JPWO2010067513A1 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
JPWO2010067513A1
JPWO2010067513A1 JP2010541974A JP2010541974A JPWO2010067513A1 JP WO2010067513 A1 JPWO2010067513 A1 JP WO2010067513A1 JP 2010541974 A JP2010541974 A JP 2010541974A JP 2010541974 A JP2010541974 A JP 2010541974A JP WO2010067513 A1 JPWO2010067513 A1 JP WO2010067513A1
Authority
JP
Japan
Prior art keywords
uncertainty
accuracy
automatic analyzer
quality control
control sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010541974A
Other languages
English (en)
Other versions
JP5557750B2 (ja
Inventor
久美子 神原
久美子 神原
三村 智憲
智憲 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010541974A priority Critical patent/JP5557750B2/ja
Publication of JPWO2010067513A1 publication Critical patent/JPWO2010067513A1/ja
Application granted granted Critical
Publication of JP5557750B2 publication Critical patent/JP5557750B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00693Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00603Reinspection of samples
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

複雑化した不確かさの要因、とくに切り分けが難しいとされる装置側の異常(光学系,分注機構)に着目して日常の精度管理からその要因を自動的に究明すること。測定結果に影響する装置側の分析性能は分析パラメータやキャリブレーション結果を利用して推定することができることから、精度管理を行う中で各項目の推定不確かさを自動的に算出し、実際に精度管理試料を測定したときの不確かさの結果と比較することにより装置の性能を監視,評価する。また、異常の要因となる装置側の光学系,検体分注系,試薬分注系といった特定の要因に大きく影響することがわかっている項目について複数の濃度の精度管理試料を測定し、測定項目のパラメータから算出される推定不確かさと、精度管理試料を測定して得られた不確かさの結果を比較して、差が見られた項目を分類し、その分類から装置のどの部分に異常があるかを判定する。

Description

本発明は臨床検査装置などの自動分析装置における精度管理において算出した不確かさから装置の異常の要因を推定する手段を備えた自動分析装置に関するものである。
近年、臨床検査の信頼性を評価するためにISO15189やGuide to the expression of Uncertainty in Measurement(GUM)などが制定され、検査室のクオリティや測定結果の精確さについて評価する方向へ動きつつある。特に2008年4月から開始された特定健康診断はメタボリックシンドロームに着目して糖尿病や心疾患などの生活習慣病予防を目的として行われている。一定の診断基準を超えた人に対して食生活や生活習慣の改善指導などが行われるが、これらは経過観察が必要であるため、検査は1回でなく数回にわたる継続的な健診が必要となる。継続的に行うには、日間差あるいは施設間差などが大きいと、指導等による数値の管理が困難になる。従って、どの検査機関で測定しても一定の数値が得られなければならず、より精度の高い測定が要求されている。分析試薬に関しては定められた分析法の試薬を用いることが決められ、試薬メーカーは数値の校正に必要な試薬ごとの不確かさを提示する必要がある。また装置に関しても機差ごとの不確かさの数値を提示する必要がある。このような不確かさについての検討は非特許文献1〜3に記載されている。
装置は日々使用することによってランプの消耗や分注シリンジの磨耗などが進行し、結果として不確かさが大きくなる。また、ランプやシリンジを交換した場合にも吸光度の値などが変化し、測定値が変動する場合がある。ランプやシリンジなどの消耗品に関しては使用期間を管理して、一定の試用期間を過ぎた時に交換するといった方法がとられている。
臨床化学 2003年 第32巻 186−199:キャリブレータおよびQA用試料の不確かさ評価方法(Ver.1.4) 日本臨床検査自動学会会誌 第32巻第一号 19−23:自動分析装置を用いた日常検査法の不確かさの算出方法に関する研究 臨床化学 2007年 第36巻補冊1号 151−154:標準システムから伝達された日常検査値の不確かさ 日本臨床検査自動学会会誌 第32巻第一号 3−11:臨床化学自動分析装置の基礎特性に基づいた精密度の見積り
自動分析装置における測定結果では各部の精度が影響する。しかしながら装置の中でどの部分(光度計,試薬分注,検体分注,攪拌など)が測定結果に影響しているか特定することは困難であった。しかもその影響の大きさは測定する項目によって異なるため、毎日多くの検体を処理する検査室で、検査技師が一つ一つデータを確認して判断することは非常に手間がかかる。
本発明では複数の濃度を持った標準血清を測定することにより、そのデータから装置側の異常の要因を特定するに至った。
従来の再現性や正確性を中心に管理する精度管理の場合や、近年注目されている不確かさに基づく精度管理の場合のいずれにおいても数値が大きく変動すれば精度管理上、何か問題があることは発見できた。しかしながら、不確かさとは技術的な信頼性を示す指標であり、不確かさが臨床的許容値を上回った場合に、装置が原因なのか試薬が原因なのかなどの詳しい要因究明については統一の見解がない。不確かさの計測には装置の保守管理を含む装置の状態,試薬,管理試料などの複数の要因が組み合わされており、一般の検査技師がその要因を切り分けることには時間と労力を要する。特に、実際の臨床現場におけるルーチン検査の最中には簡単に判断できないことが多く、検査を一旦中止させて要因を取り除かなくてはならないため、結果が大幅に遅れてしまうか、精度が保持されていないまま検査を進めてしまう可能性があるといった問題点があった。先の背景技術でも述べたが、一定の精度を保つための技術や精度がずれた場合に警告するシステムなどについては研究が進められ、改善されてきた。しかしながらあくまでもその要因の解明は検査技師の判断に委ねられており、内部精度だけでなく、外部施設との精度や測定値の統一性が必要とされるようになると、統一の見解または統一した判定システムなどが重要になる。
不確かさの要因のなかでも特に要因を特定することが難しいとされるのが装置側の異常である。装置側の分析精度に関わる因子は検体分注,試薬分注,攪拌機構,光度計,反応容器などがあるが、ランプやシリンジなどの消耗品は使用期間を管理することで一定の期限を越えたものと交換するといった手順により、有る程度のデータの不確かさを軽減することはできるが、実際はLotや使用状況などによって使用可能期間は異なり、しかも使用可能期間を過ぎた場合に急にデータの精度が低下するという理由ではなく、除々に精度が低下してくるため、データの不確かさから装置の異常部位を特定することは難しい。
上記目的を達成するために、本発明に係わる自動分析装置は、次のように構成される。図1に示したとおり、自動分析装置の検出部101から出力された測定データを記憶し、測定するパラメータのデータを複数レベルで記憶・更新し、項目名,測定波長,検体量,試薬量,分析方法そして、該当項目のキャリブレーション結果を記憶できるハードディスクなどの記憶部102と、項目名,測定波長,検体量,試薬量,分析方法とキャリブレーション結果のkファクターや濃度、吸光度から推定合成不確かさを算出し、また出力された精度管理の測定データから濃度・標準偏差・変動係数・日時等を測定ごとに計算する演算部103と、計算されたデータを記憶・更新していく記憶部102を備え、管理図や数値を表示する表示部104,判定値(測定された値が異常かどうかを判断するための境界値)や検体の種類や濃度を設定するためのキーボードやCRTなどから構成される操作部105と、精度管理試料を測定後、計算された数値と判定値とを比較し判断するため、ロジックは複数の分枝点を持ち、判定値と比較して異常の有無とその要因を判定できることを特徴とする。この判定部106から出た判定結果は表示部104に表示し、アラームを出す。
装置の性能を左右する因子を分類すると、大きく2因子に分けられる。まず1つは測定する精度管理試料や検体の濃度に比例して大きくなる成分。この場合は精度管理試料や検体の濃度に比例して標準偏差が大きくなる。反応系に依存して変動するため、検体分注精度や試薬分注精度が該当する。また、もう一つが濃度に比例しない成分であり、測定値の標準偏差は濃度に比例せず、ほぼ一定の数値となる。試料などの反応系に影響を受けない光度計や洗浄水の残りなどが該当する。このように項目によって、測定結果の精度は検体量や光度計,分注機構に依存することが既知であるため、指定した項目を測定することによって装置側の精度を確認,異常因子を推定することができる。
装置各部位の異常を自動的に判定することができれば、日々の精度管理を実施する過程で、装置の異常・試薬の劣化を判断できる。消耗品の交換時期なども適切に判断することが可能となる。さらに、データを記憶装置に蓄積することにより、その設備はどんなサイクルで、またはどのような原因で精度管理から外れることが多いかを分析することによって未然に精度の低下を防ぐことも期待できる。
本発明における自動分析装置の基本的な概略を示す構成図。 精度管理試料の測定からばらつきの要因判定までのフローチャート。 装置各部の不確かさと推定合成不確かさの算出方法。 日々の精度管理に用いるSD値の算出方法の例。 精度管理表示の一例。 推定合成不確かさの各因子の値設定画面の例。 推定合成不確かさのデータ編集画面の例。 推定合成不確かさの測定結果画面の例。 推定合成不確かさの日差変動チャート図の例。
以下、図面を用いて本発明の実施の形態について説明する。
図1は本発明において構成される自動分析装置の最良の形態である。
精度管理を行うために、複数の管理試料の情報は測定項目等の情報を入力またはバーコードなどによって読み込ませた後、測定を開始する。この測定は毎日検査を開始する前・後や検査の途中に決められた検体数ごとや時間等によって組み込むことが可能である。また、測定時に必要なパラメータを登録する画面から、パラメータを登録し、その時に得られる(1)項目名(2)測定波長(3)検体量(4)試薬量(5)分析方法の情報を抽出し、また測定項目のキャリブレーションを行った後に出力されたkファクターや吸光度などから検体分注,試薬分注,洗浄機構,攪拌機構,光度計それぞれの不確かさを計算する。またこれらそれぞれの不確かさを二乗和したものの平方根をとり合成不確かさを算出する。またこの合成不確かさは操作部から入力することもできる。
検出部101から出力された測定データは、いったんコンピュータの記憶部に記録され、そのデータを演算部103で平均値や測定範囲・標準偏差・変動係数等を計算する。計算された数値は記憶部に蓄積し、PCの画面上などの表示部に表示することができる。また、先に算出した推定合成不確かさの値と精度管理試料測定後、演算部より算出された不確かさの数値を比較してばらつきの有無とその要因を判断する判定部106により判定する。判定に必要な情報はこの判定部に備える。判定により得られた要因は表示部またはアラームとして告知することができる。
図2に、精度管理測定から判定までのロジックをフローチャートにして示す。
ステップ301ではコンピュータにつながるキーボードやCRTなどの操作部から、使用する試料の名前や種類,測定項目のパラメータ,任意の判定値などを設定し、記憶する。ステップ302で各項目のキャリブレーションを行う。次にステップ303によりパラメータから(1)項目(2)測定波長(3)検体量(4)試薬量(5)分析方法などを抽出し、またキャリブレーション結果からは光度計ノイズの算出に必要なkファクターや吸光度を抽出し、光学系ノイズの不確かさを求める。そこから得られた情報によりステップ304で各項目ごとに推定合成不確かさを算出する。次にステップ305で登録した精度管理試料を自動分析装置により測定を行う。管理試料の測定は毎日装置のキャリブレーションが終了した後、患者検体を測定する前や途中,後など、あるいは複数回測定する。得られた測定データはステップ306で検出部から出力させ、コンピュータに送信される。送信されたデータはステップ307で平均値や標準偏差などが計算される。ステップ308では先に算出した推定不確かさまたは任意で入力した判定値と、試料を測定して得られた結果から算出した標準偏差の値を比較する。比較の結果、計算値が判定値を超える試料を各項目ごとに判断し、判定値を超えない場合は正確さが保たれていると判断し、312の記憶部にデータを格納する。一方判定値を超えたデータがあった1項目以上あった場合には、ステップ309で判定値を超えたデータについて(1)光学系(2)検体分注系(3)試薬分注系といったあらかじめ各項目ごと特徴づけられた系統に分類する。そしてさらにステップ310でその分類されたパターンからどの系統の項目に判定値とのズレが起きたかを解析し、推察される装置の不確かさの要因を選択する。ステップ311は判定された要因や、項目などのデータとともに表示部に表示する。検査の最中にこの測定を入れた場合はその表示画面を選択していない場合もあることから、アラームとして警告を出すのが好ましい。このようにして得られたデータはステップ312データベースなどの記憶部にデータを蓄積する。以上の流れで精度管理を行うものとする。
1.精度管理試料
不確かさの測定に利用する管理試料は標準血清やプール血清,コントロール検体など試料中に含まれる測定項目の物質が一定以上存在しているものであればいかなるものでもよいが、ひとつの測定項目に対して複数の濃度レベルの管理試料を用意する。その濃度のレベルは試薬や装置の測定範囲内であれば良い。本実施例では3種類の濃度レベルの試料を用い、低レベル(以下Lと記述する)は正常な測定値の基準範囲の下限値付近、中レベルは(以下Mと記述する)基準範囲の上限値付近、高レベル(以下Hと記述する)基準範囲の2倍以上のものなど、一定の間隔が空いているものが特に好ましい。
2.測定項目
測定項目については、自動分析装置で測定可能なものでかつ測定結果に影響をうけやすい要因が既知のものであればいかなるものでも良いが、分析方法がレート法,エンドポイント法それぞれ含まれることが好ましい。測定項目としては、主に総蛋白(TP),アルブミン(ALB),乳酸脱水素酵素(LD),アスパラギン酸アミノトランスフェラーゼ(AST),アラニンアミノトランスフェラーゼ(ALT),アルカリ性フォスファターゼ(ALP),アミラーゼ(AMY),膵型アミラーゼ(P−AMY),ロイシンアミノペプチダーゼ(LAP),γ−グルタミルトランスペプチダーゼ(γGT),コリンエステラーゼ(CHE),クレアチンキナーゼ(CK),総コレステロール(T−Cho),中性脂肪(TG),HDL−コレステロール(HDL−C),LDL−コレステロール(LDL−C),遊離脂肪酸(FEA),尿素窒素(UN),クレアチニン(CRE),尿酸(UA),グルコース(Glu),ヘモグロビンA1C(HbA1c),乳酸(LA),ピルビン酸(PA),総ビリルビン(T−BIL),直接ビリルビン(D−BIL),カルシウム(Ca),ナトリウム(Na),無機リン(IP),血清鉄(Fe),不飽和鉄結合能(UIBC),クレアチンキナーゼ−MB(CK−MB),リン脂質(PL),C反応性蛋白(CRP),リウマチ因子(RF),免疫グロブリンG(IgG),免疫グロブリンA(IgA),免疫グロブリンM(IgM),補体第3成分(C3),補体第4成分(C4),抗ストレプトリジンO価(ASO)など約300種類以上知られている。中でも特に、アスパラギン酸アミノトランスフェラーゼ(AST),アラニンアミノトランスフェラーゼ(ALT),アルカリ性フォスファターゼ(ALP),総蛋白(TP),クレアチニン(CRE),γ−グルタミルトランスペプチダーゼ(γGT)などは低濃度領域がばらつきやすいことが知られており、本発明においてはこれらの項目を適用することがより好ましい。
3.推定合成不確かさの算出方法
装置由来の不確かさは機種や機差によって異なるが測定データの精度に影響を及ぼす因子からある程度推定することが可能である。
不確かさのうち、装置各部の性能データから不確かさを算出する。検体量,試薬量,光度計,洗浄機構,攪拌機構は添加量や測定波長,分析法などによって決めることができる。従って項目ごとの推定不確かさは検体量,試薬量,洗浄機構,攪拌機構は分析パラメータの情報から、また光度計はキャリブレーション結果から算出することができる。例えば装置の記憶部に図3に示したような因子ごとに発生する不確かさの値の情報を保持する。これらは精度管理の項目の分析パラメータを入力、キャリブレーション実施後に各因子の精度を算出し、各項目ごとの推定不確かさを算出して値を提示する。または各部の不確かさの値はユーザーが装置使用時に性能評価を行い、その結果得られた値をコンピュータにつながるキーボードやCRTなどの操作部から入力して変更して使用装置ごとの推定不確かさの値を使用することもできる。
4.測定データの算出方法
データの不確かさを測定する場合は、同じ試料の測定回数は複数回であれば計測可能である。実際に、試薬の同時再現性を測定する場合には20〜30回分の独立したデータが用いられているし、日内または日差の精度管理を行う場合にも測定する回数が多いほど、精度は向上するが、2回以上のデータがあれば計測は可能である。通常精度管理における不確かさを推定する場合には、独立した15回以上の測定値が推奨されているため、本実施例では15回分のデータを利用しての測定方法を明記する。精度を測定するための値は平均値や標準偏差などが利用できる。例えばSD値を用いて、15回のデータを母集団として精度管理を行う場合について図4に示す。最初の測定開始日から15日間は精度管理のデータの蓄積と判定値として用いるSD値の算出に利用する。各精度管理試料については同じ試料を複数回測定し、その平均値をその日の測定値とする。判定に用いる基準とする値と、比較する測定値の母集団を同じにするため、測定日のデータを含めた過去15日分のデータを利用する。ただし、判定値を上回ったデータが3濃度の測定値のうち1つでも存在した場合はその後のSD値に影響を及ぼすため、利用しないこととする。例えば17日目に得たデータが判定値を上回った場合、翌日18日目のSD値は3〜16日と、18日目と17日目のデータを除いた15日分のデータを用いて計算する。同じように翌々日の19日目には4〜16日と、18〜19日の計15日間のデータを用いてSD値を計算する。1日に数回精度管理測定を行うような場合には、過去15回分のデータを利用して計算することが好ましい。また、過去のデータを記憶して再計算を可能とする。その日数は指定可能とする。
5.判定値の設定方法
測定するデータが毎日同じ値でまったく同じ不確かさになるということは極めてまれである。例えその値はごく僅かなものでも数値の変動は起こる。従って、不確かさの値に変動があるのかないのかではなく、その変動の幅が通常のばらつきの範囲内なのか、問題のある変動幅なのかを見極めることが重要である。
不確かさについて評価する場合には、一般的に包括係数kの値をかけた拡張不確かさにより何パーセントの信頼水準があるかで示される。この信頼水準の考えからは正規分布のばらつきを定義する場合に用いられるが、考え方は同じであり、k=1の場合は68%、k=2であれば95%、k=3であれば99.7%がこの管理限界の中に入る。最も一般的にはk=2の時の拡張不確かさが用いられる。実際の測定においてこの管理限界が厳しすぎると異常原因による数値の変動でない値までが範囲外となる可能性が高くなるだけで、通常の検査作業の妨げとなる。精度をどこまで要求するかは各施設,各項目ごとに異なるため、判定値の設定は検査技師が自由に設定できるものとする。判定値は管理試料の測定前にも測定後にも入力または変更が可能とする。
自動分析装置には過去の実験により得られた装置各部の不確かさの値を条件ごとに登録しておく。しかしながら装置側の不確かさは機差があることから、装置出荷時の性能評価時やユーザーが装置を設置した際あるいはメンテナンスを行った後などに再設定することができる。適切な判定値を設定するにはまず、測定工程が安定な状態にある時に濃度の一定した数種類の標準血清を毎日n本測定してK日間継続してデータを蓄積する。この間の管理試料や試薬のロットは同じが好ましい。このデータを用いて平均値,標準偏差,変動係数などを計算する。その値からX倍またはZ%などプラスマイナスした値を判定値とする。判定値に利用する値は固定値とするかあるいは精度測定を積み重ねるごとに母集団を増やして、値を変動値とすることも可能である。
本実施例では推定合成不確かさに包括係数k=2をかけた拡張不確かさを装置異常の許容限界範囲とした。
6.表示方法
表示の方法については、まず、不確かさの算出に利用する項目のパラメータが入力されると、各分析性能因子の不確かさを算出し、推定合成不確かさの値を表示する図6のような画面が独立して存在する。この画面では各項目についてどのくらいの推定合成不確かさになるか確認することが可能であり、またこの画面上からデータ編集画面に移ると、図7のような設定画面が表示される。この画面では使用者が任意に各因子の不確かさや判定値を操作部から入力することができる。
測定結果の表示方法は、不確かさの算出に利用する試料の項目が測定されると、図8のような推定合成不確かさの結果が表示される。測定によって得られた不確かさの値は前回値と今回値が並列表示され、前回値との比較を行うこともできる。また、合成拡張不確かさや判定値も並列で表示され、値の比較を目視で確認することもできる。判定値を超えた項目については使用者がわかりやすいようにセルに色をつけて表示することが好ましい。
また、判定値を超えた項目などからデータの異常と推定される要因についてアラームを表示し、異常回避の方法なども同画面にて表示することがより好ましい。
精度管理の表示方法は、各項目ごとに推定された不確かさとともに測定されたデータを数値として羅列することも可能である。
例えば、図5では一般的な管理図と同じように、横軸201に日付、縦軸202には変動係数CV%をとる。基本的には各項目ごとに管理図は表示され、各濃度の管理図は濃度ごとに単独または同一画面上に重ねて表示、あるいは図5のように高濃度レベルの試料(H)203,中濃度レベルの試料(M)204,低濃度レベルの試料(L)205の管理図を縦に並べて表示することも可能である。これら管理図の画面表示の例を図9に示す。図9では精度管理試料L,M,Hが縦に並べて表示され、測定の時系列によって表示することができる。また各項目を測定試料ごとに重ねて表示することが可能であり、コントロールのロットによる変動などが要因の場合に確認することができる。チャート内のプロットを選択すると測定日時やデータ詳細などが表示されるとより好ましい。
また、管理図以外の表示の方法としてはデータを一覧として日付ごとに表示でき、装置のどの要因に影響がある項目なのかはセルの色などで区別することができる。推定不確かさの値または判定値を超えたものに関して、赤字等で区別することができる。
7.判定方法
非特許文献1に記載されているとおり、項目によって装置の異常の原因となる4つの因子、(1)光学系(2)検体分注系(3)試薬分注系(4)洗浄系のうち、測定結果に大きく影響する特異的な要因があることが分かっている。
例えば、(1)の光学系においては、光源として使用しているハロゲンランプが寿命によって光の強さが低下してくる場合、光源のノイズの影響が大きくなってくる。このノイズは測定する波長によって影響が異なり、例えば主波長340nm/副波長405nmなどといった紫外線領域と近赤外域では光学の影響を受けやすい。一方、主波長405nm/副波長505nmなどの可視域ではノイズの影響が小さく、光学の影響を受けにくい。従って光学系の異常を検知するためには前者の測定波長を利用する項目が好ましい。さらにレート法を用いる酵素法の項目では測定する検体の濃度に従ってより影響が大きく出やすい。
次に(2)検体分注系においては、項目パラメータの検体分注量が少ないものほど影響は出やすい。従って装置の性能によって異なるがその装置の最小分注量を設定することが好ましい。測定値の正常領域が小さい酵素項目は測定に使用する検体量も多く、低濃度では検体分注の影響は受けにくい。一方正常領域の大きい項目、特にエンドポイント法では測定に使用する検体量を少なくパラメータ設定している場合が多い。そのため、検体分注の精度の影響を受けやすい。高濃度試料を測定するほど検体分注のばらつきの影響が大きく反映される。また、ALPなどといった感度の高い項目は検体分注のばらつきが測定結果に影響を及ぼしやすい。(3)の試薬分注系はほとんどの測定試薬の分注量は大きいため、全体的に分注精度のばらつきの影響は出にくく、基質法など試薬に過剰量の基質が含まれているような試薬では分注精度の影響は低い。以上のデータから、装置の異常を検出するために用いるのに好ましい項目を表1に示す。
Figure 2010067513
これらを組み合わせて精度管理の測定を行い、その結果から装置の異常を管理,判定する。
(測定例1)
精度管理はL(低濃度試料)とM(中濃度試料)とL(高濃度試料)の3種類の濃度の試料を用いて、光学系の精度の影響が大きいALTとLD、検体分注系の精度の影響が大きいTP,T−Choを測定する。分析パラメータの検体分注量,測定波長,試薬分注量(R1,R2),分析法は表2の通りである。
Figure 2010067513
パラメータ入力,キャリブレーションの結果、各因子の不確かさは表3の通りになる。
Figure 2010067513
そこから算出される推定不確かさは、精度管理試料LではALTが6.10%、LDが1.48%、TPが1.75%、T−Choが1.71%であった。また精度管理試料MはALTが1.27%、LDが1.09%、TPが1.71%、T−Choが1.67%そして精度管理試料HはALTが1.16%、LDが1.08%、TPが1.68%、T−Choが1.67%であった。
一方、精度管理試料を測定して得られた実際の再現性(変動係数CV)はそれぞれ精度管理試料LではALTが5.4%、LDが1.3%、TPが3.5%、T−Choが3.8%であった。また精度管理試料MはALTが1.0%、LDが0.9%、TPが3.5%、T−Choが3.3%そして精度管理試料HはALTが1.3%、LDが1.2%、TPが3.6%、T−Choが3.5%であった。この日の測定結果の不確かさを推定合成不確かさと比較した場合、検体分注系不確かさの影響が大きいTPとT−ChoがL,M,Hの再現性が悪くなっている。2つの項目でしかも3濃度試料ともに不確かさが大きくなる場合、試薬や試料が原因ではなく装置側に問題があると言え、さらに検体分注系の不確かさの影響を受ける項目のみ不確かさが大きくなっているため、分注系になんらかの異常が発生していると判定できる。
(測定例2)
その他、精度管理試料測定の考えられる結果として、測定例1と同様の条件で測定を行った場合、検体分注系の項目の不確かさに変動が見られた時、特に低濃度領域ほどノイズの影響が大きく出るため不確かさの変動も大きいと思われる。一方検体分注や光学などの系統に関係なく特定の項目の不確かさに変動が見られた場合には装置の異常というよりは試薬や試料に問題があると推察される。
各項目の不確かさが判定値を超えた場合のデータの具体的な例は実施例1に示したが、測定する項目は、表1に示したような項目のうち、影響を受け易い要因が、光学系である項目を2種類以上、検体分注系の項目を2種類以上測定することが好ましい。光学系と検体分注系の項目について複数種類づつ測定した場合、不確かさの値が判定値を超えた項目の分類を表4に示す。パターン1と2のように光学系、検体分注系それぞれ複数項目のうち単項目のみ判定値を超えた場合には、測定に使用した試薬由来である可能性が高いと推定する。パターン3の光学系の項目が複数、判定値を超えた場合には光学系に異常があると推定される。また、パターン4の検体分注系の複数項目が判定値を超えた場合は検体分注系に異常があると推定される。パターン5では、光学系、検体分注系それぞれ単項目のみ判定値を超えているため、異常の要因はその項目の試薬由来であると推定する。パターン6では光学系が複数項目判定値を超えているため、まずは光学系の異常と推定する。さらに検体分注系の項目が単項目のみ判定値を超えているため、その項目の試薬由来である可能性もある。逆にパターン7のように検体分注系が複数項目で、光学系が単項目のみ判定値を超えている場合には、検体分注系に異常がある可能性が高く、さらに光学系の項目の試薬が要因である異常の可能性も推定できる。パターン8のように全ての項目において判定値を超えた場合には、装置由来ではなく、4項目に共通である測定に使用したコントロール検体や精度管理試料に原因があると推定される。以上のように、異常の要因は装置全体に及ぶものと項目由来のものが存在するが、用いる精度管理試料を複数濃度測定すれば、さらに要因を特定する精度が向上すると考えられる。
Figure 2010067513
推定された要因については、図8で示したような表示画面にてコントロールデータ異常との警告をだし、アラームとして告知する。推定された要因が複数ある場合には、すべてアラームとして告知する。告知するアラームは表5に示したように、推定された異常の要因だけでなく、改善方法などを示すとより好ましい。
Figure 2010067513
その他の実施の方法として、実施例1で求めた不確かさ以外に再現性についても同様の方法で判定することができる。
101 分析装置のデータ検出部
102 記憶部
103 演算部
104 表示部
105 操作部
106 判定部
201 管理図縦軸CV値
202 管理図横軸日付
203 高濃度の試料の管理図
204 中濃度の試料の管理図
205 低濃度の試料の管理図
206 推定合成不確かさ

Claims (10)

  1. 光度計,分注機構を含む装置を構成する機構に依存する精度管理試料測定時の精度を算出する装置依存の測定精度算出手段と、複数の精度管理試料を測定した結果に基づき精度管理試料依存の測定精度算出手段と、
    前記装置依存の測定精度算出手段と前記精度管理試料依存の測定精度算出手段がそれぞれ算出した精度を比較し異常を検出する異常検出手段と、を備えたことを特徴とする自動分析装置。
  2. 光度計,分注機構を含む装置を構成する機構の再現性データに基づき精度管理試料測定時の再現性を推定する再現性推定手段と、複数の精度管理試料を測定した結果に基づき精度管理試料依存の測定精度算出手段と、前記再現性推定手段が推定した再現性と前記精度管理試料依存の測定精度算出手段が算出した測定精度を比較し異常を検出する異常検出手段と、を備えたことを特徴とする自動分析装置。
  3. 光度計,分注機構を含む装置を構成する機構の不確かさデータに基づき精度管理試料測定時の合成不確かさを算出する合成不確かさ算出手段と、光度計,分注機構を含む装置を構成する機構の精度管理試料を測定した結果に基づき不確かさを算出する不確かさ算出手段と、
    前記合成不確かさ算出手段が算出した合成不確かさと、前記不確かさ算出手段が算出した算出手段との値を比較し異常を検出する異常検出手段と、を備えたことを特徴とする自動分析装置。
  4. 請求項3記載の自動分析装置において、
    合成不確かさを算出するための前記装置を構成する機構の測定条件ごとに標準偏差と変動係数を算出する標準偏差及び変動係数算出手段を備えたことを特徴とする自動分析装置。
  5. 請求項1記載の自動分析装置において、測定する前記精度管理試料は、ゼロ濃度以外の、2種類以上の濃度の精度管理試料であることを特徴とする自動分析装置。
  6. 請求項1記載の自動分析装置において、分析項目のキャリブレーション結果と分析パラメータから推定合成不確かさを算出することを特徴とする自動分析装置。
  7. 請求項1記載の自動分析装置において、
    前記装置を構成する機構の性能データを記憶し、キャリブレーション結果から得られたkファクターと分析パラメータの情報から対応するデータを採用し推定合成不確かさを算出する算出手段を備えたことを特徴とする自動分析装置。
  8. 請求項1記載の自動分析装置において、
    装置の推定合成不確かさを項目ごとに算出する演算部と、算出したデータを記憶する記憶部と、精度管理で測定した結果から不確かさを算出する演算部を備えたことを特徴とする自動分析装置。
  9. 請求項1記載の自動分析装置において、
    基本性能を測定して得られた各部分の不確かさを記録し、装置の推定合成不確かさとして外部操作部より入力することができる自動分析装置。
  10. 請求項1記載の自動分析装置において、
    不確かさのうち装置のどの因子に異常が生じたのかを装置各部に特異的に影響がある既知の項目について測定した結果から結果の精度を評価する評価手段を備えたことを特徴とする自動分析装置。
JP2010541974A 2008-12-09 2009-11-11 自動分析装置 Active JP5557750B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010541974A JP5557750B2 (ja) 2008-12-09 2009-11-11 自動分析装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008312808 2008-12-09
JP2008312808 2008-12-09
PCT/JP2009/006000 WO2010067513A1 (ja) 2008-12-09 2009-11-11 自動分析装置
JP2010541974A JP5557750B2 (ja) 2008-12-09 2009-11-11 自動分析装置

Publications (2)

Publication Number Publication Date
JPWO2010067513A1 true JPWO2010067513A1 (ja) 2012-05-17
JP5557750B2 JP5557750B2 (ja) 2014-07-23

Family

ID=42242511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010541974A Active JP5557750B2 (ja) 2008-12-09 2009-11-11 自動分析装置

Country Status (5)

Country Link
US (1) US9383376B2 (ja)
JP (1) JP5557750B2 (ja)
CN (1) CN102246047B (ja)
DE (1) DE112009004366B4 (ja)
WO (1) WO2010067513A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5669528B2 (ja) 2010-11-17 2015-02-12 株式会社日立ハイテクノロジーズ 自動分析装置
JP5898410B2 (ja) * 2011-03-30 2016-04-06 シスメックス株式会社 検体分析装置
JP5686710B2 (ja) * 2011-09-21 2015-03-18 株式会社日立ハイテクノロジーズ 自動分析装置
JP6013796B2 (ja) * 2012-06-25 2016-10-25 株式会社日立ハイテクノロジーズ 自動分析装置及び試料測定方法
JP2014202608A (ja) * 2013-04-04 2014-10-27 日本光電工業株式会社 外部精度管理の評価用データの表示方法
JP6269146B2 (ja) * 2014-02-19 2018-01-31 株式会社島津製作所 クロマトグラフ稼働状態監視装置
US20150331031A1 (en) * 2014-05-14 2015-11-19 Airbus (S.A.S) Methods, systems, and computer readable media for detecting and locating one or more wiring defect in dedicated aircraft systems
EP3217180B1 (en) * 2016-03-10 2021-11-17 F. Hoffmann-La Roche AG Quality controls of analyzers for biological samples
CN105843870B (zh) * 2016-03-17 2019-04-09 南京地质矿产研究所 重复性和再现性的分析方法及其应用
CN109696586A (zh) * 2017-10-23 2019-04-30 中国电力科学研究院有限公司 一种用于测试配电自动化系统不确定度的评定方法及系统
CN110869861B (zh) * 2017-11-27 2023-02-17 东芝三菱电机产业系统株式会社 钢铁厂的维护支援装置
JP7043319B2 (ja) * 2018-03-29 2022-03-29 シスメックス株式会社 精度管理用指標の生成方法、精度管理用指標の生成装置、検体分析装置、精度管理データ生成システム及び精度管理データ生成システムの構築方法
WO2019198455A1 (ja) * 2018-04-13 2019-10-17 株式会社日立ハイテクノロジーズ 自動分析装置
EP3832311B1 (en) * 2018-07-27 2023-10-11 Hitachi High-Tech Corporation Automatic analysis system
JP6771008B2 (ja) * 2018-09-28 2020-10-21 シスメックス株式会社 検量線作成方法及び分析装置
CN112912736B (zh) * 2018-10-25 2024-05-07 株式会社日立高新技术 自动分析装置
JP7247067B2 (ja) * 2019-09-26 2023-03-28 三菱重工業株式会社 濃度監視システム、濃度管理システムおよび濃度監視方法
EP4123310A4 (en) * 2020-03-19 2024-04-17 Hitachi High-Tech Corporation AUTOMATIC ANALYSIS DEVICE
JP7420960B2 (ja) 2020-09-30 2024-01-23 株式会社日立ハイテク データ処理装置および自動分析装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105239A (ja) * 1998-09-29 2000-04-11 Hitachi Ltd 生化学自動分析装置
WO2002068963A1 (fr) * 2001-02-23 2002-09-06 Hitachi, Ltd. Systeme d'analyse
JP2004020323A (ja) * 2002-06-14 2004-01-22 Shimadzu Corp 不確かさを求める機能を備えた計測装置
JP4871618B2 (ja) * 2006-03-14 2012-02-08 株式会社日立ハイテクノロジーズ 精度管理システム
JP4817251B2 (ja) * 2006-09-22 2011-11-16 シスメックス株式会社 精度管理システム
JP2008096218A (ja) 2006-10-10 2008-04-24 Olympus Corp 臨床検査システム

Also Published As

Publication number Publication date
US9383376B2 (en) 2016-07-05
DE112009004366B4 (de) 2013-07-25
CN102246047A (zh) 2011-11-16
CN102246047B (zh) 2013-11-13
WO2010067513A1 (ja) 2010-06-17
US20110301917A1 (en) 2011-12-08
JP5557750B2 (ja) 2014-07-23
DE112009004366T5 (de) 2012-07-19

Similar Documents

Publication Publication Date Title
JP5557750B2 (ja) 自動分析装置
JP4991586B2 (ja) 自動分析装置
EP1835291B1 (en) Quality control system
US6856928B2 (en) Method for automated exception-based quality control compliance for point-of-care devices
JP5193937B2 (ja) 自動分析装置、及び分析方法
EP2096442A2 (en) Automatic analyzer
US20120000268A1 (en) Accuracy management method
EP3693744A1 (en) Automatic analyzer
US9217712B2 (en) Method for assisting judgment of abnormality of reaction process data and automatic analyzer
JP2009216705A (ja) 自動分析装置
US9638640B2 (en) Automatic analyzer
JP2007248090A (ja) 臨床検査の精度管理システム
EP4239078A1 (en) Method for detecting blood coagulation reaction
JP2012032188A (ja) 自動分析システム
JP2008256547A (ja) 自動分析装置
Aloisio et al. Implementation of an internal quality control programme for the photometric determination of icteric index
JP5787948B2 (ja) 反応過程データの異常判定支援方法及び自動分析装置
WO2022019064A1 (ja) 自動分析装置および自動分析方法
JP5778617B2 (ja) 分析システム、分析方法及び分析プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140603

R150 Certificate of patent or registration of utility model

Ref document number: 5557750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350