JPWO2010073932A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
JPWO2010073932A1
JPWO2010073932A1 JP2010544011A JP2010544011A JPWO2010073932A1 JP WO2010073932 A1 JPWO2010073932 A1 JP WO2010073932A1 JP 2010544011 A JP2010544011 A JP 2010544011A JP 2010544011 A JP2010544011 A JP 2010544011A JP WO2010073932 A1 JPWO2010073932 A1 JP WO2010073932A1
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
solar cell
cell module
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010544011A
Other languages
English (en)
Inventor
和田 雄人
雄人 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPWO2010073932A1 publication Critical patent/JPWO2010073932A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

絶縁抵抗の低下を抑止することができる太陽電池モジュールを提供すること。基板(107)及び基板(107)上に形成された光電変換層(109)を備えた光電変換素子(103)と、当該光電変換素子(103)と光入射面側に封止材(105)を介して接着され、太陽電池モジュールの光入射面を保護する保護材(101)と、太陽電池モジュールの光入射面の反対面に封止材(106)を介して接着され、太陽電池モジュールを保護する補強材(102)と、光電変換素子(103)と補強材(102)との間に配置され、光電変換素子(103)の絶縁に用いる絶縁シート(104)と、を備えた太陽電池モジュールを構成した。

Description

本発明は、絶縁性および耐候性に優れた太陽電池モジュールに関する。
近年、二酸化炭素の増加に伴う温室効果による地球の温暖化が予測され、二酸化炭素を排出しないクリーンなエネルギー源として、太陽電池が注目を集めている。太陽電池には、結晶系太陽電池、アモルファス太陽電池、化合物半導体太陽電池等があり、多種にわたる太陽電池が研究開発されている。これらの中でもアモルファスシリコン太陽電池は、エネルギー変換効率こそ結晶系の太陽電池に及ばないものの、大面積化が容易で、かつ光吸収係数が大きく、また、薄膜で動作する等の、他の太陽電池にはない優れた特徴を持っており、将来が有望視されている。
アモルファスシリコン太陽電池は、光電変換素子を樹脂で封止し、屋外での長期間の使用に耐えられるように構成された太陽電池モジュールの形で広く使用されている。アモルファスシリコン太陽電池モジュールは基板を薄型化でき、太陽電池モジュールを軽量化できる。このため、例えば建造物の屋根へ配置する場合など、建造物への負荷を少なくすることができる。また、可撓性の基板を用いることができ、太陽電池モジュール自体に可撓性を持たせることができる。このため、デザイン性にも優れるといったメリットがある。
このようなアモルファスシリコン太陽電池モジュールは、光電変換素子の製造時に基板に応力が発生する。このため、封止時に基板の端部に反りが生じ、基板が保護材に接触して絶縁抵抗が低下する問題があった。また、太陽電池モジュール製造直後には十分な性能を備えた太陽電池モジュールにおいても、屋外で長期使用している間に次第に基板端部に反りが生じ、絶縁抵抗が低下する問題もあった。このような問題に対し、ガラス不織布又はシート材を光電変換素子の全面に設けることにより基板の変形を抑制し、絶縁抵抗の低下を防ぐ太陽電池モジュールが開示されている(例えば、特許文献1参照)。
特開平10−27920号公報
しかしながら、かかる太陽電池モジュールは、ガラス不織布を用いた場合、封止材やガラス不織布の界面を水が拡散し、絶縁抵抗低下を引き起こす問題があった。また、シート材を用いた場合、シート材の熱膨張による皺が発生し、絶縁抵抗低下の抑制効果が低下する問題があった。
本発明は、かかる点に鑑みてなされたものであり、絶縁抵抗の低下を抑制できる太陽電池モジュールを提供することを目的とする。
本発明の太陽電池モジュールは、可撓性基板及び当該可撓性基板上に形成された光電変換素層を含む光電変換素子と、前記光電変換素子の両面に配置され、封止材をそれぞれ介して接着される保護材と、前記光電変換素子と少なくとも一方の前記保護材との間に配置され、太陽電池モジュール製造条件下及び利用のための設置状態に対して前記封止材よりも剛性及び絶縁性が高いシートと、を具備することを特徴とする。
この構成によれば、光電変換素子と保護材との間の配置される絶縁性のシートにより、光電変換素子を絶縁できるので、光電変換素子に反りが生じた場合においても絶縁抵抗の低下を抑制できる。したがって、太陽電池モジュールの製造条件下及び利用のための設置状態において、長期間使用可能な太陽電池モジュールを実現することができる。
本発明は、上記太陽電池モジュールにおいて、前記シートは、前記光電変換素子の少なくとも四隅が反る側であって、当該四隅を含む位置に配置されることを特徴とする。
この構成によれば、光電変換素子の反りが大きい光電変換素子の四隅に絶縁性のシートを配置するので、光電変換素子の全面にシートを配置することなく太陽電池モジュールの絶縁性能の低下が抑制でき、配置する絶縁シートの面積をより小さくすることができる。
本発明は、上記太陽電池モジュールにおいて、前記シートは、四隅が反る側であって、前記光電変換素子の長手方向の両端部の各辺を含む位置に配置されることを特徴とする。
この構成によれば、光電変換素子の反りが大きい光電変換素子の長手方向の両端部の各辺を含むように絶縁性のシートを配置するので、光電変換素子の全面にシートを配置することなく絶縁抵抗の低下を抑制でき、配置する絶縁シートの面積をより小さくすることができる。
また、本発明は、上記太陽電池モジュールにおいて、前記シートは、四隅が反る側であって、前記光電変換素子の長手方向の両端部の各辺を含む位置に配置されると共に前記保護材と前記封止材との間に配置されることを特徴とする。
この構成によれば、光電変換素子の反りが大きい光電変換素子の長手方向の両端部の各辺を含むように絶縁性のシートを配置するので、光電変換素子の全面にシートを配置することなく絶縁抵抗の低下を抑制でき、配置する絶縁シートの面積をより小さくすることができる。
また、本発明は、上記太陽電池モジュールにおいて、前記シートは、光透過性を有し、前記光電変換素子の光入射面側に配置されることを特徴とする。
この構成によれば、光透過性を有する絶縁性のシートを光入射面側に配置するので、電変換素子が光入射面側に反る場合においても絶縁抵抗の低下を抑制できる。
また、本発明は、上記太陽電池モジュールにおいて、前記シートは、前記光電変換素子の反りにより突出する箇所に配置されることを特徴とする。
この構成によれば、光電変換素子の反りにより突出する箇所に絶縁性のシートを配置するので、光電変換素子の絶縁抵抗の低下を効果的に抑制できる。
本発明によれば、低コストで構成でき、絶縁抵抗の低下を抑制できる太陽電池モジュールを提供することができる。
本発明の実施の形態に係る太陽電池モジュールの積層構造を示す図である。 本発明の実施の形態に係る太陽電池モジュールにおいて、絶縁シートの配置を示す平面図である。 本発明の実施の形態に係る太陽電池モジュールの光電変換素子の変形状態を示す概念図である。 (a)、(b)は、本発明の実施の形態に係る太陽電池モジュールにおいて、ラミネートプロセス後の太陽電池モジュールの積層構造を示す断面図である。 (a)は、本実施の形態に係る太陽電池モジュールにおいて、絶縁シートを光電変換素子上面側及び下面側のそれぞれに配置した例を模式的に示した図であり、(b)は、光電変換素子の変形と絶縁シートの配置例を模式的に示した平面図である。 (a)〜(c)は、本発明の実施の形態に係る太陽電池モジュールの光電変換素子の下面側の絶縁シートの配置例を示す図である。 (a)〜(c)は、本発明の実施の形態に係る太陽電池モジュールにおいて、光電変換素子の上面側の絶縁シートの配置例を示す図である。 (a)〜(f)は、本発明の実施の形態に係る太陽電池モジュールの積層構造の一例を示す模式図である。 (a)〜(f)は、本発明の実施の形態に係る太陽電池モジュールのラミネートプロセス後の積層構造の一例を示す断面図である。 (a)〜(f)は、本発明の実施の形態に係る太陽電池モジュールの積層構造の他の例を示す模式図である。 (a)〜(f)は、本発明の実施の形態に係る太陽電池モジュールのラミネートプロセス後の積層構造の他の例を示す断面図である。
以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
図1は、本実施の形態に係る太陽電池モジュールの積層構造の一例を示す図である。図1に示すように、本実施の形態に係る太陽電池モジュールは、図中の矢印で示す太陽電池モジュールの光入射面(以下、上面とする)を保護する保護材101と、太陽電池モジュールの光入射面の反対面(以下、下面とする)を保護する補強材102と、保護材101と補強材102との間に配置され、太陽光を電流に変換する光電変換素子103とを備える。光電変換素子103と補強材102との間には、光電変換素子103の両端部にそれぞれ配置され、光電変換素子103と補強材102との間を絶縁する2つの絶縁シート104が配置される。光電変換素子103と保護材101との間には封止材105が配置され、絶縁シート104と補強材102との間には封止材106が配置されている。尚、保護材101及び補強材102としては、太陽電池モジュールを保護できる材料であればよく、同一材料で構成してもよく、異なる材料で構成してもよい。
光電変換素子103の基板107の上面側には、基板107の上面から順に、光電変換された正(または負)の電荷を取り出す電極108と、太陽光を光電変換する光電変換層109と、光電変換された負(または正)の電荷を取り出す透明電極110と、が積層される。基板107の下面側には、電極108と透明電極110を接続する接続電極111が形成されている。
次に、図2を参照して、絶縁シート104の配置について説明する。
図2は、本発明の実施の形態に係る太陽電池モジュールにおいて、絶縁シート104の配置を示す平面図である。尚、図2においては、説明の便宜上、保護材101、封止材105及び補強材102は図示していない。図2に示すように、本実施の形態に係る太陽電池モジュールにおいては、封止材106は、平面視矩形形状に形成され、平面視において、この封止材106の内側に矩形形状の光電変換素子103が積層されている。光電変換素子103は、封止材106の長手方向と光電変換素子103の長手方向とが略平行になるように配置されている。光電変換素子103の長手方向の両端部には、光電変換素子103の短辺を覆うように2枚の平面視矩形形状の絶縁シート104が配置されている。
絶縁シート104は、絶縁シート104の長手方向の長さL1が光電変換素子103の長手方向端部112の一辺の長さL2より長くなるように略矩形に形成されている。絶縁シート104は、絶縁シート104の短手方向の略中心と光電変換素子103の長手方向端部112とが重なるように光電変換素子103の長手方向の両端に配置され、光電変換素子103と封止材106との間に積層される。光電変換素子103の長手方向端部112の一辺は、絶縁シート104によって覆れるように積層されている。尚、図1及び図2に示した太陽電池モジュールの構成は、絶縁シート104の配置の一例を示すものであり、後述するように、絶縁シート104の配置は、光電変換素子103の長手方向端部112に限定されず、例えば、短手方向端部113に配置してもよい。
本実施の形態では、各構成部材を積層した太陽電池モジュールを、ラミネートプロセスにより太陽電池モジュールを形成する。ラミネートプロセスでは、光電変換素子103の光入射面の反対面である下面側に封止材106と補強材102(下面保護材)とを配置し、光入射面である上面側には、封止材105と上面の保護材101とをそれぞれ配置する。また、太陽電池モジュールの使用条件に合わせて、さらに絶縁シート104、封止材、接着材、透明性絶縁シートなどを配置する。このように各構成部材が配置された状態で、加熱及び真空ラミネートによってラミネートを行う。
太陽電池モジュールのラミネートプロセスでは、光電変換素子103製造工程において生じる基板107の残留応力により、光電変換素子103に反りが発生する。図3及び図4(a)、(b)を参照して、ラミネートプロセスにおける光電変換素子103の変形状態について説明する。尚、図3及び図4(a)、(b)に示す例は、図1に示した積層構造において、絶縁シート104を配置しない場合の太陽電池モジュールを示している。
図3は、光電変換素子103の変形状態を示す概念図である。図3に示すように、ラミネートプロセスでは、ラミネートプロセス前の平板形状の光電変換素子103aの四隅が下方に反り、中央部が上方に突出したドーム形状の光電変換素子103bに変形する。このように、ラミネートプロセスにおいて、光電変換素子103の四隅が下方に反るので、光電変換素子103が保護材101又は補強材102と接触または接近する。
図4(a)、(b)は、ラミネートプロセス後の太陽電池モジュールの積層構造を示す断面図である。図4(a)に示すように、本実施の形態では、ラミネートプロセスにおいて、保護材101と補強材102との間が、封止材105、106により絶縁層114として封止される。ラミネートプロセスにおいて下面側に反った光電変換素子103の両端部は、補強材102の上面に接近する。このため、光電変換素子103の両端部と補強材102との間の絶縁抵抗低下の抑制が必要となる。
尚、上述した例においては、光電変換素子103の四隅が下面側に反り、中央部が上面側に突出する例について説明したが、光電変換素子103の変形方向は、基板107製造時における残留応力や、基板107の反りの状態に応じて変化する。図4(b)は、光電変換素子103の四隅が上面側に反り、中央部が下面側に突出する場合の積層構造を示す図である。図4(b)に示すように、本例においては、光電変換素子103の中央部が下方に対して突出して補強材102に接近すると共に、光電変換素子103の両端部が上面側の保護材101に接近する。このため、本例においては、保護材101と光電変換素子103との間の絶縁抵抗低下の抑制及び光電変換素子103の中央部と補強材102との間の絶縁抵抗低下の抑制が必要となる。
また、本実施の形態に係る太陽電池モジュールは、家屋の屋根などに設置して用いられ、実際の使用条件下では常温から80℃程度の温度で使用される。このような使用条件下においては、封止材105、106(絶縁層114)の一部が軟化し、光電変換素子103が変形しやすくなる。このため、製造直後に平板形状であった光電変換素子103が、太陽電池モジュールの実際の使用条件下において、徐々に変形する現象が発生する。さらに、光電変換素子103の変形は、図3に示した例のように、必ずしも一様に変形せず、光電変換素子103の基板107の残留応力の分布や、基板107の形状などに応じて変化する。このため、本実施の形態では、光電変換素子103の少なくとも突出の大きい場所に、必要に応じて光電変換素子103の光入射面である上面側及び光入射面の反対面である下面側のそれぞれに絶縁シートを配置することにより、太陽電池モジュールの絶縁抵抗低下を抑制する。以下、太陽電池モジュールの絶縁シートの配置例について説明する。
図5(a)、(b)を参照して、光電変換素子103の上面側及び下面側のそれぞれに絶縁シート104、115配置する場合の絶縁シートの配置例について説明する。図5(a)は、本実施の形態に係る太陽電池モジュールにおいて、絶縁シート104、115を光電変換素子103上面側及び下面側のそれぞれに配置した例を模式的に示した図である。図5(a)に示すように、光電変換素子103の四隅が下方に反り、中央部が上方に突出する場合、光電変換素子103の下面側には、光電変換素子103の長手方向の両端部を覆うように絶縁シート104を配置し、光電変換素子103の上面側には、光電変換素子103の中央部に絶縁シート115を配置する。このように、絶縁シート104、115を配置することにより、光電変換素子103と保護材101及び補強材102との間の絶縁抵抗低下を抑制することができる。
図5(b)は、光電変換素子103の変形及び絶縁シート104、115の配置例を示す平面模式図である。図5(b)においては、光電変換素子103、光電変換素子103の上面側の絶縁シート115及び下面側の絶縁シート104のみを示し、その他の部材については省略している。また、図5(b)の縦軸側には、光電変換素子103の短辺方向の変形状態を示し、横軸側には、光電変換素子103の長辺方向の変形状態を示している。図5(b)に示すように、光電変換素子103の中央部が上方に突出したドーム形状に変形する場合には、光電変換素子103の中央部が最も上方に突出する。このため、光電変換素子103の上面側の中央部に絶縁シート104を配置することにより、保護材101と光電変換素子103との間の絶縁抵抗低下を抑制することができる。尚、光電変換素子103の光入光面側に配置する絶縁シート115は、少なくとも太陽電池の発電に必要な波長の光を透過できるものを用いる。また、絶縁シート115の材料としては、光を透過できる材料であればよく、着色があってもよく、無色であってもよい。
次に、図6(a)〜(c)を参照して、光電変換素子103の下面側の絶縁シート104の配置の具体例について説明する。本実施の形態では、図2に示した絶縁シート104の配置以外にも光電変換素子103の反りに応じて絶縁シート104を配置する。図6(a)は、光電変換素子103の下面側の四隅をそれぞれ覆うように、4枚の矩形形状の絶縁シート104を配置した例を示している。図5(a)に示したように、光電変換素子103の四隅が下方に反り、中央部が上面側に突出する場合には、下面側の四隅の部分が最も下方に突出する。このため、図6(a)に示すように、光電変換素子103の少なくとも四隅を覆うように絶縁シート104を配置することにより、絶縁抵抗低下を抑制することができる。図6(b)に示す例は、光電変換素子103の短手方向の両端部をそれぞれ覆うように、2枚の矩形形状の絶縁シート104を配置した例を示している。光電変換素子103の長辺側の突出量が短辺側に対して大きい場合には、このように配置することにより、効果的に絶縁抵抗低下を抑制することができる。図6(c)は、光電変換素子103の下面側の全面を覆うように、1枚の絶縁シート104を配置した例である。光電変換素子103の基板107が、波状に変形する場合には、光電変換素子103の全面を覆うように絶縁シート104、115を配置することにより、効果的に絶縁抵抗低下を抑制することができる。以上のように、本実施の形態では、光電変換素子103の四隅が反る方向であって、少なくとも四隅を含む位置に絶縁シート104、115が配置される。
尚、光電変換素子103の端部に配置される絶縁シート104の幅については、光電変換素子103の絶縁抵抗低下を抑制できれば特に限定されない。例えば、図2に示すように、絶縁シート104を光電変換素子103の長手方向の両端部を覆うように配置する場合において、基板107の長辺側の長さが1m程度である場合には、2cm程度であればよい。この場合には、図6(c)に示したように、光電変換素子103の下面全面を覆うように絶縁シート104を配置する場合には、長辺側の長さが少なくとも1mを超える絶縁シート104が必要となるのに対し、絶縁シート104の両編合わせて4cm程度となるので、25分の1以下の面積の絶縁シート104を用いることによっても絶縁抵抗低下を抑制することができる。このように、本実施の形態においては、少なくとも光電変換素子103の突出量が大きい部分に絶縁シート104を配置することにより、絶縁抵抗低下を抑制することができる。
以下、図7(a)〜(c)を参照して、本実施の形態に係る太陽電池モジュールにおける光電変換素子103の上面側の絶縁シート115の配置例について詳細に説明する。図7(a)は、光電変換素子103の短辺方向及び長辺方向において、光電変換素子103の突出量がほぼ等しく突出する場合における絶縁シート115の配置例を示している。この場合には、平面視矩形形状の絶縁シート115を、光電変換素子103の四辺上の中央部にそれぞれを配置する。このように配置することにより、光電変換素子103と保護材101との間の絶縁抵抗低下を抑制することができる。
図7(b)は、光電変換素子103の突出量が、特に長辺方向において大きい場合の絶縁シート115の配置例を示している。この場合には、突出量の大きい光電変換素子103の長辺上の中央部に、それぞれ絶縁シート115を配置することにより、光電変換素子103と保護材101との間の絶縁抵抗低下を抑制することができる。
図7(c)は、光電変換素子103の突出量が、特に短辺方向において大きい場合の絶縁シート115の配置例を示している。この場合には、突出量が大きい光電変換素子103の短辺上の中央部に、それぞれ絶縁シート115を配置することにより、光電変換素子103と保護材101との間の絶縁低下を抑制することができる。
このように、光電変換素子103の上面側の絶縁シート115は、光電変換素子103の突出量に応じて光電変換素子103の上面及び/又は下面側の任意の位置に配置することができる。尚、上述した例においては、光電変換素子103が上面側に突出する例について説明したが、光電変換素子103は、基板107の残留応力により、上面側または下面側のいずれかに突出する。このため、光電変換素子103の上面側又は下面側の任意の位置に配置することにより、光電変換素子103の絶縁抵抗低下を抑制することができる。
次に、図8(a)〜(f)及び図9(a)〜(f)を参照して太陽電池モジュールの光電変換素子103の四隅が下面側に反り、中央部が光入光面側である上面側に対して突出する場合の太陽電池モジュールの積層構造の具体例について説明する。図8(a)〜(f)は、太陽電池モジュールの積層構造を示す模式図であり、図9(a)〜(f)は、図8(a)〜(f)に示した太陽電池モジュールのラミネートプロセス後の積層構造を示す断面図である。尚、図8(a)〜(f)に示す積層構造は、それぞれ図9(a)〜(f)に示す断面図に対応する。
図8(a)〜(c)は、太陽電池モジュールの光入光面の反対面である下面側にのみ絶縁シート104を配置した例である。図8(a)に示す例では、光電変換素子103の下面側の両端部に、絶縁シート104のみを配置している。また、図8(b)に示す例では、光電変換素子103の下面側の両端部に絶縁シート104を配置し、この絶縁シート104と光電変換素子103との間に接着材116を配置し、さらに絶縁シート104と補強材102との間に封止材106を配置している。図8(c)に示す例では、光電変換素子103の下面側の両端部に絶縁シート104を配置し、この絶縁シート104と光電変換素子103との間に封止材106を配置し、さらに絶縁シート104と補強材102との間に接着材116を配置している。このように積層することにより、図9(a)〜(c)に示すように、光電変換素子103と補強材102との間の積層構造を任意に調整できる。
図8(d)〜(f)は、光電変換素子103の下面側に絶縁シート104を配置し、さらに、光入光面である上面側にも絶縁シート115を配置した例である。図8(d)に示す例では、光電変換素子103の上面側の中央部に絶縁シート115を配置し、光電変換素子103の下面側の両端部に絶縁シート104を配置している。また、図8(e)に示す例では、光電変換素子103の上面側の中央部に絶縁シート115を配置し、この絶縁シート115と光電変換素子103との間に封止材105を配置している。光電変換素子103の下面側の両端部には、絶縁シート104を配置し、この絶縁シート104と光電変換素子103との間に封止材106を配置している。図8(f)に示す例では、光電変換素子103の上面側の中央部に絶縁シート115を配置し、この絶縁シート115と保護材101との間に封止材105を配置し、絶縁シート115と光電変換素子103との間に接着材116を配置している。光電変換素子103の下面側の両端部には、絶縁シート104を配置し、絶縁シート104と光電変換素子103との間に接着材116を配置し、絶縁シート104と補強材102との間に封止材106を配置している。このように積層することにより、図9(d)〜(f)に示すように、光電変換素子103と保護材101及び補強材102との間の積層構造を任意に調整できる。
次に、図10(a)〜(f)及び図11(a)〜(f)を参照して太陽電池モジュールの光電変換素子103の四隅が上面側に反り、中央部が下面側に対して突出する場合における太陽電池モジュールの積層構造の具体例について説明する。尚、図10(a)〜(f)は、太陽電池モジュールの積層構造を示す模式図であり、図11(a)〜(f)は、図10(a)〜(f)に示した太陽電池モジュールのラミネートプロセス後の積層構造を模式的に示す図である。尚、図10(a)〜(f)に示す積層構造は、それぞれ図11(a)〜(f)に示す断面図に対応する。
図10(a)〜(c)は、太陽電池モジュールの光入光面の反対面である下面側にのみ絶縁シート104を配置した例である。図10(a)に示す例では、光電変換素子103の下面側の中央部に絶縁シート104を配置し、この絶縁シート104と補強材102との間に封止材106を配置している。また図10(b)に示す例では、光電変換素子103の下面側の中央部に絶縁シート104を配置し、この絶縁シート104と補強材102との間に封止材106を配置し、絶縁シート104と光電変換素子103との間に接着材116を配置している。図10(c)に示す例では、光電変換素子103の下面側の中央部に絶縁シート104を配置し、この絶縁シート104と光電変換素子103との間に封止材106を配置している。このように積層することにより、図11(a)〜(c)に示すように、光電変換素子103と補強材102との間の積層構造を任意に調整できる。
図10(d)〜(f)は、光電変換素子103の下面側に絶縁シート104を配置し、さらに、光入光面である上面側にも絶縁シート115を配置した例である。図10(d)に示す例では、光電変換素子103の上面側の両端部に絶縁シート115を配置し、この絶縁シート115と保護材101との間に封止材105を配置している。また、図10(e)に示す例では、光電変換素子103の上面側の両端部に絶縁シート115を配置し、この絶縁シート115と保護材101との間に封止材105を配置し、絶縁シート115と光電変換素子103との間に接着材116を配置している。図10(f)に示す例では、光電変換素子103の上面側の両端部に絶縁シート115を配置し、この絶縁シート115と光電変換素子103との間に封止材105を配置し、絶縁シート115と保護材101との間に接着材116を配置している。このように積層することにより、図11(d)〜(f)に示すように、光電変換素子103と保護材101及び補強材102との間の積層構造を任意に調整できる。
尚、本実施の形態に係る太陽電池モジュールにおいては、絶縁シート104、115の配置場所は、太陽電池モジュール使用条件下において、光電変換素子103の絶縁抵抗低下を抑制できる範囲であれば特に限定されない。また、太陽光入射側となる光電変換素子103の上面側に配置する絶縁シート115は、発電に必要な波長の光を透過できる材質の絶縁シート115を用いる。
基板107の材料としては、特に限定されず、例えば、PET、PEN、ポリアミド、ポリアミドイミド、ポリイミド、ポリカーボネート、PBT、PPS、液晶ポリマー、PEI等の樹脂フィルムやステンレス基板等各種材料を用いることができる。これらの中でも、絶縁性及び耐熱性に優れるポリイミドを用いることが好ましい。
電極108の材質としては、一般的な電極材料であれば特に限定されない。また、透明電極110の材料についても特に限定されない。本実施形態においては、電極108の材料にAgを用い、透明電極110の材料にITOを用いた。
光電変換層109の材質としては、公知の太陽電池モジュールの材料に用いられるものであれば、特に制限されない。例えば、アモルファスシリコンカーバイド(a−SiC)、微結晶シリコン(μc−Si)、μc−SiGe、μc−SiC、μc−Geアモルファスシリコン(a−Si)及びアモルファスシリコンゲルマニウム(a−SiGe)等を用いることもできる。これらの中でも本実施形態においては、μc−Geアモルファスシリコン(a−Si)とアモルファスシリコンゲルマニウム(a−SiGe)を用いた。
封止材105、106の材質としては、光電変換素子103を密閉する観点から、熱や水分に対して安定であることが好ましい。また、一方の封止材105は、光電変換素子103に対して光の入射側となるため、光に対して安定であるだけでなく、透明であることが好ましい。更に、短時間にラミネート加工でき、また保護材101及び補強材102の接着性が良いことや、太陽電池の形状に追従できる材料であることが好ましい。また、ダメージ吸収できる材料を用いることにより、例えば、外力が加わる環境下においても太陽電池モジュールを使用できるように形成することもできる。
封止材105、106の材質としては、加熱により軟化して変形しやすくなる樹脂であれば特に限定されず、各種材料を用いることができる。また、加熱により軟化し、変形しやすくなる樹脂であれば熱可塑性樹脂、熱架橋性樹脂、熱硬化性樹脂であっても用いることができる。例えば、エチレン酢酸ビニル共重合体(EVA)、ポリビニルブチラール、シリコーン樹脂、エチレン−アクリレート共重合樹脂、エチレン−メタクリル酸共重合体、アクリル樹脂、ポリエチレン、ポリプロピレン等を用いる事ができる。また、上面の封止材105の材質と下面の封止材106とで異なる材質にすることもできる。また、封止材105、106を単層の樹脂で形成するのではなく、複層の樹脂を用いて形成してもよい。複層の樹脂を用いて形成することにより、例えば、上述したような外力が加わる環境下においても使用可能な太陽電池モジュールを形成することもできる。
保護材101の材質としては、ガラスや透明な他の素材の樹脂など、光を透過する材料であれば特に制限されない。これらの中でも、光透過性、対候性、軽量に優れるポリエチレンテトラフルオロエチレン(ETFE)、PTFE、FEP、PFA、PVDF、PVF等のフィルムやシリコーン樹脂を用いることが好ましい。本実施形態においては、FTFEを使用した。
補強材102の材質としては、保護材101と同様の材料で形成することができる。また、太陽電池モジュールの強度やコストの観点から、アルミニウム板、鋼板、塗装鋼板等を用いることも出来る。本実施の形態においては、ポリエステル樹脂からなる塗装を施した鋼板を使用した。
絶縁シート104、115の材質としては、太陽電池モジュールの利用のための設置状態及び製造条件下で封止材105、106よりも剛性及び絶縁性が高い材質であれば特に制限されず、ガラス不織布、フッ素系のフィルム材料等、各種材質を用いることができる。ガラス不織布を用いた場合には、上記のように積層して構成される。一方、フッ素系のフィルム材料を用いた場合には、ラミネート時にフィルム材料と封止材との間、または光電変換素子103とフィルム材料との間に滑りが生じる。このため、フィルム材料の滑りが防止できるように構成する。
尚、本実施の形態において、利用のための設置状態とは、太陽電池を家屋の屋根などに設置して実際の使用する条件であり、室温から80℃程度の温度範囲である。このような温度で使用する場合には、封止材105、106が軟化し、基板107の残留応力により、光電変換素子103が少しずつ移動する。また、製造条件下とは、太陽電池製造工程において、封止材105、106が配置されてからの製造環境の条件である。特に太陽電池製造工程において、封止材105、106を配置してラミネートする際の温度は、150℃程度となり、封止材105、106が軟化する。このような太陽電池モジュールの利用のための設置状態及び製造条件下において、封止材105、106よりも剛性及び絶縁性が高い材質を用いることのより、絶縁抵抗の低下を抑制できる。
尚、本実施形態に係る太陽電池モジュールにおいては、光電変換層109が基板107の上面に積層された例について説明したが、基板107の下面に光電変換層109を積層してもよい。この場合、基板107の上面に接続電極111が配置されるため、上面から電流を取り出すことができる。
また、本実施形態に係る太陽電池モジュールにおいては、太陽電池の構造として各種構造をとることができる。例えば、シングル構造、タンデム構造太陽電池、3層タンデム構造電池の光変換素子、また、化合物系の太陽電池や、色素増感太陽電池及び有機太陽電池など、各種形態の太陽電池を用いることができる。
以下、本発明を実施例により具体的に説明するが、これらの例によって何ら限定されるものではない。
(実施例1)
光電変換素子の基板には厚さ略50μmのポリイミドを用いた。基板の上面にはAg電極(厚さ200nm)、光電変換層として2つのpin接合(a−Si/a−SiGeタンデム接合、厚さ800nm)、透明電極としてITO(厚さ70nm)を形成した。基板の下面には接続電極としてのAg電極(300nm)を形成した。また、絶縁シートとして厚さ0.2mmのガラス不織布を用い、基板の上下の封止材には厚さ0.3mm×幅300mm、MFR(メルトマスフローレイト)が30g/10minのEVAを用いた。保護材にはフッ素系フィルムETFEを使用した。補強材にはポリエステル樹脂からなる塗装を施した鋼板を使用した。光電変換素子は幅400mm×奥行200mm、鋼板は幅450mm×奥行300mm、ガラス不織布は奥行220mm×幅20mm×厚さ0.3mmのサイズとした。ガラス不織布は基板下面のEVAの長手方向の末端から10mmの位置に配置した。
(ラミネート条件)
上記のように積層された各部材は、加熱して真空ラミネートプロセスによって樹脂を溶融させ接着した。真空ラミネートプロセスは次のプロファイルによって行った。尚、本実施の形態の太陽電池モジュールにおいては、ラミネートプロセス中の光電変換素子に反りは見られなかった。ラミネート条件を表1に示す。また、この条件でラミネート時に絶縁用のガラス不織布は、最大で3mm移動した。
Figure 2010073932
(太陽電池モジュールの絶縁抵抗の評価)
光電変換素子の両端の電極をケーブルでつなぎ合わせ、つなぎ合わせた部分と鋼板との間に電圧1000Vかけ、30秒程度放置して安定するのを待った後、絶縁抵抗を評価した。続いて、高温高湿試験を85℃、湿度95%の条件で、3000時間行った後絶縁性を評価した。結果を表1に示す。高温高湿試験の前後とも高い絶縁性が得られた。
(実施例2)
光電変換素子、封止材、保護材は、実施例1と同様に構成した。光電変換素子と保護材との間の絶縁性のシートには厚さ25μmのETFEを用い、絶縁性のシートを光入射反対側の光電変換素子の長手方向(幅方向)の両末端と、絶縁シート短手方向(幅方向)の中心が一致するように光電変換素子と封止材との間に配置した。また、絶縁シートと光電変換素子に封止材として、厚さ0.3mmのEVAを絶縁シートと光電変換素子との間に設けた。ラミネートは実施例1と同条件で実施した。
実施例1と同様に絶縁抵抗の評価を行った結果を表1に示す。実施例1と同様に高温高湿試験の前後とも高い絶縁性が得られた。
(実施例3)
光電変換素子、封止材、保護材は、実施例1と同様に構成した。光電変換素子と保護材との間の絶縁性のシートには、厚さ25μmのETFEを用い、絶縁性のシートを光入射反対側の光電変換素子の長手方向(幅方向)の両末端と、絶縁シート短手方向(幅方向)の中心が一致するように光照射反対側のEVAと鋼板との間に配置した。また、絶縁シートの固定のため、絶縁シートと鋼板との間に変性系のシリコン接着剤を用いた。ラミネートは実施例1と同条件で実施した。
実施例1と同様に絶縁抵抗の評価を行った結果を表1に示す。実施例1、2と同様に高温高湿試験の前後とも高い絶縁性が得られた。
(比較例1)
光電変換素子、封止材、保護材は、実施例1と同様に構成したが、光電変換素子と封止材との間に絶縁性シートを配置しなかった。ラミネートは、実施例1と同条件で実施した。
実施例1と同様に絶縁抵抗の評価を行った結果を表1に示す。製造後初期の高温高湿試験前でも絶縁抵抗が低く、目標に達しなかった。
(比較例2)
光電変換素子、封止材、保護材は、実施例1と同様に構成したが、光電変換素子と封止材との間の全面にガラス不織布の絶縁シート(幅400mm×奥行200mm)を配置した。ラミネートは、実施例1と同条件で実施した。
実施例1と同様に絶縁抵抗の評価を行った結果を表2に示す。製造後の高温高湿試験前は実施例1と同様、目標通りの絶縁抵抗が得られたが、高温高湿試験後に絶縁抵抗が低下した。
Figure 2010073932
本発明は上記実施の形態に限定されず種々変更して実施することが可能である。また、上記実施の形態で説明した数値、寸法、材質については特に制限はない。例えば、実施例1から実施例3で示したEVAの厚さは上記の0.3mmに限定されず、0.1mm〜2mm程度の大きさのものを用いてもよい。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更することが可能である。
本発明は、例えば屋外用の太陽電池モジュール、あるいは薄型の太陽電池に適用可能である。
本出願は、2008年12月24日出願の特願2008−327954に基づく。この内容は、全てここに含めておく。
この構成によれば、光透過性を有する絶縁性のシートを光入射面側に配置するので、光電変換素子が光入射面側に反る場合においても絶縁抵抗の低下を抑制できる。
図5(b)は、光電変換素子103の変形及び絶縁シート104、115の配置例を示す平面模式図である。図5(b)においては、光電変換素子103、光電変換素子103の上面側の絶縁シート115及び下面側の絶縁シート104のみを示し、その他の部材については省略している。また、図5(b)の縦軸側には、光電変換素子103の短辺方向の変形状態を示し、横軸側には、光電変換素子103の長辺方向の変形状態を示している。図5(b)に示すように、光電変換素子103の中央部が上方に突出したドーム形状に変形する場合には、光電変換素子103の中央部が最も上方に突出する。このため、光電変換素子103の上面側の中央部に絶縁シート115を配置することにより、保護材101と光電変換素子103との間の絶縁抵抗低下を抑制することができる。尚、光電変換素子103の光入光面側に配置する絶縁シート115は、少なくとも太陽電池の発電に必要な波長の光を透過できるものを用いる。また、絶縁シート115の材料としては、光を透過できる材料であればよく、着色があってもよく、無色であってもよい。
また、本実施形態に係る太陽電池モジュールにおいては、太陽電池の構造として各種構造をとることができる。例えば、シングル構造、タンデム構造太陽電池、3層タンデム構造電池の光電変換素子、また、化合物系の太陽電池や、色素増感太陽電池及び有機太陽電池など、各種形態の太陽電池を用いることができる。
実施例1と同様に絶縁抵抗の評価を行った結果を表に示す。実施例1、2と同様に高温高湿試験の前後とも高い絶縁性が得られた。
実施例1と同様に絶縁抵抗の評価を行った結果を表に示す。製造後初期の高温高湿試験前でも絶縁抵抗が低く、目標に達しなかった。

Claims (6)

  1. 可撓性基板及び当該可撓性基板上に形成された光電変換素層を含む光電変換素子と、前記光電変換素子の両面に配置され、封止材をそれぞれ介して接着される保護材と、前記光電変換素子と少なくとも一方の前記保護材との間に配置され、太陽電池モジュール製造条件下及び利用のための設置状態に対して前記封止材よりも剛性及び絶縁性が高いシートと、を具備することを特徴とする太陽電池モジュール。
  2. 前記シートは、前記光電変換素子の少なくとも四隅が反る側であって、当該四隅を含む位置に配置されることを特徴とする請求項1記載の太陽電池モジュール。
  3. 前記シートは、四隅が反る側であって、前記光電変換素子の長手方向の両端部の各辺を含む位置に配置されることを特徴とする請求項2記載の太陽電池モジュール。
  4. 前記シートは、四隅が反る側であって、前記光電変換素子の長手方向の両端部の各辺を含む位置に配置されると共に前記保護材と前記封止材との間に配置されることを特徴とする請求項2または請求項3記載の太陽電池モジュール。
  5. 前記シートは、光透過性を有し、前記光電変換素子の光入射面側に配置されることを特徴とする請求項1から請求項4のいずれかに記載の太陽電池モジュール。
  6. 前記シートは、前記光電変換素子の反りにより突出する箇所に配置されることを特徴とする請求項1から請求項5のいずれかに記載の太陽電池モジュール。
JP2010544011A 2008-12-24 2009-12-14 太陽電池モジュール Pending JPWO2010073932A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008327954 2008-12-24
JP2008327954 2008-12-24
PCT/JP2009/070832 WO2010073932A1 (ja) 2008-12-24 2009-12-14 太陽電池モジュール

Publications (1)

Publication Number Publication Date
JPWO2010073932A1 true JPWO2010073932A1 (ja) 2012-06-14

Family

ID=42287548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010544011A Pending JPWO2010073932A1 (ja) 2008-12-24 2009-12-14 太陽電池モジュール

Country Status (5)

Country Link
US (1) US20110315187A1 (ja)
EP (1) EP2383796A4 (ja)
JP (1) JPWO2010073932A1 (ja)
CN (1) CN102265409A (ja)
WO (1) WO2010073932A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015045231A1 (ja) * 2013-09-30 2017-03-09 パナソニックIpマネジメント株式会社 光電変換装置および当該装置に使用される光電変換ユニット
GB2570493A (en) * 2018-01-29 2019-07-31 Sunew Filmes Fotovoltaicos Solar panel arrangement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1056191A (ja) * 1996-08-08 1998-02-24 Canon Inc 太陽電池モジュール
JPH1093124A (ja) * 1996-09-12 1998-04-10 Canon Inc 太陽電池モジュール
JP2007294868A (ja) * 2006-03-30 2007-11-08 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756082B2 (ja) * 1994-04-28 1998-05-25 キヤノン株式会社 太陽電池モジュールの製造方法
JP2000345675A (ja) * 1999-03-26 2000-12-12 Canon Inc 太陽電池モジュール、太陽電池付き屋根、及び太陽電池発電システム
DE10023546C2 (de) * 2000-05-15 2002-11-07 Webasto Vehicle Sys Int Gmbh Solardeckel
EP1172864A1 (en) * 2000-07-11 2002-01-16 SANYO ELECTRIC Co., Ltd. Solar cell module
JP2006523946A (ja) * 2003-04-16 2006-10-19 アポロン、ソーラー 太陽電池モジュール及びその製造方法
JP4401158B2 (ja) * 2003-12-16 2010-01-20 シャープ株式会社 太陽電池の製造方法
ITMI20040253A1 (it) * 2004-02-16 2004-05-16 Curvet S P A Modulo fotovoltaico curvo processo produttivo e relativa vetrara isolante termicamente ed acusticamente

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1056191A (ja) * 1996-08-08 1998-02-24 Canon Inc 太陽電池モジュール
JPH1093124A (ja) * 1996-09-12 1998-04-10 Canon Inc 太陽電池モジュール
JP2007294868A (ja) * 2006-03-30 2007-11-08 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法

Also Published As

Publication number Publication date
WO2010073932A1 (ja) 2010-07-01
EP2383796A4 (en) 2012-12-19
EP2383796A1 (en) 2011-11-02
CN102265409A (zh) 2011-11-30
US20110315187A1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
US6307145B1 (en) Solar cell module
KR101215694B1 (ko) 태양 전지 모듈 및 태양 전지 모듈의 제조 방법
JP4918247B2 (ja) Cis系薄膜太陽電池モジュール及びその製造方法
US20090272436A1 (en) Non-glass photovoltaic module and methods for manufacture
US20090255573A1 (en) Photovoltaic heat-weldable thermoplastic roofing membrane
WO2011158777A1 (ja) 太陽電池モジュール
JP2007522659A (ja) 光起電力システムおよびその作製方法
US20140137939A1 (en) Solar-cell module and manufacturing method therefor
CN102460727A (zh) 成型的光电模块
JP2015057811A (ja) 太陽電池モジュール
US20180122972A1 (en) Semi-flexible solar module using crystaline solar cells and method for fabrication thereof
KR20120111333A (ko) 태양전지 모듈 및 이의 제조방법
JP2015082611A (ja) 太陽電池一体型融雪シート、及び太陽電池一体型融雪シートの設置方法
JP5304955B1 (ja) 融雪機能付き太陽電池モジュール
JP2016186156A (ja) 太陽電池一体型壁材
JPWO2010073932A1 (ja) 太陽電池モジュール
CN102691386A (zh) 太阳能电池瓦片
JP2013030734A (ja) 太陽電池モジュール
JP4194457B2 (ja) 太陽電池モジュール
JP2012204458A (ja) 太陽電池モジュールの製造方法
JPH11214734A (ja) 太陽電池モジュールおよびその製造方法およびその施工方法および太陽電池発電システム
JP2011159669A (ja) 太陽電池
JP2015185680A (ja) 太陽電池モジュール
KR20190001241U (ko) 자체 히팅 코일
JP2014042015A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130618