JPWO2011021577A1 - Non-fired carbon-containing agglomerated mineral for blast furnace and method for producing the same - Google Patents

Non-fired carbon-containing agglomerated mineral for blast furnace and method for producing the same Download PDF

Info

Publication number
JPWO2011021577A1
JPWO2011021577A1 JP2010545717A JP2010545717A JPWO2011021577A1 JP WO2011021577 A1 JPWO2011021577 A1 JP WO2011021577A1 JP 2010545717 A JP2010545717 A JP 2010545717A JP 2010545717 A JP2010545717 A JP 2010545717A JP WO2011021577 A1 JPWO2011021577 A1 JP WO2011021577A1
Authority
JP
Japan
Prior art keywords
content
carbon
mass
sio
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010545717A
Other languages
Japanese (ja)
Other versions
JP4808819B2 (en
Inventor
謙一 樋口
謙一 樋口
浩一 横山
浩一 横山
国友 和也
和也 国友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2010545717A priority Critical patent/JP4808819B2/en
Application granted granted Critical
Publication of JP4808819B2 publication Critical patent/JP4808819B2/en
Publication of JPWO2011021577A1 publication Critical patent/JPWO2011021577A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/007Conditions of the cokes or characterised by the cokes used
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

この非焼成含炭塊成鉱は、炭素含有量(T.C)が18〜25質量%であり、CaO含有量(質量%)とSiO2含有量(質量%)の比CaO/SiO2が1.0〜2.0である。この非焼成含炭塊成鉱の製造方法は、含鉄原料、含炭原料、及びバインダーを混合、混練し、混練物を成形して成形体を得る成形体の形成工程と、次いで前記成形体を養生して非焼成含炭塊成鉱を得る工程を有し、前記非焼成含炭塊成鉱の炭素含有量(T.C)が18〜25質量%、かつ脈石成分のCaO含有量(質量%)とSiO2含有量(質量%)の比CaO/SiO2が1.0〜2.0となるように、前記成形体の形成工程において、鉱石銘柄、およびバインダー配合量からなる群から選ばれる1つ以上の配合条件を調整する。This unfired carbon-containing agglomerated mineral has a carbon content (TC) of 18 to 25% by mass, and a ratio CaO / SiO2 of CaO content (% by mass) to SiO2 content (% by mass) is 1. 0-2.0. This non-fired carbon-containing agglomerated mineral is produced by mixing and kneading an iron-containing raw material, a carbon-containing raw material, and a binder, forming a kneaded product to obtain a molded body, and then forming the molded body. A step of curing to obtain a non-fired carbon-containing agglomerated mineral, the carbon content (TC) of the non-fired carbon-containing agglomerated mineral is 18 to 25% by mass, and the CaO content of the gangue component ( (Mass%) and SiO2 content (mass%) ratio CaO / SiO2 is selected from the group consisting of ore brands and binder blending amounts in the forming step of the molded body. Adjust one or more blending conditions.

Description

本発明は、高炉用の非焼成含炭塊成鉱に関し、特に、高炉の炉下部スラグ融点を低くして高炉の還元材比を低下できる非焼成含炭塊成鉱に関する。
本願は、2009年8月21日に、日本に出願された特願2009−191966号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a non-fired carbon-containing agglomerated ore for a blast furnace, and more particularly, to a non-fired carbon-containing agglomerated mineral that can lower the lower slag melting point of the blast furnace and reduce the reducing material ratio of the blast furnace.
This application claims priority on August 21, 2009 based on Japanese Patent Application No. 2009-191966 filed in Japan, the contents of which are incorporated herein by reference.

従来、製鉄所の各種集塵装置等から回収される多種の含鉄ダストや含炭ダストを配合し、セメント系の水硬性バインダーを添加して混錬、成型して8〜16mm径の非焼成塊成鉱が製造され、高炉原料として使用されている。   Conventionally, various iron-containing dust and carbon-containing dust collected from various dust collectors at steelworks, etc., blended with cement-based hydraulic binder, kneaded and molded, 8-16mm diameter unfired lump The ore is produced and used as blast furnace raw material.

非焼成含炭塊成鉱の製造方法としては、製鉄ダストをペレットに造粒し、次いでペレットを養生し硬化させる方法が知られている。前記製鉄ダストをペレットに造粒する工程では、ダストの粒度分布を適正範囲に調整し、生石灰、セメントなどのバインダーと5〜15%の水分を添加し、混合物をディスクペレタイザー等により造粒してペレットを得ている。   As a method for producing an unfired carbon-containing agglomerated mineral, a method is known in which iron-making dust is granulated into pellets, and then the pellets are cured and cured. In the step of granulating the iron-made dust into pellets, the particle size distribution of the dust is adjusted to an appropriate range, a binder such as quicklime and cement and 5 to 15% of water are added, and the mixture is granulated with a disk pelletizer or the like. I have pellets.

このような非焼成含炭塊成鉱の製造においては、高炉操業における還元材比を低減する目的で、非焼成含炭塊成鉱の炭素含有量(T.C)を高くすることも要求されている。   In the production of such a non-fired carbon-containing agglomerated mineral, it is also required to increase the carbon content (TC) of the non-fired carbon-containing agglomerated mineral for the purpose of reducing the reducing material ratio in blast furnace operation. ing.

例えば、特許文献1では、含酸化鉄原料とカーボン系炭材を配合し、バインダーを加えて混錬、成型、養生してカーボン内装非焼成塊成鉱が製造されている。このカーボン内装非焼成塊成鉱は、含酸化鉄原料に含有される酸化鉄を還元し金属鉄とするために必要な理論炭素量の80〜120%のカーボンを有する。また、常温での圧潰強度7850kN/m以上となるようにバインダーが選択され、混合、成型、養生が行われている。非焼成含炭塊成鉱中の酸化鉄が内装するカーボンにより還元反応が起こるため、還元率を向上させることができる。For example, in Patent Document 1, a carbon interior non-fired agglomerated mineral is manufactured by blending an iron-containing iron raw material and a carbon-based carbon material, adding a binder, kneading, molding, and curing. This carbon-incorporated non-fired agglomerated mineral has 80 to 120% of the theoretical amount of carbon necessary for reducing the iron oxide contained in the iron-containing iron-containing raw material into metallic iron. Moreover, the binder is selected so that the crushing strength at room temperature is 7850 kN / m 2 or more, and mixing, molding, and curing are performed. Since the reduction reaction occurs due to the carbon contained in the iron oxide in the unfired carbon-containing agglomerated mineral, the reduction rate can be improved.

しかしながら、この製造方法では、強度確保のために炭素含有量が制限され、十分な高炉における還元材比を削減する効果が得られない。還元材比を削減する効果を十分に得るために、この非焼成含炭塊成鉱を多量に高炉で使用する場合、高炉内でバインダーの脱水反応による吸熱量が大きくなる。これにより、低温熱保存帯を形成し、焼結鉱の還元粉化を助長してしまう欠点があった。
また、バインダーとして、生石灰やCaO系セメントが多く用いられるため、非焼成含炭塊成鉱中のCaO含有量が高くなる。このため、反応過程で非焼成含炭塊成鉱から生成する融液の粘度が過度に高くなる。これにより、生成メタルの凝集と溶け落ちが阻害される。以上により、高炉の炉下部の通気・通液性を悪化させるといった欠点があった。
However, in this manufacturing method, the carbon content is limited to ensure strength, and the effect of reducing the reducing material ratio in a sufficient blast furnace cannot be obtained. In order to sufficiently obtain the effect of reducing the reducing material ratio, when a large amount of this unfired carbon-containing agglomerated mineral is used in a blast furnace, the amount of heat absorbed by the dehydration reaction of the binder in the blast furnace increases. Thereby, there existed a fault which forms a low-temperature heat preservation zone and promotes reduction | restoration powdering of a sintered ore.
Moreover, since quick lime and CaO-type cement are often used as a binder, CaO content in a non-baking carbon-containing agglomerated mineral becomes high. For this reason, the viscosity of the melt produced | generated from a non-baking carbon-containing agglomerated mineral in a reaction process becomes high too much. Thereby, aggregation and melt-down of the generated metal are inhibited. As described above, there is a drawback that the ventilation and liquid permeability at the lower part of the blast furnace are deteriorated.

例えば、非焼成含炭塊成鉱が低温で溶融、滴下すれば、縦型炉内において、非焼成含炭塊成鉱は早期に溶融し、炉内に充填された原料の間隙を容易に流れ落ちる。この場合、コークスと接触する期間が長くなることになる。その結果、非焼成含炭塊成鉱中の粉状鉄鉱石の還元反応や生成した鉄の浸炭反応を促進できる。   For example, if the unfired carbon-containing agglomerated material melts and drops at a low temperature, the unfired carbon-containing agglomerated material melts early in the vertical furnace and easily flows down the gap between the raw materials filled in the furnace. . In this case, the period of contact with the coke becomes longer. As a result, the reduction reaction of the powdered iron ore in the unfired carbon-containing agglomerated mineral and the carburization reaction of the generated iron can be promoted.

特許文献2では、SiO、Alの表面濃化が生じた粉状鉄鉱石であっても、CaCOをコーティングすることによって溶融温度を低減できることに着目している。そして、この着目点に基づいて、粉状鉄鉱石とフラックスとが石炭を介して結合された非焼成含炭塊成鉱を提案している。In Patent Document 2, attention is paid to the fact that the melting temperature can be reduced by coating CaCO 3 even in the case of powdered iron ore in which surface concentration of SiO 2 and Al 2 O 3 has occurred. And based on this attention point, the non-baking carbon-containing agglomerated mineral in which the pulverized iron ore and the flux were couple | bonded through coal is proposed.

なお、特許文献2では、石炭を23.3〜24.6質量%含有する含炭塊成鉱が開示されているが、一般的に石炭の含有カーボン量は70%程度であり、残りは灰分と揮発分である。従って、含炭塊成鉱中の炭素含有量は16〜17質量%に相当する。   Patent Document 2 discloses a coal-containing agglomerated mineral containing 23.3 to 24.6% by mass of coal. Generally, the carbon content of coal is about 70%, and the remainder is ash. And volatiles. Therefore, the carbon content in the carbon-containing agglomerated ore corresponds to 16 to 17% by mass.

一方、焼結鉱の滴下性と成分の関係については、多くの報告がなされている。
例えば、非特許文献1では、焼結鉱の滴下温度はCaO/SiOに対して非線形に変化し、CaO/SiO=1.0付近が最も滴下温度が低くなること、及びMgOを増加させると滴下温度が低下することが報告されている。
On the other hand, many reports have been made on the relationship between the dropability of sintered ore and the components.
For example, Non-Patent Document 1, dropping the temperature of sintered ore varies non-linearly with CaO / SiO 2, CaO / SiO 2 = 1.0 near the most dropping temperature decreases, and increases the MgO It has been reported that the dropping temperature decreases.

また、非特許文献2では、7%のカーボンを含有するダストコールドペレット(セメント結合)にMgOを2%添加すると、高温の通気抵抗が低下することが報告されている。   Non-Patent Document 2 reports that when 2% of MgO is added to dust cold pellets (cement bond) containing 7% of carbon, the high-temperature ventilation resistance is reduced.

以上のように、炭素含有量が10%未満の焼結鉱やダストペレットのメタル滴下性を改善するために、脈石組成のCaO/SiOとMgOを適正化することは周知である。しかしながら、還元挙動が全く異なる炭素含有量の高い(18〜25質量%)含炭塊成鉱のメタル滴下性や、そのメタル滴下性を決定する炉下部におけるスラグ融点の適正な条件は、今まで知られていなかった。As described above, it is well known to optimize CaO / SiO 2 and MgO having a gangue composition in order to improve the metal dripping property of sintered ore and dust pellets having a carbon content of less than 10%. However, the metal dripping properties of carbon-containing agglomerates with high carbon content (18-25% by mass) with completely different reduction behaviors, and the appropriate conditions for the slag melting point at the bottom of the furnace to determine the metal dripping properties have been It was not known.

そこで、発明者等は、炭素含有量が高い含炭塊成鉱(総C含有量20%、総Fe含有量40%、CaO11%、SiO6%、Al2.5%、MgO0.5%)の還元特性を調べた。図8は、従来の焼結鉱(総Fe含有量58.5%、FeO8%、CaO10%、SiO5%、Al1.7%、MgO1.0%)と炭素含有量の多い含炭塊成鉱について、温度と還元率との関係を示す。図8を参照すると、従来の焼結鉱に比べて、含炭塊成鉱では、低温域で著しく還元が進行することがわかる。これが、炭素含有量の高い含炭塊成鉱の大きな特徴である。Therefore, the inventors have a carbon-containing agglomerated ore with a high carbon content (total C content 20%, total Fe content 40%, CaO 11%, SiO 6%, Al 2 O 3 2.5%, MgO 0.5 %) Reduction characteristics were investigated. FIG. 8 shows a conventional sintered ore (total Fe content 58.5%, FeO 8%, CaO 10%, SiO 2 5%, Al 2 O 3 1.7%, MgO 1.0%) and a large carbon content. The relationship between temperature and reduction rate is shown for carbon-containing agglomerated ores. Referring to FIG. 8, it can be seen that, in the carbon-containing agglomerated ore, the reduction proceeds remarkably in a low temperature region as compared with the conventional sintered ore. This is a major feature of the carbon-containing agglomerates with a high carbon content.

次に、上記還元試験の結果から得られた図8の還元率を用いて、還元進行によるスラグ融点(CaO−SiO−Al−MgO−FeO)の変化をコンピュータによりシミュレーションした。なお、焼結鉱及び含炭塊成鉱の鉄成分のうち、未還元の鉄は全てFeOとして存在すると仮定して、還元率からスラグ融点を計算した。結果を図9に示す。ここで、融点とは全てが液相となる温度を意味し、融点以下でも融液は生成している。しかし、融点が高いときは、融液量は低くなるので、融点は間接的に融液量を表している。Next, a change in the slag melting point (CaO—SiO 2 —Al 2 O 3 —MgO—FeO) due to the progress of reduction was simulated by a computer using the reduction rate of FIG. 8 obtained from the result of the reduction test. In addition, slag melting | fusing point was computed from the reduction rate supposing that all unreduced iron exists as FeO among the iron components of a sintered ore and a carbon-containing agglomerated ore. The results are shown in FIG. Here, the melting point means the temperature at which everything becomes a liquid phase, and the melt is generated even below the melting point. However, when the melting point is high, the melt amount is low, so the melting point indirectly represents the melt amount.

図9を参照すると、焼結鉱では、1200〜1400℃において、スラグ融点が試料温度とほぼ一致しており、この温度域で多量の融液が生成されると考えられる。これに対して、含炭塊成鉱では、スラグ融点は900℃付近から著しく上昇し、1600℃以上に達している。従って、炭素含有量の高い含炭塊成鉱では、融液量が極めて少ない状態で還元が進行すると考えられる。このため、固相が常に存在するので、上記メタルの凝集が阻害され、滴下悪化の原因となる。上記5成分系(CaO−SiO−Al−MgO−FeO)において、炭素含有量の高い含炭塊成鉱では、FeOが融点に及ぼす影響が極めて大きく、低温で急速に還元が進行する。図9で示された結果は、炭素含有量の高い含炭塊成鉱に特有の現象である。Referring to FIG. 9, in the sintered ore, the melting point of the slag substantially coincides with the sample temperature at 1200 to 1400 ° C., and it is considered that a large amount of melt is generated in this temperature range. On the other hand, in the carbon-containing agglomerated ore, the slag melting point remarkably increases from around 900 ° C. and reaches 1600 ° C. or more. Therefore, in a carbon-containing agglomerated ore with a high carbon content, it is considered that the reduction proceeds with a very small amount of melt. For this reason, since a solid phase always exists, the aggregation of the metal is inhibited, which causes dripping deterioration. In the above five-component system (CaO—SiO 2 —Al 2 O 3 —MgO—FeO), in the carbon-containing agglomerated ore with a high carbon content, the influence of FeO on the melting point is extremely large, and the reduction proceeds rapidly at a low temperature. To do. The result shown in FIG. 9 is a phenomenon peculiar to a carbon-containing agglomerated mineral having a high carbon content.

以上のように、炭素含有量の高い含炭塊成鉱の還元は、焼結鉱に比べて、低温域で著しく進行し、融液量が極めて少ない状態で還元が進行する。このため、焼結鉱の還元進行における滴下特性についての知見は、炭素含有量の高い含炭塊成鉱についてそのまま適用することはできない。   As described above, the reduction of the carbon-containing agglomerated ore with a high carbon content proceeds remarkably in a low temperature region as compared with the sintered ore, and the reduction proceeds with a very small amount of melt. For this reason, the knowledge about the dripping characteristic in the reduction progress of the sintered ore cannot be applied as it is to the carbon-containing agglomerated ore having a high carbon content.

含炭塊成鉱を高炉で使用する際に、スラグ融点が高い場合、融着帯下面が下がり、下部滴下帯領域を狭めるとともに、滴下帯と炉芯部のスラグホールドアップ量が増加する。詳細には、滴下帯と炉芯部(メタルとスラグが比重分離しながら湯だまり部へ流れ落ちるゾーン)において、融液の流れがスムーズとならず、空隙部(流路)に融液が滞ることになる。これにより、ガスの流れが偏流していまい、均一なガス加熱ができなくなる。このため、局所的に熱不足の箇所ができてしまい、炉下部通気性が安定した操業が困難となる。   When using a carbon-containing agglomerated ore in a blast furnace, if the slag melting point is high, the lower surface of the cohesive zone is lowered, the lower dripping zone is narrowed, and the slag holdup amount between the dripping zone and the furnace core is increased. Specifically, in the dripping zone and the furnace core (the zone where the metal and slag flow down to the puddle while the specific gravity is separated), the flow of the melt is not smooth, and the melt stagnates in the gap (flow path). become. As a result, the gas flow becomes uneven and uniform gas heating cannot be performed. For this reason, a location where heat is insufficient is locally generated, and it becomes difficult to operate with stable furnace bottom air permeability.

特開2003−342646号公報JP 2003-342646 A 特開2005−325412号公報JP-A-2005-325412

ISIJ International 44 (2004), p. 2057ISIJ International 44 (2004), p. 2057 鉄と鋼,70 (1984), p. S825Iron and Steel, 70 (1984), p. S825

本発明では、高炉使用に最適なスラグ融点を有する含炭塊成鉱の成分条件を特定する。そしてこの研究結果に基づき、本発明は、スラグ融点を低くして高炉の還元材比を低減できる非焼成含炭塊成鉱及びその製造方法の提供を目的とする。   In this invention, the component conditions of the carbon-containing agglomerated mineral which has the optimal slag melting | fusing point for blast furnace use are specified. And based on this research result, this invention aims at provision of the non-baking carbon-containing agglomerated mineral which can lower the slag melting | fusing point and can reduce the reducing material ratio of a blast furnace, and its manufacturing method.

本発明者等は、含炭塊成鉱の脈石成分のCaO/SiOを特定の範囲(1.0〜2.0)にすることで、炉下部スラグ融点を低減でき、優れたメタル滴下性を達成できる非焼成含炭塊成鉱成品を見出した。非焼成含炭塊成鉱の脈石成分のCaO/SiOを1.0〜2.0にするためには、後述するように、高SiO含有鉱石およびMgO含有副原料の配合量を調整することが好ましいことも見出した。The present inventors can reduce the melting point of the furnace bottom slag by setting CaO / SiO 2 of the gangue component of the carbon-containing agglomerated mineral to a specific range (1.0 to 2.0), and excellent metal dripping. We found a non-fired carbon-containing agglomerated mineral product that can achieve the desired properties. In order to make CaO / SiO 2 of the gangue component of the non-fired carbon-containing agglomerated mineral 1.0 to 2.0, as described later, the blending amount of the high SiO 2 -containing ore and the MgO-containing auxiliary material is adjusted. It has also been found to be preferable.

本発明の一態様に係る高炉用の非焼成含炭塊成鉱は、含鉄原料、含炭原料、及びバインダーを混合、混練し、混練物を成形して成形体を得て、次いで前記成形体を養生して製造され、炭素含有量(T.C)が18〜25質量%、かつ脈石成分のCaO含有量(質量%)とSiO含有量(質量%)の比CaO/SiOが1.0〜2.0である。
本発明の一態様に係る高炉用の非焼成含炭塊成鉱では、CaO含有量(質量%)、SiO含有量(質量%)、Al含有量(質量%)、MgO含有量(質量%)および炭素含有量(T.C)(質量%)により表される脈石量((CaO+SiO+Al+MgO)/(100−炭素含有量(T.C)))の値が0.25以下であり、かつMgO含有量が0.5質量%以上であってもよい。
前記バインダーの含有量が5〜10質量%であってもよい。
The non-fired carbon-containing agglomerated ore for a blast furnace according to one aspect of the present invention is obtained by mixing and kneading an iron-containing raw material, a carbon-containing raw material, and a binder, forming a kneaded product, and then obtaining the molded product. The carbon content (TC) is 18 to 25% by mass, and the ratio CaO content (% by mass) of the gangue component to SiO 2 content (% by mass) is CaO / SiO 2. 1.0 to 2.0.
In the non-fired carbon-containing agglomerated mineral for a blast furnace according to one embodiment of the present invention, the CaO content (% by mass), the SiO 2 content (% by mass), the Al 2 O 3 content (% by mass), and the MgO content Value of gangue amount ((CaO + SiO 2 + Al 2 O 3 + MgO) / (100−carbon content (TC))) expressed by (mass%) and carbon content (TC) (mass%) May be 0.25 or less, and the MgO content may be 0.5 mass% or more.
5-10 mass% may be sufficient as content of the said binder.

本発明の一態様に係る高炉用の非焼成含炭塊成鉱の製造方法は、含鉄原料、含炭原料、及びバインダーを混合、混練し、混練物を成形して成形体を得る成形体の形成工程と、次いで前記成形体を養生して非焼成含炭塊成鉱を得る工程を有し、前記非焼成含炭塊成鉱の炭素含有量(T.C)が18〜25質量%、かつ脈石成分のCaO含有量(質量%)とSiO含有量(質量%)の比CaO/SiOが1.0〜2.0となるように、前記成形体の形成工程において、鉱石銘柄、およびバインダー配合量からなる群から選ばれる1つ以上の配合条件を調整する。
本発明の一態様に係る高炉用の非焼成含炭塊成鉱の製造方法では、前記非焼成含炭塊成鉱のCaO含有量(質量%)、SiO含有量(質量%)、Al含有量(質量%)、MgO含有量(質量%)および炭素含有量(T.C)(質量%)により表される脈石量((CaO+SiO+Al+MgO)/(100−炭素含有量(T.C)))の値が0.25以下であり、かつMgO含有量が0.5質量%以上となるように、前記成形体の形成工程において、前記配合条件を調整してもよい。
前記バインダー配合量を5〜10質量%の範囲で調整してもよい。
前記成形体の形成工程において、珪石、蛇紋岩、橄欖岩、ドロマイト、ニッケルスラグ、マグネサイト、ブルーサイトから選ばれる副原料、及び高SiO含有鉱石のうちいずれか一方又は両方をさらに配合し、前記非焼成含炭塊成鉱の炭素含有量(T.C)が18〜25質量%、かつCaO含有量とSiO含有量の比CaO/SiOが1.0〜2.0となるように、前記副原料及び高SiO含有鉱石の配合量を調整してもよい。
A method for producing a non-fired carbon-containing agglomerated ore for a blast furnace according to an aspect of the present invention is a method of mixing a kneaded material, a carbon-containing material, and a binder, kneading, forming a kneaded product, and obtaining a molded product. A forming step and then a step of curing the shaped body to obtain a non-fired carbon-containing agglomerated mineral, wherein the carbon content (TC) of the non-fired carbon-containing agglomerated mineral is 18 to 25% by mass, and as CaO content of gangue ingredient (wt%) and SiO 2 content ratio CaO / SiO 2 (mass%) is 1.0 to 2.0, in the step of forming the molded body, ore grade And one or more blending conditions selected from the group consisting of the binder blending amount.
In the method for producing an unfired carbon-containing agglomerated mineral for a blast furnace according to one aspect of the present invention, the CaO content (mass%), the SiO 2 content (mass%), and Al 2 of the unfired carbon-containing agglomerated mineral. Amount of gangue expressed by O 3 content (mass%), MgO content (mass%) and carbon content (TC) (mass%) ((CaO + SiO 2 + Al 2 O 3 + MgO) / (100− In the forming step of the molded body, the blending conditions are adjusted so that the value of carbon content (TC))) is 0.25 or less and the MgO content is 0.5 mass% or more. May be.
You may adjust the said binder compounding quantity in 5-10 mass%.
In the forming step of the molded body, the auxiliary material selected from quartzite, serpentine, peridotite, dolomite, nickel slag, magnesite, and brucite, and one or both of high-SiO 2 containing ores are further blended, so that the carbon content of non-calcined carbonaceous mass Naruko (T.C.) is 18 to 25 wt%, and the ratio CaO / SiO 2 of CaO content and SiO 2 content is 1.0 to 2.0 to, may be adjusted the amount of the auxiliary materials and high SiO 2 containing ores.

本発明の一態様に係る高炉用の非焼成含炭塊成鉱は、非焼成含炭塊成鉱だけでなく、焼結鉱などの主要な高炉用鉄含有原料の被還元率を向上するために十分な炭素含有量を有する。さらに、高炉の操業において、従来に比べて、スラグ融点を低く抑えることができ、優れた還元生成スラグ特性(メタル滴下性)を達成できる。
このため、本発明の一態様に係る非焼成含炭塊成鉱を高炉用鉄含有原料の一部として使用すると、高炉操業時の炉下部において良好な通気性を実現できる。また、還元材比(コークス比)を大幅に低減できる。
The non-fired coal-containing agglomerated ore for blast furnaces according to one aspect of the present invention is not only for non-fired carbon-containing agglomerated minerals, but to improve the reduction rate of the main blast furnace iron-containing raw materials such as sintered ores. Has a sufficient carbon content. Furthermore, in the operation of the blast furnace, the slag melting point can be suppressed lower than before, and excellent reduction product slag characteristics (metal dripping properties) can be achieved.
For this reason, when the non-baking carbon-containing agglomerated mineral which concerns on 1 aspect of this invention is used as a part of iron-containing raw material for blast furnaces, favorable air permeability can be implement | achieved in the furnace lower part at the time of blast furnace operation. In addition, the reducing material ratio (coke ratio) can be greatly reduced.

本発明の一態様に係る高炉用の非焼成含炭塊成鉱の製造方法では、非焼成プロセスが適用されているため、焼成プロセスに比べて、省エネルギー化、低CO化が可能となる。また、比較的安価で簡易な方法により、製鉄プロセスで発生したダストを、鉄含有原料および炭材としてリサイクル処理できる。In the method for producing a non-fired carbon-containing agglomerated mineral for a blast furnace according to one embodiment of the present invention, since a non-fired process is applied, it is possible to save energy and reduce CO 2 compared to the fired process. Further, the dust generated in the iron making process can be recycled as an iron-containing raw material and a carbon material by a relatively inexpensive and simple method.

バインダー(セメント)配合量(及びCaO/SiOの比)と冷間圧潰強度との関係を示す図である。Binder is a diagram showing a relationship (cement) the amount (and CaO / SiO 2 ratio) and cold crushing strength. MgO含有量が1.5%である場合の焼結鉱及び非焼成含炭塊成鉱のCaO/SiOとスラグ融点との関係を示す図である。It is a diagram showing the relationship between the sintered ore and non-calcined carbonaceous mass Naruko CaO / SiO 2 and slag melting point when MgO content is 1.5%. CaO/SiOが1.5である場合の焼結鉱及び非焼成含炭塊成鉱のMgO含有量とスラグ融点との関係を示す図である。CaO / SiO 2 is a diagram showing the relationship between the sintered ore and non-calcined carbonaceous MgO content mass Naruko and slag melting point when it is 1.5. 非焼成含炭塊成鉱と焼結鉱のCaO/SiOとメタル滴下率との関係を示す図である。It is a diagram showing the relationship between the non-calcined carbonaceous mass Naruko and sinter the CaO / SiO 2 and metal dropping rate. 非焼成含炭塊成鉱と焼結鉱のMgO含有量とメタル滴下率との関係を示す図である。It is a figure which shows the relationship between MgO content of a non-baking carbon-containing agglomerated mineral and sintered ore, and a metal dripping rate. 脈石量(CaO+SiO+MgO+Al)/(100−TC)の値とメタル滴下率との関係を示す図である。It is a diagram showing the relationship between the gangue amount (CaO + SiO 2 + MgO + Al 2 O 3) / (100-TC) values and the metal dropping rate. 非焼成含炭塊成鉱の炭素含有量(T.C)とメタル滴下率との関係を示す図である。It is a figure which shows the relationship between the carbon content (TC) of a non-baking carbon-containing agglomerated mineral, and a metal dripping rate. 従来の焼結鉱及び高炭素含有量の非焼成含炭塊成鉱の温度と還元率との関係を示す図である。It is a figure which shows the relationship between the temperature of the conventional sintered ore, and the non-baking carbon-containing agglomerated mineral with a high carbon content. 従来の焼結鉱及び高炭素含有量の非焼成含炭塊成鉱の温度とスラグ融点の計算値との関係を示す図である。It is a figure which shows the relationship between the temperature of the conventional sintered ore and the non-baking carbon-containing agglomerated mineral with high carbon content, and the calculated value of slag melting | fusing point.

本実施形態の高炉用の非焼成含炭塊成鉱は、含鉄原料、含炭原料、及びバインダーを混合、混練し、混練物を成形して成形体を得て、次いで前記成形体を養生する方法により製造される。炭素含有量(T.C)は18〜25質量%であり、脈石成分のCaO/SiOは1.0〜2.0である。これにより、高炉使用に最適なスラグ融点が得られるようになっている。The unfired carbon-containing agglomerated ore for a blast furnace according to this embodiment is obtained by mixing and kneading an iron-containing raw material, a carbon-containing raw material, and a binder, molding the kneaded material to obtain a molded body, and then curing the molded body. Manufactured by the method. Carbon content (T.C.) is 18 to 25 wt%, CaO / SiO 2 gangue component is 1.0 to 2.0. As a result, an optimum slag melting point for blast furnace use can be obtained.

本実施形態において、非焼成含炭塊成鉱の炭素含有量(T.C)は18〜25質量%であり、好ましくは20〜23質量%である。
炭素含有量が18%未満では、脈石成分を調整しても、還元材比を低減する効果が小さくなってしまう。炭素含有量が25質量%を超えると、高炉用に使用されるために必要な最低限の冷間圧潰強度を有することができなくなる。
In this embodiment, the carbon content (TC) of a non-baking carbon-containing agglomerated mineral is 18-25 mass%, Preferably it is 20-23 mass%.
If the carbon content is less than 18%, even if the gangue component is adjusted, the effect of reducing the reducing material ratio is reduced. When the carbon content exceeds 25% by mass, it becomes impossible to have the minimum cold crushing strength necessary for use in blast furnaces.

非焼成含炭塊成鉱の脈石成分のCaO含有量(質量%)とSiO含有量(質量%)の比CaO/SiO(塩基度とも言う)は、1.0〜2.0であり、好ましくは、1.4〜1.7である。
CaO/SiOを1.0〜2.0の範囲内の低い値にすることによって、メタル滴下率を向上させることができる。CaO/SiOが2.0を超える場合、メタル滴下率が50%未満となる。CaO/SiOが1.0未満の場合、メタル滴下率が向上する効果は飽和してしまう。
The ratio CaO / SiO 2 (also referred to as basicity) of CaO content (% by mass) and SiO 2 content (% by mass) of the gangue component of the unfired carbon-containing agglomerated mineral is 1.0 to 2.0. Yes, preferably 1.4 to 1.7.
The metal dripping rate can be improved by setting CaO / SiO 2 to a low value within the range of 1.0 to 2.0. If CaO / SiO 2 is more than 2.0, the metal dropping rate is less than 50%. When CaO / SiO 2 is less than 1.0, the effect of improving the metal dropping rate is saturated.

本実施形態において、脈石量の値は、0.25以下であることが好ましく、更に好ましくは0.22〜0.25である。ここで、脈石量は、以下の式により算出される値である。
脈石量=(CaO+SiO+Al+MgO)/(100−炭素含有量(T.C))
なお、式中のCaO、SiO、Al、及びMgOは、それぞれ非焼成含炭塊成鉱中のCaO含有量(質量%)、SiO含有量(質量%)、Al含有量(質量%)、及びMgO含有量(質量%)を示す。
脈石量の値を0.25以下とすることによって、スラグ量を低下させ、滴下性をさらに改善できる。
In the present embodiment, the value of the gangue amount is preferably 0.25 or less, more preferably 0.22 to 0.25. Here, the gangue amount is a value calculated by the following equation.
Amount of gangue = (CaO + SiO 2 + Al 2 O 3 + MgO) / (100-carbon content (TC))
Incidentally, CaO in the formula, SiO 2, Al 2 O 3 , and MgO is, CaO content in the non-calcined carbonaceous mass Naruko respectively (wt%), SiO 2 content (wt%), Al 2 O 3 Content (mass%) and MgO content (mass%) are shown.
By setting the value of the gangue amount to 0.25 or less, the slag amount can be reduced and the dripping property can be further improved.

MgO含有量は0.5質量%以上であることが好ましく、更に好ましくは0.6〜2.0質量%である。これにより、低FeOスラグ(FeO含有量の少ないスラグ)の融点が、MgOによって低下し、メタル滴下性をさらに向上させることができる。   The MgO content is preferably 0.5% by mass or more, more preferably 0.6 to 2.0% by mass. Thereby, melting | fusing point of low FeO slag (slag with little FeO content) falls by MgO, and can improve metal dripping property further.

本実施形態の高炉用の非焼成含炭塊成鉱の製造方法は、含鉄原料、含炭原料、及びバインダーを混合、混練し、混練物を成形して成形体を得る成形体の形成工程と、次いで前記成形体を養生して非焼成含炭塊成鉱を得る工程を有する。成形体の形成工程では、非焼成含炭塊成鉱の炭素含有量(T.C)が18〜25質量%となり、かつ脈石成分のCaO含有量(質量%)とSiO含有量(質量%)の比CaO/SiOが1.0〜2.0となるように、鉱石銘柄およびバインダー配合量からなる群から選ばれる1つ以上の配合条件を調整する。The method for producing a non-fired carbon-containing agglomerated ore for a blast furnace according to the present embodiment includes a step of forming a molded body to obtain a molded body by mixing and kneading the iron-containing raw material, the carbon-containing raw material, and the binder, and molding the kneaded product. Then, the step of curing the shaped body to obtain a non-fired carbon-containing agglomerated mineral is provided. In the forming step of the compact, the carbon content (TC) of the unfired carbon-containing agglomerated mineral is 18 to 25% by mass, and the CaO content (% by mass) and the SiO 2 content (mass by mass) of the gangue component. the ratio CaO / SiO 2 of%) are such that 1.0 to 2.0, adjusting one or more blending conditions selected from the group consisting of ore grade and the binder amount.

本実施形態で使用する含鉄原料としては、製鉄プロセスにおいて発生する焼結ダスト、高炉ダストなどの含鉄ダスト、焼結用粉状鉄鉱石より粒度が小さいペレットフィード、焼結用粉状鉄鉱石を破砕及び/又は整粒して作製された微粉状鉄鉱石などが挙げられる。
使用する鉱石銘柄によって、鉄およびSiOなどの脈石成分の含有量が大きく異なる。したがって、使用する鉱石銘柄を選択することによって、CaO/SiO値を調整できる。特に、CaO/SiO値は、SiO含有量の多い鉱石の配合量によって大きく影響する。
本実施形態で使用する鉱石銘柄としては、インドハイシリシャス、ローブリバー、ヤンディークージナ、リオドセ(イタビラ)、マラマンバなどが挙げられる。
As iron-containing raw materials used in this embodiment, sintered dust generated in the iron making process, iron-containing dust such as blast furnace dust, pellet feed smaller in particle size than powdered iron ore for sintering, and powdered iron ore for sintering are crushed And / or fine pulverized iron ore produced by sizing.
Depending on the ore brand to be used, the contents of gangue components such as iron and SiO 2 vary greatly. Therefore, the CaO / SiO 2 value can be adjusted by selecting the ore brand to be used. In particular, the CaO / SiO 2 value is greatly affected by the amount of ore having a high SiO 2 content.
Examples of ore brands used in the present embodiment include Indian high Siricious, robe river, Yandy Kujina, Rio Doce (Itabira), Mara Mamba, and the like.

本実施形態で使用する含炭原料としては、高炉一次灰、コークスダスト、微粉コークス、無煙炭などが挙げられる。   Examples of the carbon-containing raw material used in the present embodiment include blast furnace primary ash, coke dust, fine coke, and anthracite.

本実施形態で使用するバインダーとしては、一般的に用いられる高炉水砕スラグを主成分とする微粉末やアルカリ刺激剤からなる時効性バインダー、生石灰、ポルトランドセメント、ベントナイトなどが挙げられる。バインダーの配合量(添加量)は、他の配合条件等を勘案して適宜決めることができる。バインダーの配合量が少なすぎると、非焼成含炭塊成鉱の冷間圧延強度を十分に維持することが困難となる。また、バインダーの配合量が多すぎると、非焼成含炭塊成鉱のスラグ量が増大し、炉下部の通気性が不安定化する。これにより、安定した還元材比低減効果が得られない。   Examples of the binder used in the present embodiment include fine powders mainly composed of blast furnace granulated slag and aging binders composed of alkali stimulants, quicklime, Portland cement, bentonite and the like. The blending amount (addition amount) of the binder can be appropriately determined in consideration of other blending conditions and the like. When the blending amount of the binder is too small, it becomes difficult to sufficiently maintain the cold rolling strength of the unfired carbon-containing agglomerated mineral. Moreover, when there are too many compounding quantities of a binder, the amount of slag of a non-baking carbon-containing agglomerated mineral will increase, and the air permeability of a furnace lower part will become unstable. Thereby, the stable reducing material ratio reduction effect is not acquired.

そこで、バインダー配合量を調整してCaO/SiOを変化させた非焼成含炭塊成鉱の冷間強度を調査した。得られた結果を表1及び図1に示す。Therefore, the cold strength of the unfired carbon-containing agglomerated minerals in which CaO / SiO 2 was changed by adjusting the binder blending amount was investigated. The obtained results are shown in Table 1 and FIG.

Figure 2011021577
Figure 2011021577

バインダー(セメント)配合量が少なくなる(CaO/SiOが低下する)と共に、冷間強度は低下した。そして、CaO/SiOが1.0未満(バインダー(セメント)配合量は5質量%未満)の場合、冷間の圧潰強度100kg/cmを維持することが困難となった。非焼成含炭塊成鉱の冷間圧潰強度が100kg/cm未満となると、高炉への搬送、装入時に非焼成含炭塊成鉱の粉化を引き起こす場合がある。冷間の圧潰強度を100kg/cm以上に維持するために、バインダー(セメント)配合量を5質量%以上とすることが好ましい。また、バインダー(セメント)配合量が10質量%を超えると、脈石量の増大を招く場合がある。このため、バインダー(セメント)配合量を10質量%以下とすることが好ましい。よって、バインダーの配合量は5〜10質量%が好ましい。As the binder (cement) content decreased (CaO / SiO 2 decreased), the cold strength decreased. Then, CaO / SiO 2 is of less than 1.0 (Binder (cement) amount is less than 5 wt%), has become difficult to maintain the crush strength 100 kg / cm 2 between cold. When the cold crushing strength of the non-fired carbon-containing agglomerated mineral is less than 100 kg / cm 2 , pulverization of the non-fired carbon-containing agglomerated mineral may be caused at the time of conveyance to the blast furnace and charging. In order to maintain the cold crushing strength at 100 kg / cm 2 or more, the binder (cement) content is preferably 5% by mass or more. On the other hand, if the amount of the binder (cement) exceeds 10% by mass, the amount of gangue may be increased. For this reason, it is preferable to make a binder (cement) compounding quantity into 10 mass% or less. Therefore, the blending amount of the binder is preferably 5 to 10% by mass.

なお、混合、混練、成形、及び養生の製造工程のうち、養生中にセメントの水和反応によって自由水が含炭塊成鉱中の水和物に取り込まれる。このため製造工程を経るときに、原料の全配合量は若干変化するが、その変化量は微小であり、ほとんど変化することは無いと考えて良い。このため、例えばバインダーの配合量は、製造された非焼成含炭塊成鉱中のバインダー含有量とほぼ同一となる。他の成分についても同様に、製造工程での配合量と非焼成含炭塊成鉱中の含有量はほぼ同一である。
従って、本実施形態の非焼成含炭塊成鉱において、バインダーの含有量は5〜10質量%であることが好ましく、これにより上記したように100kg/cm以上の冷間圧潰強度が達成できる。
In addition, in the mixing, kneading, molding, and curing production processes, free water is taken into the hydrates in the carbon-containing agglomerated minerals by curing the cement during the curing. For this reason, when going through the manufacturing process, the total blending amount of the raw materials slightly changes, but the amount of change is minute and may be considered to hardly change. For this reason, the compounding quantity of a binder becomes substantially the same as the binder content in the non-baking carbon-containing agglomerated mineral produced, for example. Similarly, for other components, the blending amount in the production process and the content in the unfired carbon-containing agglomerated mineral are almost the same.
Accordingly, in the unfired carbon-containing agglomerated mineral of this embodiment, the binder content is preferably 5 to 10% by mass, and as described above, a cold crushing strength of 100 kg / cm 2 or more can be achieved. .

本実施形態では、さらに副原料及び高SiO含有鉱石を配合することが好ましい。これにより、より厳密に成分調整を行うことができる。特に、バインダー量に左右されることなく、CaO/SiO値を調整できる。
副原料としては、SiOを主成分とする珪石、MgOを主成分とする蛇紋岩、橄欖岩、ドロマイト、ニッケルスラグ、マグネサイト、ブルーサイトなどが挙げられる。また、高SiO含有鉱石は、SiO含有量が3.5質量%以上の鉱石である。
In this embodiment, it is preferable to further mix the auxiliary material and the high SiO 2 content ore. Thereby, component adjustment can be performed more strictly. In particular, the CaO / SiO 2 value can be adjusted without being influenced by the amount of the binder.
Examples of the auxiliary material include quartzite mainly composed of SiO 2 , serpentinite mainly composed of MgO, peridotite, dolomite, nickel slag, magnesite, and brucite. The high SiO 2 content ore, SiO 2 content of 3.5 mass% or more ore.

一般に、目標とする非焼成含炭塊成鉱の化学成分が規定されると、これら副原料や高SiO含有鉱石の配合量は自動的に決まってしまう。このため、これら副原料や高SiO含有鉱石の配合量は、特に限定されず、非焼成含炭塊成鉱の化学成分に応じて適宜決定される。Generally, when the chemical composition of the target non-fired carbon-containing agglomerated mineral is specified, the blending amounts of these auxiliary raw materials and high SiO 2 -containing ore are automatically determined. Therefore, the amount of these auxiliary materials and high SiO 2 containing ore is not particularly limited, is suitably determined according to the chemical composition of non-calcined carbonaceous mass Naruko.

次に、CaO/SiO、MgO含有量および脈石量を調整する方法についてより詳細に述べる。
CaO/SiOは、配合される原料に含まれるCaO量及びSiO量によって決定される。
Next, a method for adjusting CaO / SiO 2 , MgO content and gangue amount will be described in more detail.
CaO / SiO 2 is determined by the amount of CaO and the amount of SiO 2 contained in the raw material to be blended.

CaOは、主に、バインダー、含炭原料として使用される高炉一次灰、含鉄原料として使用される焼結系ダストや転炉系ダストなどに含まれており、これらの配合量を適宜調整することによって、CaO含有量を調整できる。ただし、バインダーとしてCaO分の高いセメント系バインダーを使用する場合、CaO/SiOが1.0〜2.0となるようにCaO含有量を調整するためには、バインダーの配合量自体を減少させる必要がある。このため、十分な冷間圧潰強度が得られるかどうか、考慮する必要がある。CaO is mainly contained in binders, blast furnace primary ash used as a carbon-containing raw material, sintered dust and converter dust used as an iron-containing raw material, and the amount of these should be adjusted appropriately. The CaO content can be adjusted. However, when a cement-based binder having a high CaO content is used as the binder, in order to adjust the CaO content so that CaO / SiO 2 is 1.0 to 2.0, the blending amount of the binder itself is decreased. There is a need. For this reason, it is necessary to consider whether sufficient cold crushing strength is obtained.

SiO、MgOは、主に、バインダー、含炭原料として使用される高炉一次灰、含鉄原料として使用される焼結系ダスト、炭素系減量中の灰分などに含まれる。
本実施形態では、非焼成含炭塊成鉱中のCaO/SiOが1.0〜2.0となれば、SiOの添加形態(SiOを含む原料の形態)に関わらず、一定の効果をもたらすことができる。また、MgOについても、MgO含有量が0.5質量%以上となれば、MgOの添加形態(MgOを含む原料の形態)に関わらず、一定の効果をもたらすことができる。
積極的にCaO/SiOの値を低減したり、MgO含有量を0.5質量%以上とする場合には、珪石、蛇紋岩、橄欖岩、ドロマイト、ニッケルスラグ、マグネサイト、ブルーサイトなどの副原料や高SiO含有鉱石を配合することが好ましい。これにより、前述したようにバインダー量に左右されることなく、CaO/SiOの値やMgO含有量を調整できる。ただし、これら副原料や高SiO含有鉱石を多量に配合すると、脈石量が増大することになる。このため、脈石量が0.25以下となるように、CaO/SiO、MgOを調整することが好ましい。
SiO 2 and MgO are mainly contained in binders, blast furnace primary ash used as a carbon-containing raw material, sintered dust used as an iron-containing raw material, ash in carbon-based weight loss, and the like.
In the present embodiment, if CaO / SiO 2 in the non-calcined carbonaceous mass Naruko is familiar with 1.0 to 2.0, regardless of the mode of addition of SiO 2 (the form of raw material containing SiO 2), a constant Can have an effect. Further, regarding MgO, if the MgO content is 0.5 mass% or more, a certain effect can be brought about regardless of the addition form of MgO (form of raw material containing MgO).
When actively reducing the value of CaO / SiO 2 or making the MgO content 0.5 mass% or more, such as silica, serpentine, peridotite, dolomite, nickel slag, magnesite, brucite, etc. It is preferable to mix an auxiliary raw material or a high SiO 2 content ore. Thereby, as described above, the value of CaO / SiO 2 and the MgO content can be adjusted without being influenced by the amount of the binder. However, when these auxiliary materials and high SiO 2 -containing ores are blended in a large amount, the amount of gangue will increase. For this reason, it is preferable to adjust CaO / SiO 2 and MgO so that the amount of gangue is 0.25 or less.

本実施形態において、前述したように、炭素含有量(T.C)、CaO/SiO、脈石量、及びMgO含有量の数値範囲を規定している。これら数値範囲の臨界的意義を示す実験結果を以下に示す。
CaO/SiOが1.5であり、かつMgO含有量が1.5%である焼結鉱と非焼成含炭塊成鉱の1400℃における還元率を測定した。そして、未還元の鉄は全てFeOとしてスラグ中に存在すると仮定して、得られた還元率からスラグ中のFeO濃度を算出した。その結果、スラグ中のFeO濃度は、焼結鉱を使用した場合は34%であり、非焼成含炭塊成鉱を使用した場合は2%であることが分かった。このFeO濃度を用いて、焼結鉱と非焼成含炭塊成鉱について、CaO/SiOの値又はMgO含有量と、スラグ融点との関係を調べた。なお、スラグ融点(CaO−SiO−Al−MgO−FeO)は、コンピュータによるシミュレーションから求めた。
In the present embodiment, as described above, the numerical ranges of the carbon content (TC), CaO / SiO 2 , gangue amount, and MgO content are defined. Experimental results showing the critical significance of these numerical ranges are shown below.
The reduction rate at 1400 ° C. of a sintered ore and an unfired carbon-containing agglomerated mineral with CaO / SiO 2 of 1.5 and MgO content of 1.5% was measured. Then, assuming that all unreduced iron is present in the slag as FeO, the FeO concentration in the slag was calculated from the obtained reduction rate. As a result, it was found that the FeO concentration in the slag was 34% when the sintered ore was used and 2% when the unfired carbon-containing agglomerated mineral was used. Using this FeO concentration, the relationship between the CaO / SiO 2 value or MgO content and the slag melting point was investigated for sintered ore and unfired carbon-containing agglomerated ore. The slag melting point (CaO—SiO 2 —Al 2 O 3 —MgO—FeO) was determined from computer simulation.

図2は、MgO含有量が1.5%である場合のCaO/SiOとスラグ融点との関係を示す。図3は、CaO/SiOが1.5である場合のMgO含有量とスラグ融点との関係を示す。
図2から明らかなように、焼結鉱と非焼成含炭塊成鉱では、CaO/SiOがスラグ融点に及ぼす影響の度合いが異なる。これは、高温での還元率(すなわちスラグ中のFeO濃度)の差に起因している。具体的には、焼結鉱では、CaO/SiOが1.0低下すると、スラグ融点が278℃低下する。これに対して、非焼成含炭塊成鉱では、CaO/SiOが1.0低下すると、スラグ融点が620℃低下する。このため、非焼成含炭塊成鉱におけるCaO/SiOの影響は、焼結鉱におけるCaO/SiOの影響よりも2倍以上大きい。
FIG. 2 shows the relationship between CaO / SiO 2 and slag melting point when the MgO content is 1.5%. FIG. 3 shows the relationship between the MgO content and the slag melting point when CaO / SiO 2 is 1.5.
As is apparent from FIG. 2, the degree of influence of CaO / SiO 2 on the slag melting point differs between sintered ore and unfired carbon-containing agglomerated ore. This is due to the difference in the reduction rate at high temperature (that is, the FeO concentration in the slag). Specifically, in the sintered ore, when CaO / SiO 2 decreases by 1.0, the slag melting point decreases by 278 ° C. In contrast, in the non-calcined carbonaceous mass Naruko, the CaO / SiO 2 is 1.0 drops, slag melting point is lowered 620 ° C.. For this reason, the influence of CaO / SiO 2 in the unfired carbon-containing agglomerated mineral is twice or more larger than the influence of CaO / SiO 2 in the sintered ore.

非焼成含炭塊成鉱では、低温における還元率が高い。炭素含有量の少ない焼成塊成鉱に比べて、炭素含有量の多い非焼成含炭塊成鉱を用いた場合、高炉の上部で早く還元される。すると、上部で還元されて下部に移動するスラグ中に残る未還元の鉄成分の量(FeOの量)が少なくなる。スラグ中のFeOの量が少なくなるとスラグ融点が上昇する。前述したように、スラグの融点は、塩基度(CaO/SiO)によっても左右される。このため、非焼成含炭塊成鉱中の塩基度によって、スラグ融点が大きく変化すると考えられる。また、非焼成含炭塊成鉱中の塩基度が大きいと、スラグ融点が非常に高くなってしまうと考えられる。The unburned carbon-containing agglomerated ore has a high reduction rate at low temperatures. When using a non-calcined carbon-containing agglomerate with a high carbon content as compared with a calcined agglomerate with a low carbon content, it is reduced earlier in the upper part of the blast furnace. Then, the amount of the unreduced iron component (the amount of FeO) remaining in the slag that is reduced at the top and moves to the bottom decreases. When the amount of FeO in the slag decreases, the slag melting point increases. As described above, the melting point of slag depends on the basicity (CaO / SiO 2 ). For this reason, it is thought that slag melting point changes greatly with the basicity in a non-baking carbon-containing agglomerated mineral. Moreover, when the basicity in a non-baking carbon-containing agglomerated mineral is large, it is thought that slag melting | fusing point will become very high.

また、図3を参照すると、焼結鉱では、MgO含有量が1.0%増加すると、スラグ融点は50℃低下する。これに対して、非焼成含炭塊成鉱では、MgO含有量が1.0%増加すると、スラグ融点は22℃低下する。このため、非焼成含炭塊成鉱におけるMgO含有量の影響は、焼結鉱におけるMgO含有量の影響に比べて約半分である。   Referring to FIG. 3, in the sintered ore, when the MgO content is increased by 1.0%, the slag melting point is lowered by 50 ° C. On the other hand, in a non-baking carbon-containing agglomerated mineral, when MgO content increases 1.0%, slag melting | fusing point falls by 22 degreeC. For this reason, the influence of MgO content in a non-baking carbon-containing agglomerated mineral is about half compared with the influence of MgO content in a sintered ore.

ただし、厳密には、滴下挙動は、スラグ融点だけで決定されず、スラグ量や他のスラグ物性(粘度やメタルとの濡れ性など)によっても左右される。このため滴下挙動は、複雑な現象であり、現時点でも完全には解明されていない。しかしながら、焼結鉱と非焼成含炭塊成鉱では、スラグ融点を低下させてメタル滴下を促進する成分条件が異なることは明らかである。   However, strictly speaking, the dropping behavior is not determined only by the slag melting point, but also depends on the amount of slag and other slag physical properties (viscosity, wettability with metal, etc.). For this reason, the dropping behavior is a complicated phenomenon and has not been completely elucidated at present. However, it is clear that the sintered ore and non-fired carbon-containing agglomerated minerals have different component conditions for promoting the metal dropping by lowering the slag melting point.

そこで、荷重軟化試験装置を用いて、種々の脈石成分を有する非焼成含炭塊成鉱の滴下特性を調査した。
含鉄原料と含炭原料を粉砕し、バインダー、副原料と共に混合し、混練して混練物を得た。次いで混練物を成形し、成形体を所定期間養生して非焼成含炭塊成鉱を製造した。非焼成含炭塊成鉱の炭素含有量T.C(トータルカーボン)は20質量%とした。またCaO/SiOとMgO含有量が所定の値となるように、含鉄原料と副原料の配合率を調整した。バインダー(セメント)の配合量は10質量%とした。
具体的には、脈石量((CaO+SiO+Al+MgO)/(100−炭素含有量(T.C)))を0.22で一定とし、MgO含有量を0.9質量%で一定として、CaO/SiOが0.5〜2.5の範囲で所定の値となるように、ポルトランドセメントと微粉珪石の配合量を調整した。以上により、脈石成分のCaO/SiOが0.5〜2.5の範囲でそれぞれ異なる非焼成含炭塊成鉱を製造した。
また、CaO/SiOを2.0で一定とし、種々のMgO含有量を有する非焼成含炭塊成鉱を製造した。
Then, the dripping characteristic of the non-baking carbon-containing agglomerated mineral which has various gangue components was investigated using the load softening test apparatus.
The iron-containing raw material and the carbon-containing raw material were pulverized, mixed with a binder and auxiliary raw materials, and kneaded to obtain a kneaded product. Next, the kneaded product was molded, and the molded body was cured for a predetermined period to produce an unfired carbon-containing agglomerated mineral. Carbon content of unfired carbon-containing agglomerated minerals C (total carbon) was 20 mass%. Further, the mixing ratio of the iron-containing raw material and the auxiliary raw material was adjusted so that the contents of CaO / SiO 2 and MgO became predetermined values. The blending amount of the binder (cement) was 10% by mass.
Specifically, the gangue amount ((CaO + SiO 2 + Al 2 O 3 + MgO) / (100-carbon content (TC))) is constant at 0.22, and the MgO content is 0.9% by mass. As a constant, the blending amount of Portland cement and fine silica was adjusted so that CaO / SiO 2 was a predetermined value in the range of 0.5 to 2.5. Thus, CaO / SiO 2 of gangue components were produced different non-calcined carbonaceous mass Naruko in the range of 0.5 to 2.5.
Further, a constant CaO / SiO 2 at 2.0, to prepare a non-sintered carbonaceous mass Naruko with different MgO content.

まず、脈石成分のCaO/SiOが0.5〜2.5の範囲でそれぞれ異なる非焼成含炭塊成鉱に対して荷重軟化試験を実施した。
実際の高炉使用を想定して、非焼成含炭塊成鉱を通常の焼結鉱(CaO/SiO=1.8)に対して10%の割合で混合した。1600℃まで加熱して還元した段階で、るつぼから滴下したメタル量(率)を測定した。そして、以下の式で定義されるメタル滴下率(%)を計算した。
メタル滴下率(%)=滴下メタル量/(装入した総Fe量×0.95)×100
また焼結鉱のみについても、同様にメタル滴下率を測定した。なお、焼結鉱のメタル滴下率が50%未満となると、融着帯下面が下がり、下部滴下帯領域を狭める。このため、下部通気性が悪化し、安定した操業が困難となる。
得られた結果を表2、図4に示す。
First, CaO / SiO 2 of gangue component is carried load softening test for each different non-calcined carbonaceous mass Naruko in the range of 0.5 to 2.5.
Assuming actual blast furnace use, unfired carbon-containing agglomerated minerals were mixed at a rate of 10% with respect to ordinary sintered ore (CaO / SiO 2 = 1.8). At the stage of heating to 1600 ° C. and reduction, the amount (rate) of metal dropped from the crucible was measured. And the metal dripping rate (%) defined by the following formula | equation was calculated.
Metal dripping rate (%) = Drip metal amount / (Total amount of Fe charged × 0.95) × 100
Moreover, the metal dripping rate was similarly measured about only the sintered ore. In addition, when the metal dripping rate of sintered ore is less than 50%, the lower surface of the fusion band is lowered, and the lower dripping band region is narrowed. For this reason, lower air permeability deteriorates and stable operation becomes difficult.
The obtained results are shown in Table 2 and FIG.

Figure 2011021577
Figure 2011021577

図4から分かるように、非焼成含炭塊成鉱のCaO/SiOが高いほど、メタル滴下率が減少した。特に非焼成含炭塊成鉱のCaO/SiOが2.0を超えると、50%のメタル滴下率を維持することが困難となった。非焼成含炭塊成鉱を用いることによって、低温領域から間接還元が進むため、融着層でメタルと共存するスラグ中のFeO含有量が低下して、スラグ融点が上昇する。一般に、還元により生成した鉄の融液は、高炉下部に降下する際にコークスの炭素を包含し、炭素含有量が増加する(還元生成メタル浸炭)。スラグ融点が上昇することによって、還元生成メタル浸炭後の鉄の融液同士の凝集が妨げられ、図4に示された結果が得られたと考えられる。CaO/SiOが1.0未満では、共存スラグ融点は十分低いにも関わらず、スラグ滴下率は50%未満となった。これは、ネットワークフォーマーであるSiOの割合が増加するため、共存スラグの粘度が上昇してメタルの凝集が阻害されるためである。
また、図4においては、MgO含有量が1.5%の焼結鉱のCaO/SiOとメタル滴下率との関係を表す測定結果も示されている。焼結鉱においても、CaO/SiOの上昇に伴ってメタル滴下率が低下する傾向が見られる。しかし、その変化はゆるやかである。図4の結果からも、非焼成含炭塊成鉱塊と焼結鉱では、優れたメタル滴下性を達成するために具備すべき成分条件が異なることが確認できる。
以上のように、メタル滴下率の向上のためには、CaO/SiOを1.0〜2.0とする必要がある。CaO/SiOは、好ましくは1.4〜1.7であり、60%超のメタル滴下率が達成できる。
As can be seen from FIG. 4, the higher the CaO / SiO 2 of the unfired carbon-containing agglomerated mineral, the lower the metal dripping rate. In particular, when the CaO / SiO 2 of the unfired carbon-containing agglomerated mineral exceeds 2.0, it becomes difficult to maintain a metal dropping rate of 50%. By using the unfired carbon-containing agglomerated indirect reduction, the indirect reduction proceeds from the low temperature region, so that the FeO content in the slag coexisting with the metal in the fusion layer is lowered, and the slag melting point is raised. Generally, the iron melt produced by reduction includes coke carbon when descending to the bottom of the blast furnace, and the carbon content increases (reduction produced metal carburization). It is considered that the increase in the slag melting point hindered the aggregation of iron melts after carburization of the reduced-product metal, and the results shown in FIG. 4 were obtained. When CaO / SiO 2 was less than 1.0, the slag dropping rate was less than 50% even though the coexistence slag melting point was sufficiently low. This is because the proportion of the SiO 2 that is the network former increases, so that the viscosity of the coexistence slag increases and the metal aggregation is inhibited.
FIG. 4 also shows the measurement results representing the relationship between CaO / SiO 2 and metal dripping rate of sintered ore with an MgO content of 1.5%. Also in the sintered ore, the metal dripping rate tends to decrease as CaO / SiO 2 increases. However, the change is gradual. Also from the result of FIG. 4, it can confirm that the component conditions which should be comprised in order to achieve the outstanding metal dripping property differ in a non-baking carbon-containing agglomerated ore and sintered ore.
As described above, CaO / SiO 2 needs to be 1.0 to 2.0 in order to improve the metal dropping rate. CaO / SiO 2 is preferably 1.4 to 1.7, the metal dropping rate of over 60% can be achieved.

また、CaO/SiOが2.0であり、かつ種々のMgO含有量を有する非焼成含炭塊成鉱に対して、同様の方法により荷重軟化試験を実施した。そして、非焼成含炭塊成鉱を焼結鉱に対して10%の割合で混合したときの、非焼成含炭塊成鉱中のMgO含有量とメタル滴下率との関係を調べた。得られた結果を表3、図5に示す。Further, CaO / SiO 2 is 2.0, and for non-calcined carbonaceous mass Naruko with different MgO content was carried load softening test in the same manner. And the relationship between MgO content in a non-baking carbon-containing agglomerated mineral and a metal dripping rate when a non-baking carbon-containing agglomerated mineral was mixed in the ratio of 10% with respect to the sintered ore was investigated. The obtained results are shown in Table 3 and FIG.

Figure 2011021577
Figure 2011021577

図5から分かるように、メタル滴下率を向上させるためには、非焼成含炭塊成鉱中のMgO含有量を上昇させることも有効である。CaO/SiO=2.0の非焼成含炭塊成鉱を10%の割合で焼結鉱に混合したときのメタル滴下率の変化から、MgO含有量が0.5質量%以上になると、メタル滴下率は50%を維持できることがわかる。MgO含有量が高いほど、メタル滴下率は上昇する。しかし、MgO含有量2.0%付近からは、効果が飽和することがわかる。これは、前述の低FeOスラグ(FeO含有量の少ないスラグ)の融点が、MgOによって低下するためであり、CaO/SiOが高い条件ほど、MgOによる効果が有効に得られる。
従って、MgO含有量は0.5質量%以上であることが好ましい。上限は特に設けない。
As can be seen from FIG. 5, in order to improve the metal dripping rate, it is also effective to increase the MgO content in the unfired carbon-containing agglomerated mineral. From the change in the metal dripping rate when mixing unsintered carbon-containing agglomerated CaO / SiO 2 = 2.0 into the sintered ore at a rate of 10%, when the MgO content is 0.5% by mass or more, It can be seen that the metal dripping rate can be maintained at 50%. The higher the MgO content, the higher the metal dripping rate. However, it can be seen that the effect is saturated when the MgO content is around 2.0%. This is because the melting point of the above-mentioned low FeO slag (slag with low FeO content) is lowered by MgO. The higher the CaO / SiO 2 , the more effectively the effect of MgO can be obtained.
Therefore, the MgO content is preferably 0.5% by mass or more. There is no particular upper limit.

また、図5においてはCaO/SiOが2.0の焼結鉱のMgO含有率とメタル滴下率(%)との関係を表す測定結果も示されている。焼結鉱においても、MgO含有量の上昇に伴ってメタル滴下率が上昇する傾向が見られる。しかし、その変化(影響)は、非焼成含炭塊成鉱と較べて大きい。図5の結果からも、非焼成含炭塊成鉱塊と焼結鉱では、優れたメタル滴下性を達成するために具備すべき成分条件が異なることが確認できる。FIG. 5 also shows a measurement result representing the relationship between the MgO content of the sintered ore with a CaO / SiO 2 of 2.0 and the metal dripping rate (%). Also in the sintered ore, the metal dripping rate tends to increase as the MgO content increases. However, the change (influence) is larger than that of unfired carbon-containing agglomerated minerals. Also from the result of FIG. 5, it can confirm that the component conditions which should be comprised in order to achieve the outstanding metal dripping property differ in a non-baking carbon-containing agglomerated ore and sintered ore.

また共存するスラグ量(脈石量+未還元のFeO量)も、滴下性を決定する重要な因子である。そこで、CaO/SiOが1.5であり、MgOが1.0%であり、脈石量が異なる非焼成含炭塊成鉱を製造した。そして、そのメタル滴下率を測定し、滴下特性を調べた。
前述したように脈石量は、以下の式により算出した。
脈石量=(CaO+SiO+Al+MgO)/(100−炭素含有量(T.C))
得られた結果を表4、図6に示す。
The amount of coexisting slag (the amount of gangue + the amount of unreduced FeO) is also an important factor that determines the dripping property. Therefore, non-fired carbon-containing agglomerated minerals having CaO / SiO 2 of 1.5, MgO of 1.0% and different gangue amounts were produced. And the metal dripping rate was measured and the dripping characteristic was investigated.
As described above, the gangue amount was calculated by the following equation.
Amount of gangue = (CaO + SiO 2 + Al 2 O 3 + MgO) / (100-carbon content (TC))
The obtained results are shown in Table 4 and FIG.

Figure 2011021577
Figure 2011021577

前述したように、スラグ中のFeO濃度は、比較的低温部で、既に2%まで低下するので、FeO濃度の影響は小さい。その結果、脈石量が0.25以下では、スラグ量によらず、良好なメタル滴下性を示した。脈石量が0.25以下の範囲では、スラグ量よりも、固相率、粘度、メタルとの濡れ性などのスラグ物性が、メタル滴下性の支配因子となると考えられる。しかし、脈石量が0.25を超えると、スラグ量の影響が無視できなくなり、滴下性は悪化した。さらにこのレベル(0.25超)の脈石量になると、高炉で非焼成含炭塊成鉱を多量に使用する際に、炉床スラグ量の著しい増大を招き、出滓作業が不安化し、通気変動の原因となる。
以上の結果から、脈石量((CaO+SiO+MgO+Al)/(100−TC))が0.25以下となるように非焼成含炭塊成鉱の成分を調整することが好ましい。
As described above, since the FeO concentration in the slag has already decreased to 2% at a relatively low temperature portion, the influence of the FeO concentration is small. As a result, when the gangue amount was 0.25 or less, good metal dripping property was exhibited regardless of the slag amount. When the amount of gangue is in the range of 0.25 or less, it is considered that slag physical properties such as solid phase ratio, viscosity, wettability with metal, etc. become the controlling factors of metal dripping property rather than slag amount. However, when the gangue amount exceeded 0.25, the influence of the slag amount could not be ignored, and the dripping property deteriorated. Furthermore, when the amount of gangue is at this level (above 0.25), when using a large amount of unfired carbon-containing agglomerated ore in a blast furnace, the amount of hearth slag is significantly increased, and the tapping work becomes unstable. Causes fluctuations in ventilation.
From the above results, it is preferable to adjust the components of the unfired carbon-containing agglomerated mineral so that the gangue amount ((CaO + SiO 2 + MgO + Al 2 O 3 ) / (100-TC)) is 0.25 or less.

さらに、メタル滴下率に及ぼす非焼成含炭塊成鉱中の炭素含有量(T.C)の影響について調査した。
MgOが1.0質量%で一定であり、脈石量が0.22で一定であり、CaO/SiOが0.5、1.0、1.5、2.0、又は2.5、炭素含有量(T.C)が10、15、18、25、又は30質量%となるように、原料の配合比を調整して非焼成含炭塊成鉱を製造した。
前述した方法と同様にしてメタル滴下量(率)を測定した。得られた結果を図7に示す。
Furthermore, the influence of the carbon content (TC) in the unfired carbon-containing agglomerated mineral on the metal dripping rate was investigated.
MgO is constant at 1.0% by mass, gangue amount is constant at 0.22, CaO / SiO 2 is 0.5, 1.0, 1.5, 2.0, or 2.5, The unfired carbon-containing agglomerated mineral was manufactured by adjusting the mixing ratio of the raw materials so that the carbon content (TC) was 10, 15, 18, 25, or 30% by mass.
The amount (rate) of metal dripping was measured in the same manner as described above. The obtained results are shown in FIG.

Figure 2011021577
Figure 2011021577

図7の結果から、炭素含有量(T.C)の増加に伴って、メタル滴下率が低下することが分かる。これは前述の通り、炭素含有量(T.C)の増加に伴って、メタルと共存するスラグ中のFeO濃度が減少するからである。
前述したように、高炉での安定した操業を実現するためには、メタル滴下率は50%以上である必要がある。CaO/SiOが1.0〜2.0において、炭素含有量(T.C)が25質量%以下のとき、50%以上のメタル滴下率を達成できることが分かる。従って、炭素含有量(T.C)の上限値を25質量%とする必要がある。
From the results of FIG. 7, it can be seen that the metal dripping rate decreases as the carbon content (TC) increases. This is because the FeO concentration in the slag coexisting with the metal decreases as the carbon content (TC) increases as described above.
As described above, in order to achieve stable operation in the blast furnace, the metal dripping rate needs to be 50% or more. In CaO / SiO 2 is 1.0 to 2.0, when the carbon content (T.C.) is less than 25 wt%, it can be seen that achieve metal dropping rate of 50% or more. Therefore, the upper limit of the carbon content (TC) needs to be 25% by mass.

なお、本実施形態では、非焼成含炭塊成鉱の成分と脈石の配合量を所定の範囲に調整するが、非焼成含炭塊成鉱の成形方法、形状、物理構造(気孔・空隙率など)は制限されない。高炉用の非焼成含炭塊成鉱であれば、ペレットやブリケットなどの様々な形態が適用可能である。また、押し出し成形などの様々な成形方法が適用可能であり、同等の効果が得られる。   In this embodiment, the amount of the non-fired carbon-containing agglomerated mineral and the gangue is adjusted to a predetermined range, but the molding method, shape, and physical structure of the non-fired carbon-containing agglomerated mineral (pores / voids) Rate) is not limited. Various forms such as pellets and briquettes can be applied as long as they are non-fired carbon-containing agglomerated blast furnaces. Various molding methods such as extrusion molding can be applied, and equivalent effects can be obtained.

高炉内では、装入物が上部から下部へ移動し、還元ガスが下部から上部へ移動し、これにより熱交換と反応が進行する。このため、高炉は向流反応器である。一般に高炉の連続操業においては、鉱石層の上層にて、還元ガスの還元力が失われて、還元が十分に進まない場合があった。特に、焼成塊成鉱は、炭素を含有せず、自己還元能力がない。このため、焼成塊成鉱を用いた場合、焼成塊成鉱は、鉱石層の上部で十分に還元されない。そして、還元が不完全な状態で、焼成塊成鉱が高炉下部へ移動した場合、高炉の滴下帯と炉芯部で還元され、直接還元を引き起こす。このような場合、高炉への負荷が高くなり、また通気性が悪くなる問題があった。
これに対して、本実施形態の非焼成含炭塊成鉱を用いると、高炉内で鉄鉱石と共に本実施形態の非焼成含炭塊成鉱が存在することによって、特に鉱石層の上層での還元効率を大幅に向上させることができる。
しかし、炭素含有量が高い非焼成含炭塊成鉱では、前述したように、特に塩基度(CaO/SiO)によるスラグ融点への影響が大きい(図2)。本実施形態では、前述した発明者等の研究結果に基づいて、炭素含有量(T.C)及びCaO/SiOを規定することによって、良好なメタル滴下性を達成している。このため、滴下帯と炉芯部のスラグホールドアップ量が減少し、良好な通気性を確保できる。
さらに、前述したように、高炉内で鉄鉱石と共に本実施形態の非焼成含炭塊成鉱が存在することによって、特に鉱石層の上層での還元効率を大幅に向上させることができる。還元が行われ難い鉱石層の上層での還元効率を大幅に向上できるため、高炉全体での還元効率は大幅に向上することとなる。このため、本実施形態の非焼成含炭塊成鉱中の炭素量の余剰分と同量のコークス量よりも多い量の還元材を低減できる。
In the blast furnace, the charge moves from the upper part to the lower part, and the reducing gas moves from the lower part to the upper part, thereby causing heat exchange and reaction to proceed. For this reason, the blast furnace is a countercurrent reactor. In general, in continuous operation of a blast furnace, the reducing power of the reducing gas is lost in the upper layer of the ore layer, and the reduction may not proceed sufficiently. In particular, the calcined agglomerated mineral does not contain carbon and does not have a self-reducing ability. For this reason, when a calcined agglomerated mineral is used, the calcined agglomerated mineral is not sufficiently reduced at the upper part of the ore layer. When the calcined agglomerated ore moves to the lower part of the blast furnace in an incomplete reduction state, it is reduced at the dropping zone and the furnace core of the blast furnace, causing direct reduction. In such a case, there is a problem that the load on the blast furnace increases and the air permeability deteriorates.
On the other hand, when using the non-fired carbon-containing agglomerated mineral of this embodiment, the presence of the non-fired carbon-containing agglomerated mineral of this embodiment together with the iron ore in the blast furnace, particularly in the upper layer of the ore layer. Reduction efficiency can be greatly improved.
However, in the non-fired carbon-containing agglomerated mineral having a high carbon content, as described above, the influence of the basicity (CaO / SiO 2 ) on the slag melting point is particularly large (FIG. 2). In this embodiment, favorable metal dripping property is achieved by prescribing the carbon content (TC) and CaO / SiO 2 based on the above-described research results of the inventors. For this reason, the amount of slag hold-up between the dripping zone and the furnace core portion is reduced, and good air permeability can be secured.
Furthermore, as described above, the presence of the non-fired carbon-containing agglomerated mineral of the present embodiment together with the iron ore in the blast furnace can greatly improve the reduction efficiency particularly in the upper layer of the ore layer. Since the reduction efficiency in the upper layer of the ore layer that is difficult to be reduced can be greatly improved, the reduction efficiency in the entire blast furnace is greatly improved. For this reason, it is possible to reduce the amount of reducing material larger than the amount of coke equivalent to the excess amount of carbon in the unfired carbon-containing agglomerated mineral of this embodiment.

含鉄原料として、微粉状鉄含有原料(焼結ダストと鉄鉱石)を用意し、含炭原料として、炭材(コークスダスト、粉コークス、および、高炉一次灰)を用意した。また、バインダーとして、セメント(早強ポルトランドセメント)を用意した。なお、いくつかの実施例では、SiO含有量の高い副原料も用いた。
セメント(早強ポルトランドセメント)の配合比率が4〜9質量%であり、炭材および微粉状鉄含有原料の配合割合が種々の値となるように、原料の配合量を調整した。これら原料を水分と共に混合し、アイリッヒミキサーで混錬した。得られた混練物をパンペレタイザーで造粒(成形)して生ペレットを得た。次いで、生ペレットを、2週間、天日養生して非焼成含炭塊成鉱を製造した。なお、生ペレットの水分は、配合するセメント量に応じて10〜14質量%に調整した。
Fine iron-containing materials (sintered dust and iron ore) were prepared as iron-containing materials, and carbonaceous materials (coke dust, powder coke, and blast furnace primary ash) were prepared as carbon-containing materials. Moreover, cement (early strong Portland cement) was prepared as a binder. In some examples, an auxiliary material having a high SiO 2 content was also used.
The blending ratio of the raw materials was adjusted so that the blending ratio of cement (early strong Portland cement) was 4 to 9% by mass and the blending ratios of the carbonaceous material and the finely divided iron-containing raw material were various values. These raw materials were mixed with moisture and kneaded with an Eirich mixer. The obtained kneaded product was granulated (molded) with a pan pelletizer to obtain raw pellets. Next, the raw pellets were subjected to sun curing for 2 weeks to produce unfired carbon-containing agglomerated minerals. In addition, the water | moisture content of the raw pellet was adjusted to 10-14 mass% according to the cement amount to mix | blend.

得られた非焼成含炭塊成鉱について、JISM8718に準じて、以下の方法により冷間圧潰強度を測定した。試料1個に対して、規定の加圧速度で圧縮荷重を掛け、試料が破壊した時の荷重値を測定した。単位断面積当たりの荷重値(kg/cm)を求めた。そして試料100個の平均値を算出し、強度指数として用いた。
前述した方法により、非焼成含炭塊成鉱のスラグ融点及びメタル滴下率を測定した。
また、有効容積5500mの高炉において、原料の一部として、50kg/tpの量の非焼成含炭塊成鉱を使用して、高炉の操業を行った。そして、高炉の操業における上部K値、下部K値、風圧変動、及び還元材比を測定し、約1ヶ月間の操業結果の平均値を求めた。結果を表6に示す。
About the obtained unbaked carbon-containing agglomerated mineral, cold crushing strength was measured by the following method according to JISM8718. A compressive load was applied to one sample at a specified pressure rate, and the load value when the sample broke was measured. The load value (kg / cm 2 ) per unit cross-sectional area was determined. Then, an average value of 100 samples was calculated and used as an intensity index.
By the method mentioned above, the slag melting | fusing point and metal dripping rate of the non-baking carbon-containing agglomerated mineral were measured.
Further, in a blast furnace having an effective volume of 5500 m 3, the blast furnace was operated using a non-fired carbon-containing agglomerated mineral of 50 kg / tp as a part of the raw material. And the upper K value in the operation of the blast furnace, the lower K value, the wind pressure fluctuation | variation, and the reducing material ratio were measured, and the average value of the operation result for about one month was calculated | required. The results are shown in Table 6.

Figure 2011021577
Figure 2011021577

表6を参照すると、実施例1では、成分の適正化を実施し、CaO/SiOを2.0、MgOを0.6%、脈石量を0.22とした。高炉で使用すると、炉下部の通気性が改善され、還元材比は470kg/tpまで低下した。このため、炭素含有量の高い非焼成含炭塊成鉱を用いた効果が発揮された。Referring to Table 6, in Example 1, the components were optimized, CaO / SiO 2 was 2.0, MgO was 0.6%, and the gangue amount was 0.22. When used in a blast furnace, the air permeability at the bottom of the furnace was improved, and the reducing material ratio decreased to 470 kg / tp. For this reason, the effect using the non-baking carbon-containing agglomerated mineral with high carbon content was exhibited.

また、実施例2では、SiO含有量の高い副原料を配合し、SiO含有量を高めてCaO/SiOを1.0と更に低下させた。この実施例2では、CaO/SiOとMgO含有量が適正範囲であったため、スラグ融点を低くすることができた。ただ、脈石量が0.28と増大したため、メタル滴下性はやや低くなり、還元材比はあまり低下しなかった。In Example 2, it was blended with a high SiO 2 content adjuncts, was further reduced to 1.0 to CaO / SiO 2 enhances the SiO 2 content. In Example 2, since the CaO / SiO 2 and MgO contents were within the appropriate ranges, the slag melting point could be lowered. However, since the amount of gangue increased to 0.28, the metal dripping property was slightly lowered, and the reducing material ratio was not lowered so much.

実施例3では、脈石量を低減するためにバインダー量を4%まで低下させた。しかし、化学成分の含有量は適正であったため、メタル滴下率は向上した。ただし、バインダー量が少ないため、冷間圧潰強度は85kg/cmと不十分となった。このため、高炉にて使用した場合、炉内での粉量が増加し、これにより上部通気性が悪くなり、還元材比はやや高位であった。In Example 3, the binder amount was reduced to 4% in order to reduce the amount of gangue. However, since the chemical component content was appropriate, the metal dripping rate was improved. However, since the amount of the binder was small, the cold crushing strength was insufficient at 85 kg / cm 2 . For this reason, when it was used in a blast furnace, the amount of powder in the furnace increased, thereby lowering the upper air permeability, and the reducing material ratio was slightly higher.

実施例4では、バインダー量を低下させずに、副原料を配合することによって、して化学成分の含有量の調整を行った。この結果、冷間圧潰強度を損なうことなく、メタル滴下性が良好な非焼成含炭塊成鉱が製造できた。高炉にて使用した場合、還元材比が最も低下した。   In Example 4, the content of the chemical component was adjusted by blending the auxiliary material without reducing the binder amount. As a result, an unfired carbon-containing agglomerated mineral with good metal dripping properties could be produced without impairing the cold crushing strength. When used in a blast furnace, the reducing material ratio was the lowest.

実施例5では、CaO/SiOおよび脈石量は、本実施形態で規定された範囲(CaO/SiO:1.0〜2.0、脈石量:0.25以下)であるが、MgO含有量が0.4%と低く設定されていた。このため、メタル滴下率は52%に留まり、還元材比は低減するものの、その還元材比を低減する効果は比較的小さかった。In Example 5, the CaO / SiO 2 and the gangue amount are within the ranges defined in the present embodiment (CaO / SiO 2 : 1.0 to 2.0, the gangue amount: 0.25 or less). The MgO content was set as low as 0.4%. For this reason, the metal dripping rate remained at 52% and the reducing material ratio was reduced, but the effect of reducing the reducing material ratio was relatively small.

これに対して、比較例1では、炭素含有量(T.C)が17質量%と低く、CaO/SiOが1.9と低く、MgO含有量が1.0%と高い非焼成含炭塊成鉱を製造した。炭素含有量(T.C)が低いこともあって、スラグ融点は十分低く、滴下性に問題はなかった。ただし、高炉にて使用した場合、カーボン含有量が低いため、還元材比を低くするには困難があった。On the other hand, in Comparative Example 1, the carbon content (TC) is as low as 17% by mass, the CaO / SiO 2 is as low as 1.9, and the MgO content is as high as 1.0%. Agglomerate was produced. Since the carbon content (TC) was low, the slag melting point was sufficiently low, and there was no problem with dripping. However, when used in a blast furnace, since the carbon content is low, it has been difficult to reduce the reducing material ratio.

比較例2では、炭素含有量(T.C)を20%に高めて、かつCaO/SiOを2.2まで高めた非焼成含炭塊成鉱を製造した。低温での還元率が向上するため、スラグ融点は著しく上昇した。さらにCaO/SiOが2.0超であるため、メタル滴下性が低下した。しかし、高炉にて使用した場合、炉下部での通気性が悪化し、風圧の変動が顕著に増加した。これにより、操業は不安定化した。このため、炭素含有量が高いことによる効果を十分享受することができず、還元材比は500kg/tpレベルに留まった。In Comparative Example 2, an unfired carbon-containing agglomerated mineral having a carbon content (TC) increased to 20% and CaO / SiO 2 increased to 2.2 was produced. Since the reduction rate at low temperature was improved, the slag melting point was significantly increased. Since it is more CaO / SiO 2 is 2.0 greater than the metal dropping property deteriorate. However, when used in a blast furnace, the air permeability in the lower part of the furnace deteriorated and the fluctuation of the wind pressure significantly increased. This destabilized the operation. For this reason, the effect by having high carbon content was not fully received, and the reducing material ratio remained at the 500 kg / tp level.

比較例3では、炭素含有量が30%であり、本実施形態で規定された範囲の上限25質量%を超える高炭素の非焼成含炭塊成鉱を製造した。他の成分の含有量は適切な範囲内であったため、滴下率は65%と向上した。しかし、冷間強度が60kg/cmと低く、高炉にて使用するために必要な最低限の強度が得られなかった。このため、高炉内への粉の装入量が増加し、長期的な安定操業が困難となった。In Comparative Example 3, a high carbon non-fired carbon-containing agglomerated mineral having a carbon content of 30% and exceeding the upper limit of 25% by mass within the range defined in the present embodiment was produced. Since the content of other components was within an appropriate range, the dropping rate was improved to 65%. However, the cold strength was as low as 60 kg / cm 2, and the minimum strength required for use in a blast furnace could not be obtained. For this reason, the amount of powder charged into the blast furnace increased, making long-term stable operation difficult.

以上のように、非焼成含炭塊成鉱において、炭素含有量(T.C)を18〜25質量%、CaO/SiOを1.0〜2.0の範囲内とすることにより、メタル滴下性が良好であり、かつ高炉にて使用する際の還元材比を低下できることがわかる。特に、脈石量(CaO+SiO+Al+MgO)/(100−炭素含有量(T.C))の値が0.25以下、およびMgO含有量が0.5質量%以上である場合には、この効果が顕著である。また、このような成分調整を副原料の添加により行い、バインダー配合量を5〜10%とすることにより、冷間の圧潰強度も維持できる。As described above, in the unfired carbon-containing agglomerated mineral, the carbon content (TC) is 18 to 25% by mass, and CaO / SiO 2 is within the range of 1.0 to 2.0. It turns out that dripping property is favorable and can reduce the reducing material ratio at the time of using in a blast furnace. In particular, when the value of the gangue amount (CaO + SiO 2 + Al 2 O 3 + MgO) / (100−carbon content (TC)) is 0.25 or less and the MgO content is 0.5 mass% or more This effect is remarkable. Moreover, cold crushing strength can also be maintained by performing such component adjustment by adding an auxiliary material and setting the binder content to 5 to 10%.

本発明の一態様に係る高炉用の非焼成含炭塊成鉱は、高炉で使用する際に非焼成含炭塊成鉱だけでなく、焼結鉱などの主要な高炉用鉄含有原料の被還元率を向上するために十分な炭素含有量を有する。さらに、高炉の操業において、従来に比べて、スラグ融点を低く抑えることができ、優れた還元生成スラグ特性(メタル滴下性)を達成できる。
このため、本発明の一態様に係る非焼成含炭塊成鉱を高炉用鉄含有原料の一部として使用すると、高炉操業時の炉下部において良好な通気性を実現でき、還元材比(コークス比)を大幅に低減できる。
When used in a blast furnace, the non-fired carbon-containing agglomerated ore for blast furnace according to one embodiment of the present invention is not only covered with non-fired carbon-containing agglomerated ore, but also the main blast furnace iron-containing raw material such as sintered ore. It has a sufficient carbon content to improve the reduction rate. Furthermore, in the operation of the blast furnace, the slag melting point can be suppressed lower than before, and excellent reduction product slag characteristics (metal dripping properties) can be achieved.
For this reason, when the unfired carbon-containing agglomerated ore according to one aspect of the present invention is used as a part of the iron-containing raw material for blast furnace, good air permeability can be realized in the lower part of the furnace during blast furnace operation, and the reducing material ratio (coke Ratio) can be greatly reduced.

本発明の一態様に係る高炉用の非焼成含炭塊成鉱の製造方法では、非焼成プロセスが適用されているため、焼成プロセスに比べて、省エネルギー化、低CO化が可能となる。また、比較的安価で簡易な方法により、製鉄プロセスで発生したダストを、鉄含有原料および炭材としてリサイクル処理できる。
従って、本発明の一態様は、高炉で使用される含炭塊成鉱に係る技術分野に好適に適用できる。
In the method for producing a non-fired carbon-containing agglomerated mineral for a blast furnace according to one embodiment of the present invention, since a non-fired process is applied, it is possible to save energy and reduce CO 2 compared to the fired process. Further, the dust generated in the iron making process can be recycled as an iron-containing raw material and a carbon material by a relatively inexpensive and simple method.
Therefore, one embodiment of the present invention can be suitably applied to the technical field related to a carbon-containing agglomerated mineral used in a blast furnace.

本発明の一態様に係る高炉用の非焼成含炭塊成鉱は、含鉄原料、含炭原料、及び全原料に対して4〜10質量%のバインダーを混合、混練し、混練物を成形して成形体を得て、次いで前記成形体を養生して製造され、炭素含有量(T.C)が18〜25質量%、かつ脈石成分のSiO 含有量(質量%)が5.1〜10%、CaO含有量(質量%)とSiO含有量(質量%)の比CaO/SiOが1.0〜2.0である。
本発明の一態様に係る高炉用の非焼成含炭塊成鉱は、含鉄原料、含炭原料、及び全原料に対して4〜10質量%のバインダーを混合、混練し、混練物を成形して成形体を得て、次いで前記成形体を養生して製造され、炭素含有量(T.C)が18〜25質量%、かつ脈石成分のCaO含有量(質量%)が6〜10%、CaO含有量(質量%)とSiO 含有量(質量%)の比CaO/SiO が1.0〜2.0であってもよい。
本発明の一態様に係る高炉用の非焼成含炭塊成鉱では、CaO含有量(質量%)、SiO含有量(質量%)、Al含有量(質量%)、MgO含有量(質量%)および炭素含有量(T.C)(質量%)により表される脈石量((CaO+SiO+Al+MgO)/(100−炭素含有量(T.C)))の値が0.25以下であり、かつMgO含有量が0.5質量%以上であってもよい。
The non-calcined carbon-containing agglomerated mineral for a blast furnace according to one aspect of the present invention is a mixture of kneaded material and 4-10% by mass of a binder containing iron-containing raw material, carbon-containing raw material, and all raw materials. The molded body is then cured, and the molded body is cured, and the carbon content (TC) is 18 to 25% by mass, and the gangue component SiO 2 content (% by mass) is 5.1. The ratio CaO / SiO 2 of the CaO content (mass%) and the SiO 2 content (mass%) is 1.0 to 2.0%.
The non-calcined carbon-containing agglomerated mineral for a blast furnace according to one aspect of the present invention is a mixture of kneaded material and 4-10% by mass of a binder containing iron-containing raw material, carbon-containing raw material, and all raw materials. The molded body is then cured, and then the molded body is cured. The carbon content (TC) is 18 to 25% by mass, and the CaO content (mass%) of the gangue component is 6 to 10%. The ratio CaO / SiO 2 between the CaO content (mass%) and the SiO 2 content (mass%) may be 1.0 to 2.0.
In the non-fired carbon-containing agglomerated mineral for a blast furnace according to one embodiment of the present invention, the CaO content (% by mass), the SiO 2 content (% by mass), the Al 2 O 3 content (% by mass), and the MgO content Value of gangue amount ((CaO + SiO 2 + Al 2 O 3 + MgO) / (100−carbon content (TC))) expressed by (mass%) and carbon content (TC) (mass%) there is 0.25 or less, and MgO content but it may also be more than 0.5 mass%.

本発明の一態様に係る高炉用の非焼成含炭塊成鉱の製造方法は、含鉄原料、含炭原料、及び全原料に対して4〜10質量%のバインダーを混合、混練し、混練物を成形して成形体を得る成形体の形成工程と、次いで前記成形体を養生して非焼成含炭塊成鉱を得る工程を有し、前記非焼成含炭塊成鉱の炭素含有量(T.C)が18〜25質量%、かつ脈石成分のSiO 含有量(質量%)が5.1〜10%、CaO含有量(質量%)とSiO含有量(質量%)の比CaO/SiOが1.0〜2.0となるように、前記成形体の形成工程において、鉱石銘柄、およびバインダー配合量からなる群から選ばれる1つ以上の配合条件を調整する。
本発明の一態様に係る高炉用の非焼成含炭塊成鉱の製造方法は、含鉄原料、含炭原料、及び全原料に対して4〜10質量%のバインダーを混合、混練し、混練物を成形して成形体を得る成形体の形成工程と、次いで前記成形体を養生して非焼成含炭塊成鉱を得る工程を有し、前記非焼成含炭塊成鉱の炭素含有量(T.C)が18〜25質量%、かつ脈石成分のCaO含有量(質量%)が6〜10%、CaO含有量(質量%)とSiO 含有量(質量%)の比CaO/SiO が1.0〜2.0となるように、前記成形体の形成工程において、鉱石銘柄、およびバインダー配合量からなる群から選ばれる1つ以上の配合条件を調整してもよい。
本発明の一態様に係る高炉用の非焼成含炭塊成鉱の製造方法では、前記非焼成含炭塊成鉱のCaO含有量(質量%)、SiO含有量(質量%)、Al含有量(質量%)、MgO含有量(質量%)および炭素含有量(T.C)(質量%)により表される脈石量((CaO+SiO+Al+MgO)/(100−炭素含有量(T.C)))の値が0.25以下であり、かつMgO含有量が0.5質量%以上となるように、前記成形体の形成工程において、前記配合条件を調整してもよい。
前記成形体の形成工程において、珪石、蛇紋岩、橄欖岩、ドロマイト、ニッケルスラグ、マグネサイト、ブルーサイトから選ばれる副原料、及び高SiO含有鉱石のうちいずれか一方又は両方をさらに配合し、前記非焼成含炭塊成鉱の炭素含有量(T.C)が18〜25質量%、脈石成分のSiO 含有量(質量%)が5.1〜10%、かつCaO含有量とSiO含有量の比CaO/SiOが1.0〜2.0となるように、前記副原料及び高SiO含有鉱石のうちいずれか一方又は両方の配合量を調整してもよい。
前記成形体の形成工程において、珪石、蛇紋岩、橄欖岩、ドロマイト、ニッケルスラグ、マグネサイト、ブルーサイトから選ばれる副原料、及び高SiO 含有鉱石のうちいずれか一方又は両方をさらに配合し、前記非焼成含炭塊成鉱の炭素含有量(T.C)が18〜25質量%、脈石成分のCaO含有量(質量%)が6〜10%、かつCaO含有量とSiO 含有量の比CaO/SiO が1.0〜2.0となるように、前記副原料及び高SiO 含有鉱石のうちいずれか一方又は両方の配合量を調整してもよい。
The method for producing a non-fired carbon-containing agglomerated ore for a blast furnace according to one aspect of the present invention comprises mixing and kneading 4 to 10% by mass of a binder containing iron-containing raw material, carbon-containing raw material, and all raw materials, and kneaded product Forming a molded body to obtain a molded body, and then curing the molded body to obtain a non-fired carbon-containing agglomerated carbon, TC) is 18 to 25% by mass, and the SiO 2 content (% by mass) of the gangue component is 5.1 to 10%, and the ratio of CaO content (% by mass) to SiO 2 content (% by mass) In the forming step of the molded body, one or more blending conditions selected from the group consisting of an ore brand and a binder blending amount are adjusted so that CaO / SiO 2 is 1.0 to 2.0.
The method for producing a non-fired carbon-containing agglomerated ore for a blast furnace according to one aspect of the present invention comprises mixing and kneading 4 to 10% by mass of a binder containing iron-containing raw material, carbon-containing raw material, and all raw materials, and kneaded product Forming a molded body to obtain a molded body, and then curing the molded body to obtain a non-fired carbon-containing agglomerated carbon, TC) is 18 to 25% by mass, the CaO content (mass%) of the gangue component is 6 to 10%, and the ratio of CaO content (mass%) to SiO 2 content (mass%) CaO / SiO In the forming step of the molded body, one or more blending conditions selected from the group consisting of an ore brand and a binder blending amount may be adjusted so that 2 is 1.0 to 2.0.
In the method for producing an unfired carbon-containing agglomerated mineral for a blast furnace according to one aspect of the present invention, the CaO content (mass%), the SiO 2 content (mass%), and Al 2 of the unfired carbon-containing agglomerated mineral. Amount of gangue expressed by O 3 content (mass%), MgO content (mass%) and carbon content (TC) (mass%) ((CaO + SiO 2 + Al 2 O 3 + MgO) / (100− In the forming step of the molded body, the blending conditions are adjusted so that the value of carbon content (TC))) is 0.25 or less and the MgO content is 0.5 mass% or more. even if the good.
In the forming step of the molded body, the auxiliary material selected from quartzite, serpentine, peridotite, dolomite, nickel slag, magnesite, and brucite, and one or both of high-SiO 2 containing ores are further blended, Carbon content (TC) of the unfired carbon-containing agglomerated mineral is 18 to 25% by mass , SiO 2 content (mass%) of the gangue component is 5.1 to 10%, and CaO content and SiO as the ratio CaO / SiO 2 of 2 content is 1.0 to 2.0, the may adjust the amount of either or both of the auxiliary materials and high SiO 2 containing ores.
In the forming step of the molded body, the auxiliary material selected from quartzite, serpentine, peridotite, dolomite, nickel slag, magnesite, and brucite, and one or both of high-SiO 2 containing ores are further blended, Carbon content (TC) of the unfired carbon-containing agglomerated mineral is 18 to 25% by mass, CaO content (mass%) of the gangue component is 6 to 10%, and CaO content and SiO 2 content. as the ratio CaO / SiO 2 is 1.0 to 2.0 of the may be adjusted the amount of either or both of the auxiliary materials and high SiO 2 containing ores.

Claims (7)

含鉄原料、含炭原料、及びバインダーを混合、混練し、混練物を成形して成形体を得て、次いで前記成形体を養生して製造され、
炭素含有量(T.C)が18〜25質量%、かつ脈石成分のCaO含有量(質量%)とSiO含有量(質量%)の比CaO/SiOが1.0〜2.0であることを特徴とする高炉用の非焼成含炭塊成鉱。
Iron-containing raw material, carbon-containing raw material, and a binder are mixed, kneaded, a kneaded product is molded to obtain a molded body, and then the molded body is cured and manufactured.
Carbon content (T.C.) is 18 to 25 mass%, and CaO content of gangue ingredient (wt%) and SiO 2 content ratio CaO / SiO 2 (mass%) 1.0 to 2.0 A non-fired carbon-containing agglomerated mineral for blast furnaces.
CaO含有量(質量%)、SiO含有量(質量%)、Al含有量(質量%)、MgO含有量(質量%)および炭素含有量(T.C)(質量%)により表される脈石量((CaO+SiO+Al+MgO)/(100−炭素含有量(T.C)))の値が0.25以下であり、かつMgO含有量が0.5質量%以上である請求項1に記載の高炉用の非焼成含炭塊成鉱。Table by CaO content (% by mass), SiO 2 content (% by mass), Al 2 O 3 content (% by mass), MgO content (% by mass) and carbon content (TC) (% by mass) The value of the gangue amount ((CaO + SiO 2 + Al 2 O 3 + MgO) / (100-carbon content (TC))) is 0.25 or less, and the MgO content is 0.5% by mass or more The uncalcined carbon-containing agglomerated mineral for a blast furnace according to claim 1. 前記バインダーの含有量が5〜10質量%である請求項1に記載の高炉用の非焼成含炭塊成鉱。   The unburned carbon-containing agglomerated mineral for a blast furnace according to claim 1, wherein the content of the binder is 5 to 10% by mass. 含鉄原料、含炭原料、及びバインダーを混合、混練し、混練物を成形して成形体を得る成形体の形成工程と、
次いで前記成形体を養生して非焼成含炭塊成鉱を得る工程を有し、
前記非焼成含炭塊成鉱の炭素含有量(T.C)が18〜25質量%、かつ脈石成分のCaO含有量(質量%)とSiO含有量(質量%)の比CaO/SiOが1.0〜2.0となるように、前記成形体の形成工程において、鉱石銘柄、およびバインダー配合量からなる群から選ばれる1つ以上の配合条件を調整することを特徴とする高炉用の非焼成含炭塊成鉱の製造方法。
A step of forming a molded body to obtain a molded body by mixing and kneading the iron-containing raw material, the carbon-containing raw material, and the binder, and molding the kneaded product;
Next, curing the molded body to obtain a non-fired carbon-containing agglomerated mineral,
The carbon content (TC) of the unfired carbon-containing agglomerated mineral is 18 to 25% by mass, and the ratio of CaO content (% by mass) and SiO 2 content (% by mass) of the gangue component is CaO / SiO. The blast furnace is characterized by adjusting one or more blending conditions selected from the group consisting of an ore brand and a binder blending amount so that 2 is 1.0 to 2.0. For producing non-fired carbon-containing agglomerated minerals.
前記非焼成含炭塊成鉱のCaO含有量(質量%)、SiO含有量(質量%)、Al含有量(質量%)、MgO含有量(質量%)および炭素含有量(T.C)(質量%)により表される脈石量((CaO+SiO+Al+MgO)/(100−炭素含有量(T.C)))の値が0.25以下であり、かつMgO含有量が0.5質量%以上となるように、前記成形体の形成工程において、前記配合条件を調整する請求項4に記載の高炉用の非焼成含炭塊成鉱の製造方法。CaO content (% by mass), SiO 2 content (% by mass), Al 2 O 3 content (% by mass), MgO content (% by mass) and carbon content (T The value of the gangue amount ((CaO + SiO 2 + Al 2 O 3 + MgO) / (100−carbon content (TC))) expressed by (C) (mass%) is 0.25 or less, and MgO The manufacturing method of the non-baking carbon-containing agglomerated mineral for blast furnaces of Claim 4 which adjusts the said mixing conditions in the formation process of the said molded object so that content may be 0.5 mass% or more. 前記バインダー配合量を5〜10質量%の範囲で調整する請求項4に記載の高炉用の非焼成含炭塊成鉱の製造方法。   The manufacturing method of the non-baking carbon-containing agglomerated mineral for blast furnaces of Claim 4 which adjusts the said binder compounding quantity in 5-10 mass%. 前記成形体の形成工程において、珪石、蛇紋岩、橄欖岩、ドロマイト、ニッケルスラグ、マグネサイト、ブルーサイトから選ばれる副原料、及び高SiO含有鉱石のうちいずれか一方又は両方をさらに配合し、
前記非焼成含炭塊成鉱の炭素含有量(T.C)が18〜25質量%、かつCaO含有量とSiO含有量の比CaO/SiOが1.0〜2.0となるように、前記副原料及び高SiO含有鉱石の配合量を調整することを特徴とする請求項4に記載の高炉用の非焼成含炭塊成鉱の製造方法。
In the forming step of the molded body, the auxiliary material selected from quartzite, serpentine, peridotite, dolomite, nickel slag, magnesite, and brucite, and one or both of high-SiO 2 containing ores are further blended,
So that the carbon content of non-calcined carbonaceous mass Naruko (T.C.) is 18 to 25 wt%, and the ratio CaO / SiO 2 of CaO content and SiO 2 content is 1.0 to 2.0 , the non-calcined carbonaceous mass Naruko manufacturing method for a blast furnace according to claim 4, characterized in that adjusting the amount of the auxiliary materials and high SiO 2 containing ores.
JP2010545717A 2009-08-21 2010-08-12 Non-fired carbon-containing agglomerated mineral for blast furnace and method for producing the same Active JP4808819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010545717A JP4808819B2 (en) 2009-08-21 2010-08-12 Non-fired carbon-containing agglomerated mineral for blast furnace and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009191966 2009-08-21
JP2009191966 2009-08-21
PCT/JP2010/063726 WO2011021577A1 (en) 2009-08-21 2010-08-12 Unfired carbon-containing agglomerate for blast furnaces and production method therefor
JP2010545717A JP4808819B2 (en) 2009-08-21 2010-08-12 Non-fired carbon-containing agglomerated mineral for blast furnace and method for producing the same

Publications (2)

Publication Number Publication Date
JP4808819B2 JP4808819B2 (en) 2011-11-02
JPWO2011021577A1 true JPWO2011021577A1 (en) 2013-01-24

Family

ID=43607032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010545717A Active JP4808819B2 (en) 2009-08-21 2010-08-12 Non-fired carbon-containing agglomerated mineral for blast furnace and method for producing the same

Country Status (6)

Country Link
JP (1) JP4808819B2 (en)
KR (1) KR101475125B1 (en)
CN (1) CN102482730B (en)
BR (1) BR112012003786B1 (en)
IN (1) IN2012DN00994A (en)
WO (1) WO2011021577A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015005218A1 (en) * 2013-07-11 2017-03-02 Jfeスチール株式会社 Method for producing granulated raw material for sintering

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6273983B2 (en) * 2014-04-04 2018-02-07 新日鐵住金株式会社 Blast furnace operation method using reduced iron
JP6467856B2 (en) * 2014-10-16 2019-02-13 新日鐵住金株式会社 Recycling method of fly ash and non-calcined agglomerated mineral
KR20160071032A (en) 2014-12-11 2016-06-21 주식회사 포스코 Briquettes and Method for Manufacturing Briquettes
CN104651602B (en) * 2015-01-12 2017-01-25 内蒙古包钢钢联股份有限公司 Method for preparing sinter ore by using high-silicon fine ore
CN108913181A (en) * 2018-07-19 2018-11-30 武钢集团昆明钢铁股份有限公司 A kind of high calcium is burnt and its production method
RU2735413C1 (en) * 2020-05-19 2020-11-02 Михаил Николаевич Бушков Reinforcing additive for production of iron-ore agglomerate
WO2023199550A1 (en) * 2022-04-11 2023-10-19 Jfeスチール株式会社 Operation method for blast furnace
CN115404338A (en) * 2022-09-13 2022-11-29 石横特钢集团有限公司 Sintering method of high-silicon high-aluminum iron-containing material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113301A (en) * 1974-07-24 1976-02-02 Nippon Steel Corp HISHOSEIKAISEIKOSEIZOHOHO
JPS51147401A (en) * 1975-06-14 1976-12-17 Nippon Steel Corp A process for production of non-sintered agglomerated ores
JPS6029471B2 (en) * 1979-08-16 1985-07-10 日機装株式会社 How to freeze liver cells
JPH0629471B2 (en) * 1985-08-28 1994-04-20 新日本製鐵株式会社 Unfired agglomerated ore
JP3502064B2 (en) * 2000-08-30 2004-03-02 株式会社神戸製鋼所 Method for producing agglomerates of ironmaking raw materials
CN1358870A (en) * 2001-10-10 2002-07-17 林原生 Carbon containing cold consolidated globular ore capable of keeping strength from normal temp. to high temp.
JP4118604B2 (en) * 2002-05-28 2008-07-16 株式会社 テツゲン Non-fired agglomerated carbon interior for blast furnace and method for producing the same
JP4167101B2 (en) * 2003-03-20 2008-10-15 株式会社神戸製鋼所 Production of granular metallic iron
RU2241760C1 (en) * 2003-07-03 2004-12-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Briquette as component of blast-furnace batch
US7896963B2 (en) * 2003-09-23 2011-03-01 Hanqing Liu Self-reducing, cold-bonded pellets
JP5000402B2 (en) * 2006-09-11 2012-08-15 新日本製鐵株式会社 Method for producing carbon-containing unfired pellets for blast furnace
JP5114742B2 (en) * 2007-12-28 2013-01-09 新日鐵住金株式会社 Method for producing carbon-containing unfired pellets for blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015005218A1 (en) * 2013-07-11 2017-03-02 Jfeスチール株式会社 Method for producing granulated raw material for sintering

Also Published As

Publication number Publication date
KR20120042981A (en) 2012-05-03
CN102482730B (en) 2014-07-02
KR101475125B1 (en) 2014-12-22
BR112012003786A2 (en) 2016-04-19
WO2011021577A1 (en) 2011-02-24
IN2012DN00994A (en) 2015-04-10
JP4808819B2 (en) 2011-11-02
BR112012003786B1 (en) 2021-11-16
CN102482730A (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4808819B2 (en) Non-fired carbon-containing agglomerated mineral for blast furnace and method for producing the same
JP5000402B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
CN105308194A (en) Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore
CA2799548A1 (en) Process for producing granular metal
JP2011042870A (en) Apparatus and method for producing reduced iron using alkali-containing iron-making dust as raw material
KR101313367B1 (en) Carbon composite briquette for producing reduced iron and method for producing reduced iron employing the same
JP4603628B2 (en) Blast furnace operation method using carbon-containing unfired pellets
JP6288462B2 (en) Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore
CN106414778A (en) Production method of granular metallic iron
JP2011063835A (en) Method for improving strength of agglomerated raw material for blast furnace
JP2007169707A (en) Method for producing dephosphorizing agent for steelmaking using sintering machine
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP5498919B2 (en) Method for producing reduced iron
JP6264517B1 (en) Method for producing carbonaceous interior sinter
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP4867394B2 (en) Non-calcined agglomerate for iron making
JP4078285B2 (en) Blast furnace operation method
JP5835144B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP2006028538A (en) Method for operating blast furnace using sintered ore excellent in high temperature reducibility
JP5447410B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP6696376B2 (en) Blast furnace operation method
JP5825180B2 (en) Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char
JP2007277684A (en) Nonfired agglomerated ore for iron manufacture
JP4661077B2 (en) Method for producing sintered ore
JP2012067332A (en) Nonfired carbonaceous-material-containing agglomerated ore for iron manufacture

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4808819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350