JP5293662B2 - Rare earth magnet and rotating machine - Google Patents

Rare earth magnet and rotating machine Download PDF

Info

Publication number
JP5293662B2
JP5293662B2 JP2010066725A JP2010066725A JP5293662B2 JP 5293662 B2 JP5293662 B2 JP 5293662B2 JP 2010066725 A JP2010066725 A JP 2010066725A JP 2010066725 A JP2010066725 A JP 2010066725A JP 5293662 B2 JP5293662 B2 JP 5293662B2
Authority
JP
Japan
Prior art keywords
rare earth
earth magnet
magnet
phase
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010066725A
Other languages
Japanese (ja)
Other versions
JP2011199180A (en
Inventor
将史 三輪
康之 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010066725A priority Critical patent/JP5293662B2/en
Priority to US13/052,424 priority patent/US10395822B2/en
Priority to EP11159094.9A priority patent/EP2372726B1/en
Priority to CN201110073924.0A priority patent/CN102237168B/en
Publication of JP2011199180A publication Critical patent/JP2011199180A/en
Application granted granted Critical
Publication of JP5293662B2 publication Critical patent/JP5293662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、希土類磁石及び回転機に関する。   The present invention relates to a rare earth magnet and a rotating machine.

希土類元素R、鉄元素(Fe)又はコバルト元素(Co)等の遷移金属元素T及びホウ素元素Bを含有するR−T−B系希土類磁石は優れた磁気特性を有する(下記特許文献1参照)。しかし、希土類磁石は主成分として酸化され易い希土類元素を含有していることから耐食性が低い傾向にある。そのため、希土類磁石の耐食性を向上させるために、磁石素体の表面上に樹脂やめっき等からなる保護層を設けることが多い。   An RTB-based rare earth magnet containing a transition metal element T such as a rare earth element R, an iron element (Fe), or a cobalt element (Co) and a boron element B has excellent magnetic properties (see Patent Document 1 below). . However, since the rare earth magnet contains a rare earth element that is easily oxidized as a main component, the corrosion resistance tends to be low. Therefore, in order to improve the corrosion resistance of the rare earth magnet, a protective layer made of resin, plating or the like is often provided on the surface of the magnet body.

国際公開第2006/112403号パンフレットInternational Publication No. 2006/112403 Pamphlet

しかし、表面に保護層を形成した希土類磁石においても、必ずしも完全な耐食性は得られていない。これは、高温多湿の環境では水蒸気が保護層を透過して磁石素体に到達することにより、磁石素体の腐食が進行することによる。   However, even a rare-earth magnet having a protective layer formed on its surface does not necessarily have complete corrosion resistance. This is because, in a high temperature and high humidity environment, the water vapor permeates the protective layer and reaches the magnet body, thereby causing corrosion of the magnet body.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、耐食性に優れた希土類磁石を提供することを目的とする。また、本発明は、長期間に亘って優れた性能を維持することが可能な回転機を提供することを目的とする。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a rare earth magnet having excellent corrosion resistance. Moreover, an object of this invention is to provide the rotary machine which can maintain the outstanding performance over a long period of time.

本発明者らは、水蒸気による磁石素体の腐食メカニズムについて研究した結果、腐食反応で発生する水素が磁石素体中の粒界に存在するRリッチ相に吸蔵されることにより、Rリッチ相の水酸化物への変化が加速され、それに伴う体積膨張による主相粒子の脱落によって、腐食が加速度的に磁石内部に進行していくことを発見した。なお、Rリッチ相とは、少なくとも希土類元素Rを含有し、Rの濃度(原子数の比率)が結晶粒子(主相)に比べて高く、Bの濃度が結晶粒子に比べて低い合金相を意味する。Rは例えばNdである。   As a result of studying the corrosion mechanism of the magnet body due to water vapor, the present inventors have found that the hydrogen generated by the corrosion reaction is occluded by the R-rich phase existing at the grain boundary in the magnet body, thereby It was discovered that the corrosion progresses rapidly inside the magnet due to the acceleration of the change to hydroxide and the accompanying drop-out of the main phase particles due to volume expansion. The R-rich phase is an alloy phase containing at least the rare earth element R, having a higher R concentration (ratio of the number of atoms) than the crystal particles (main phase) and a lower B concentration than the crystal particles. means. R is, for example, Nd.

そこで本発明者らは、粒界のRリッチ相による水素の吸蔵を抑制する方法について鋭意研究し、磁石素体の表面近傍のRリッチ相内にAlを拡散させることにより、水素吸蔵を抑制し、耐食性を大幅に向上できることを見出し、下記の本発明に至った。   Therefore, the present inventors have intensively studied a method for suppressing hydrogen occlusion by the R-rich phase at the grain boundary, and suppressing hydrogen occlusion by diffusing Al in the R-rich phase near the surface of the magnet body. The inventors have found that the corrosion resistance can be greatly improved, and have reached the following present invention.

本発明の希土類磁石は、希土類元素Rを含むR−Fe−B系合金の結晶粒子群を備える希土類磁石であって、希土類磁石の表面部に位置する結晶粒子の粒界三重点に含まれるRリッチ相に、R、Cu、Co及びAlを含む合金が存在し、当該Rリッチ相におけるCu、Co及びAlの含有率の合計値が13原子%以上であり、当該Rリッチ相におけるAlの含有率が、表面部に位置する結晶粒子におけるAlの含有率よりも高い。なお、結晶粒子群とは、複数の結晶粒子を意味する。上記本発明では、希土類磁石の表面部におけるCo及びCuの含有率の合計値は、希土類磁石の中心部におけるCo及びCuの含有率の合計値よりも高いことが好ましい。上記本発明では、R、Cu、Co及びAlを含む合金が存在し、且つCu、Co及びAlの含有率の合計値が13原子%以上であり、且つ粒界三重点に存在するRリッチ相が、希土類磁石の表面部だけに偏在することが好ましい。上記本発明に係る希土類磁石は、希土類元素R、Fe、B、Cu及びCoを含む磁石素体の表面に、Al単体、Al合金又はAl化合物を付着させた後、磁石素体を650℃以下で熱処理する工程を経て製造されることが好ましい。 The rare earth magnet of the present invention is a rare earth magnet including a crystal particle group of an R—Fe—B alloy containing a rare earth element R, and is included in a grain boundary triple point of crystal grains located on the surface portion of the rare earth magnet. rich phase, R, Cu, there is an alloy containing Co and Al, der sum is 13 atomic% or more content of Cu, Co and Al in the R-rich phase is, of Al in the R-rich phase The content rate is higher than the Al content rate in the crystal particles located in the surface portion . The crystal particle group means a plurality of crystal particles. In the said invention, it is preferable that the total value of the content rate of Co and Cu in the surface part of a rare earth magnet is higher than the total value of the content rate of Co and Cu in the center part of a rare earth magnet. In the present invention, there is an alloy containing R, Cu, Co and Al, and the total content of Cu, Co and Al is 13 atomic% or more, and an R-rich phase existing at a grain boundary triple point. However, it is preferable that it is unevenly distributed only on the surface portion of the rare earth magnet. In the rare earth magnet according to the present invention, after adhering Al alone, an Al alloy or an Al compound to the surface of a magnet body containing rare earth elements R, Fe, B, Cu and Co, the magnet body is 650 ° C. or lower. It is preferable to be manufactured through a heat treatment step.

上記本発明によれば、希土類磁石の粒界相による水素の吸蔵が抑制され、希土類磁石の耐食性が向上する。   According to the present invention, the occlusion of hydrogen by the grain boundary phase of the rare earth magnet is suppressed, and the corrosion resistance of the rare earth magnet is improved.

上記本発明では、結晶粒子におけるCu及びAlの含有率の合計値が2原子%以下であることが好ましい。Cu及びAlの含有率の合計値を上記の上限値以下とするにより、耐食性のみならず充分な磁気特性が希土類磁石に付与される。   In the said invention, it is preferable that the total value of the content rate of Cu and Al in a crystal grain is 2 atomic% or less. By making the total content of Cu and Al not more than the above upper limit, not only corrosion resistance but also sufficient magnetic properties are imparted to the rare earth magnet.

上記本発明では、希土類磁石全体に占める結晶粒子群の割合が85体積%以上であることが好ましい。これにより、耐食性のみならず充分な磁気特性が希土類磁石に付与される。   In the said invention, it is preferable that the ratio of the crystal grain group to the whole rare earth magnet is 85 volume% or more. Thereby, not only corrosion resistance but sufficient magnetic properties are imparted to the rare earth magnet.

本発明の回転機は、上記本発明の希土類磁石を備える。耐食性に優れた希土類磁石を備える回転機は、苛酷な環境下で使用しても、長期間に亘って優れた性能を維持することができる。   The rotating machine of the present invention includes the rare earth magnet of the present invention. A rotating machine including a rare earth magnet having excellent corrosion resistance can maintain excellent performance for a long period of time even when used in a harsh environment.

本発明によれば、耐食性に優れた希土類磁石を提供することが可能となる。また、本発明によれば、長期間に亘って優れた性能を維持することが可能な回転機を提供することが可能となる。   According to the present invention, it is possible to provide a rare earth magnet having excellent corrosion resistance. Moreover, according to this invention, it becomes possible to provide the rotary machine which can maintain the outstanding performance over a long period of time.

図1は、本発明の一実施形態に係る希土類磁石の斜視図である。FIG. 1 is a perspective view of a rare earth magnet according to an embodiment of the present invention. 図1に示す希土類磁石のII−II線断面図である。It is the II-II sectional view taken on the line of the rare earth magnet shown in FIG. 図2に示す希土類磁石の表面部40の一部を拡大した模式図である。It is the schematic diagram which expanded a part of surface part 40 of the rare earth magnet shown in FIG. 図4は、本発明の一実施形態に係る回転機を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing a rotating machine according to an embodiment of the present invention. 図5(a)は、電子線マイクロアナライザー(Electron Probe Micro Analyzer:EPMA)による分析に基づいて作成した実施例1の希土類磁石の表面部におけるAlの分布図であり、図5(b)は、EPMAによる分析に基づいて作成した実施例1の希土類磁石の表面部におけるCuの分布図であり、図5(c)は、EPMAによる分析に基づいて作成した実施例1の希土類磁石の表面部におけるCoの分布図である。FIG. 5A is a distribution diagram of Al in the surface portion of the rare earth magnet of Example 1 created based on an analysis by an electron probe microanalyzer (EPMA), and FIG. FIG. 5C is a distribution diagram of Cu in the surface portion of the rare earth magnet of Example 1 prepared based on the analysis by EPMA, and FIG. 5C is a graph in the surface portion of the rare earth magnet of Example 1 prepared based on the analysis by EPMA. It is a distribution map of Co.

以下、図面を参照しながら、本発明の好適な一実施形態について詳細に説明する。ただし、本発明は下記の実施形態に限定されるものではない。なお、図面において、同一の要素については同一の符号を付し、同一の要素の符号の一部は省略する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments. In the drawings, the same elements are denoted by the same reference numerals, and some of the reference numerals of the same elements are omitted.

(希土類磁石)
図1〜3に示すように、本実施形態の希土類磁石100は、複数の結晶粒子4(主相粒子)を備える。希土類磁石100の主相は結晶粒子4から構成される。結晶粒子4は、主成分としてR−Fe−B系合金を含む。R−Fe−B系合金とは、例えばRFe14B系合金等である。希土類磁石100は複数の結晶粒子4の間に位置する粒界相を備える。粒界相はRリッチ相、Bリッチ相、酸化物相及び炭化物相などから構成される。Bリッチ相とは、相中のB元素量が結晶を構成する粒子中に含まれる量より多い相である。酸化物相とは、相の構成元素の中で酸素元素が元素比で20%以上含まれる相である。炭化物相とは、相の構成元素の中で炭素元素が元素比で20%以上含まれる相である。
(Rare earth magnet)
As shown in FIGS. 1 to 3, the rare earth magnet 100 of the present embodiment includes a plurality of crystal particles 4 (main phase particles). The main phase of the rare earth magnet 100 is composed of crystal particles 4. The crystal particles 4 contain an R—Fe—B alloy as a main component. The R—Fe—B alloy is, for example, an R 2 Fe 14 B alloy. The rare earth magnet 100 includes a grain boundary phase located between the plurality of crystal grains 4. The grain boundary phase is composed of an R-rich phase, a B-rich phase, an oxide phase, a carbide phase, and the like. The B-rich phase is a phase in which the amount of B element in the phase is larger than the amount contained in the particles constituting the crystal. The oxide phase is a phase containing 20% or more of an oxygen element in the constituent elements of the phase. The carbide phase is a phase in which carbon elements are contained in an element ratio of 20% or more among constituent elements of the phase.

希土類磁石100の寸法は、特に限定されないが、縦の長さが1〜200mm、横の長さが1〜200mm、高さが1〜30mm程度である。結晶粒子4の平均粒径は、特に限定されないが、1〜20μm程度である。なお、希土類磁石100の形状は、特に限定されず、リング状や円板状であってもよい。   The dimensions of the rare earth magnet 100 are not particularly limited, but the vertical length is 1 to 200 mm, the horizontal length is 1 to 200 mm, and the height is about 1 to 30 mm. The average particle size of the crystal particles 4 is not particularly limited, but is about 1 to 20 μm. The shape of the rare earth magnet 100 is not particularly limited, and may be a ring shape or a disk shape.

希土類元素Rは、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb及びLuからなる群より選ばれる少なくとも一種であればよい。特に、希土類元素RがNd及びPrのうち少なくともいずれか一種であることが好ましい。これにより、希土類磁石100の飽和磁束密度及び保磁力が顕著に向上する。   The rare earth element R may be at least one selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. In particular, the rare earth element R is preferably at least one of Nd and Pr. Thereby, the saturation magnetic flux density and the coercive force of the rare earth magnet 100 are remarkably improved.

希土類磁石100の主相及び粒界相は、必要に応じてCo、Cu、Al、Ni、Mn、Nb、Zr、Ti、W、Mo、V、Ga、Zn、Si及びBi等の他の元素を更に含んでもよい。   The main phase and the grain boundary phase of the rare earth magnet 100 may include other elements such as Co, Cu, Al, Ni, Mn, Nb, Zr, Ti, W, Mo, V, Ga, Zn, Si, and Bi as necessary. May further be included.

希土類磁石100の表面部40に位置する粒界三重点6に含まれるRリッチ相には、Cu、Co及びAlが偏析し、R、Cu、Co及びAlを含む合金が形成されている。なお、粒界三重点とは3つ以上の結晶粒子4に囲まれた粒界相を意味する。粒界三重点6のRリッチ相に含まれるAlの一部とFeは合金を形成していてもよい。つまり、粒界三重点6にはFeとAlとからなる合金相が含まれていてもよい。以下では、R、Cu、Co及びAlを含む合金を、場合により「R−Cu−Co−Al合金」と記す。   Cu, Co and Al are segregated in the R-rich phase contained in the grain boundary triple point 6 located on the surface portion 40 of the rare earth magnet 100, and an alloy containing R, Cu, Co and Al is formed. The grain boundary triple point means a grain boundary phase surrounded by three or more crystal grains 4. A part of Al contained in the R-rich phase at the grain boundary triple point 6 and Fe may form an alloy. That is, the grain boundary triple point 6 may include an alloy phase composed of Fe and Al. Hereinafter, an alloy containing R, Cu, Co, and Al is sometimes referred to as an “R—Cu—Co—Al alloy”.

希土類磁石100の表面部40に位置する粒界三重点6のRリッチ相におけるCu、Co及びAlの各含有率は、主相(結晶粒子群)と比較して著しく高い。粒界三重点6のRリッチ相におけるCu、Co及びAlの含有率の合計値は13原子%以上である。以下では、R−Cu−Co−Al合金が存在し、且つCu、Co及びAlの含有率の合計値が13原子%以上であり、且つ粒界三重点6に存在するRリッチ相を、場合により「R−Cu−Co−Al相」と記す。なお、R−Cu−Co−Al相では、Cu、Co及びAlの含有率の合計値は88原子%以下である。   Each content of Cu, Co, and Al in the R-rich phase of the grain boundary triple point 6 located on the surface portion 40 of the rare earth magnet 100 is significantly higher than that of the main phase (crystal grain group). The total content of Cu, Co and Al in the R-rich phase at the grain boundary triple point 6 is 13 atomic% or more. In the case where an R-Cu-Co-Al alloy is present and the total content of Cu, Co and Al is 13 atomic% or more and an R-rich phase present at the grain boundary triple point 6 is Will be referred to as "R-Cu-Co-Al phase". In the R—Cu—Co—Al phase, the total content of Cu, Co, and Al is 88 atomic% or less.

R−Cu−Co−Al相は、水素を吸蔵し難い特性を有する。したがって、仮に水蒸気によって希土類磁石の表面が腐食して水素が発生した場合であっても、希土類磁石100の表面部40に位置するR−Cu−Co−Al相によって、希土類磁石内部のRリッチ相への水素の侵入及び吸蔵が抑制される。その結果、水素とRリッチ相との反応が抑制され、腐食が希土類磁石の表面から内部へ進行し難くなる。R−Cu−Co−Al相の耐食性は、R−Cu−Co−Al合金の高い腐食電位に起因すると考えられる。例えば、R−Cu−Co−Al合金は、Nd単体に比べて高い腐食電位を有する。   The R-Cu-Co-Al phase has a characteristic that it is difficult to occlude hydrogen. Therefore, even if the surface of the rare earth magnet is corroded by water vapor and hydrogen is generated, the R-rich phase inside the rare earth magnet is caused by the R—Cu—Co—Al phase located on the surface portion 40 of the rare earth magnet 100. Invasion and occlusion of hydrogen into the water are suppressed. As a result, the reaction between hydrogen and the R-rich phase is suppressed, and corrosion hardly proceeds from the surface of the rare earth magnet to the inside. The corrosion resistance of the R—Cu—Co—Al phase is believed to be due to the high corrosion potential of the R—Cu—Co—Al alloy. For example, an R—Cu—Co—Al alloy has a higher corrosion potential than Nd alone.

なお、R−Cu−Co−Al相が希土類磁石100の表面部40のみならず、希土類磁石100の内部全体に分布すると、磁気特性が劣化する傾向があることが問題となる。したがって、R−Cu−Co−Al相は希土類磁石100の表面部40だけに偏在することが好ましい。具体的には、R−Cu−Co−Al相は、希土類磁石100において外表面からの深さDが500μm未満である領域だけに偏在することが好ましい。より好ましくは、R−Cu−Co−Al相は希土類磁石100において外表面からの深さDが400μm以下である領域だけに偏在する。これにより上記の問題が解消する。なお、深さDは、表面部40の厚さに相当する。充分な耐食性と磁気特性を両立させるためには、表面部40の厚さDは100μm以上であることが好ましく、200μm上であることがより好ましい。   In addition, when the R—Cu—Co—Al phase is distributed not only in the surface portion 40 of the rare earth magnet 100 but also in the entire interior of the rare earth magnet 100, there is a problem that the magnetic characteristics tend to deteriorate. Therefore, it is preferable that the R—Cu—Co—Al phase is unevenly distributed only on the surface portion 40 of the rare earth magnet 100. Specifically, the R—Cu—Co—Al phase is preferably unevenly distributed only in the region where the depth D from the outer surface of the rare earth magnet 100 is less than 500 μm. More preferably, the R—Cu—Co—Al phase is unevenly distributed only in a region where the depth D from the outer surface of the rare earth magnet 100 is 400 μm or less. This solves the above problem. The depth D corresponds to the thickness of the surface portion 40. In order to achieve both sufficient corrosion resistance and magnetic properties, the thickness D of the surface portion 40 is preferably 100 μm or more, and more preferably 200 μm.

希土類磁石100の表面部40におけるCo及びCuの各含有率の合計値は、希土類磁石100の中心部におけるCo及びCuの各含有率の合計値よりも高いことが好ましい。この場合、希土類磁石100の耐食性が向上し易い傾向がある。   The total value of the Co and Cu contents in the surface portion 40 of the rare earth magnet 100 is preferably higher than the total value of the Co and Cu contents in the central portion of the rare earth magnet 100. In this case, the corrosion resistance of the rare earth magnet 100 tends to be improved.

結晶粒子4におけるCu及びAlの含有率の合計値は2原子%以下であることが好ましい。換言すれば、希土類磁石100の主相におけるCu及びAlの含有率の合計値は2原子%以下であることが好ましい。主相におけるCu及びAlの含有率が高過ぎる場合、希土類磁石100の飽和磁束密度が劣化する傾向がある。Cu及びAlの含有率の合計値を上記の上限値以下とすることにより、これらの問題を抑制できる。ただし、Cu及びAlの含有率の合計値が上記の上限値を超えたとしても、本発明の効果は達成される。   The total content of Cu and Al in the crystal particles 4 is preferably 2 atomic% or less. In other words, the total content of Cu and Al in the main phase of the rare earth magnet 100 is preferably 2 atomic% or less. When the Cu and Al content in the main phase is too high, the saturation magnetic flux density of the rare earth magnet 100 tends to deteriorate. These problems can be suppressed by setting the total content of Cu and Al to the upper limit or less. However, even if the total content of Cu and Al exceeds the above upper limit, the effect of the present invention is achieved.

結晶粒子4からなる主相の割合は希土類磁石100全体に対して85体積%以上であることが好ましい。これにより、充分な磁気特性が希土類磁石に付与される。   The proportion of the main phase composed of the crystal particles 4 is preferably 85% by volume or more with respect to the entire rare earth magnet 100. Thereby, sufficient magnetic properties are imparted to the rare earth magnet.

希土類磁石100は、必要に応じてさらにその表面に保護層を備えてもよい。保護層としては、通常希土類磁石の表面を保護する層として形成されるものであれば特に制限なく適用できる。保護層としては、たとえば、塗装や蒸着重合法により形成した樹脂層、めっきや気相法により形成した金属層、塗布法や気相法により形成した無機層、酸化層、化成処理層等が挙げられる。   The rare earth magnet 100 may further include a protective layer on the surface thereof as necessary. Any protective layer can be used without particular limitation as long as it is usually formed as a layer that protects the surface of the rare earth magnet. Examples of the protective layer include a resin layer formed by painting or vapor deposition polymerization method, a metal layer formed by plating or vapor phase method, an inorganic layer formed by coating method or vapor phase method, an oxide layer, a chemical conversion treatment layer, and the like. It is done.

(希土類磁石の製造方法)
希土類磁石の製造では、まず原料合金を鋳造し、インゴットを得る。原料合金としては、希土類元素R,Fe,B,Cu及びCoを含むものを用いればよい。原料合金は、必要に応じてCo、Cu、Al、Ni、Mn、Nb、Zr、Ti、W、Mo、V、Ga、Zn、Si及びBi等の元素を更に含んでもよい。インゴットの化学組成は、最終的に得たい希土類磁石の主相及び粒界相の化学組成に応じて調整すればよい。
(Rare earth magnet manufacturing method)
In the production of rare earth magnets, a raw material alloy is first cast to obtain an ingot. As the raw material alloy, an alloy containing rare earth elements R, Fe, B, Cu and Co may be used. The raw material alloy may further contain elements such as Co, Cu, Al, Ni, Mn, Nb, Zr, Ti, W, Mo, V, Ga, Zn, Si, and Bi as necessary. The chemical composition of the ingot may be adjusted according to the chemical composition of the main phase and the grain boundary phase of the rare earth magnet to be finally obtained.

インゴットを、ディスクミル等により粗粉砕して10〜100μm程度の粒径の合金粉末を得る。当該合金粉末を、ジェットミル等により微粉砕して0.5〜5μm程度の粒径の合金粉末を得る。当該合金粉末を、磁場中で加圧成形する。成形時に合金粉末に印加する磁場の強度は800kA/m以上であることが好ましい。成形時に合金粉末に加える圧力は10〜500MPa程度であることが好ましい。成形方法としては、一軸加圧法またはCIPなどの等方加圧法のいずれを用いてもよい。得られた成形体を焼成して焼結体を形成する。焼成温度は1000〜1200℃程度であればよい。焼成時間は0.1〜100時間程度であればよい。焼成工程は、複数回行ってもよい。焼成工程は、真空中またはArガス等の不活性ガス雰囲気中で行うことが好ましい。   The ingot is roughly pulverized by a disk mill or the like to obtain an alloy powder having a particle size of about 10 to 100 μm. The alloy powder is pulverized by a jet mill or the like to obtain an alloy powder having a particle size of about 0.5 to 5 μm. The alloy powder is pressure-molded in a magnetic field. The strength of the magnetic field applied to the alloy powder during molding is preferably 800 kA / m or more. The pressure applied to the alloy powder during molding is preferably about 10 to 500 MPa. As the molding method, either a uniaxial pressing method or an isotropic pressing method such as CIP may be used. The obtained molded body is fired to form a sintered body. The baking temperature should just be about 1000-1200 degreeC. The firing time may be about 0.1 to 100 hours. You may perform a baking process in multiple times. The firing step is preferably performed in a vacuum or in an inert gas atmosphere such as Ar gas.

焼結体に対して時効処理を施すことが好ましい。時効処理では、焼結体を450〜950℃程度で熱処理すればよい。時効処理では、焼結体を0.1〜100時間程度熱処理すればよい。時効処理は不活性ガス雰囲気中で行えばよい。このような時効処理により希土類磁石の保磁力がさらに向上する。なお、時効処理は多段階の熱処理工程から構成されてもよい。例えば2段の熱処理からなる時効処理では、1段目の熱処理工程で焼結体を700℃以上焼成温度未満の温度で0.1〜50時間加熱すればよい。2段目の熱処理工程では、焼結体を450〜700℃で0.1〜100時間加熱すればよい。   It is preferable to apply an aging treatment to the sintered body. In the aging treatment, the sintered body may be heat-treated at about 450 to 950 ° C. In the aging treatment, the sintered body may be heat treated for about 0.1 to 100 hours. The aging treatment may be performed in an inert gas atmosphere. Such an aging treatment further improves the coercivity of the rare earth magnet. The aging treatment may be composed of a multi-step heat treatment process. For example, in the aging treatment comprising two stages of heat treatment, the sintered body may be heated at a temperature of 700 ° C. or higher and lower than the firing temperature for 0.1 to 50 hours in the first stage heat treatment step. In the second heat treatment step, the sintered body may be heated at 450 to 700 ° C. for 0.1 to 100 hours.

以上の工程により得られた焼結体は、R−Fe−B系合金の結晶粒子群からなる主相と、希土類元素Rを主成分とするRリッチ相とを備える。また、Cu、Co及びFeの一部も粒界相に析出する。   The sintered body obtained by the above steps includes a main phase composed of a crystal particle group of an R—Fe—B based alloy and an R rich phase containing a rare earth element R as a main component. Further, a part of Cu, Co, and Fe also precipitates in the grain boundary phase.

焼結体から所望の寸法の磁石素体を切り出し、磁石素体の表面にAl単体、Al合金又はAl化合物を付着させる。Alの付着方法としては、例えば、Alからなる粒子を分散させた塗布液を、磁石素体の表面全体に均一に塗布する方法が挙げられる。磁石素体の表面に付着させるAl粒子の粒径は、50μm以下であることが好ましい。Al粒子の粒径が大き過ぎる場合、Alが磁石素体内へ拡散しにくくなることが問題となる。なお、めっき法や気相法などの手法により、磁石素体の表面にAlを付着させてもよい。   A magnet body having a desired size is cut out from the sintered body, and Al alone, an Al alloy, or an Al compound is attached to the surface of the magnet body. Examples of the Al adhesion method include a method in which a coating solution in which particles made of Al are dispersed is uniformly applied to the entire surface of the magnet body. The particle size of the Al particles attached to the surface of the magnet body is preferably 50 μm or less. When the particle size of the Al particles is too large, it becomes a problem that Al becomes difficult to diffuse into the magnet body. Note that Al may be attached to the surface of the magnet body by a technique such as plating or vapor phase.

表面にAlを付着させた磁石素体を熱処理する。これにより、Alが磁石素体の表面から磁石素体の粒界相のRリッチ相へ熱拡散するとともに、Alの拡散に誘起される形で磁石素体内部の粒界相に含まれるCu及びCoが磁石素体の表面層に移動して、R、AlCu及びCoの合金が形成される。R−Cu−Co−Al合金は、主相に比べて融点が低いため、表面部の粒界三重点に偏析する。その結果、本実施形態の希土類磁石が完成する。表面にAlを付着させた磁石素体は650℃以下で熱処理することが好ましく、600℃以下で熱処理することがより好ましい。これにより、R−Cu−Co−Al相を希土類磁石の表面部だけに形成し易くなる。表面にAlを付着させた磁石素体の熱処理温度が650℃よりも高い場合、Alの融点は約660℃であるため、Alが溶融して磁石素体の主相(R−Fe−B系合金)と反応して合金化することがある。また表面にAlを付着させた磁石素体の熱処理温度が高過ぎる場合、Alが磁石素体の表面部の粒界三重点のRリッチ相のみならず磁石素体の全体に熱拡散してしまう。   The magnet body with Al attached to the surface is heat-treated. As a result, Al thermally diffuses from the surface of the magnet body to the R-rich phase of the grain boundary phase of the magnet body, and Cu contained in the grain boundary phase inside the magnet body in a form induced by Al diffusion. Co moves to the surface layer of the magnet body, and an alloy of R, AlCu, and Co is formed. Since the R-Cu-Co-Al alloy has a lower melting point than the main phase, it segregates at the grain boundary triple point in the surface portion. As a result, the rare earth magnet of this embodiment is completed. The magnet body with Al attached to the surface is preferably heat treated at 650 ° C. or lower, more preferably 600 ° C. or lower. Thereby, it becomes easy to form the R—Cu—Co—Al phase only on the surface portion of the rare earth magnet. When the heat treatment temperature of the magnet body with Al deposited on the surface is higher than 650 ° C., the melting point of Al is about 660 ° C., so Al melts and the main phase of the magnet body (R—Fe—B system) May react to form an alloy. Also, if the heat treatment temperature of the magnet body with Al deposited on the surface is too high, Al diffuses not only to the R-rich phase at the grain boundary triple point on the surface of the magnet body but also to the entire magnet body. .

上記の熱処理において昇温させた磁石素体を、30℃/分以上の冷却速度で急冷することが好ましい。これにより、R−Cu−Co−Al相を希土類磁石の表面部だけに形成し易くなる。   It is preferable that the magnet body heated in the heat treatment is rapidly cooled at a cooling rate of 30 ° C./min or more. Thereby, it becomes easy to form the R—Cu—Co—Al phase only on the surface portion of the rare earth magnet.

磁石素体表面からのAlの拡散距離D、粒界三重点のRリッチ相におけるCu、Co及びAlの含有率の合計値、並びに希土類磁石全体に対する主相の割合は、原料合金中のCu、Co及びAlの各含有率、磁石素体の表面に付着させるAlの量、表面にAlを付着させた磁石素体の熱処理温度又は熱処理時間等によって適宜制御できる。   The diffusion distance D of Al from the surface of the magnet body, the total content of Cu, Co and Al in the R-rich phase at the grain boundary triple point, and the ratio of the main phase to the entire rare earth magnet are Cu, Each content of Co and Al, the amount of Al deposited on the surface of the magnet body, and the heat treatment temperature or heat treatment time of the magnet body with Al deposited on the surface can be appropriately controlled.

希土類磁石に対して、上述した焼結体の場合と同様の時効処理を施すことが好ましい。時効処理により希土類磁石の保磁力がさらに向上する。時効処理温度は、Alの熱拡散に要する熱処理温度以下であることが好ましい。時効処理において昇温させた希土類磁石を、30℃/分以上の冷却速度で急冷することが好ましい。これにより、希土類磁石の磁気特性が向上し易くなる。   It is preferable to apply the same aging treatment to the rare earth magnet as in the case of the sintered body described above. The coercive force of the rare earth magnet is further improved by the aging treatment. The aging treatment temperature is preferably not more than the heat treatment temperature required for thermal diffusion of Al. It is preferable to rapidly cool the rare earth magnet heated in the aging treatment at a cooling rate of 30 ° C./min or more. Thereby, the magnetic characteristics of the rare earth magnet are easily improved.

表面にAlを付着させた磁石素体を熱処理した後、希土類磁石の表面に残存するAl等を研磨やエッチングにより除去してもよい。希土類磁石の表面に保護層を形成してもよい。保護層としては、通常希土類磁石の表面を保護する層として形成されるものであれば特に制限なく適用できる。保護層としては、たとえば、塗装や蒸着重合法により形成した樹脂層、めっきや気相法により形成した金属層、塗布法や気相法により形成した無機層、酸化層、化成処理層等が挙げられる。   After heat-treating the magnet body with Al attached to the surface, Al remaining on the surface of the rare earth magnet may be removed by polishing or etching. A protective layer may be formed on the surface of the rare earth magnet. Any protective layer can be used without particular limitation as long as it is usually formed as a layer that protects the surface of the rare earth magnet. Examples of the protective layer include a resin layer formed by painting or vapor deposition polymerization method, a metal layer formed by plating or vapor phase method, an inorganic layer formed by coating method or vapor phase method, an oxide layer, a chemical conversion treatment layer, and the like. It is done.

(回転機)
図4は、本実施形態の回転機(永久磁石回転機)の内部構造を示す説明図である。本実施形態の回転機200は、永久磁石同期回転機(SPM回転機)であり、円筒状のロータ50と該ロータ50の内側に配置されるステータ30とを備えている。ロータ50は、円筒状のコア52と円筒状のコア52の内周面に沿ってN極とS極が交互になるように複数の希土類磁石100が設けられている。ステータ30は、内周面に沿って設けられた複数のコイル32を有している。このコイル32と希土類磁石100とは互いに対向するように配置されている。
(Rotating machine)
FIG. 4 is an explanatory diagram showing the internal structure of the rotating machine (permanent magnet rotating machine) of the present embodiment. The rotating machine 200 of this embodiment is a permanent magnet synchronous rotating machine (SPM rotating machine), and includes a cylindrical rotor 50 and a stator 30 disposed inside the rotor 50. The rotor 50 is provided with a plurality of rare earth magnets 100 so that N poles and S poles are alternated along the inner circumferential surface of the cylindrical core 52 and the cylindrical core 52. The stator 30 has a plurality of coils 32 provided along the inner peripheral surface. The coil 32 and the rare earth magnet 100 are arranged to face each other.

回転機200は、ロータ50に、上記実施形態に係る希土類磁石100を備える。希土類磁石100は耐食性に優れるため、経時的な磁気特性の低下を十分に抑制することができる。したがって、回転機200は優れた性能を長時間にわたって維持することができる。回転機200は、希土類磁石100以外の部分について、通常の回転機部品を用いて通常の方法によって製造することができる。   The rotating machine 200 includes the rare earth magnet 100 according to the above embodiment in the rotor 50. Since the rare earth magnet 100 is excellent in corrosion resistance, it is possible to sufficiently suppress a decrease in magnetic characteristics over time. Therefore, the rotating machine 200 can maintain excellent performance for a long time. The rotating machine 200 can be manufactured by a normal method using normal rotating machine parts for parts other than the rare earth magnet 100.

回転機200は、コイル32に通電することによって生成する電磁石による界磁と永久磁石100による界磁との相互作用により、電気エネルギーを機械的エネルギーに変換する電動機(モータ)であってもよい。また、回転機200は、永久磁石100による界磁とコイル32との電磁誘導相互作用により、機械的エネルギーから電気的エネルギーに変換する発電機(ジェネレータ)であってもよい。   The rotating machine 200 may be an electric motor (motor) that converts electrical energy into mechanical energy by the interaction between the field by the electromagnet generated by energizing the coil 32 and the field by the permanent magnet 100. Further, the rotating machine 200 may be a generator that converts mechanical energy into electrical energy by electromagnetic induction interaction between the field by the permanent magnet 100 and the coil 32.

電動機(モータ)として機能する回転機200としては、例えば、永久磁石直流モータ、リニア同期モータ、永久磁石同期モータ(SPMモータ)、永久磁石同期モータ(IPMモータ)、往復動モータなどが挙げられる。往復動モータとして機能するモータとしては、例えば、ボイスコイルモータ、振動モータなどが挙げられる。発電機(ジェネレータ)として機能する回転機200としては、例えば、永久磁石同期発電機、永久磁石整流子発電機、永久磁石交流発電機などが挙げられる。   Examples of the rotating machine 200 that functions as an electric motor (motor) include a permanent magnet DC motor, a linear synchronous motor, a permanent magnet synchronous motor (SPM motor), a permanent magnet synchronous motor (IPM motor), and a reciprocating motor. Examples of the motor that functions as a reciprocating motor include a voice coil motor and a vibration motor. Examples of the rotating machine 200 that functions as a generator include a permanent magnet synchronous generator, a permanent magnet commutator generator, and a permanent magnet AC generator.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples.

(実施例1)
粉末冶金法により、組成が22.5重量%Nd−5.2重量%Pr−2.7重量%Dy−0.5重量%Co−0.3重量%Al−0.07重量%Cu−1.0重量%B−残部Feである鋳塊を作製した。鋳塊を粗粉砕して得た粗粉末を不活性ガス中でジェットミルにより粉砕して、平均粒径が約3.5μmの微粉末を得た。微粉末を金型内に充填し、磁場中で加圧成形して成形体を得た。成形体を真空中で焼成した後、時効処理を施して焼結体を得た。焼結体を切り出し加工し、10mm×8mm×1mmの寸法を有する磁石素体を作製した。
Example 1
According to the powder metallurgy method, the composition is 22.5 wt% Nd-5.2 wt% Pr-2.7 wt% Dy-0.5 wt% Co-0.3 wt% Al-0.07 wt% Cu-1 An ingot with 0.0 wt% B-balance Fe was prepared. The coarse powder obtained by coarsely pulverizing the ingot was pulverized by a jet mill in an inert gas to obtain a fine powder having an average particle diameter of about 3.5 μm. The fine powder was filled into a mold and pressure molded in a magnetic field to obtain a molded body. After the molded body was fired in vacuum, an aging treatment was performed to obtain a sintered body. The sintered body was cut out and a magnet body having a size of 10 mm × 8 mm × 1 mm was produced.

磁石素体の表面に対して脱脂処理及びエッチングを施した。平均粒径3μmのAl粒子を分散させた塗布液を調製した。エッチング後の磁石素体の表面に塗布液をディップコーティングにより塗布し、厚さが約8μmの塗膜を磁石素体の表面全体に形成した。この塗膜を120℃で20分乾燥させた。   The surface of the magnet body was degreased and etched. A coating solution in which Al particles having an average particle diameter of 3 μm were dispersed was prepared. The coating solution was applied to the surface of the magnet body after etching by dip coating to form a coating film having a thickness of about 8 μm on the entire surface of the magnet body. This coating film was dried at 120 ° C. for 20 minutes.

塗膜を有する磁石素体をAr雰囲気において600℃で1時間熱処理した後、50℃/分で急冷し、塗膜中のAlを磁石素体内へ拡散させた。熱処理後の磁石素体をAr雰囲気において540℃で1時間時効処理した後、50℃/分で急冷した。時効処理後の磁石素体の表面に残存した反応物を研磨で除去し、磁石素体の表面にエッチングを施すことで、実施例1の希土類磁石を得た。   The magnet body having a coating film was heat-treated at 600 ° C. for 1 hour in an Ar atmosphere, and then rapidly cooled at 50 ° C./min to diffuse Al in the coating film into the magnet body. The magnet body after the heat treatment was aged at 540 ° C. for 1 hour in an Ar atmosphere, and then rapidly cooled at 50 ° C./min. The reaction product remaining on the surface of the magnet body after the aging treatment was removed by polishing, and the surface of the magnet body was etched to obtain the rare earth magnet of Example 1.

(実施例2)
上記の塗膜を有する磁石素体をAr雰囲気において570℃で1時間熱処理して、塗膜中のAlを磁石素体内へ拡散させたこと以外は実施例1と同様の方法で実施例2の希土類磁石を作製した。
(Example 2)
The magnet body having the above-mentioned coating film was heat-treated at 570 ° C. for 1 hour in an Ar atmosphere, and Al in the coating film was diffused into the magnet body in the same manner as in Example 1 except that A rare earth magnet was produced.

(実施例3)
実施例3では、上記の塗膜を有する磁石素体をAr雰囲気において540℃で1時間熱処理して、塗膜中のAlを磁石素体内へ拡散させた。また、実施例3では、この1回の熱処理が時効処理を兼ねるため、実施例1とは異なり、熱処理後に別途時効処理を行わなかった。これらの事項以外は実施例1と同様の方法で実施例3の希土類磁石を作製した。
(Example 3)
In Example 3, the magnet body having the above coating film was heat-treated at 540 ° C. for 1 hour in an Ar atmosphere to diffuse Al in the coating film into the magnet body. In Example 3, since this one heat treatment also serves as an aging treatment, unlike Example 1, no separate aging treatment was performed after the heat treatment. Except for these matters, the rare earth magnet of Example 3 was produced in the same manner as in Example 1.

(比較例1)
磁石素体の表面のエッチング以降の工程を実施しなかったこと以外は実施例1と同様の方法で比較例1の希土類磁石を作製した。つまり、Alを用いずに比較例1の希土類磁石を作製した。
(Comparative Example 1)
A rare earth magnet of Comparative Example 1 was produced in the same manner as in Example 1 except that the steps after the etching of the surface of the magnet body were not performed. That is, the rare earth magnet of Comparative Example 1 was produced without using Al.

[組成の分析]
実施例1〜3及び比較例1の各希土類磁石を切断し、研磨した切断面における元素分布をEPMAで確認した。EPMAの装置としては、JEOL社製のJXA−8800を用いた。EPMAでは、希土類磁石の外表面からの深さが0〜100μmであり、外表面に平行な方向における幅が100μmである領域(以下、「表面部A」という。)に存在する元素のマッピングを行い、Rリッチ相を特定してその相の直径1μmのスポットの範囲を分析した。表面部Aの面積は100μm×100μmである。各希土類磁石の表面部A中に存在する主相における各元素の含有率(原子%)を表1に示す。各希土類磁石の表面部A中に存在する粒界三重点に含まれるRリッチ相における各元素の含有率(原子%)を表1に示す。主相における各元素の含有率は、表面部A内の任意の3つの主相粒子(結晶粒子)で測定した各元素の含有率の平均値である。粒界三重点中のRリッチ相における各元素の含有率は、表面部A内の任意の3つの粒界三重点中の各Rリッチ相で測定した各元素の含有率の平均値である。なお、各実施例の希土類磁石の主相の組成は同じであったため、表1には全実施例に共通する主相の組成を示す。
[Analysis of composition]
Each rare earth magnet of Examples 1 to 3 and Comparative Example 1 was cut, and the element distribution on the polished cut surface was confirmed by EPMA. As an EPMA apparatus, JXA-8800 manufactured by JEOL was used. In EPMA, mapping of elements existing in a region (hereinafter referred to as “surface portion A”) in which the depth from the outer surface of the rare earth magnet is 0 to 100 μm and the width in the direction parallel to the outer surface is 100 μm. The R-rich phase was identified and the range of the 1 μm diameter spot of the phase was analyzed. The area of the surface portion A is 100 μm × 100 μm. Table 1 shows the content (atomic%) of each element in the main phase existing in the surface portion A of each rare earth magnet. Table 1 shows the content (atomic%) of each element in the R-rich phase contained in the grain boundary triple point existing in the surface portion A of each rare earth magnet. The content of each element in the main phase is an average value of the content of each element measured by any three main phase particles (crystal particles) in the surface portion A. The content of each element in the R-rich phase in the grain boundary triple point is an average value of the content of each element measured in each R-rich phase in any three grain boundary triple points in the surface portion A. In addition, since the composition of the main phase of the rare earth magnet of each Example was the same, Table 1 shows the composition of the main phase common to all Examples.

実施例1の表面部AにおけるAlの分布図を図5(a)に示す。図5(a)の白い部分はAlが存在する部分である。実施例1の表面部AにおけるCuの分布図を図5(b)に示す。図5(b)の白い部分はCuが存在する部分である。実施例1の表面部AにおけるCoの分布図を図5(c)に示す。図5(c)の白い部分はCoが存在する部分である。   A distribution diagram of Al in the surface portion A of Example 1 is shown in FIG. A white portion in FIG. 5A is a portion where Al is present. A distribution diagram of Cu in the surface portion A of Example 1 is shown in FIG. A white portion in FIG. 5B is a portion where Cu exists. A distribution diagram of Co in the surface portion A of Example 1 is shown in FIG. A white portion in FIG. 5C is a portion where Co exists.

Figure 0005293662
Figure 0005293662

EPMAによる分析の結果、実施例1〜3の各希土類磁石のいずれにおいても、R−T−B系合金の結晶粒子から構成される主相の比率は、希土類磁石全体に対して91体積%であることが確認された。実施例1〜3の各希土類磁石の表面部では粒界三重点のRリッチ相に多量のAlが拡散していることが確認された。また、実施例1〜3の各粒界重点のAlは主相内へ殆ど拡散していないことが確認された。実施例1〜3の各希土類磁石の表面部では、比較例1と比較して粒界三重点のRリッチ相に多量のCu及びCoが存在していることが確認された。図5(a)、図5(b)及び図5(c)の対比から明らかなように、表面部A内においてAl,Cu及びCoがそれぞれ存在する箇所が一致していたことから、表面部A内の各粒界三重点のRリッチ相では、R,Al,Cu及びCoを含む合金が形成されていることが確認された。実施例1〜3の粒界三重点のRリッチ相のいずれにも、Nd,Pr及びFeが存在していることが分かった。一方、比較例1の各希土類磁石の表面部では粒界三重点のRリッチ相にAlが拡散していないことが確認された。   As a result of the analysis by EPMA, in each of the rare earth magnets of Examples 1 to 3, the ratio of the main phase composed of crystal particles of the R—T—B system alloy was 91% by volume with respect to the whole rare earth magnet. It was confirmed that there was. It was confirmed that a large amount of Al diffused in the R-rich phase at the grain boundary triple point at the surface portion of each rare earth magnet of Examples 1 to 3. Further, it was confirmed that Al at each grain boundary in Examples 1 to 3 hardly diffused into the main phase. In the surface portion of each rare earth magnet of Examples 1 to 3, it was confirmed that a larger amount of Cu and Co was present in the R-rich phase at the grain boundary triple point than in Comparative Example 1. As apparent from the comparison between FIG. 5A, FIG. 5B, and FIG. 5C, the portions where Al, Cu, and Co are present in the surface portion A coincide with each other. In the R-rich phase at each grain boundary triple point in A, it was confirmed that an alloy containing R, Al, Cu and Co was formed. It was found that Nd, Pr, and Fe were present in any of the R-rich phases at the grain boundary triple points of Examples 1 to 3. On the other hand, it was confirmed that Al did not diffuse into the R-rich phase at the grain boundary triple point at the surface portion of each rare earth magnet of Comparative Example 1.

レーザー照射型誘導結合プラズマ質量分析(Laser Ablation Inductively Coupled Plasma Mass Spectrometry:LA−ICP−MS)で各希土類磁石を分析した。LA−ICP−MSによる分析では、希土類磁石の断面に対して20μmピッチでマッピング測定を行い、磁石表面からのAlの拡散距離を測定した。LA−ICP−MSの結果、実施例1では、希土類磁石の外表面からの深さが0〜400μmである領域にAlが拡散し、その領域におけるCu、Co及びAlの濃度が高くなっていることが確認された。実施例2では、希土類磁石の外表面からの深さが0〜200μmである領域にAlが拡散し、その領域におけるCu、Co及びAlの濃度が高くなっていることが確認された。実施例3では、希土類磁石の外表面からの深さが0〜100μmである領域にAlが拡散し、その領域におけるCu、Co及びAlの濃度が高くなっていることが確認された。   Each rare earth magnet was analyzed by laser irradiation type inductively coupled plasma mass spectrometry (LA-ICP-MS). In the analysis by LA-ICP-MS, mapping measurement was performed on the cross section of the rare earth magnet at a pitch of 20 μm, and the diffusion distance of Al from the magnet surface was measured. As a result of LA-ICP-MS, in Example 1, Al diffuses into a region where the depth from the outer surface of the rare earth magnet is 0 to 400 μm, and the concentrations of Cu, Co, and Al in that region are high. It was confirmed. In Example 2, it was confirmed that Al diffused into a region where the depth from the outer surface of the rare earth magnet was 0 to 200 μm, and the concentrations of Cu, Co, and Al were high in that region. In Example 3, it was confirmed that Al diffused into a region where the depth from the outer surface of the rare earth magnet was 0 to 100 μm, and the concentrations of Cu, Co, and Al were high in that region.

[耐食性の評価]
実施例1〜3及び比較例1の各希土類磁石の耐食性をプレッシャークッカーテスト(Pressure Cooker Test:PCT)により評価した。PCTでは、2気圧、温度120℃、湿度100%RHである環境下に各希土類磁石を設置してから300時間後の各希土類磁石の重量の減少量を測定した。各希土類磁石の単位表面積あたりの重量減少量(単位:mg/cm)を表2に示す。
[Evaluation of corrosion resistance]
Corrosion resistance of each of the rare earth magnets of Examples 1 to 3 and Comparative Example 1 was evaluated by a pressure cooker test (PCT). In PCT, the amount of decrease in the weight of each rare earth magnet was measured after 300 hours from the installation of each rare earth magnet in an environment of 2 atm, temperature of 120 ° C., and humidity of 100% RH. Table 2 shows the weight loss (unit: mg / cm 2 ) per unit surface area of each rare earth magnet.

Figure 0005293662
Figure 0005293662

実施例1〜3の各希土類磁石は、比較例1に比較して耐食性に優れていることが確認された。   It was confirmed that each of the rare earth magnets of Examples 1 to 3 was excellent in corrosion resistance as compared with Comparative Example 1.

実施例1及び比較例1の各希土類磁石を、100℃、0.1MPaの水素雰囲気中に放置する試験を行った。比較例1では、100秒経過後に希土類磁石が水素を吸蔵したことによって水素分圧が低下し始めた。一方、実施例1では、300秒経過後も希土類磁石が水素を吸蔵せず、水素分圧が低下しなかった。   Each rare earth magnet of Example 1 and Comparative Example 1 was tested in a hydrogen atmosphere at 100 ° C. and 0.1 MPa. In Comparative Example 1, the hydrogen partial pressure began to decrease after the rare earth magnet occluded hydrogen after 100 seconds. On the other hand, in Example 1, the rare earth magnet did not absorb hydrogen after 300 seconds, and the hydrogen partial pressure did not decrease.

[磁気特性の評価]
実施例1〜3及び比較例1の各希土類磁石の残留磁束密度(Br)及び保磁力(HcJ)を測定した。各希土類磁石のBr(単位:T)及びHcJ(単位:kA/m)を表3に示す。
[Evaluation of magnetic properties]
The residual magnetic flux density (Br) and coercive force (HcJ) of each of the rare earth magnets of Examples 1 to 3 and Comparative Example 1 were measured. Table 3 shows Br (unit: T) and HcJ (unit: kA / m) of each rare earth magnet.

Figure 0005293662
Figure 0005293662

実施例1〜3の各希土類磁石のいずれも比較例1よりも優れた保磁力を有していることが確認された。   It was confirmed that each of the rare earth magnets of Examples 1 to 3 has a coercive force superior to that of Comparative Example 1.

4・・・結晶粒子、6・・・粒界三重点、30・・・ステータ、32・・・コイル、40,A・・・表面部、50・・・ロータ、52・・・コア、100・・・希土類磁石、200・・・回転機、D・・・表面部の厚さ(Alの拡散距離)。   4 ... Crystal grain, 6 ... Grain boundary triple point, 30 ... Stator, 32 ... Coil, 40, A ... Surface part, 50 ... Rotor, 52 ... Core, 100 ... Rare earth magnet, 200 ... Rotating machine, D ... Surface thickness (Al diffusion distance).

Claims (7)

希土類元素Rを含むR−Fe−B系合金の結晶粒子群を備える希土類磁石であって、
前記希土類磁石の表面部に位置する前記結晶粒子の粒界三重点に含まれるRリッチ相に、R、Cu、Co及びAlを含む合金が存在し、
前記Rリッチ相におけるCu、Co及びAlの含有率の合計値が13原子%以上であり、
前記Rリッチ相におけるAlの含有率が、前記表面部に位置する前記結晶粒子におけるAlの含有率よりも高い
希土類磁石。
A rare earth magnet comprising a crystal particle group of an R—Fe—B alloy containing a rare earth element R,
An alloy containing R, Cu, Co and Al is present in the R-rich phase contained in the grain boundary triple point of the crystal grain located on the surface portion of the rare earth magnet,
Wherein Ri der Cu, the sum of the content of Co and Al 13 atomic% or more in the R-rich phase,
The content of Al in the R-rich phase is higher than the content of Al in the crystal particles located in the surface portion ;
Rare earth magnet.
前記結晶粒子におけるCu及びAlの含有率の合計値が2原子%以下である、
請求項1に記載の希土類磁石。
The total content of Cu and Al in the crystal particles is 2 atomic% or less,
The rare earth magnet according to claim 1.
前記希土類磁石全体に占める前記結晶粒子群の割合が85体積%以上である、
請求項1又は2に記載の希土類磁石。
The proportion of the crystal particle group in the entire rare earth magnet is 85% by volume or more,
The rare earth magnet according to claim 1 or 2.
前記希土類磁石の表面部におけるCo及びCuの含有率の合計値は、前記希土類磁石の中心部におけるCo及びCuの含有率の合計値よりも高い、The total content of Co and Cu in the surface portion of the rare earth magnet is higher than the total content of Co and Cu in the center of the rare earth magnet.
請求項1〜3のいずれか一項に記載の希土類磁石。The rare earth magnet as described in any one of Claims 1-3.
R、Cu、Co及びAlを含む前記合金が存在し、且つCu、Co及びAlの含有率の合計値が13原子%以上であり、且つ前記粒界三重点に存在する前記Rリッチ相が、前記希土類磁石の表面部だけに偏在する、The alloy containing R, Cu, Co and Al is present, and the total content of Cu, Co and Al is 13 atomic% or more, and the R rich phase present at the grain boundary triple point is: Unevenly distributed only on the surface of the rare earth magnet,
請求項1〜4のいずれか一項に記載の希土類磁石。The rare earth magnet according to any one of claims 1 to 4.
希土類元素R、Fe、B、Cu及びCoを含む磁石素体の表面に、Al単体、Al合金又はAl化合物を付着させた後、前記磁石素体を650℃以下で熱処理する工程を経て製造される
請求項1〜5のいずれか一項に記載の希土類磁石。
Manufactured through a process of attaching Al alone, an Al alloy or an Al compound to the surface of a magnet body containing rare earth elements R, Fe, B, Cu and Co and then heat-treating the magnet body at 650 ° C. or lower. The
The rare earth magnet according to any one of claims 1 to 5.
請求項1〜のいずれか一項に記載の希土類磁石を備える回転機。 A rotating machine comprising the rare earth magnet according to any one of claims 1 to 6 .
JP2010066725A 2010-03-23 2010-03-23 Rare earth magnet and rotating machine Active JP5293662B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010066725A JP5293662B2 (en) 2010-03-23 2010-03-23 Rare earth magnet and rotating machine
US13/052,424 US10395822B2 (en) 2010-03-23 2011-03-21 Rare-earth magnet, method of manufacturing rare-earth magnet, and rotator
EP11159094.9A EP2372726B1 (en) 2010-03-23 2011-03-22 Rare-earth magnet, method of manufacturing rare-earth magnet and rotator
CN201110073924.0A CN102237168B (en) 2010-03-23 2011-03-23 Rare-earth magnet, method of manufacturing rare-earth magnet and rotator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010066725A JP5293662B2 (en) 2010-03-23 2010-03-23 Rare earth magnet and rotating machine

Publications (2)

Publication Number Publication Date
JP2011199180A JP2011199180A (en) 2011-10-06
JP5293662B2 true JP5293662B2 (en) 2013-09-18

Family

ID=44876982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010066725A Active JP5293662B2 (en) 2010-03-23 2010-03-23 Rare earth magnet and rotating machine

Country Status (1)

Country Link
JP (1) JP5293662B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5348109B2 (en) * 2010-10-28 2013-11-20 Tdk株式会社 Rare earth magnet, rare earth magnet manufacturing method and rotating machine
JP5348110B2 (en) * 2010-10-28 2013-11-20 Tdk株式会社 Rare earth magnet, rare earth magnet manufacturing method and rotating machine
JP6221246B2 (en) * 2012-10-31 2017-11-01 日立金属株式会社 R-T-B system sintered magnet and manufacturing method thereof
JP6221233B2 (en) * 2012-12-28 2017-11-01 日立金属株式会社 R-T-B system sintered magnet and manufacturing method thereof
WO2015020181A1 (en) * 2013-08-09 2015-02-12 Tdk株式会社 R-t-b-based sintered magnet and motor
JP6511779B2 (en) * 2014-11-12 2019-05-15 Tdk株式会社 RTB based sintered magnet
JP6468435B2 (en) * 2015-04-15 2019-02-13 Tdk株式会社 R-T-B sintered magnet
US11328845B2 (en) 2017-06-27 2022-05-10 Daido Steel Co., Ltd. RFeB-based magnet and method for producing RFeB-based magnet
JP7251053B2 (en) * 2017-06-27 2023-04-04 大同特殊鋼株式会社 RFeB magnet and method for manufacturing RFeB magnet
JP7020051B2 (en) * 2017-10-18 2022-02-16 Tdk株式会社 Magnet joint
JP7139920B2 (en) * 2018-12-03 2022-09-21 Tdk株式会社 R-T-B system permanent magnet

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3405806B2 (en) * 1994-04-05 2003-05-12 ティーディーケイ株式会社 Magnet and manufacturing method thereof
JP2003031409A (en) * 2001-07-18 2003-01-31 Hitachi Metals Ltd Sintered rare-earth magnet having superior corrosion resistance
JP4303074B2 (en) * 2002-09-30 2009-07-29 株式会社三徳 Manufacturing method of raw material alloy for rare earth sintered magnet
JP4534553B2 (en) * 2004-03-30 2010-09-01 Tdk株式会社 R-T-B system sintered magnet and manufacturing method thereof
JP2005286174A (en) * 2004-03-30 2005-10-13 Tdk Corp R-t-b-based sintered magnet
JP2005286173A (en) * 2004-03-30 2005-10-13 Tdk Corp R-t-b based sintered magnet
JP2006100434A (en) * 2004-09-28 2006-04-13 Tdk Corp Method of manufacturing r-t-b based rare earth permanent magnet
JP4548127B2 (en) * 2005-01-26 2010-09-22 Tdk株式会社 R-T-B sintered magnet
JP4748163B2 (en) * 2005-04-15 2011-08-17 日立金属株式会社 Rare earth sintered magnet and manufacturing method thereof
JP4656323B2 (en) * 2006-04-14 2011-03-23 信越化学工業株式会社 Method for producing rare earth permanent magnet material
WO2008032667A1 (en) * 2006-09-14 2008-03-20 Ulvac, Inc. Permanent magnet and process for producing the same
JP4482769B2 (en) * 2007-03-16 2010-06-16 信越化学工業株式会社 Rare earth permanent magnet and manufacturing method thereof
EP2172947B1 (en) * 2007-06-29 2020-01-22 TDK Corporation Rare earth magnet
JP5245682B2 (en) * 2007-09-28 2013-07-24 Tdk株式会社 Rare earth magnet and manufacturing method thereof
JP4672030B2 (en) * 2008-01-31 2011-04-20 日立オートモティブシステムズ株式会社 Sintered magnet and rotating machine using the same
JP2010022147A (en) * 2008-07-11 2010-01-28 Hitachi Ltd Sintered magnet motor

Also Published As

Publication number Publication date
JP2011199180A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5293662B2 (en) Rare earth magnet and rotating machine
US10395822B2 (en) Rare-earth magnet, method of manufacturing rare-earth magnet, and rotator
US9350203B2 (en) Rare earth sintered magnet, method for producing the same, motor, and automobile
EP2797086B1 (en) R-T-B Rare earth sintered magnet and method of manufacturing the same
JP5408340B2 (en) Rare earth sintered magnet and method for manufacturing the same, motor and automobile
JP2008061333A (en) Permanent magnet rotating machine
JP2005175138A (en) Heat-resisting rare earth magnet and its manufacturing method
JP2017076680A (en) R-t-b based sintered magnet, and motor
JP2020095989A (en) Rare earth magnet and rotary machine
EP2623235B1 (en) Alloy material for r-t-b system rare earth permanent magnet, method for producing r-t-b system rare earth permanent magnet
JP4919109B2 (en) Permanent magnet rotating machine and method for manufacturing permanent magnet segment for permanent magnet rotating machine
JP5471678B2 (en) Rare earth magnet and rotating machine
JP6506182B2 (en) Rare earth-containing alloy flakes, method for producing the same and sintered magnet
JP2012074470A (en) Rare earth magnet, method for manufacturing rare earth magnet, and rotary machine
JP2020095990A (en) Rare earth magnet and rotary machine
JP2020095992A (en) Sintered magnet and rotary machine
JP5348110B2 (en) Rare earth magnet, rare earth magnet manufacturing method and rotating machine
JP2012057182A (en) Alloy material for r-t-b-based rare-earth permanent magnet, method for producing r-t-b-based rare-earth permanent magnet, and motor
JP2019176011A (en) R-t-b based sintered magnet
JP5885907B2 (en) Rare earth sintered magnet and method for manufacturing the same, motor and automobile
JP5348109B2 (en) Rare earth magnet, rare earth magnet manufacturing method and rotating machine
JP4415683B2 (en) Manufacturing method of rare earth sintered magnet
US11522420B2 (en) Method of producing motor core
JP5012942B2 (en) Rare earth sintered magnet, manufacturing method thereof, and rotating machine
JP2011019401A (en) Method of manufacturing permanent magnet segment for permanent magnet rotating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121025

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130130

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Ref document number: 5293662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150