上の値にする場合をいう。
本発明の方法では、ブレオマオシン水解酵素の発現及び/又は活性を有意に亢進させる任意の薬剤が使用される。また、当該酵素の発現や活性を亢進するものであれば、薬剤に限定されない。本発明の方法で使用する薬剤等は、皮膚への適用が可能でかつ本発明の目的を達成できる限り、任意の形態で皮膚に適用することができ、また単独で適用しても、あるいは他の任意の成分と共に配合して適用してもよい。また適用する皮膚の場所も限定されず、頭皮を含む体表面のあらゆる皮膚を含む。
本発明は第三の観点において、皮膚組織におけるブレオマオシン水解酵素の発現及び/又は活性が、対照の皮膚のものと比べ有意に低下している場合に、アトピー性皮膚炎による乾燥肌の傾向があると診断し、対照の皮膚のものと比べ同程度以上であるなら、アトピー性皮膚炎による乾燥肌の傾向がないと診断する、アトピー性皮膚炎による乾燥肌の素因を診断する方法、を提供する。
被験者の肌が乾燥肌か否かは、被験者、医師等の主観により判断するか、皮表水分測定器を用いて皮膚の水分量を測定することで行うことで客観的に判断することができる。例えば、本明細書の実験3で説明するとおり、図6に記載のフローチャートに従い、脂っぽさ、かさつきやすさ等に基づいて被験者等の主観により「乾燥肌」か否かを判断することもできる。
乾燥肌の判定は容易に行うことができるが、被験者の肌が「アトピー性皮膚炎による乾燥肌」の素因を有するかの判断は困難なことがある。本発明の診断方法によれば、被験者の現在の肌状態だけではなく、アトピー性皮膚炎による乾燥肌に罹りやすいか否かを診断することが可能となる。
「ブレオマオシン水解酵素の発現及び/又は活性が、対照の皮膚のものと比べ有意に低下」とは、例えば皮膚医学的見地から潤い肌であると医師により判断された正常な「対照の皮膚」と比べ、測定されたブレオマイシン水解酵素の発現及び/又は活性が80%以下、又は70%以下、又は60%以下、又は50%以下、又は30%以下、又は10%以下である場合をいう。「対照の皮膚のものと比べ同程度以上」とは、例えば皮膚医学的見地から潤い肌であると医師により判断された正常な「対照の皮膚」と比べ、測定されたブレオマイシン水解酵素の発現及び/又は活性が例えば80%以上、又は90%以上、又は100%以上である場合をいう。
被検体となる皮膚角層試料の採取は任意の方法で実施することができるが、簡便性の観点からテープストリッピング法が好ましい。テープストリッピングとは、皮膚表層に粘着テープ片を貼付し、剥がし、皮膚角層をその剥がした粘着テープに付着させることで角層試料を採取する方法である。テープストリッピング法を利用すれば、角層をテープ一枚採取するだけでブレオマイシン水解酵素の発現や活性の測定が可能となり、ブレオマイシン水解酵素を指標とした、アトピー性皮膚炎による乾燥肌についての非侵襲性の評価方法が可能となる。テープストリッピングの好ましい方法は、まず皮膚の表層を例えばエタノールなどで浄化して皮脂、汚れ等を取り除き、適当なサイズ(例えば5×5cm)に切った粘着テープ片を皮膚表面の上に軽く載せ、テープ全体に均等な力を加えて平たく押さえ付け、その後均等な力で粘着テープを剥ぎ取ることで行われる。粘着テープは市販のセロファンテープなどであってよく、例えばScotch Superstrength Mailing Tape (3M社製)、セロファンテープ(セロテープ(登録商標);ニチバン株式会社)等が使用できる。
以下、具体例を挙げて、本発明を更に具体的に説明する。なお、本発明はこれにより限定されるものではない。
本実験では以下の材料を使用した。
カルパインIは、EMD Bioscience社より購入した。ブレオマイシン水解酵素は、ヒト表皮角層より、非特許文献5に従い作製した。ヒトIL‐4及びIFN‐γは、PEPROTECH EC(London, England)から購入した。ヒトIL‐13及びIL‐17A/Fは、R&D SYSTEM(MINNEAPOLIS, MN)製のものとした。シトルリン4‐メチルクマリル‐7‐アミド(Cit‐MCA)をBachem Bioscience(Bubendorf, Switzerland)から入手した。使用される他のすべての化学物質は、試薬グレードのものであった。
ケラチノサイトの培養
新生児期表皮由来の正常ヒト表皮ケラチノサイト(Kurabo、Osaka, Japan)を、低濃度(0.03mM)のカルシウム、及びHKGS Growth Supplement(Cascade Biologics)を含むEpiLife培地(Cascade Biologics、Portland, OR)中で培養した。すべての細胞を5%のCO2を加えながら37℃にてインキュベートし、そして継代4代以内に使用した。ケラチノサイトを、コンフルエント70%、コンフルエント100%、コンフルエントの2日後、及び2mMのカルシウム中コンフルエントの2日後に採取した。
実験1
ブレオマイシン水解酵素は、NMF産生の最終段階で働いていると考えられる。この場合、乾燥肌では本酵素の発現が低下している可能性がある。本実験では、皮膚におけるブレオマイシン水解酵素の発現及び/又は活性の低下が、乾燥肌と関連しているか否かについて検討した。
皮膚角層試料は、透明粘着テープ(セロテープ(登録商標)(NICHIBAN))を腕の皮膚表面に貼付したのち剥離するテープストリッピングにより採取した。皮膚角層の付着したこのテープを裁断、抽出バッファー(0.1M Tris-HCl(pH8.0), 0.14M NaCl, 0.1% Tween-20, 1ml)に浸漬、超音波処理(20 sec ×4)にかけ、角層抽出液を作成した。当該抽出液をウェスタンブロットにかけた。使用した抗ブレオマイシン水解酵素(BH)抗体は、鎌田ら(Journal of Biological Chemistry 2009)により作製された抗体を用いた。具体的には、角層抽出液をSDS電気泳動後、Immobilon-P (Millipore社)に転写し、この転写された膜を洗浄後、抗BH抗体と室温で1時間反応させた。さらに洗浄により抗体を除去したのち、HRP結合二次抗体を反応させた。洗浄後、ECL Plus Western Blotting Detection Kit (GE Healthcare)により発光させたBH蛋白バンドをX線フィルムに焼付け、バンドの濃淡により、発現量を推定した。結果を図1及び図2に示す。
図1中、検体1は本人が乾燥肌と自分で思っている人の皮膚角層試料であり、検体2は乾燥肌ではないと考えている健康な学生の皮膚角層試料である。また、図2中の検体T及びAは、乾燥を感じない被験者由来のものであり、検体Nはやや乾燥すると感じる被験者、そして検体Mは乾燥を感じる被験者由来のものである。検体1中のブレオマイシン水解酵素の発現量は少なく、一方、検体2中の当該酵素発現量は多い。この結果から、検体1、2は、それぞれ乾燥肌、潤い肌に由来するものであることがわかる。また、検体1を用いた結果からは、乾燥肌では、NMF産生の場である表皮表面に近いほど、ブレオマイシン水解酵素量が低下していることがわかる。図2において、検体TおよびAは、特に乾燥を感じない検体から得られた抽出液、検体NおよびMは、乾燥を強く意識する検体から得られた抽出液のウェスタンブロット像を示す。
実験2
本実験では、ヒト皮膚におけるブレオマイシン水解酵素の量や活性の個体差と、当該酵素量と活性の相関とについて検討した。実験1に記載の方法に従い、20〜25才の女子学生40名の腕の皮膚から角層抽出液を作成した。当該抽出液中のブレオマイシン水解酵素量とその酵素活性を、Kamata et al (J. Biol. Chem., Vol. 284, Issue 19, 12829-12836, May 8, 2009)らの方法に従い測定した。発現量はウェスタンブロットにより、そして酵素活性は、当該酵素のアミノペプチダーゼ活性について、蛍光基質であるCit−β−NAの分解量を測定することで評価した。結果を図3に、そしてその相関図を図4に示す。図4の結果から明らかなように、ブレオマイシン水解酵素量とその活性との間には相関関係が存在している。
続いて、上記角層抽出液について、ブレオマイシン水解酵素と様々な皮膚パラメーターに関して統計的な解析を行った。本実験では、40人の角層抽出液を以下の2種類に分類した。ウェスタンブロットの結果から明らかとなったブレオマイシン水解酵素量をデンシトメーターで数値化した後、1を任意の単位として表示した場合にブレオマイシン水解酵素量が10未満であり、且つ当該酵素の活性が1.5nmol/min/ml未満である抽出液:ブレオマイシン水解酵素のタンパク質量が少なく、且つ活性が低いもの(BH low);それ以外のもの:タンパク質量が多く、且つ活性が高いもの(BH high)。
遊離アミノ酸は、Kamata et al (J. Biol. Chem., Vol. 284, Issue 19, 12829-12836, May 8, 2009)らの方法に従い測定した。具体的には、カルパインIで分解したフィラグリンペプチドと各抽出液とを反応させ、フルオレサミンを用いてアミノ基を定量することで遊離アミノ酸量を測定した。遊離アミノ酸の測定結果を図5Aに示す。図5A中の縦軸の単位は、測定試料3ml中の総遊離アミノ酸量(nmol)を表す。
ブレオマイシン水解酵素の活性は、上述のとおり、当該酵素のアミノペプチダーゼ活性を、蛍光基質であるCit−β−NAの分解量を測定することで評価した。ブレオマイシン水解酵素活性の測定結果を図5Bに示す。図5B中の縦軸の単位は、Cit−β−NAの分解量(nmol/min/ml))を表す。
上記学生の皮膚のTEWL は、Vapometer (Delfin Technologies, Ltd, Finland)を用いて測定し、 g/m2/hとして表示した。TEWLの測定結果を図5Cに示す。
図5Cに示すとおり、ブレオマイシン水解酵素活性の低い群(2.5U<)と高い群とでは、角層水分量に有意な差が存在していた。更に、当該酵素の量と活性の両方が低い群では、遊離アミノ酸が少なく、そしてTEWLも高い(図5A及び5C)。
データは示さないが、遊離アミノ酸の低い群(1000<)と高い群とでは、NMF、ウロカニン酸の量に有意な差が、そしてNMFの低い群(0.8<)と高い群とでは、ウロカニン酸に有意な差が存在していた。また、TEWLの低い群(2.5<)と高い群とでは、NMF、乳酸、尿素に有意な差が存在していた。ウロカニン酸がフィラグリンに多数含まれるヒスチジンより作られることを考慮すると、ブレオマイシン水解酵素がフィラグリン分解において重要であることが分かる。
本実験の結果から、ブレオマイシン水解酵素の絶対量が少ない場合、遊離アミノ酸量及びバリアー機能が共に有意に低下することが分かる。データは示さないが、頬由来の角層抽出液を用いた場合でも、ブレオマイシン水解酵素量とバリアー機能との比例関係が確認されている。
実験3
本実験では、図6に記載のフローチャートに基づいて上記女子学生にアンケートを行い、各学生の肌を潤い肌、乾燥肌、乾燥型脂性肌、脂性肌の4つ分類した。アンケート結果と、上記実験2で測定した皮膚パラメーターの結果との相関関係を図7に示す。図7からは、脂性乾燥肌と分類された学生のブレオマイシン水解酵素活性が有意に高いことが分かる。
実験4
本実験では、皮膚におけるブレオマイシン水解酵素とフィラグリンの局在について検討する。
免疫組織化学染色
免疫組織化学染色は、Kamata et al (J. Biol. Chem., Vol. 284, Issue 19, 12829-12836, May 8, 2009)に記載の方法により行った。材料は5μm厚のヒト皮膚の冷凍切片、そして抗ラットBH IgGを用いた。詳しくは、ヒト皮膚標本を、インフォームドコンセントの上で、東京医科大学のアトピー性皮膚炎を患っている患者から得た。本研究は、倫理(Human Ethics)に関する東京医科大学施設内審査委員会と資生堂特別部会によって承認された。
ヒト・アトピー性皮膚炎(病変皮膚と非病変皮膚)及び正常皮膚の切片を、抗ラットBH IgG及び抗ヒト・フィラグリンIgGと共に室温にて1時間インキュベートし、その後、PBSで洗浄し、そして蛍光結合二次抗体であるAlexa Fluor 555又は488(Molecular Probes Inc.、Eugene, OR)と共にさらにインキュベートした。DAPI(4’,6’‐ジアミジノ‐2‐フェニルインドール;Molecular Probes)を核の可視化に使用した。
正常皮膚の組織染色結果を図8に、そして健常者由来の皮膚(正常皮膚)とアトピー性皮膚炎患者由来の皮膚(アトピー皮疹部)との対比結果を図9に示す。図8に示すとおり、ブレオマイシン水解酵素は、表皮上層で高発現しており、フィラグリンと同一局在を示した。一方、アトピー皮疹部では、正常皮膚と比較してブレオマイシン水解酵素及びフィラグリンの発現が低かった(図9)。
定量的PCR
ケラチノサイトにおけるブレオマイシン水解酵素の発現量は、以下の方法で、定量的PCRにより測定した。Light Cycler 480 (Roche Diagnostics GmbH, Mannheim, Germany, 試薬はLight Cycler FastStart DNA Master CYBR Green Iを用いた。SYBR Green I master mix 10 μlに以下のブレオマイシン水解酵素プライマーをそれぞれ 0.6 μl、水を6.8 μl加え、全量を20 μlとし、95℃ 15秒、55℃ 20秒、72℃ 20秒で、45サイクルのPCRを行なった。得られた結果は、ハウスキーピング遺伝子であるG3PDHの結果と比較して補正した。
フォワードプライマー: TGTGGTTTGGCTGTGATGTT (配列番号1)
リバースプライマー: GCACCATCCTGATCATCCTT (配列番号2)
上記定量的PCRの結果を図10に示す。図10に示すとおり、ブレオマイシン水解酵素は、80%コンフルエントのケラチノサイト、すなわち、分化していないケラチノサイトと比較して、コンフルエントに達した、すなわち、分化したケラチノサイトで高発現していた。言い換えると、本実験結果から、当該酵素が分化前の基底細胞ではあまり発現しないことが分かる。この定量的PCRの結果は、上記組織染色の結果を裏付けるものである。
実験5
1)ヒト表皮ケラチノサイトを用いたBHプロモーターのルシフェラーゼアッセイ:
増殖期(約80%コンフルエント)もしくは、分化後(コンフルエント後、空気曝露し、2 mMカルシウムを添加し、さらに2日培養を継続したもの)のケラチノサイトに、Lysis buffer(200 μlを加え、細胞を溶解させる。測定には、Bright-Glo Luciferase assay System (Promega Co., Madison, WI, USA)を用いた。サンプル20 μlを所定のチューブに移し、Auto Lumat Plus (LB953)8Berthhold GmbH & Co. KG. Bad Wildbad Germany)を用いて測定した。図12の結果から、ブレオマイシン水解酵素が発現するには、上記転写調節領域は、当該酵素のコード配列から少なくとも216bp下流までの領域を有していればよいことが分かる。
2)NHEKへのUV照射:
30 mJもしくは、60 mJのUVBを照射し(Torex Fl20S-E-30/DMR, 20W, Toshiba Medical Supply)、3時間後、24時間後、48時間後に所定の方法にてRNAを回収し、定量PCRにより、ブレオマイシン水解酵素及びカルパインのmRNA発現を測定した。測定の結果、30mJ照射後48時間で回収した試料が最もブレオマイシン水解酵素のmRNAを発現していた(図13)。
3)ブレオマイシン発現に及ぼすサイトカインの影響
IL-4 (終濃度:0.1, 1.0, 10 ng/ml)、TNFα(終濃度:0.1, 1.0, 10 ng/ml)、IFNγ(終濃度: 1.0, 10, 100 ng/ml)のそれぞれを、増殖期の培養ケラチノサイトに添加し、24時間インキュベートした後、Isogenを用いてRNAを採取した。定量PCRにより、ブレオマイシン水解酵素のmRNA発現を測定した。結果を図14に示す。図14の結果から、Th2サイトカインの一種であるインターロイキン−4(IL-4)は、ブレオマイシン水解酵素の発現をダウンレギュレートすることが分かる。
実験6
ヒトBH遺伝子の特性決定
1)BHの5’‐フランキング領域のクローニング
ヒトBH遺伝子のヌクレオチド配列に基づいて、5’‐フランキング領域を、遺伝子特異的プライマー1(GSP1)、5’‐tccctcgagtctgtatcagagcagctaca‐3’(配列番号3)と遺伝子特異的プライマー2(GSP2)、5’‐tgaacacgcgtccgagctgctcatggcg‐3’(配列番号4)を使用して、製造業者の取扱説明書に従いGenome Walker Kit(Clontech、Mountain View, CA)を用いて増幅した。簡単に言えば、5%のジメチルスルホキシドの存在下、Ex Taq DNAポリメラーゼ(Takara、Shiga, Japan)を用いる、製造業者によって推奨されるツーステップPCRプロトコール:94℃にて25秒間、そして72℃にて4分間を7サイクル、それに続いて94℃にて25秒間、そして67℃にて4分間を32サイクル、そして最後の伸長67℃にて4分間、を使用して、GSP1とアダプタープライマー(AP)1を用いた一次PCRを実施した。次いで、一次PCR混合物を希釈し、そしてGSP2とAP2を用いた二次PCR増幅の鋳型として使用した。7サイクルの代わりに5サイクルの初回サイクルと、それに続く32サイクルの代わりに20サイクルの使用を除いて、二次PCRは一次PCRと同一であった。BHの5’‐フランキング領域の連続的な5’‐欠失突然変異株を、図15に列挙したプライマーを使用したPCRによって産出した。増幅後に、すべてのPCR産物をpGEM‐T簡易ベクター(Promega、Madison, WI)内にクローン化し、そしてABI Prism 310 Genetic Analyzer(Applied Biosystems、Foster City, CA)を用いて配列決定した。
レポーター・プラスミドpGL3‐1216/+1を構築するために、PCRを、以下の条件下:最初の変性94℃にて4分間、94℃にて30秒間、60℃にて1分間、72℃にて1分間を30サイクル、そして最後に伸長72℃にて4分間、鋳型としてのpGEM‐T‐1216/+1、並びに制限部位Kpn I及びMlu Iを含む1組の特異的なBHプライマー(5’‐ccgggtaccatcagagttccttagaa‐3’(配列番号5)及び5’‐taaatacgcgttggcgcccacgctgccg‐3’)(配列番号6)を使用して実施した。得られたPCR産物を、Kpn I及びMlu Iで消化し、そしてpGL3‐Basicベクター(Promega)内にクローニングした。なお、pGL3‐Basicベクターは、ホタル・ルシフェラーゼ遺伝子を含んでいる。構築物のすべてを、QIAGEN Plasmid Midi Kit(QIAGEN、Duesseldorf, Germany)を使用することで調製した。
2)部位特異的突然変異誘発
MZF‐1、Sp‐1、及びIRF‐1/2結合部位の突然変異誘発を、製造業者の取扱説明書に従ってQuick change site‐directed mutagenesisキット(Stratagene、La Jolla, CA)を使用することによって実施した。Sp‐1に欠失変異を作製するために、5’‐ggaccccgtttcagcctccccgcc-3’ (配列番号7)(突然変異体Sp‐1部位の順方向プライマー)と5’‐ggcggggaggctgaaacggggtcc‐3’ (配列番号8)(突然変異体Sp‐1部位の逆方向プライマー)を使用した。MZF‐1突然変異体については、5’‐gactcagcaacgcggttttgtccctccgc‐3’(配列番号9)(突然変異体MZF‐1部位の順方向プライマー)と5’‐gcggagggacaaaaccgcgttgctgagtca‐3’(配列番号10)(突然変異体MZF‐1部位の逆方向プライマー)を使用した。IRF‐1/2突然変異体については、5’‐gccgccgagcctccggcgctcc‐3’ (配列番号11)(突然変異体IRF‐1/2部位の順方向プライマー)と5’‐ggagcgccggaggctcggcggc‐3’ (配列番号12)(IRF‐1/2部位の逆方向プライマー)を使用した。
3)トランスフェンクションとプロモーター活性の計測
ケラチノサイトを、5×104細胞/ウェルの密度にて12ウェル組織培養プレート内で培養し、そしてFuGene HD Transfection試薬(Roche Diagnostics、Basel, Switzerland)を使用して、それぞれの構築物1μgを用いてトランスフェンクションした。トランスフェンクション効率を補正するために、すべての細胞にHSV‐TKプロモーターの制御下にあるウミシイタケ(Renilla)ルシフェラーゼ遺伝子を含むpGL4.74[hRluc‐TK]ベクターPromega)を同時トランスフェンクションした。特に断りのない限り、細胞を、トランスフェンクションの24時間後に採集し、そして1ウェルあたり250μlのPassive lysisバッファー(Promega)を用いて溶解した。ルシフェラーゼ活性を、Dual Luciferase Reporter Assay System(Promega)及びAutolumat plus luminometer(Berthold Technologies、Bad Wildbad, Germany)を用いて分析した。ホタル・ルシフェラーゼ活性を、ウミシイタケ・ルシフェラーゼ活性について標準化した。各構築物について、3つのトランスフェンクションを独立に実施し、そして結果を平均値として表した。
4)定量的リアルタイムRT‐PCR分析
BH及び関連因子の転写レベルを、定量的リアルタイムRT‐PCRによって分析した。全RNAを、製造業者の取扱説明書に従ってISOGEN(Nippon Gene、Tokyo, Japan)を用いて培養細胞から抽出した。SuperScript(商標)II(Invitrogen、Carlsbad, CA)を用いてcDNAに逆転写した。リアルタイムRT‐PCRを、製造業者の取扱説明書に従ってLightCycler 480 SYBR Green I Master(Roche Diagnostics)を使用してLightCycler raid cyclerシステムにより実施した。使用したプライマーに関する情報を、図16に示す。グリセルアルデヒド‐3‐リン酸デヒドロゲナーゼ(GAPDH)を基準遺伝子として使用した。増幅した断片の特異性を、LightCycler分析ソフトウェアによる融解曲線の定量分析によって確認した。mRNAの量を、GAPDHのmRNAに対して標準化し、そして最終的に未処理対照のmRNAに対する比として示した。
5)IRF‐1及び‐2のsiRNAベースの抑制
培養ケラチノサイトを、製造業者の取扱説明書に従って、40nMのsiIRF‐1、siIRF‐2、及びsiControl A(Santa Cruz Biotechnology、Santa Cruz, CA)と共にLipofectamine RNAi Max(Invitrogen、Carlsbad, CA)を使用してトランスフェンクションした。その細胞を、抗生物質不含培地中で24時間培養し、その後、全RNAを抽出し、そして上記したように、リアルタイムRT‐PCRによって分析した。
6)電気泳動移動度シフト分析(EMSA)
二本鎖オリゴヌクレオチドプローブを、一本鎖ビオチン化オリゴヌクレオチドと一本鎖未標識オリゴヌクレオチドをアニーリングすることによって調製した(図17)。核の抽出とEMSAを、Nuclear Extractionキット及びEMSA gel shiftキット(Panomics、Santa Clara, CA)を使用することで実施した。核抽出物(4μg)を、1×結合バッファー及び1μgのポリd(I‐C)、並びにMZF‐1、Sp‐1、IRF‐1/2、及びGATA‐1結合部位に対応するビオチン化プローブ(50pmol)と共に15℃にて30分間インキュベートした。競合アッセイのために、2倍の過剰の未標識プローブを、ビオチン化プローブの添加前に結合反応に加えた。これらのインキュベーション混合物を、次に、0.5×TBEバッファーと共に8%のポリアクリルアミドゲル中で電気泳動し、そしてBiodyne Bナイロン膜(Pall、Port Washington, NY)に転写した。EMSA gel shiftキットの中の化学発光検出試薬を使用することで、バンドを可視化した。
7)結果
ヒトBH遺伝子プロモーターの単離と特性決定
Genome Net MOTIFプログラムによる検索で、ヒトBHの5’‐フランキング領域内の多数の推定転写因子結合部位が明らかになった(図18A)。特に、転写開始部位の位置に近い−216/+1領域の中に、MZF1、Sp‐1、IRF‐1/2、及びGATA‐1/2によって認識されるコンセンサス配列によく合致した配列が存在したので、これらの転写因子がBHプロモーター活性の調整にかかわっていることが示唆された。より厳密にBHのプロモーター領域を決定するために、欠失分析を実施した(図18B)。最高レベルのルシフェラーゼ活性を、pGL3‐816でトランスフェンクションした分化型ケラチノサイトにおいて検出した。しかしながら、欠失プラスミドの相対ルシフェラーゼ活性は、欠失がpGL3‐216に進むまで高いままで残っていた。構築体の中で、(pGL3‐444と表示)断片−444/+1を含むプラスミドは、培養ケラチノサイトにおいて有意に低い活性を示し、−616/−444領域における上流サプレッサー活性の存在が示唆された。これらの結果が−216/−1領域がBH遺伝子転写のための最小プロモーターを含んでいることを実証したので、そのヌクレオチド配列を図18Cに示す。この配列はTATA‐又はCCAAT‐ボックスを含んでいなかったので、この遺伝子のハウスキーピング性質が示唆された。その一方で、いくつかの転写性因子結合部位、例えばMZF‐1、Sp‐1、IRF‐1/2、及びGATA‐1/2などがこのコア・プロモーター領域に存在していた。
BH遺伝子調節に関与する潜在的cis‐エレメントの同定
BH遺伝子発現の転写調節に関与する最小プロモーターの潜在的cis‐エレメントを決定するために、各cis‐エレメントを標的とした新しい一連の欠失突然変異株を構築した。MZF‐1、Sp‐1、及びIRF‐1/2の結合部位を欠失した場合、プロモーター活性が大きく下方制御された(図19A)。
さらに、これらの転写因子が推定結合部位のそれぞれに実際に結合できるかどうか調査した。このために、電気泳動移動度シフト・アッセイ(EMSA)を培養ケラチノサイトからの核抽出物、及びMZF‐1、Sp‐1、GATA‐1、又はIRF‐1/2結合部位を含むビオチン化二本鎖オリゴヌクレオチドプローブを用いて実施した。図19Bに示されているように、Sp‐1、MZF‐1、及びIRF1/2は、BHプロモーターの対応する標的部位に結合したが、GATA‐1/2は結合しなかった。これらの結果は、−216〜−105bpのプロモーター領域のこれらの結合部位が、BH転写のためのcis‐エレメントに不可欠であることを示している。
BH遺伝子発現のサイトカイン媒介性調節
BHはNMF産出酵素であるので、それがADの病態生理に関与する可能性もある。よって、BH遺伝子発現に対するTh1、Th2、及びTh17サイトカインの効果を調べた。図20Aは、増殖型ケラチノサイトにおいて、Th1サイトカインであるIFN‐γが、用量依存的様式でBH mRNA発現を下方制御したことを示した。その一方、Th2及びTh17サイトカインは、BHの発現に対して有意な効果を全く示さなかった。同様の結果が分化型ケラチノサイトによって得られた(データ未掲載)。BH遺伝子発現の調整におけるIFN‐γの役割を解明するために、プロモーターアッセイを実施して、サイトカイン応答要素を特定した。図20Bに示されているように、IFN‐γは、−131〜−120の間にIRF‐1/2結合配列を含んだpGL3‐BH‐616でトランスフェンクションした培養ケラチノサイトにおいてBHプロモーター活性を下方制御した。この配列の欠失後には、IFN‐γがプロモーター活性を抑制することはもうなかった(図20B)。加えて、IRF‐1/2がBHのIFN‐γ誘発性下方調節の必須メディエーターであるかどうか判断するために、低分子干渉RNA(siRNA)を使用して、IRF‐1及びIRF‐2遺伝子発現を抑制した。IFN‐γの活性は、IRF‐1又は‐2 siRNA(40nM)のいずれかでトランスフェンクションした培養ケラチノサイトにおいて有意に抑制された(図20C)。これらの結果は、IRF‐1/2結合配列がBH遺伝子発現のIFN‐γ誘発性下方調節に不可欠であることを強く示唆している。
培養ケラチノサイトにおけるBH及び関連因子の発現
表皮における転写調節の機構を調査するために、リアルタイムPCR法によって増殖型又は分化型細胞におけるBH、カルパインI、及び推定転写因子の発現を分析した。図21Aに示されているように、BH mRNAは、例えば、増殖型ケラチノサイトと比較した、集密期の2日後のもの(3.6倍)、及び高カルシウム濃度にて培養したもの(8.6倍)などのように、分化型ケラチノサイトにおいて上方制御された。これらの結果は、プロモーターアッセイデータと一致している(図18B)。同様の結果を、カルパインI(約2.5倍の上方制御)に関して得た。また、培養ケラチノサイトにおいて、様々な転写因子、例えば、MZF‐1、Sp‐1、GATA‐1、IRF‐1及びIRF‐2などの発現パターンを調べた。図21Bに示されているように、これらの転写因子は、BHの発現に沿って、分化型ケラチノサイトにおいて上方制御された。しかしながら、GATA‐1 mRNA発現は、他の因子と比較して有意に低かった(<1/32)。GATA‐1はケラチノサイトにおいて重要な役割を担っていないように思われる。よって、BHがMZF‐1及びSp‐1を介して分化依存的様式で合成されることを示唆する。IRF‐1及びIRF‐2がまた、分化刺激によっても上方制御されたという事実は、BH発現がIFN‐γに対して非常に感受性であることを示している。
推定転写因子の発現に対するTh1及びTh2サイトカインの効果
これらの転写因子のサイトカイン依存性調節についてさらに調査した。図22Aは、IFN‐γが、用量依存式にIRF‐1 mRNA発現を強く上方制御したことを示す。同様に、IRF‐2発現は、IFN‐γの存在下で上方制御された。対照的に、IRF‐1及びIRF‐2の発現は、100ng/mlにおいてのみIL‐4の存在下で有意に増強された(図22B)。興味深いことに、MZF‐1及びSp‐1は共に、10ng/mlのIL‐4の存在下で最も効果的に下方制御された(図22C)。これらの結果は、BH発現が、それぞれ、直接的及び間接的にTh1及びTh2サイトカインによって調節されていることを示唆している。
アトピー性皮膚炎皮膚においてBHは下方制御される
FLGの機能喪失型突然変異はADの発症機序に関連するが、遺伝子欠損だけではなく、分解経路の障害もまたADの病理に関連する可能性がある。そのため、AD患者の病変皮膚及び非病変皮膚におけるBH及びフィラグリンの局在、並びにBH活性を次に調べた。正常表皮では、抗BH抗体と抗フィラグリン抗体での二重染色は、上面表皮における、特に、先に報告されたように、顆粒層におけるBHとフィラグリンの同時局在を示した(図23A)。より高い倍率では、BHが顆粒層から角化層までに局所している一方で、フィラグリンが顆粒細胞に限定されていることが明確に示された。対照的に、BH発現は、この研究で診察したAD患者(n=7)の病変皮膚及び非病変皮膚において劇的に減少した。これらの患者のすべては、有意な染色が常に検出されたにもかかわらず、比較的弱いフィラグリン染色を示した(図23A)。免疫組織化学に加えて、BH活性を18人のAD患者及び30人の健常ボランティアから得たテープ剥離サンプルからの角質細胞抽出物において計測した。AD患者の病変皮膚と非病変皮膚からの抽出物は、健常人からのそれと比較して、(それぞれ27.1と8.8%まで)実質的に低いBH活性を示した(図23B)。これらの結果は、BHがフィラグリンと同時局在化され、そしてその活性がADを患っている患者の皮膚において劇的に低減されることを実証した。
考察
この研究では、BH遺伝子発現の調節機序を、プロモーター領域のクローニング及び機能の特徴づけによって研究した。プロモーター解析では、−216bp上流の中にBHプロモーター活性にとって重要な領域を同定した(図18B)。この領域では、推定MZF‐1及びSp‐1結合部位が、BHプロモーター活性に対して有意な効果を示した(図18C及び19A)。興味深いことに、Sp‐1及びMZF‐1もまた、フィラグリン分解の開始にとって重要な酵素であるPAD1の調整に関与することが報告されている。Sp‐1は、哺乳動物細胞において転写因子として機能するジンク・フィンガー・タンパク質のSp/Kruppel様ファミリーの典型的なメンバーである。増殖、アポトーシス、分化、及び腫瘍性形質転換を含めた細胞機能のほとんどすべての面に関与すると考えられる。ヒト表皮において、Sp‐1は、インボルクリン、ロリクリン、トランスグルタミナーゼ、PAD1、2、及び3のそれを含めて、表皮分化に参加する遺伝子の重要な調節因子である。MZF‐1は、ジンク・フィンガー・タンパク質のKruppleファミリーに属する転写因子であり、分化全能性造血性細胞、並びに骨髄始原細胞において発現される。しかしながら、哺乳動物表皮における転写調節でのMZF‐1の機能は報告されていない。増殖型ケラチノサイトと比較して、分化型ケラチノサイトにおいてMZF‐1及びSp‐1、並びにBHを同時に上方制御することを見つけ(図21B)、ハウスキーピング的な役割よりむしろ分化におけるBHの役割を示した。我々の結果は、これらの転写因子がケラチノサイト最終分化中のBHの基本的な転写調節のための活性化因子として機能することを明確に示した。
その一方で、cis作用エレメントの調査は、この領域内のIRF‐1/2結合部位をさらに規定した。EMSAを使用して、BHプロモーター領域へのIRFsの直接結合を確認した(図19B)。この結合配列の部位特異的突然変異誘発は、BHプロモーター活性の有意な減少をもたらした(図19A)。そのため、IRF‐1/2転写因子もまた、基本条件の下、BH遺伝子の最小プロモーター活性に必要であろう。IRFファミリーは転写因子の群であり、今までのところ、9つのIRFメンバー(IRF‐1〜‐9)が様々な細胞型及び組織で同定された。これらのIRF分子は、IFN‐α、β、及びγによる刺激の下で、抗ウイルス防御、免疫応答/調節、及び細胞成長調節において役割を果たしている。IRF‐1及び‐2は、多くのIFN‐γ誘導性遺伝子の調整に関与する作動薬‐拮抗薬対として機能することが示されている。興味深いことに、IFN‐γは、BH mRNA発現を顕著に抑制した(図20A及びB)。ノックダウン及び部位特異的突然変異誘発分析では、IRF‐1/2結合部位がBH発現のIFN‐γ媒介性抑制に関与することを確認した(図20B及びC)。これらの結果は、IRF‐1/2がヒトケラチノサイトにおけるBH遺伝子のIFN‐γ媒介性下方調節のメディエーターであることを明確に示している。その一方で、Th2サイトカインであるIL‐4及びIL‐13は、24時間のインキュベーションの間、直接的な作用をまったく示さなかった(図20A)。しかしながら、これらのTh2サイトカインは、アクチベーター分子であるMZF‐1及びSp‐1の発現を有意に抑制した。よって、Th2サイトカインがBH発現を負に調節するのは妥当なことである。
また、BHが病変及び非病変AD皮膚において劇的に下方制御されたことも示した(図23A及びB)。フィラグリン突然変異はADなどのバリアー障害関連疾患の主な危険因子であるが、突然変異分析では、アイルランドでの発生の50%未満、そして日本での〜20%の割合しか占めていないことが指摘された。フィラグリン合成不全だけではなく、フィラグリンの分解傷害もバリアー機能の崩壊に関与すると仮定した。NMFの減少が乾燥肌をもたらし、それがバリアーの崩壊を進行させることは明確である。ADがTh2極性化疾患であることは周知である。しかしながら、最近の報告は、Th1サイトカインもまたADにおいて役割を担っていることを示唆している。例えば、「内因性AD」は、IL‐4、IL‐5、及びIL‐13の低い発現、及びIFN‐γの高い発現によって免疫学的に特徴づけられる。加えて、Th1からTh2へのシフトが、AD皮膚における急性相から慢性相への間に起こる。我々の結果は、ADにおいて、IFN‐γが考えられていたより重要な役割を担っている可能性もあることを示している。
結論として、我々の結果は、ヒト表皮におけるBH転写が二重様式で調節されることを示している。一方の経路はケラチノサイト最終分化の制御下にあり、そして、もう一方はTh1及びTh2サイトカインに依存している。これらの経路は、相互に関連しているので、バランスがBH発現の下方調節に向かって容易にシフトするであろう。BHの低下がNMFの不足をもたらし、それを受けて乾燥肌か、さらにはバリアーの崩壊につながる。これらの結果は、BH調整とADの発症機序への新しい見識を提供する。

Claims (9)

  1. 候補薬剤が、対照薬剤と比較してブレオマオシン水解酵素の発現及び/又は活性を有意に亢進する場合に、当該候補薬剤をアトピー性皮膚炎による乾燥肌の改善剤と評価する、アトピー性皮膚炎による乾燥肌の改善剤をスクリーニング評価する方法。
  2. ブレオマイシン水解酵素をコードする遺伝子の転写活性が対照のものと比較して有意に亢進している場合に、前記発現及び/又は活性が有意に亢進していると判断される、請求項1に記載の方法。
  3. ブレオマイシン水解酵素をコードする遺伝子の転写調節領域に対する、転写因子IRF-1, IRF-2, MZF-1, SP-1, 及び/又はGATA-1の結合活性が対照のものと比較して有意に亢進している場合に、前記転写活性が有意に亢進していると判断される、請求項2に記載の方法。
  4. 皮膚組織におけるブレオマオシン水解酵素の発現及び/又は活性を有意に亢進させることによる、アトピー性皮膚炎による乾燥肌を改善又は予防する方法。
  5. ブレオマイシン水解酵素をコードする遺伝子の転写活性を亢進させることで前記発現及び/又は活性が有意に亢進される、請求項4に記載の方法。
  6. ブレオマイシン水解酵素をコードする遺伝子の転写調節領域に対する、転写因子IRF-1, IRF-2, MZF-1, SP-1, 及び/又はGATA-1の結合活性を亢進させることで前記発現及び/又は活性が有意に亢進される、請求項5に記載の方法。
  7. 皮膚組織におけるブレオマオシン水解酵素の発現及び/又は活性が、対照の皮膚のものと比べ有意に低下している場合に、アトピー性皮膚炎による乾燥肌の傾向があると診断し、対照の皮膚のものと比べ同程度以上であるなら、アトピー性皮膚炎による乾燥肌の傾向がないと診断する、アトピー性皮膚炎による乾燥肌の素因を診断する方法。
  8. ブレオマイシン水解酵素をコードする遺伝子の転写活性が対照のものと比較して有意に低下している場合に、前記発現及び/又は活性が有意に低下していると判断される、請求項7に記載の方法。
  9. 転写因子IRF-1, IRF-2, MZF-1, SP-1, 及び/又はGATA-1の結合活性が対照のものと比較して有意に低下している場合に、前記転写活性が低下していると判断される、請求項8に記載の方法。
JP2011544291A 2009-12-03 2010-12-02 ブレオマオシン水解酵素の活性を指標としたアトピー性皮膚炎による乾燥肌改善剤のスクリーニング方法 Active JP5858788B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011544291A JP5858788B2 (ja) 2009-12-03 2010-12-02 ブレオマオシン水解酵素の活性を指標としたアトピー性皮膚炎による乾燥肌改善剤のスクリーニング方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009275909 2009-12-03
JP2009275909 2009-12-03
JP2011544291A JP5858788B2 (ja) 2009-12-03 2010-12-02 ブレオマオシン水解酵素の活性を指標としたアトピー性皮膚炎による乾燥肌改善剤のスクリーニング方法
PCT/JP2010/071599 WO2011068166A1 (ja) 2009-12-03 2010-12-02 ブレオマオシン水解酵素の活性を指標としたアトピー性皮膚炎による乾燥肌改善剤のスクリーニング方法

Publications (2)

Publication Number Publication Date
JPWO2011068166A1 true JPWO2011068166A1 (ja) 2013-04-18
JP5858788B2 JP5858788B2 (ja) 2016-02-10

Family

ID=44115012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011544291A Active JP5858788B2 (ja) 2009-12-03 2010-12-02 ブレオマオシン水解酵素の活性を指標としたアトピー性皮膚炎による乾燥肌改善剤のスクリーニング方法

Country Status (9)

Country Link
US (2) US8906629B2 (ja)
EP (1) EP2508605B1 (ja)
JP (1) JP5858788B2 (ja)
KR (1) KR101787126B1 (ja)
CN (1) CN102648278B (ja)
ES (1) ES2541614T3 (ja)
HK (1) HK1174054A1 (ja)
TW (1) TWI528034B (ja)
WO (1) WO2011068166A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5771123B2 (ja) * 2011-11-09 2015-08-26 株式会社 資生堂 プロフィラグリンc末端ドメイン特異的抗体及びその用途
JP6199592B2 (ja) * 2013-04-15 2017-09-20 株式会社 資生堂 分析方法
FR3011009B1 (fr) * 2013-09-25 2016-11-25 Oreal Signature bacterienne de la dermatite atopique et son utilisation dans la prevention et/ou le traitement de cette pathologie
JP6462437B2 (ja) * 2014-05-08 2019-01-30 花王株式会社 皮膚の乾燥状態の評価方法
EP4282488A1 (en) * 2021-02-26 2023-11-29 National University Corporation Kobe University Method for evaluating xenobiotic response reaction inducibility of sample of interest in skin, method for searching for substance capable of inhibiting xenobiotic response reaction in skin, and agent capable of inhibiting xenobiotic response reaction in skin
CN113528573A (zh) * 2021-07-29 2021-10-22 徐州医科大学 含有hdac1基因启动子和报告基因的重组质粒及其构建与应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3639002B2 (ja) 1995-06-14 2005-04-13 ヤンマー農機株式会社 普通形コンバインの穀稈刈取装置
US6974667B2 (en) * 2000-06-14 2005-12-13 Gene Logic, Inc. Gene expression profiles in liver cancer
WO2004028339A2 (en) * 2002-09-27 2004-04-08 Brigham And Women's Hospital, Inc. Treatment of patients with multiple sclerosis based on gene expression changes in central nervous system tissues
JP2009521933A (ja) * 2005-12-28 2009-06-11 セントカー・インコーポレーテツド 乾癬および関連障害を評価および処置するためのマーカーおよび方法
JP4803004B2 (ja) 2006-11-28 2011-10-26 旭硝子株式会社 自動車用高周波ガラスアンテナ及び窓ガラス板
FR2920304B1 (fr) 2007-09-04 2010-06-25 Oreal Utilisation cosmetique de lysat bifidobacterium species pour le traitement de la secheresse.
JP5602015B2 (ja) 2008-05-23 2014-10-08 株式会社 資生堂 ブレオマイシン水解酵素の活性を指標とした天然保湿因子による皮膚バリアー機能状態の評価方法

Also Published As

Publication number Publication date
CN102648278A (zh) 2012-08-22
EP2508605A4 (en) 2013-05-01
HK1174054A1 (en) 2013-05-31
ES2541614T3 (es) 2015-07-22
EP2508605A1 (en) 2012-10-10
US8906629B2 (en) 2014-12-09
US9068228B2 (en) 2015-06-30
TWI528034B (zh) 2016-04-01
US20150118686A1 (en) 2015-04-30
US20120302649A1 (en) 2012-11-29
KR101787126B1 (ko) 2017-10-18
CN102648278B (zh) 2015-03-25
JP5858788B2 (ja) 2016-02-10
WO2011068166A1 (ja) 2011-06-09
EP2508605B1 (en) 2015-05-20
KR20120112445A (ko) 2012-10-11
TW201131169A (en) 2011-09-16

Similar Documents

Publication Publication Date Title
JP5858788B2 (ja) ブレオマオシン水解酵素の活性を指標としたアトピー性皮膚炎による乾燥肌改善剤のスクリーニング方法
Descargues et al. Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin-and chymotrypsin-like hyperactivity in Netherton syndrome
Kostrominova et al. Comparison of gene expression of 2-mo denervated, 2-mo stimulated-denervated, and control rat skeletal muscles
US20200215139A1 (en) Bleomycin hydrolase production promotor
Wu et al. Lysophosphatidic acid stimulates thrombomodulin lectin-like domain shedding in human endothelial cells
Wang et al. Altered gene expression in kidneys of mice with 2, 8-dihydroxyadenine nephrolithiasis
KR20100059897A (ko) 심혈관 및 혈전 위험도를 측정하기 위한 clec1b의 용도
Chae et al. Upregulation of smpd3 via BMP2 stimulation and Runx2
WO2016063991A1 (ja) 角層剥離の抑制又は亢進に起因する肌状態を改善するための美容方法及び評価方法
Wang et al. MicroRNA-146a downregulates interleukin-13 and inhibits the proliferation of human periodontal ligament stem cells
JP7231160B2 (ja) 対象における疾患の診断を補助するための方法及びキット
Gosiewska et al. Characterization of a macrophage-based system for studying the activiation of latent TGF-β
JP7502945B2 (ja) デリケートエリアのかぶれの検査方法
KR102601496B1 (ko) 피부 노화 진단을 위한 후각 수용체 유전자 및 이들의 용도
Infante et al. Galunisertib downregulates mutant type I collagen expression and promotes MSCs osteogenesis in pediatric osteogenesis imperfecta
Matsuo et al. Role of glucosylation of ceramide in epidermal barrier formation
Pincelli et al. Expression and function of nerve growth factor and nerve growth factor receptors on cultured normal human keratinocytes
Faulkner et al. Comparison of gene expression of 2-mo denervated, 2-mo
Presland et al. Characterization of the S-100-like calcium binding domain of human profilaggrin
Fujimoto et al. Expression of cornifin in squamous differentiated epithelial tissues
MA et al. IL1A (-889) gene polymorphism is associated with the effect of diet as a risk factor in Acne Vulgaris
WO2011151658A1 (en) Anti-ageing agents

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151215

R150 Certificate of patent or registration of utility model

Ref document number: 5858788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250