JPWO2010052862A1 - Rare earth sintered magnet manufacturing method and powder filled container for manufacturing rare earth sintered magnet - Google Patents

Rare earth sintered magnet manufacturing method and powder filled container for manufacturing rare earth sintered magnet Download PDF

Info

Publication number
JPWO2010052862A1
JPWO2010052862A1 JP2010536662A JP2010536662A JPWO2010052862A1 JP WO2010052862 A1 JPWO2010052862 A1 JP WO2010052862A1 JP 2010536662 A JP2010536662 A JP 2010536662A JP 2010536662 A JP2010536662 A JP 2010536662A JP WO2010052862 A1 JPWO2010052862 A1 JP WO2010052862A1
Authority
JP
Japan
Prior art keywords
rare earth
forming member
powder
alloy powder
sintered magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010536662A
Other languages
Japanese (ja)
Other versions
JP5690141B2 (en
Inventor
眞人 佐川
眞人 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intermetallics Co Ltd
Original Assignee
Intermetallics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intermetallics Co Ltd filed Critical Intermetallics Co Ltd
Priority to JP2010536662A priority Critical patent/JP5690141B2/en
Publication of JPWO2010052862A1 publication Critical patent/JPWO2010052862A1/en
Application granted granted Critical
Publication of JP5690141B2 publication Critical patent/JP5690141B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F2005/103Cavity made by removal of insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Abstract

本発明は渦電流の影響を受けにくくするため及び/又は粒界拡散処理を行うためのスリット等の空隙を有する希土類焼結磁石を容易且つ低コストに製造することができる方法を提供することを目的としている。本発明に係る希土類焼結磁石製造方法は、粉末充填容器10に希土類磁石合金の粉末19を空隙形成部材14と共に充填する充填工程((a), (b))と、希土類磁石合金粉末19を磁界中で配向する配向工程(c)と、希土類磁石合金粉末19を粉末充填容器10ごと加熱することにより希土類磁石合金粉末を焼結する焼結工程(e)と、をこの順で行い、配向工程よりも後であって前記希土類磁石合金粉末の焼結が始まる前に前記空隙形成部材の除去を行う(d)ことを特徴としている。The present invention provides a method capable of easily and inexpensively manufacturing a rare earth sintered magnet having a void such as a slit for making it less susceptible to eddy currents and / or performing grain boundary diffusion treatment. It is aimed. In the rare earth sintered magnet manufacturing method according to the present invention, a powder filling container 10 is filled with a rare earth magnet alloy powder 19 together with a gap forming member 14 ((a), (b)), and the rare earth magnet alloy powder 19 is filled. An orientation step (c) for orientation in a magnetic field and a sintering step (e) for sintering the rare earth magnet alloy powder 19 by heating the rare earth magnet alloy powder 19 together with the powder-filled container 10 are performed in this order. The gap forming member is removed (d) after the step and before the rare earth magnet alloy powder starts to be sintered.

Description

本発明は、Nd-Fe-B系焼結磁石やSm-Co系焼結磁石などの希土類焼結磁石を製造する方法に関する。   The present invention relates to a method for producing rare earth sintered magnets such as Nd—Fe—B based sintered magnets and Sm—Co based sintered magnets.

希土類焼結磁石は強い磁界を生成することができる永久磁石として広く用いられている。特に、Nd-Fe-B系焼結磁石はハイブリッド自動車や電気自動車用のモータ、ハードディスク用の小型モータ、産業用の大型モータや発電機などに広く用いられている。   Rare earth sintered magnets are widely used as permanent magnets that can generate a strong magnetic field. In particular, Nd—Fe—B based sintered magnets are widely used in motors for hybrid vehicles and electric vehicles, small motors for hard disks, large motors for industrial use, and generators.

これらモータや発電機では、回転子(ロータ)として希土類焼結磁石が、固定子(ステータ)として電磁石が用いられ、回転磁界が形成されることにより回転子が回転する。その際、回転子の希土類焼結磁石には渦電流が生成され、それによりエネルギーの損失やモータの過熱といった問題が発生する。特許文献1には、希土類焼結磁石の表面にスリットを設けることにより、このような渦電流の生成を抑制することが記載されている。   In these motors and generators, a rare earth sintered magnet is used as a rotor (rotor) and an electromagnet is used as a stator (stator), and the rotor rotates by forming a rotating magnetic field. At that time, eddy currents are generated in the rare earth sintered magnet of the rotor, which causes problems such as energy loss and motor overheating. Patent Document 1 describes that the generation of such eddy current is suppressed by providing a slit on the surface of the rare earth sintered magnet.

また、Nd-Fe-B系磁石(ネオジム磁石)においては、保磁力を高めるために、Ndの一部をDy及び/又はTbで置換した合金粉末を用いて焼結磁石を作製することが行われているが、この手法は、DyやTbが高価且つ希少であるためコストの上昇や安定供給性の低下を招くと共に、最大エネルギー積が低下するという欠点を有する。そこで、Dy及びTbを含まないNd-Fe-B系合金の焼結体の表面にDy及び/又はTbを付着させたうえで加熱する(加熱温度:700〜1000℃)ことにより、焼結体中の合金粒子の粒界を通じてDy及び/又はTbを焼結体内部に送り込み、合金粒子の表面付近にのみDy及び/又はTbを注入することが行われている(粒界拡散法)。これにより、高い保磁力が得られると共に、最大エネルギー積の低下を抑制することができるうえ、DyやTbの使用量が減少する、という効果を奏する。特許文献2には、Nd-Fe-B系合金の焼結体の表面にスリットを設けたうえで、そのスリットからDy及び/又はTbを粒界拡散させることにより、合金粒子の表面付近に効率よくDy及び/又はTbを注入することが記載されている。   In Nd-Fe-B magnets (neodymium magnets), in order to increase the coercive force, a sintered magnet is produced using an alloy powder in which a part of Nd is substituted with Dy and / or Tb. However, this method has the disadvantages that Dy and Tb are expensive and rare, leading to an increase in cost and a decrease in stable supply, and a decrease in the maximum energy product. Therefore, by attaching Dy and / or Tb to the surface of the sintered body of Nd-Fe-B alloy that does not contain Dy and Tb and heating (heating temperature: 700 to 1000 ° C.), the sintered body Dy and / or Tb is fed into the sintered body through the grain boundaries of the alloy particles therein, and Dy and / or Tb is injected only near the surface of the alloy particles (grain boundary diffusion method). As a result, a high coercive force can be obtained, a reduction in the maximum energy product can be suppressed, and the amount of Dy and Tb used can be reduced. In Patent Document 2, a slit is provided on the surface of a sintered body of an Nd—Fe—B alloy, and Dy and / or Tb is diffused from the slit to achieve an efficiency near the surface of the alloy particle. It is often described that Dy and / or Tb is injected.

特開2000-295804号公報([0009]-[0011])JP 2000-295804 A ([0009]-[0011]) 特開2007-053351号公報([0027]-[0028]、[0033]-[0035])JP 2007-053351 A ([0027]-[0028], [0033]-[0035])

特許文献1及び特許文献2に記載の方法ではいずれも、切断機やワイヤソーなどを用いた機械的加工によりスリットが形成されている。このような機械的加工を用いると、手間と時間を要するうえ、工具の消耗が激しいため、コストの上昇が避けられない。また、機械的加工ではスリットの幅をあまり小さくすることができず、磁石の外形体積に対する実体体積(焼結体部分の体積)の割合が低下して、磁石としての機能が実質的に低下してしまう。   In both methods described in Patent Document 1 and Patent Document 2, slits are formed by mechanical processing using a cutting machine, a wire saw, or the like. When such mechanical processing is used, labor and time are required, and tool consumption is severe, so an increase in cost is inevitable. In addition, the slit width cannot be made very small by mechanical processing, the ratio of the substantial volume (volume of the sintered body portion) to the external volume of the magnet is reduced, and the function as a magnet is substantially reduced. End up.

焼結前の圧縮成形体に機械的加工でスリットを形成する場合には更に、スリット中に残留する合金粉末の除去が困難である、という問題が生じる。合金粉末がスリット中に残留したまま焼結のための加熱を行うと、合金粉末がスリットの一部を塞いだ状態になるため、渦電流の生成を阻止することができなくなるうえ、粒界拡散処理を行う際にDy及び/又はTbが十分奥まで到達しなくなる。
それと共に、圧縮成形体に対して機械加工を行うと、欠けやひびが生じるおそれがある。
In the case where the slit is formed in the compression molded body before sintering by mechanical processing, there is a further problem that it is difficult to remove the alloy powder remaining in the slit. If heating for sintering is performed with the alloy powder remaining in the slit, the alloy powder closes a part of the slit, so that generation of eddy currents cannot be prevented and grain boundary diffusion occurs. When processing is performed, Dy and / or Tb do not reach sufficiently deep.
At the same time, if the compression molded body is machined, chipping or cracking may occur.

本発明が解決しようとする課題は、渦電流の影響を受け難くするため及び/又は粒界拡散処理を行うためのスリットや孔等の空隙を有する希土類焼結磁石を容易且つ低コストに製造することができる方法を提供することである。   The problem to be solved by the present invention is to easily and inexpensively manufacture a rare earth sintered magnet having voids such as slits and holes for making it less susceptible to eddy currents and / or performing grain boundary diffusion treatment. It is to provide a method that can.

上記課題を解決するために成された本発明に係る希土類焼結磁石製造方法は、
a) 粉末充填容器に希土類磁石合金の粉末を空隙形成部材と共に充填する充填工程と、
b) 前記希土類磁石合金粉末を磁界中で配向する配向工程と、
c) 前記希土類磁石合金粉末を前記粉末充填容器ごと加熱することにより、該希土類磁石合金粉末を焼結する焼結工程と、
をこの順で行い、
d) 前記配向工程よりも後であって前記希土類磁石合金粉末の焼結が始まる前に前記空隙形成部材を除去する、
ことにより、空隙を有する希土類焼結磁石を製造することを特徴とする。
The rare earth sintered magnet manufacturing method according to the present invention made to solve the above problems is as follows.
a) a filling step of filling a powder filling container with a rare earth magnet alloy powder together with a gap forming member;
b) an alignment step of aligning the rare earth magnet alloy powder in a magnetic field;
c) a sintering step of sintering the rare earth magnet alloy powder by heating the rare earth magnet alloy powder together with the powder-filled container;
In this order,
d) removing the void forming member after the orientation step and before the rare earth magnet alloy powder starts to be sintered;
Thus, a rare earth sintered magnet having voids is manufactured.

本発明によれば、粉末充填容器に希土類磁石合金の粉末を空隙形成部材と共に充填し、希土類磁石合金粉末の焼結が始まる前に前記空隙形成部材を除去するだけで、空隙を有する希土類焼結磁石を容易に製造することができる。従って、本発明では空隙を形成するために機械的加工を行う必要がなく、空隙を有する希土類焼結磁石を低コストに製造することができる。   According to the present invention, a rare earth magnet alloy powder is filled in a powder-filled container together with a void forming member, and the void forming member is simply removed before the rare earth magnet alloy powder starts sintering. A magnet can be manufactured easily. Therefore, in the present invention, it is not necessary to perform mechanical processing to form a void, and a rare earth sintered magnet having a void can be manufactured at low cost.

従来、希土類焼結磁石を製造する際には、多くの場合、希土類磁石合金粉末を容器に充填し、圧縮しつつ磁界を印加することにより、圧縮成形及び配向を行っていた。それに対して、本願発明者は、希土類磁石合金粉末を粉末充填容器に充填し、圧縮成形を行うことなく希土類磁石合金粉末を配向したうえで、粉末充填容器に充填した状態のままで加熱することにより希土類焼結磁石が得られることを見出した(プレスレス法。特開2006-019521号公報参照。)。本発明ではプレスレス法を用いるため、希土類磁石合金粉末と共に空隙形成部材を粉末充填容器内に入れておいても、空隙形成部材が圧力を受けることがない。   Conventionally, when producing rare earth sintered magnets, in many cases, compression molding and orientation are performed by filling a container with rare earth magnet alloy powder and applying a magnetic field while compressing. In contrast, the inventor of the present application fills the powder-filled container with the rare-earth magnet alloy powder, orients the rare-earth magnet alloy powder without performing compression molding, and heats the powder-filled container as it is. It was found that a rare earth sintered magnet can be obtained by the pressless method (see JP 2006-019521 A). In the present invention, since the pressless method is used, even if the void forming member is placed in the powder-filled container together with the rare earth magnet alloy powder, the void forming member is not subjected to pressure.

また、磁界中配向により、粉末充填容器に充填された希土類磁石合金粉末の粒子同士が磁気的に引きつけられる。本発明では配向工程後に空隙形成部材を除去するようにしたため、空隙形成部材の除去時に空隙が崩れることがない。   Further, the rare earth magnet alloy powder particles filled in the powder-filled container are magnetically attracted by the orientation in the magnetic field. In the present invention, since the void forming member is removed after the alignment step, the void does not collapse when the void forming member is removed.

一方、焼結工程において希土類磁石合金粉末を加熱する際に昇温していくと、所定の温度(例えばNd-Fe-B系焼結磁石では約600℃)を超えた時に焼結が始まり、その後、焼結が進むに従って焼結体が収縮する。この収縮の障害にならないように、本発明では、空隙形成部材は希土類磁石合金粉末の焼結が始まる前に空隙形成部材を除去する。   On the other hand, if the temperature is raised when heating the rare earth magnet alloy powder in the sintering process, the sintering starts when the temperature exceeds a predetermined temperature (for example, about 600 ° C. for a Nd—Fe—B based sintered magnet), Thereafter, as the sintering proceeds, the sintered body contracts. In the present invention, the gap forming member is removed before the sintering of the rare earth magnet alloy powder starts so as not to obstruct the shrinkage.

空隙形成部材の除去は、空隙形成部材の耐熱性や空隙形成部材と希土類磁石合金粉末の反応性を考慮する必要がないという点で、前記焼結工程の前に行うことが望ましい。   The removal of the void forming member is desirably performed before the sintering step in that it is not necessary to consider the heat resistance of the void forming member and the reactivity between the void forming member and the rare earth magnet alloy powder.

また、焼結が始まる温度よりも低い温度で液化又は気化する空隙形成部材を用いれば、焼結のための昇温を行うことにより、焼結が始まる前に空隙形成部材を除去することができる。   In addition, if a void forming member that is liquefied or vaporized at a temperature lower than the temperature at which sintering starts is used, the void forming member can be removed before sintering starts by raising the temperature for sintering. .

前記希土類磁石合金がNd-Fe-B系焼結磁石の合金である場合に、前記焼結工程により得られた焼結体が有する空隙に空隙にDy及び/又はTbを含む物質を注入して加熱することにより、Dy及び/又はTbを該焼結体中に拡散させることができる。   When the rare earth magnet alloy is an Nd-Fe-B sintered magnet alloy, a substance containing Dy and / or Tb is injected into the voids of the sintered body obtained by the sintering step. By heating, Dy and / or Tb can be diffused in the sintered body.

渦電流の影響を防ぐためのスリットを希土類焼結磁石に形成する場合には、空隙形成部材には板材を用いるとよい。一方、粒界拡散を主目的とする場合には、棒材を用いることもできる。その場合、多数の棒状空隙形成部材をマトリクス状に配置することにより、多数の孔からDy及び/又はTbを均一に拡散させることができる。棒状空隙形成部材の断面形状は円形、四角形、六角形など、特に限定されない。   When the slit for preventing the influence of eddy current is formed in the rare earth sintered magnet, a plate material may be used for the gap forming member. On the other hand, when the main purpose is grain boundary diffusion, a bar material can also be used. In that case, Dy and / or Tb can be uniformly diffused from a large number of holes by arranging a large number of rod-shaped void forming members in a matrix. The cross-sectional shape of the rod-shaped void forming member is not particularly limited, such as a circle, a quadrangle, or a hexagon.

空隙形成部材に板状又は棒状の空隙形成部材を用いる場合には、前記配向工程において前記希土類磁石合金粉末を前記空隙形成部材に平行な方向の磁界中で配向することが望ましい。これにより、希土類磁石合金粉末の粒子が空隙形成部材に平行な方向に鎖状に連なるため、この状態で空隙形成部材を除去しても鎖状の連なりが途切れず、空隙が崩れることがない。   When a plate-like or rod-like gap forming member is used as the gap forming member, it is desirable to orient the rare earth magnet alloy powder in a magnetic field in a direction parallel to the gap forming member in the orientation step. Thereby, since the particles of the rare earth magnet alloy powder are connected in a chain shape in a direction parallel to the gap forming member, even if the gap forming member is removed in this state, the chain connection is not interrupted and the gap is not broken.

また、空隙が崩れるのを確実に防ぐために、希土類磁石合金粉末とバインダを混合したうえで粉末充填容器に充填してもよい。バインダには、メチルセルロース、ポリアクリルアミド、ポリビニルアルコール、パラフィンワックス、ポリエチレングリコール、ポリビニルピロリドン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、エチルセルロース、アセチルセルロース、ニトロセルロース、酢酸ビニル樹脂等を用いることができる(特開平10-270278号公報参照)。   Further, in order to prevent the void from collapsing, the powder filled container may be filled after the rare earth magnet alloy powder and the binder are mixed. As the binder, methyl cellulose, polyacrylamide, polyvinyl alcohol, paraffin wax, polyethylene glycol, polyvinyl pyrrolidone, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, ethyl cellulose, acetyl cellulose, nitrocellulose, vinyl acetate resin, or the like can be used (Japanese Patent Laid-Open No. Hei 10). -270278).

粉末充填容器に希土類磁石合金の粉末を空隙形成部材と共に充填する際には、希土類磁石合金粉末と空隙形成部材を同時に粉末充填容器内に入れてもよいし、いずれか一方を入れた後に他方を入れてもよい。   When filling the powder-filled container with the rare earth magnet alloy powder together with the gap forming member, the rare earth magnet alloy powder and the gap forming member may be placed in the powder filled container at the same time. May be put in.

本発明に係る製造方法により焼結体に設けられた空隙は、そのままにしておくと機械的強度が低く、破損しやすい。また、空隙に水分が溜まると腐食や機械的破損の原因になる。そこで、前記空隙にエポキシ樹脂などの埋込部材を埋め込むことにより、機械的強度を増すと共に、水分の滞留を防ぐことができる。埋込部材の埋め込みは空隙形成部材の除去後に行うが、エポキシ樹脂のように耐熱温度が希土類磁石の焼結温度よりも低い場合には焼結工程の後に行う。拡散工程を行う場合は、埋込部材は拡散工程の後に埋め込む。渦電流の影響を防ぐために、埋込部材は絶縁性のものが望ましい。   If the voids provided in the sintered body by the production method according to the present invention are left as they are, the mechanical strength is low and they are easily damaged. In addition, accumulation of moisture in the voids may cause corrosion or mechanical damage. Therefore, by embedding an embedding member such as an epoxy resin in the gap, it is possible to increase the mechanical strength and prevent moisture from staying. The embedding member is embedded after the gap forming member is removed. However, when the heat resistant temperature is lower than the sintering temperature of the rare earth magnet, such as an epoxy resin, it is performed after the sintering step. When performing the diffusion process, the embedded member is embedded after the diffusion process. In order to prevent the influence of eddy current, the embedded member is preferably insulative.

本発明によれば、粉末充填容器に希土類磁石合金の粉末を空隙形成部材と共に充填したうえで磁界中配向した後に空隙形成部材を除去するだけで空隙を形成することができ、機械的加工を行う必要がないため、空隙を有する希土類焼結磁石を容易且つ低コストに製造することができる。   According to the present invention, a powder-filled container is filled with rare-earth magnet alloy powder together with a gap forming member, and after being oriented in a magnetic field, the gap can be formed simply by removing the gap forming member and performing mechanical processing. Since there is no need, a rare earth sintered magnet having voids can be manufactured easily and at low cost.

本発明に係る希土類焼結磁石製造方法で用いられるモールド、モールドの蓋及び空隙形成部材の第1の例を示す縦断面図並びにモールドの蓋の上面図。The longitudinal cross-sectional view which shows the 1st example of the mold used by the rare earth sintered magnet manufacturing method concerning this invention, the lid | cover of a mold, and the space | gap formation member, and the top view of a lid | cover of a mold. 本発明に係る希土類焼結磁石製造方法の第1の例を示す概略図。Schematic which shows the 1st example of the rare earth sintered magnet manufacturing method concerning this invention. 本発明に係る希土類焼結磁石製造方法で用いられるモールド、モールドの蓋及び空隙形成部材の第2の例を示す縦断面図並びにモールドの底の下面図。The longitudinal cross-sectional view which shows the 2nd example of the mold used with the rare earth sintered magnet manufacturing method concerning this invention, the lid | cover of a mold, and the space | gap formation member, and the bottom view of the bottom of a mold. 本発明に係る希土類焼結磁石製造方法の第2の例を示す概略図。Schematic which shows the 2nd example of the rare earth sintered magnet manufacturing method concerning this invention. 本発明におけるモールド及びモールドの蓋の他の例を示す縦断面図。The longitudinal cross-sectional view which shows the other example of the mold in this invention, and the lid | cover of a mold. 棒状の空隙形成部材の例を示す斜視図。The perspective view which shows the example of a rod-shaped space | gap formation member. 本発明における粒界拡散処理の一例を示す概略図。Schematic which shows an example of the grain boundary diffusion process in this invention. 空隙に埋込部材を埋め込む処理の一例を示す概略図。Schematic which shows an example of the process which embeds an embedding member in a space | gap. 実施例1の方法により作製される希土類焼結磁石の斜視図。1 is a perspective view of a rare earth sintered magnet produced by the method of Example 1. FIG. 実施例3−1で用いられるモールド、モールドの蓋及び空隙形成部材の縦断面図並びにモールドの蓋の上面図。The longitudinal cross-sectional view of the mold used in Example 3-1, the lid | cover of a mold, and a space | gap formation member, and the top view of a lid | cover of a mold. 実施例3−2で用いられるモールド、モールドの蓋及び空隙形成部材の縦断面図並びにモールドの蓋の上面図。The longitudinal cross-sectional view of the mold used in Example 3-2, a lid | cover of a mold, and a space | gap formation member, and the upper side figure of a lid | cover of a mold.

図1〜図11を用いて、本発明に係る希土類焼結磁石製造方法の実施形態を説明する。
図1及び図2は、本発明の第1の実施形態を示している。第1実施形態では、図1に示すモールド(粉末充填容器)10及び空隙形成部材14が用いられる。モールド10は平板状磁石を得るためのものであり、希土類磁石合金の粉末を充填する直方体の収容部11を有する。収容部11の上部は希土類磁石合金粉末の充填及び焼結後の希土類焼結磁石を取り出すための開口が設けられており、その開口を塞ぐように蓋13が取り付けられている。モールド10及び蓋13の材料には、例えば磁性ステンレス鋼、非磁性ステンレス鋼、カーボン(希土類焼結磁石の焼結温度以上の耐熱性を有するもの)を用いることができる。蓋13には、収容部11の直方体の長手方向に延びる挿入口131が2個、平行に設けられている。挿入口131にはそれよりもわずかに幅及び長さが小さい、板状の空隙形成部材14を挿入することができる。空隙形成部材14の材料には各種金属、カーボン、プラスチック(本実施形態では耐熱性は要しない)を用いることができる。空隙形成部材14は、板状の空隙形成部材取付具15に2枚、2個の挿入口131と同じ間隔で立設されている。
Embodiments of a rare earth sintered magnet manufacturing method according to the present invention will be described with reference to FIGS.
1 and 2 show a first embodiment of the present invention. In the first embodiment, the mold (powder filling container) 10 and the gap forming member 14 shown in FIG. 1 are used. The mold 10 is used to obtain a flat magnet, and has a rectangular parallelepiped housing portion 11 filled with a rare earth magnet alloy powder. An opening for taking out the rare earth sintered magnet after filling and sintering of the rare earth magnet alloy powder is provided in the upper portion of the accommodating portion 11, and a lid 13 is attached so as to close the opening. As the material of the mold 10 and the lid 13, for example, magnetic stainless steel, nonmagnetic stainless steel, or carbon (having heat resistance equal to or higher than the sintering temperature of the rare earth sintered magnet) can be used. In the lid 13, two insertion ports 131 extending in the longitudinal direction of the rectangular parallelepiped of the accommodating portion 11 are provided in parallel. A plate-like gap forming member 14 having a slightly smaller width and length than that can be inserted into the insertion port 131. As the material of the gap forming member 14, various metals, carbon, and plastics (heat resistance is not required in the present embodiment) can be used. The gap forming member 14 is erected on the plate-like gap forming member fixture 15 at the same interval as the two insertion ports 131.

図2を用いて、本実施形態の希土類焼結磁石製造方法を説明する。まず、収容部11に希土類磁石合金粉末19を充填する(a)。その際、希土類磁石合金粉末19をそのまま用いてもよいし、希土類磁石合金粉末19にバインダを混合してもよい。充填密度は希土類磁石合金の真密度の40〜50%とすることが望ましい。次に、モールド10に蓋13を取り付け、挿入口131から収容部11内の希土類磁石合金粉末19に空隙形成部材14を挿入する(b)。続いて、モールド10を磁界発生コイル17の中に入れ、空隙形成部材14に平行(蓋13に垂直)にパルス磁界を印加することにより、希土類磁石合金粉末19を配向する(c)。その際の磁界の強さは3〜10T、好ましくは4〜8Tとする。なお、磁界印加時には、希土類磁石合金粉末19の飛び出しを防止するために、蓋13はモールド10にしっかりと押さえつけて固定しておく。磁界中配向後、空隙形成部材14を希土類磁石合金粉末19及び挿入口131から抜き取る(d)。これにより、希土類磁石合金粉末19の成形体にスリット状の空隙18が形成される。粉末粒子同士が磁界中配向により磁気的に引きつけられているため、空隙18に粉末がこぼれることはほとんどない。その後、収容部11に充填したままの状態で希土類磁石合金粉末19を加熱する(e)。これにより、スリット状空隙を有する希土類焼結磁石が得られる。なお、焼結の際、希土類磁石合金粉末19内に不可避的に含まれる水分等が気化するが、生じた気体は挿入口131からモールド外に排出される。   The manufacturing method of the rare earth sintered magnet of this embodiment will be described with reference to FIG. First, the accommodating part 11 is filled with the rare earth magnet alloy powder 19 (a). At that time, the rare earth magnet alloy powder 19 may be used as it is, or a binder may be mixed with the rare earth magnet alloy powder 19. The packing density is preferably 40 to 50% of the true density of the rare earth magnet alloy. Next, the lid 13 is attached to the mold 10, and the gap forming member 14 is inserted into the rare earth magnet alloy powder 19 in the accommodating portion 11 from the insertion port 131 (b). Subsequently, the mold 10 is placed in the magnetic field generating coil 17 and a pulsed magnetic field is applied parallel to the gap forming member 14 (perpendicular to the lid 13) to orient the rare earth magnet alloy powder 19 (c). The strength of the magnetic field at that time is 3 to 10T, preferably 4 to 8T. When the magnetic field is applied, the lid 13 is firmly pressed against the mold 10 to prevent the rare earth magnet alloy powder 19 from popping out. After orientation in the magnetic field, the air gap forming member 14 is extracted from the rare earth magnet alloy powder 19 and the insertion port 131 (d). As a result, slit-like voids 18 are formed in the compact of the rare earth magnet alloy powder 19. Since the powder particles are magnetically attracted by the orientation in the magnetic field, the powder hardly spills into the void 18. Thereafter, the rare earth magnet alloy powder 19 is heated while being filled in the accommodating portion 11 (e). Thereby, the rare earth sintered magnet which has a slit-shaped space | gap is obtained. During sintering, moisture or the like inevitably contained in the rare earth magnet alloy powder 19 is vaporized, but the generated gas is discharged from the insertion port 131 to the outside of the mold.

この方法によれば、焼結後にワイヤソーなどで機械的加工を行うよりもはるかに低価格でスリットを形成することができる。また、機械的加工を行う場合よりも幅の小さいスリットを形成できると共に、スリット中に残留粉末など、スリットとしての機能を低下させるものが一切ない良質なスリットを形成できる。   According to this method, the slit can be formed at a much lower cost than when mechanical processing is performed with a wire saw or the like after sintering. In addition, a slit having a smaller width than that in the case of performing mechanical processing can be formed, and a high-quality slit having no reduction in the function of the slit such as residual powder can be formed in the slit.

図3及び図4は、本発明の第2の実施形態を示している。第2実施形態では、図3に示すモールド20及び空隙形成部材24が用いられる。モールド20は、第1実施形態のモールド10と同様の収容部21を有し、蓋23が取り付けられる構造を有するが、2個の挿入口221がモールド20の底に設けられている点で第1の例と相違する。蓋23には挿入口は設けられていない。挿入口221には第1の例と同様に、空隙形成部材取付具25に取り付けられた空隙形成部材24を挿入することができる。   3 and 4 show a second embodiment of the present invention. In the second embodiment, the mold 20 and the gap forming member 24 shown in FIG. 3 are used. The mold 20 has the same accommodating portion 21 as the mold 10 of the first embodiment and has a structure to which a lid 23 is attached. However, the mold 20 is different in that two insertion ports 221 are provided at the bottom of the mold 20. This is different from the first example. The lid 23 is not provided with an insertion port. The gap forming member 24 attached to the gap forming member fixture 25 can be inserted into the insertion port 221 as in the first example.

図4を用いて、第2の実施形態の希土類焼結磁石製造方法を説明する。まず、モールド20の挿入口221に空隙形成部材24を挿入する(a)。次に、収容部21に希土類磁石合金粉末29を充填し、蓋23を取り付ける(b)。従って、第1の実施形態とは、空隙形成部材の挿入と希土類磁石合金粉末の充填の順序が逆になる。次に、モールド20を磁界発生コイル27の中に入れ、空隙形成部材24に平行(蓋23に垂直)な方向にパルス磁界を印加することにより、希土類磁石合金粉末29を配向する(c)。続いて、空隙形成部材24を希土類磁石合金粉末29及び挿入口221から抜き取ることにより空隙28を形成した(d)後、収容部21に充填されたままの状態で希土類磁石合金粉末29を加熱することにより焼結する(e)。   A method for producing a rare earth sintered magnet according to the second embodiment will be described with reference to FIG. First, the gap forming member 24 is inserted into the insertion port 221 of the mold 20 (a). Next, the accommodating portion 21 is filled with the rare earth magnet alloy powder 29 and the lid 23 is attached (b). Accordingly, the order of insertion of the air gap forming member and filling of the rare earth magnet alloy powder is reversed from the first embodiment. Next, the mold 20 is placed in the magnetic field generating coil 27, and a pulsed magnetic field is applied in a direction parallel to the gap forming member 24 (perpendicular to the lid 23) to orient the rare earth magnet alloy powder 29 (c). Subsequently, after the void forming member 24 is extracted from the rare earth magnet alloy powder 29 and the insertion port 221 to form the void 28 (d), the rare earth magnet alloy powder 29 is heated while being filled in the accommodating portion 21. To be sintered (e).

図5に、モールドの他の例を示す。図1に示したモールド10では、蓋13とは別に、空隙形成部材取付具15に空隙形成部材14を取り付けたが、蓋13Aに直接空隙形成部材14Aを取り付けてもよい(図5(a))。このような蓋13Aを用いる場合には、配向工程の後に、空隙形成部材14を除去するために蓋13Aをモールドから取り外す。   FIG. 5 shows another example of the mold. In the mold 10 shown in FIG. 1, the gap forming member 14 is attached to the gap forming member fixture 15 separately from the lid 13, but the gap forming member 14A may be directly attached to the lid 13A (FIG. 5 (a)). ). When such a lid 13A is used, the lid 13A is removed from the mold in order to remove the gap forming member 14 after the orientation step.

ここまでは空隙形成部材を配向工程後に抜き取る場合について説明した。一方、希土類磁石合金粉末の焼結温度よりも低い温度で液化又は気化する材料から成る空隙形成部材を用いれば、そのままモールド及び希土類磁石合金粉末と共に加熱することによって、空隙形成部材を抜き取ることなく除去することができる。その場合、空隙形成部材はモールドの収容部内に取り付けてもよい。そのような空隙形成部材の材料の具体例として、ポリビニルアルコールなどの蒸発しやすいプラスチックが挙げられる。図5(b)には、収容部11内の底12に空隙形成部材14Bを立設した例を示す。   So far, the case where the void forming member is extracted after the alignment step has been described. On the other hand, if a void forming member made of a material that is liquefied or vaporized at a temperature lower than the sintering temperature of the rare earth magnet alloy powder is used, the void forming member can be removed without heating by heating with the mold and the rare earth magnet alloy powder. can do. In that case, you may attach a space | gap formation member in the accommodating part of a mold. As a specific example of the material of such a gap forming member, there is a plastic that easily evaporates, such as polyvinyl alcohol. FIG. 5B shows an example in which a gap forming member 14 </ b> B is erected on the bottom 12 in the accommodating portion 11.

次に、目的に応じた空隙形成部材の厚み、間隔、及び希土類磁石合金粉末に挿入する深さ(以下、「挿入深さ」とする)について述べる。
まず、希土類焼結磁石の使用時に渦電流が発生することを防ぐことを主目的とする場合について、好適な空隙形成部材の幅、挿入深さ、本数及び間隔を説明する。この場合、スリットの幅がわずかであっても渦電流を遮断することができるため、目的を達することができる。そのため、磁石本来の性能を高めるために、焼結体に形成されるスリットの幅はできる限り小さいほうがよい。従って、空隙形成部材の厚みもできる限り小さいほうがよい。例えば薄い板状部材の典型例であるカミソリ刃と同様の部材を用いると、空隙形成部材の厚みの下限は0.05mm程度である。この場合、焼結による収縮を考慮すると、焼結体に形成されるスリットの幅は0.04mm程度になる。また、挿入深さは、深いほど渦電流喪失を低減する観点からは好ましいが、焼結体の機械的強度を考慮して、挿入深さ方向の磁石の厚みより1mm以上、好ましくは2mm以上小さいことが好ましい。
空隙形成部材の厚みが大きすぎると、磁石の体積率(焼結磁石の外形の体積に対する磁石が存在する部分の体積の比率)が低くなり、それにより磁気特性が低下する。そのため、空隙形成部材の厚みは体積率が90%以上になるように定めることが望ましい。
スリットの間隔、即ち空隙形成部材の間隔は、磁石中に発生する渦電流による損失が磁石の大きさの2乗に比例して大きくなることを考慮すると、短い方が好ましい。一方、スリットの本数が多くなると磁石の体積率が低下する。そのため、空隙形成部材の間隔及び本数は、上述の厚み及び挿入深さを考慮しつつ、所定の磁気特性が得られる体積率を上回るように定める。
Next, the thickness of the gap forming member according to the purpose, the interval, and the depth of insertion into the rare earth magnet alloy powder (hereinafter referred to as “insertion depth”) will be described.
First, with regard to a case where the main purpose is to prevent the generation of eddy currents when using rare earth sintered magnets, the preferred width, insertion depth, number and interval of the gap forming members will be described. In this case, since the eddy current can be interrupted even if the width of the slit is small, the purpose can be achieved. Therefore, in order to enhance the original performance of the magnet, the width of the slit formed in the sintered body should be as small as possible. Accordingly, the thickness of the gap forming member is preferably as small as possible. For example, when a member similar to a razor blade which is a typical example of a thin plate member is used, the lower limit of the thickness of the gap forming member is about 0.05 mm. In this case, considering the shrinkage due to sintering, the width of the slit formed in the sintered body is about 0.04 mm. Further, the insertion depth is preferably as deep as possible from the viewpoint of reducing eddy current loss, but considering the mechanical strength of the sintered body, it is 1 mm or more, preferably 2 mm or less smaller than the thickness of the magnet in the insertion depth direction. It is preferable.
When the thickness of the air gap forming member is too large, the volume ratio of the magnet (ratio of the volume of the portion where the magnet exists to the volume of the outer shape of the sintered magnet) is lowered, thereby reducing the magnetic properties. Therefore, it is desirable to determine the thickness of the gap forming member so that the volume ratio is 90% or more.
Considering that the loss due to eddy current generated in the magnet increases in proportion to the square of the size of the magnet, the interval between the slits, that is, the interval between the gap forming members is preferably shorter. On the other hand, when the number of slits increases, the volume ratio of the magnet decreases. Therefore, the space | interval and number of space | gap formation members are determined so that the predetermined magnetic characteristic may be obtained exceeding the volume ratio, considering the above-mentioned thickness and insertion depth.

次に、DyやTbを粒界拡散法により焼結体内部に拡散させることを主目的とする場合について、好適な空隙形成部材の幅、間隔、挿入深さを説明する。空隙形成部材の幅が小さ過ぎると、焼結体に形成されるスリットにDyやTbを含む物質を注入することが困難になる。そのため、スリットの幅は0.1mm以上であることが好ましい。また、スリットの間隔が大きすぎるとスリットから拡散していくDyやTbが届かない部分ができてしまい、粒界拡散効果が焼結磁石全体に行き渡らず、磁気特性の不均一な磁石になってしまう。そのため、スリットの間隔、即ち空隙形成部材の間隔は6mm以下、さらには5mm以下が好ましい。挿入深さは、粒界拡散の効果を焼結磁石全体に行き渡らせるために、挿入深さ方向の磁石の厚みとの差が6mm以下、さらには5mm以下であることが好ましく、焼結体の機械的強度を考慮すると、その差が1mm以上、好ましくは2mm以上であることが好ましい。また、渦電流防止目的の場合と同様に、空隙形成部材の厚み、挿入深さ、本数及び間隔は、所定の磁気特性が得られる体積率を上回るように定める。   Next, when the main purpose is to diffuse Dy and Tb into the sintered body by the grain boundary diffusion method, preferred widths, intervals, and insertion depths of the void forming members will be described. If the width of the gap forming member is too small, it becomes difficult to inject a substance containing Dy or Tb into the slit formed in the sintered body. Therefore, the width of the slit is preferably 0.1 mm or more. Also, if the slit spacing is too large, there will be areas where Dy and Tb diffusing from the slit will not reach, and the grain boundary diffusion effect will not spread throughout the sintered magnet, resulting in a magnet with non-uniform magnetic properties. End up. Therefore, the interval between the slits, that is, the interval between the gap forming members is preferably 6 mm or less, more preferably 5 mm or less. The insertion depth is preferably 6 mm or less, more preferably 5 mm or less, with the difference from the thickness of the magnet in the insertion depth direction in order to spread the effect of grain boundary diffusion throughout the sintered magnet. In consideration of mechanical strength, the difference is preferably 1 mm or more, preferably 2 mm or more. Further, as in the case of eddy current prevention, the thickness, insertion depth, number and interval of the air gap forming member are determined so as to exceed the volume ratio at which predetermined magnetic characteristics are obtained.

ここまでは板状の空隙形成部材を用いる例を示したが、粒界拡散を主目的とする場合には棒状の空隙形成部材を用いることもできる。例えば、図6に示すように、棒状の空隙形成部材34を板状の空隙形成部材取付具35の表面に縦及び横に多数、マトリックス状に並べることができる。このようにマトリックス状に並べた多数の空隙形成部材34を用いることによって多数の細孔(空隙)を持つ焼結体を作製することができ、粒界拡散法によりNd-Fe-B系焼結磁石を作製する際には、これら細孔からDy及び/又はTbを焼結体内に効率よく拡散させることができる。   Up to this point, an example using a plate-like void forming member has been shown, but a rod-like void forming member can also be used when grain boundary diffusion is the main purpose. For example, as shown in FIG. 6, a large number of rod-shaped gap forming members 34 can be arranged in a matrix on the surface of a plate-like gap forming member fixture 35 in the vertical and horizontal directions. A sintered body having a large number of pores (voids) can be produced by using a large number of void forming members 34 arranged in a matrix like this, and an Nd-Fe-B-based sintered material can be produced by a grain boundary diffusion method. When producing a magnet, Dy and / or Tb can be efficiently diffused from the pores into the sintered body.

焼結体に形成される細孔の太さは、DyやTbを含む物質を確実に注入することができるように、0.2mm以上が好ましく、0.3mm以上がさらに好ましい。空隙形成部材34同士の間隔は、DyやTbを焼結磁石全体に行き渡らせるために、6mm以下、さらには5mm以下とすることが好ましい。挿入深さについては上述した板状の空隙形成部材の場合と同様である。   The thickness of the pores formed in the sintered body is preferably 0.2 mm or more, and more preferably 0.3 mm or more so that a substance containing Dy or Tb can be reliably injected. The space between the gap forming members 34 is preferably 6 mm or less, and more preferably 5 mm or less in order to spread Dy and Tb throughout the sintered magnet. The insertion depth is the same as in the case of the plate-shaped gap forming member described above.

拡散処理は、Dy及び/又はTbを含有する粉末を空隙18に充填した後、加熱することにより行う(図7)。加熱温度は700〜1000℃とすればよい。空隙に注入するDy/Tb含有物質には、DyやTbのフッ化物、酸化物、酸フッ化物若しくは水素化物、又は、DyやTbと他の金属の合金やその合金の水素化物がある。ここで、DyやTbと他の金属の合金として、Fe、Co、NiなどのFe族遷移金属やB、Al、CuなどとDyやTbの合金が挙げられる。これらの物質の粉末を有機溶媒などと混合したスラリーを上記空隙に注入して加熱することにより、粒界拡散処理が有効に行われる。これらのスラリーは上記空隙のみに注入してもよいが、スリットや細孔に注入すると共に焼結体表面に塗布してもよい。これにより、上記空隙と焼結体表面の双方から粒界拡散を起こさせることができる。スラリーを上記空隙に注入(あるいはそれに加えて表面に塗布)した焼結体を700〜1000℃で1〜20時間、真空中、あるいは不活性ガス中で加熱することにより、粒界拡散処理を行うことができる。このようにして粒界拡散処理をすることにより、5mm以上の厚いNdFeB焼結磁石に対しても、残留磁束密度をあまり低下させずに、少量のDyやTbで効果的に保磁力を高めることができる。   The diffusion treatment is performed by heating the powder 18 containing Dy and / or Tb after filling the voids 18 (FIG. 7). The heating temperature may be 700 to 1000 ° C. Examples of the Dy / Tb-containing material to be injected into the gap include Dy and Tb fluorides, oxides, oxyfluorides or hydrides, alloys of Dy and Tb with other metals, and hydrides of these alloys. Here, examples of alloys of Dy and Tb and other metals include Fe group transition metals such as Fe, Co and Ni, and alloys of B, Al and Cu and Dy and Tb. Grain boundary diffusion treatment is effectively performed by injecting a slurry obtained by mixing powder of these substances with an organic solvent into the void and heating. These slurries may be injected only into the voids, but may be injected into the slits and pores and applied to the surface of the sintered body. Thereby, grain boundary diffusion can be caused from both the voids and the surface of the sintered body. Grain boundary diffusion treatment is performed by heating the sintered body in which the slurry is injected into the voids (or additionally applied to the surface) at 700 to 1000 ° C. for 1 to 20 hours in vacuum or in an inert gas. be able to. By performing grain boundary diffusion treatment in this way, even for thick NdFeB sintered magnets of 5 mm or more, the coercive force can be effectively increased with a small amount of Dy and Tb without significantly reducing the residual magnetic flux density. Can do.

なお、空隙を粒界拡散処理と渦電流による損失の低減の双方の目的で用いる場合において、粒界拡散処理にスラリーを使用した場合には、スラリー中の導電性の成分が上記空隙を塞いでしまわないように、注入するスラリーの量を調整する。   In the case where the void is used for both the grain boundary diffusion treatment and the reduction of loss due to eddy current, when the slurry is used for the grain boundary diffusion treatment, the conductive component in the slurry blocks the void. The amount of slurry to be injected is adjusted so as not to stutter.

ここまでに述べた全ての実施形態において、上記空隙の存在による機械的強度の低下及び空隙に水分が溜まることによる腐食等の発生を防ぐために、上記空隙にエポキシ樹脂などの埋込部材を埋め込むことができる。エポキシ樹脂は、液体状態で空隙18に注入した後、室温において又は加熱して硬化させる(図8)。この埋込工程は、埋込部材の材料によっては焼結工程の前に行うこともできるが、エポキシ樹脂などの接着性樹脂を用いる場合には焼結工程後に行う。なお、拡散処理を行う場合には、拡散処理の後に埋込工程を行う。   In all of the embodiments described so far, an embedded member such as an epoxy resin is embedded in the gap in order to prevent a decrease in mechanical strength due to the presence of the gap and corrosion due to accumulation of moisture in the gap. Can do. The epoxy resin is injected into the void 18 in a liquid state and then cured at room temperature or by heating (FIG. 8). This embedding process can be performed before the sintering process depending on the material of the embedding member, but when an adhesive resin such as an epoxy resin is used, it is performed after the sintering process. In the case of performing diffusion processing, an embedding process is performed after the diffusion processing.

Nd-Fe-B系希土類磁石のストリップキャスト合金に対して水素解砕、及び窒素ガスを用いたジェットミル処理を行うことにより、平均粒径が5μmの希土類磁石粉末を得た。希土類磁石粉末の組成はNd:25,8%、Pr:4.3%、Dy:2.5%、Al:0.23%、Cu:0.1%、Fe:残部である。希土類磁石粉末の平均粒径はレーザ式粒度分布計で測定した。   The strip cast alloy of Nd—Fe—B rare earth magnet was subjected to hydrogen crushing and jet mill treatment using nitrogen gas to obtain a rare earth magnet powder having an average particle diameter of 5 μm. The composition of the rare earth magnet powder is Nd: 25,8%, Pr: 4.3%, Dy: 2.5%, Al: 0.23%, Cu: 0.1%, Fe: balance. The average particle size of the rare earth magnet powder was measured with a laser type particle size distribution meter.

この粉末を第1実施形態のモールド10に、見かけ密度が3.5g/cm3になるように充填した後、モールド10に蓋13を被せた。次に挿入口131から空隙形成部材14を差し込んだ。モールド10を磁界発生コイルの中に固定し、空隙形成部材14に平行であってモールド10の底に垂直な方向に5Tのパルス磁界を3回印加することにより、希土類磁石粉末を磁界中配向した。その後、空隙形成部材14をモールド10から引き抜き、モールド10を焼結炉に装入した。粉末の充填から焼結炉への装入までのすべての工程はArガス中で行った。焼結は、真空中、1010℃で2時間行った。本実施例では、モールド10及び蓋13は炭素製で、空隙形成部材14は非磁性のステンレス製であり、空隙形成部材14の厚さは0.5mmとした。After this powder was filled in the mold 10 of the first embodiment so that the apparent density was 3.5 g / cm 3 , the mold 10 was covered with a lid 13. Next, the gap forming member 14 was inserted from the insertion port 131. The mold 10 is fixed in a magnetic field generating coil, and a rare earth magnet powder is oriented in the magnetic field by applying a 5T pulse magnetic field three times in a direction parallel to the gap forming member 14 and perpendicular to the bottom of the mold 10. . Thereafter, the gap forming member 14 was pulled out from the mold 10 and the mold 10 was placed in a sintering furnace. All steps from filling the powder to charging to the sintering furnace were performed in Ar gas. Sintering was performed in vacuum at 1010 ° C. for 2 hours. In this embodiment, the mold 10 and the lid 13 are made of carbon, the gap forming member 14 is made of nonmagnetic stainless steel, and the thickness of the gap forming member 14 is 0.5 mm.

上述した工程により作製した焼結体の密度は7.56g/cm3であり、通常のプレス法で作製したNdFeB焼結磁石と同じように高密度であった。焼結体31の外形寸法は縦37mm、横39mm、高さ8.6mmの直方体であり、上面側に12mm間隔で2本のスリット32が縦方向に形成されている(図9)。焼結体の外形もスリット32もほとんど歪みが認められなかった。スリット32の幅は約0.4mmであり、深さは6.2mmであった。そして、どのスリット32にも異物によるスリット32の詰まりや閉塞が全く存在しないことを、スリット32に0.3mmの金属箔を通過させるテストにより確認した。The density of the sintered body produced by the above-described process was 7.56 g / cm 3 , which was as high as that of the NdFeB sintered magnet produced by a normal pressing method. The outer dimensions of the sintered body 31 are a rectangular parallelepiped having a length of 37 mm, a width of 39 mm, and a height of 8.6 mm, and two slits 32 are formed in the vertical direction at 12 mm intervals on the upper surface side (FIG. 9). In the sintered body and the slit 32, almost no distortion was observed. The width of the slit 32 was about 0.4 mm, and the depth was 6.2 mm. Then, it was confirmed by a test in which a 0.3 mm metal foil was passed through the slit 32 to prevent any slit 32 from being clogged or blocked by foreign matter.

実施例1と同じ粉末を使用して、第2実施形態のモールド20及び空隙形成部材24により、スリットを持つNdFeB焼結磁石を作製した。第2実施形態のモールド20では、空隙形成部材24がモールド20に装着されている状態で粉末を充填する。粉末を充填するとき、粉末が収容部21内の全体に均一に充填されるように注意しなければならない。充填密度は3.6g/cm3とした。粉末の充填後、蓋23を被せ、実施例1と同じ条件で磁界中配向、空隙形成部材24の引き抜きを行い、実施例1と同じ条件で焼結した。焼結後モールドから取り出した焼結体は、実施例1で作製した焼結体と同様に高密度で形状のゆがみもなく、また、スリットも詰まりや閉塞の全くない良質のスリットであることを確認した。焼結体外形、スリット間隔、スリットの幅などの寸法はすべて実施例1とほぼ同じであった。Using the same powder as in Example 1, an NdFeB sintered magnet having a slit was produced by the mold 20 and the gap forming member 24 of the second embodiment. In the mold 20 of the second embodiment, the powder is filled in a state in which the gap forming member 24 is mounted on the mold 20. When filling the powder, care must be taken so that the powder is uniformly filled throughout the container 21. The packing density was 3.6 g / cm 3 . After filling the powder, the lid 23 was put on, orientation in the magnetic field under the same conditions as in Example 1, the void forming member 24 was pulled out, and sintering was performed under the same conditions as in Example 1. The sintered body taken out from the mold after sintering is a high-quality slit having high density and no distortion of the shape as in the case of the sintered body produced in Example 1, and the slit is also a good quality slit with no clogging or blocking. confirmed. The dimensions of the sintered body, slit spacing, slit width, etc. were all the same as in Example 1.

図10及び図11に示すモールドと空隙形成部材を用いて、空隙(スリット、細孔)を持つ焼結体を作製した。図10に示すモールド40は上下面が正方形である直方体の収容部41を有し、上面には蓋43を取り付けることができる。蓋43には板状の空隙形成部材44を2枚挿入できるよう、2個の挿入口431が設けられている。図11に示す例では、モールドは上記モールド40と同じものを用いる。モールド40の上面に取り付けられる蓋53には、棒状の空隙形成部材54を4本挿入できるよう、4個の挿入口531が正方形状に設けられている。   A sintered body having voids (slits, pores) was produced using the mold and void forming member shown in FIGS. 10 and 11. The mold 40 shown in FIG. 10 has a rectangular parallelepiped housing portion 41 whose upper and lower surfaces are square, and a lid 43 can be attached to the upper surface. The lid 43 is provided with two insertion openings 431 so that two plate-like gap forming members 44 can be inserted. In the example shown in FIG. 11, the same mold as the mold 40 is used. The lid 53 attached to the upper surface of the mold 40 is provided with four insertion ports 531 in a square shape so that four rod-shaped gap forming members 54 can be inserted.

実施例1と同じ希土類磁石粉末及び方法により、空隙形成部材44を用いてスリットを持つ焼結体(実施例3−1)を、空隙形成部材54を用いて細孔を持つ焼結体(実施例3−2)を、それぞれ作製した。各焼結体の外形は1辺約11mmの立方体である。これらの焼結体のうちスリットを持つものでは、スリットの幅は0.4mm、深さは5.9mm、間隔は3.3mmであった。また、細孔を持つ焼結体では、細孔の直径は0.5mm、深さは7.2mmであった。比較のために、空隙形成部材44の挿入及び抜き取りを行うことなく、それ以外は本実施例(及び実施例1)と同じ条件でスリットも細孔も持たない直方体の焼結体(比較例1)を作製した。これら3種類の焼結体を平面研削盤で正確に1辺10mmの立方体になるように加工した。その後、試料に対してアルカリ洗浄、酸洗浄、純水洗浄による各種洗浄を行った後、乾燥させた。   Using the same rare earth magnet powder and method as in Example 1, a sintered body having a slit using the gap forming member 44 (Example 3-1) and a sintered body having pores using the gap forming member 54 (implementing) Examples 3-2) were prepared respectively. The outer shape of each sintered body is a cube having a side of about 11 mm. Among these sintered bodies, those having slits had a slit width of 0.4 mm, a depth of 5.9 mm, and an interval of 3.3 mm. In the sintered body having pores, the pore diameter was 0.5 mm and the depth was 7.2 mm. For comparison, a rectangular parallelepiped sintered body (Comparative Example 1) that has neither slits nor pores under the same conditions as in this example (and Example 1) without inserting and removing the gap forming member 44. ) Was produced. These three types of sintered bodies were processed with a surface grinder so that the cubes were exactly 10 mm on a side. Thereafter, the sample was subjected to various cleanings such as alkali cleaning, acid cleaning, and pure water cleaning, and then dried.

次に、これらの試料に対して、以下の方法により、Dyを含む合金粉末による粒界拡散処理を施した。まず、原子比でDy:80%、Ni:14%、Al:4%、その他の金属・不純物:2%の組成を持つDy含有合金をジェットミルにより平均粒径9μmに粉砕することにより、Dy含有合金粉末を作製した。このDy含有合金粉末をエタノールと質量比50%で混合攪拌し、実施例3−1の試料のスリット及び実施例3−2の試料の細孔に真空含浸し、その後、乾燥した。次に、バレルペインティング法(特開2004-359873号公報参照)により、実施例3−1、実施例3−2及び比較例の磁石表面にDyを含む粉末を塗布した。これら3種類の焼結体を真空炉に入れ、900℃で3時間加熱し、室温まで急冷した後、500℃に加熱して再び室温まで急冷した。このようにして作製した3種類の試料の磁気特性を表1に示す。ここで、比較例1−1は、比較例1の焼結体に上記粒界拡散処理を施したものであり、比較例1−2は比較例1の焼結体にDy含有合金粉末を塗布することなく、熱処理のみを粒界拡散処理の際と同様に行ったものである。   Next, these samples were subjected to a grain boundary diffusion treatment with an alloy powder containing Dy by the following method. First, a Dy-containing alloy having an atomic ratio of Dy: 80%, Ni: 14%, Al: 4%, other metals / impurities: 2% is pulverized to an average particle size of 9 μm by a jet mill. A contained alloy powder was prepared. This Dy-containing alloy powder was mixed and stirred with ethanol at a mass ratio of 50%, vacuum impregnated into the slit of the sample of Example 3-1 and the pore of the sample of Example 3-2, and then dried. Next, powder containing Dy was applied to the magnet surfaces of Example 3-1, Example 3-2 and Comparative Example by the barrel painting method (see Japanese Patent Application Laid-Open No. 2004-359873). These three types of sintered bodies were put in a vacuum furnace, heated at 900 ° C. for 3 hours, rapidly cooled to room temperature, then heated to 500 ° C. and rapidly cooled to room temperature again. Table 1 shows the magnetic properties of the three types of samples thus prepared. Here, Comparative Example 1-1 is obtained by subjecting the sintered body of Comparative Example 1 to the above grain boundary diffusion treatment, and Comparative Example 1-2 applies Dy-containing alloy powder to the sintered body of Comparative Example 1. Without doing so, only the heat treatment was performed in the same manner as in the grain boundary diffusion treatment.

Figure 2010052862
Figure 2010052862

実施例3−1及び実施例3−2の試料は、スリットも細孔も持たず粒界拡散処理が行われた比較例1−1の試料に比べて保磁力HcJも磁化曲線の角型性Hk/HcJも高く、また、粒界拡散処理が行われていない比較例1−2の試料に比べて保磁力HcJが高いことが分かる。この実施例により、10mmの立方体という、これまで粒界拡散処理が有効でなかった大きいNdFeB焼結体であっても、本発明の方法により、焼結後のスリット形成加工という高価な方法を使うことなく、安価な方法で粒界拡散法による高保磁力化が可能になったことが示された。The samples of Example 3-1 and Example 3-2 have a coercive force H cJ and a square shape of the magnetization curve as compared with the sample of Comparative Example 1-1 which has no slits or pores and was subjected to grain boundary diffusion treatment. It is clear that the coercive force H cJ is higher than that of the sample of Comparative Example 1-2, in which the property H k / H cJ is also high. According to this embodiment, even a large NdFeB sintered body that has not been effective in the grain boundary diffusion treatment so far, such as a 10 mm cube, uses the expensive method of slit formation after sintering according to the method of the present invention. It was shown that the coercive force can be increased by the grain boundary diffusion method by an inexpensive method.

10、20、40…モールド(粉末充填容器)
11、21、41…モールドの収容部
12…モールドの底
13、23、53…モールドの蓋
131、221、431、531…挿入口
14、24、34、44、54…空隙形成部材
15、25、35…空隙形成部材取付具
17、27…磁界発生コイル
18、28…空隙
19、29…希土類磁石合金粉末
31…焼結体
10, 20, 40 ... mold (powder filled container)
11, 21, 41 ... mold housing part 12 ... mold bottom 13, 23, 53 ... mold lids 131, 221, 431, 531 ... insertion ports 14, 24, 34, 44, 54 ... gap forming members 15, 25 35 ... Gap forming member fixtures 17, 27 ... Magnetic field generating coils 18, 28 ... Gap 19, 29 ... Rare earth magnet alloy powder 31 ... Sintered body

Claims (12)

a) 粉末充填容器に希土類磁石合金の粉末を空隙形成部材と共に充填する充填工程と、
b) 前記希土類磁石合金粉末を磁界中で配向する配向工程と、
c) 前記希土類磁石合金粉末を前記粉末充填容器ごと加熱することにより、該希土類磁石合金粉末を焼結する焼結工程と、
をこの順で行い、
d) 前記配向工程よりも後であって、前記希土類磁石合金粉末の焼結が始まる前に前記空隙形成部材を除去する、
ことにより、空隙を有する希土類焼結磁石を製造することを特徴とする希土類焼結磁石製造方法。
a) a filling step of filling a powder filling container with a rare earth magnet alloy powder together with a gap forming member;
b) an alignment step of aligning the rare earth magnet alloy powder in a magnetic field;
c) a sintering step of sintering the rare earth magnet alloy powder by heating the rare earth magnet alloy powder together with the powder-filled container;
In this order,
d) removing the void forming member after the orientation step and before the rare earth magnet alloy powder starts to be sintered;
A rare earth sintered magnet manufacturing method characterized by manufacturing a rare earth sintered magnet having voids.
前記除去を前記焼結工程の前に行うことを特徴とする請求項1に記載の希土類焼結磁石製造方法。   The method for producing a rare earth sintered magnet according to claim 1, wherein the removal is performed before the sintering step. 前記空隙形成部材が板材及び/又は棒材であることを特徴とする請求項1又は2に記載の希土類焼結磁石製造方法。   The method for producing a rare earth sintered magnet according to claim 1, wherein the gap forming member is a plate material and / or a bar material. 前記配向工程において前記希土類磁石合金粉末を前記空隙形成部材に平行な方向の磁界中で配向することを特徴とする請求項3に記載の希土類焼結磁石製造方法。   The method for producing a rare earth sintered magnet according to claim 3, wherein the rare earth magnet alloy powder is oriented in a magnetic field in a direction parallel to the gap forming member in the orientation step. 前記充填工程において前記希土類磁石合金粉末と共にバインダを粉末充填容器に充填することを特徴とする請求項1〜4のいずれかに記載の希土類焼結磁石製造方法。   The method for producing a rare earth sintered magnet according to any one of claims 1 to 4, wherein in the filling step, a powder filling container is filled together with the rare earth magnet alloy powder. 前記除去後に、前記空隙に埋込部材を埋め込むことを特徴とする請求項1〜5のいずれかに記載の希土類焼結磁石製造方法。   The rare earth sintered magnet manufacturing method according to claim 1, wherein an embedded member is embedded in the gap after the removal. 前記希土類磁石合金がNd-Fe-B系磁石合金であり、
前記焼結工程により得られた焼結体が有する空隙にDy及び/又はTbを含む物質を注入して加熱することにより、Dy及び/又はTbを該焼結体中に拡散させる拡散工程を行うことを特徴とする請求項1〜5のいずれかに記載の希土類焼結磁石製造方法。
The rare earth magnet alloy is a Nd-Fe-B magnet alloy,
A diffusion step of diffusing Dy and / or Tb into the sintered body is performed by injecting and heating a substance containing Dy and / or Tb into the voids of the sintered body obtained by the sintering step. The method for producing a rare earth sintered magnet according to any one of claims 1 to 5, wherein:
前記拡散工程後に前記空隙に埋込部材を埋め込むことを特徴とする請求項7に記載の希土類焼結磁石製造方法。   The method for producing a rare earth sintered magnet according to claim 7, wherein an embedded member is embedded in the gap after the diffusion step. 前記埋込部材が絶縁体であることを特徴とする請求項6又は8に記載の希土類焼結磁石製造方法。   The method for producing a rare earth sintered magnet according to claim 6 or 8, wherein the embedded member is an insulator. 前記充填工程時においては前記粉末充填容器又は該粉末充填容器の蓋に設けられた挿入口から該粉末充填容器内に前記空隙形成部材を挿入し、前記除去時においては該挿入口から該空隙形成部材を抜き取ることを特徴とする請求項1〜9のいずれかに記載の希土類焼結磁石製造方法。   In the filling step, the gap forming member is inserted into the powder filling container from the insertion port provided in the powder filling container or the lid of the powder filling container, and in the removal, the gap is formed from the insertion port. The method for producing a rare earth sintered magnet according to claim 1, wherein the member is extracted. 希土類磁石合金の粉末を充填するモールドと、
前記モールドに取り付けられる蓋と、
前記モールド又は前記蓋に設けられた、空隙形成部材を挿入する挿入口と、
を備えることを特徴とする希土類焼結磁石製造用粉末充填容器。
A mold filled with rare earth magnet alloy powder;
A lid attached to the mold;
An insertion port provided in the mold or the lid, into which a gap forming member is inserted;
A powder-filled container for producing a rare earth sintered magnet.
希土類磁石合金の粉末を充填するモールドと、
前記モールドに取り付けられる蓋と、
前記モールド又は前記蓋に設けられた空隙形成部材と、
を備えることを特徴とする希土類焼結磁石製造用粉末充填容器。
A mold filled with rare earth magnet alloy powder;
A lid attached to the mold;
A gap forming member provided in the mold or the lid;
A powder-filled container for producing a rare earth sintered magnet.
JP2010536662A 2008-11-06 2009-10-29 Rare earth sintered magnet manufacturing method and powder filled container for manufacturing rare earth sintered magnet Expired - Fee Related JP5690141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010536662A JP5690141B2 (en) 2008-11-06 2009-10-29 Rare earth sintered magnet manufacturing method and powder filled container for manufacturing rare earth sintered magnet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008285007 2008-11-06
JP2008285007 2008-11-06
JP2010536662A JP5690141B2 (en) 2008-11-06 2009-10-29 Rare earth sintered magnet manufacturing method and powder filled container for manufacturing rare earth sintered magnet
PCT/JP2009/005726 WO2010052862A1 (en) 2008-11-06 2009-10-29 Method for producing rare earth sintered magnet and powder container for rare earth sintered magnet production

Publications (2)

Publication Number Publication Date
JPWO2010052862A1 true JPWO2010052862A1 (en) 2012-04-05
JP5690141B2 JP5690141B2 (en) 2015-03-25

Family

ID=42152675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010536662A Expired - Fee Related JP5690141B2 (en) 2008-11-06 2009-10-29 Rare earth sintered magnet manufacturing method and powder filled container for manufacturing rare earth sintered magnet

Country Status (5)

Country Link
US (1) US20110250087A1 (en)
EP (1) EP2348518B1 (en)
JP (1) JP5690141B2 (en)
CN (2) CN102209999A (en)
WO (1) WO2010052862A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959027B1 (en) 2010-04-15 2014-05-16 Commissariat Energie Atomique ELECTRONIC LITHOGRAPHY METHOD WITH CORRECTION OF LINES OF LINES BY INSERTION OF CONTRAST PATTERNS
JP5895425B2 (en) * 2010-09-29 2016-03-30 日立金属株式会社 Coupling device and method for manufacturing coupling device
JP5696626B2 (en) * 2011-09-07 2015-04-08 株式会社デンソー Manufacturing method of microchannel heat exchanger
US9468972B2 (en) * 2011-09-30 2016-10-18 Gm Global Technology Operations, Llc Method of making Nd—Fe—B sintered magnets with reduced dysprosium or terbium
JP5708581B2 (en) 2012-07-09 2015-04-30 トヨタ自動車株式会社 Cleaved permanent magnet and method for manufacturing the same
JP6239825B2 (en) * 2013-01-25 2017-11-29 アイチエレック株式会社 Permanent magnet and method for manufacturing permanent magnet
JP6457166B2 (en) * 2013-01-25 2019-01-23 アイチエレック株式会社 Permanent magnet motor
KR101735988B1 (en) * 2013-03-18 2017-05-15 인터메탈릭스 가부시키가이샤 RFeB-BASED MAGNET PRODUCTION METHOD AND RFeB-BASED SINTERED MAGNETS
US20160297028A1 (en) * 2013-03-18 2016-10-13 Intermetallics Co., Ltd. RFeB-BASED SINTERED MAGNET PRODUCTION METHOD AND RFeB-BASED SINTERED MAGNETS
WO2015012412A1 (en) * 2013-07-24 2015-01-29 Ndfeb株式会社 Process for producing rare earth sintered magnet and sintering mold for rare earth sintered magnet
KR101534706B1 (en) * 2013-12-18 2015-07-07 현대자동차 주식회사 Interior permanent magnet synchronous motor
JP6337616B2 (en) * 2014-05-28 2018-06-06 大同特殊鋼株式会社 Sintered magnet manufacturing mold and sintered magnet manufacturing method
JP6280137B2 (en) * 2014-09-28 2018-02-14 Ndfeb株式会社 Manufacturing method of rare earth sintered magnet and manufacturing apparatus used in the manufacturing method
GB2540150B (en) 2015-07-06 2020-01-08 Dyson Technology Ltd Rare earth magnet with Dysprosium treatment
JP6627307B2 (en) * 2015-07-24 2020-01-08 大同特殊鋼株式会社 Manufacturing method of sintered magnet
JPWO2017104788A1 (en) * 2015-12-16 2018-10-11 日立金属株式会社 Method for analyzing anisotropic sintered magnet and method for producing anisotropic sintered magnet using the same
US20180029123A1 (en) * 2016-07-29 2018-02-01 General Electric Company Removable support package for additive manufacture
CN107424703B (en) * 2017-09-06 2018-12-11 内蒙古鑫众恒磁性材料有限责任公司 Grain boundary decision legal system makees the heavy rare earth attachment technique of sintered NdFeB permanent magnet
US11440097B2 (en) 2019-02-12 2022-09-13 General Electric Company Methods for additively manufacturing components using lattice support structures
WO2023210842A1 (en) * 2022-04-29 2023-11-02 주식회사 디아이씨 Method for manufacturing rare earth permanent magnet
CN114743748B (en) * 2022-05-10 2024-02-27 江西金力永磁科技股份有限公司 Low-eddy-current-loss neodymium-iron-boron magnet
CN114823025B (en) * 2022-05-10 2024-02-02 江西金力永磁科技股份有限公司 Low-eddy-current-loss neodymium-iron-boron magnet

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172739U (en) * 1983-05-09 1984-11-19 三菱製鋼株式会社 Sintering furnace storage box lid
JPH01107641A (en) * 1987-10-19 1989-04-25 Seiko Epson Corp Manufacture of clock rotor magnet
JPH0744121B2 (en) * 1990-11-30 1995-05-15 インターメタリックス株式会社 Permanent magnet manufacturing method, manufacturing apparatus, and rubber mold for magnetic field orientation molding
ATE138222T1 (en) * 1990-11-30 1996-06-15 Intermetallics Co Ltd METHOD AND APPARATUS FOR PRODUCING PERMANENT MAGNET BY FORMING A GREEN AND SINTERED COMPACT
CN1054458C (en) * 1990-11-30 2000-07-12 因太金属株式会社 Method and apparatus for producing permanent magnet, as well as rubber mold used for shaping under magnetic field
JPH0696973A (en) * 1991-11-28 1994-04-08 Inter Metallics Kk Production of permanent magnet
JPH07130566A (en) * 1993-11-05 1995-05-19 Inter Metallics Kk Method of compression-molding permanent magnet powder
US5911102A (en) * 1996-06-25 1999-06-08 Injex Corporation Method of manufacturing sintered compact
JP3349061B2 (en) 1997-03-24 2002-11-20 住友特殊金属株式会社 Method for producing Nd-Fe-B sintered magnet for optical isolator
JP2000295804A (en) 1999-04-02 2000-10-20 Shin Etsu Chem Co Ltd Rare earth sintered magnet and permanent magnet type synchronous motor
JP4336446B2 (en) * 1999-06-30 2009-09-30 信越化学工業株式会社 Rare earth sintered permanent magnet sintered body and permanent magnet type synchronous motor
JP4207355B2 (en) * 2000-03-08 2009-01-14 株式会社デンソー Method for forming metal powder molded body having recess
US7201940B1 (en) * 2001-06-12 2007-04-10 Advanced Cardiovascular Systems, Inc. Method and apparatus for thermal spray processing of medical devices
DE10146986A1 (en) * 2001-09-24 2003-04-10 Schott Glas Micro-structured arrangement, especially a stamping tool, is produced by preparing a powdery work material, preparing a negative master, embedding the master in the work material, and isostatic pressing
JP2005330561A (en) * 2004-05-21 2005-12-02 Kobe Steel Ltd Fixture for guiding powder and core rod, and powder packing method
JP4391897B2 (en) 2004-07-01 2009-12-24 インターメタリックス株式会社 Manufacturing method and manufacturing apparatus for magnetic anisotropic rare earth sintered magnet
US7559996B2 (en) * 2005-07-22 2009-07-14 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet, making method, and permanent magnet rotary machine
JP4656325B2 (en) * 2005-07-22 2011-03-23 信越化学工業株式会社 Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine
JP4391980B2 (en) * 2005-11-07 2009-12-24 インターメタリックス株式会社 Manufacturing method and manufacturing apparatus for magnetic anisotropic rare earth sintered magnet
JP4775566B2 (en) * 2006-05-12 2011-09-21 信越化学工業株式会社 Rare earth permanent magnet, method of manufacturing the same, and rotating machine

Also Published As

Publication number Publication date
CN102209999A (en) 2011-10-05
EP2348518A1 (en) 2011-07-27
CN105355415A (en) 2016-02-24
JP5690141B2 (en) 2015-03-25
EP2348518A4 (en) 2015-02-25
EP2348518B1 (en) 2016-08-24
US20110250087A1 (en) 2011-10-13
WO2010052862A1 (en) 2010-05-14

Similar Documents

Publication Publication Date Title
JP5690141B2 (en) Rare earth sintered magnet manufacturing method and powder filled container for manufacturing rare earth sintered magnet
JP6202722B2 (en) R-T-B Rare Earth Sintered Magnet, R-T-B Rare Earth Sintered Magnet Manufacturing Method
EP2237289B1 (en) Method of Producing Rare-Earth Magnet
JP5293662B2 (en) Rare earth magnet and rotating machine
US10395822B2 (en) Rare-earth magnet, method of manufacturing rare-earth magnet, and rotator
JP2007053351A (en) Rare earth permanent magnet, its manufacturing method, and permanent magnet rotary machine
CN104051101A (en) Rare-earth permanent magnet and preparation method thereof
JP2010034365A (en) Rotating machine with sintered magnet, and method of manufacturing sintered magnet
US20160104571A1 (en) Sintered magnet production mold, and sintered magnet production method using the same
JP2006303197A (en) Method for manufacturing r-t-b system sintered magnet
JP6613730B2 (en) Rare earth magnet manufacturing method
Tomše et al. A spark-plasma-sintering approach to the manufacture of anisotropic Nd-Fe-B permanent magnets
JP2015228431A (en) Rare-earth iron boron based magnet and manufacturing method thereof
WO2018088393A1 (en) Method for producing rare earth magnet
JPWO2015140836A1 (en) Permanent magnets, motors, and generators
JP4706872B2 (en) Method for producing sintered permanent magnet and mold
JP2004250781A (en) Sintered type permanent magnet, and production method therefor
US20150171717A1 (en) Net shaped aligned and sintered magnets by modified mim processing
JP2004250781A5 (en)
JP2020155634A (en) R-t-b based permanent magnet
JP2002164239A (en) Manufacturing method of rare earth sintered magnet, ring magnet, and arc segment magnet
JP6425251B2 (en) Rare earth sintered magnet manufacturing method
JP2020096187A (en) R-tm-b based sintered magnet
CN113168961A (en) Method for manufacturing rare earth magnet
JP2011216836A (en) Rare-earth bond magnet, method of manufacturing the same, and rotating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150130

R150 Certificate of patent or registration of utility model

Ref document number: 5690141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees