JP7251053B2 - RFeB magnet and method for manufacturing RFeB magnet - Google Patents

RFeB magnet and method for manufacturing RFeB magnet Download PDF

Info

Publication number
JP7251053B2
JP7251053B2 JP2018092254A JP2018092254A JP7251053B2 JP 7251053 B2 JP7251053 B2 JP 7251053B2 JP 2018092254 A JP2018092254 A JP 2018092254A JP 2018092254 A JP2018092254 A JP 2018092254A JP 7251053 B2 JP7251053 B2 JP 7251053B2
Authority
JP
Japan
Prior art keywords
rfeb
magnet
content
rare earth
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018092254A
Other languages
Japanese (ja)
Other versions
JP2019009421A (en
Inventor
純平 日南田
早人 橋野
史弥 北西
和也 五味
和正 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to US16/017,691 priority Critical patent/US11328845B2/en
Priority to EP18179916.4A priority patent/EP3425643B1/en
Priority to CN201810681773.9A priority patent/CN109148069B/en
Publication of JP2019009421A publication Critical patent/JP2019009421A/en
Application granted granted Critical
Publication of JP7251053B2 publication Critical patent/JP7251053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、R(希土類元素)、Fe(鉄)及びB(硼素)を含有するRFeB系磁石の製造方法に関する。ここで「希土類元素」は周期表3A族に属する17種の元素の総称であるが、本発明ではそれら17種の元素のうち、Nd(ネオジム)及びPr(プラセオジム)の2種の元素を総称した軽希土類元素RL、並びにTb(テルビウム), Dy(ジスプロシウム)及びHo(ホルミウム)の3種の元素を総称した重希土類元素RHを対象とする。本発明は特に、軽希土類元素RL、Fe及びBを含有するRLFeB系合金の粉末から成る原料粉末中の結晶粒を磁界中で配向した後に焼結したRLFeB系焼結磁石や、同様の原料粉末に対して熱間プレス加工を行った後に熱間塑性加工を行うことで原料粉末中の結晶粒を配向したRLFeB系熱間塑性加工磁石(非特許文献1参照)から成る基材内に、重希土類元素RHの原子を拡散させる処理(粒界拡散処理)がなされたRFeB系磁石、及びRFeB系磁石の製造方法に関する。 The present invention relates to a method for producing an RFeB magnet containing R (rare earth element), Fe (iron) and B (boron). Here, "rare earth element" is a generic term for 17 elements belonging to Group 3A of the periodic table. light rare earth elements R L , and heavy rare earth elements R H , which collectively refer to the three elements of Tb (terbium), Dy (dysprosium) and Ho (holmium). The present invention particularly provides an RL FeB sintered magnet obtained by sintering after orienting crystal grains in a raw material powder of an RL FeB alloy powder containing light rare earth elements RL , Fe, and B in a magnetic field. , from a RL FeB-based hot plastically worked magnet (see Non-Patent Document 1) in which the crystal grains in the raw material powder are oriented by performing hot plastic working after performing hot press working on a similar raw material powder The present invention relates to an RFeB-based magnet that has undergone a treatment (grain boundary diffusion treatment) for diffusing atoms of a heavy rare earth element RH in a base material, and a method for manufacturing an RFeB-based magnet.

RFeB系磁石は、1982年に佐川眞人らによって見出されたものであり、残留磁束密度等の多くの磁気特性がそれまでの永久磁石よりもはるかに高いという特長を有する。そのため、RFeB系磁石はハイブリッド自動車や電気自動車の駆動用モータ、電動補助型自転車用モータ、産業用モータ、ハードディスク等のボイスコイルモータ、スピーカー、ヘッドホン、永久磁石式磁気共鳴診断装置等、様々な製品に使用されている。 RFeB-based magnets were discovered by Masato Sagawa et al. Therefore, RFeB magnets are used in various products such as drive motors for hybrid and electric vehicles, motors for electrically assisted bicycles, industrial motors, voice coil motors such as hard disks, speakers, headphones, and permanent magnet magnetic resonance diagnostic equipment. used for

初期のRFeB系磁石は種々の磁気特性のうち保磁力HcJが比較的低いという欠点を有していたが、その後、RFeB系磁石の内部に重希土類元素RHを存在させることにより、保磁力が向上することが明らかになった。保磁力は磁化の向きとは逆向きの磁界が磁石に印加されたときに磁化が反転することに耐える力であるが、重希土類元素RHはこの磁化反転を妨げることにより、保磁力を増大させる効果を持つと考えられている。 Early RFeB magnets had a drawback of relatively low coercive force H cJ among various magnetic properties. was found to improve. Coercive force is the force that can withstand reversal of magnetization when a magnetic field is applied to the magnet in the direction opposite to the direction of magnetization. It is thought to have the effect of

一方、RFeB系磁石中の重希土類元素RHの含有量が増加すると、残留磁束密度Brが低下し、それにより最大エネルギー積(BH)maxも低下する、という問題が生じる。また、重希土類元素RHが資源として高価・希少であり、且つ産出される地域が偏在していることから、RFeB系磁石を安価且つ安定的に市場に供給するという点からも、重希土類元素RHの含有量を増加させることは望ましくない。 On the other hand, when the content of the heavy rare earth element RH in the RFeB magnet increases, there arises a problem that the remanent magnetic flux density Br decreases and the maximum energy product (BH) max also decreases. In addition, the heavy rare earth element RH is expensive and rare as a resource, and the areas where it is produced are unevenly distributed. It is undesirable to increase the content of RH .

そこで、重希土類元素RHの含有量を抑えつつ、保磁力を高くするために、粒界拡散処理が行われている(例えば特許文献1、2参照)。粒界拡散処理では、希土類元素として軽希土類元素RLを含有するRLFeB系焼結磁石又はRLFeB系熱間塑性加工磁石の表面に、重希土類元素RHを含有するRH含有物を付着させたうえで加熱することにより、粒界を通して重希土類元素RHの原子を磁石の内部まで侵入させ、各結晶粒内のうち表面近傍のみに重希土類元素RHを拡散させる。以下、粒界拡散処理を行う前のRLFeB系焼結磁石又はRLFeB系熱間塑性加工磁石を「基材」と呼ぶ。保磁力の低下は、磁化反転が結晶粒内のうち表面近傍で生じた後に結晶粒全体に拡がってゆくことで生じることから、このように結晶粒内のうち表面近傍における重希土類元素RHの濃度を高くすることによって磁化反転を抑え、保磁力を高くすることができる。一方、重希土類元素RHは各結晶粒の表面(粒界)近傍のみに偏在するため、全体としての含有量を抑えることができ、それにより残留磁束密度及び最大エネルギー積の低下を抑えることができると共に、RFeB系磁石を安価且つ安定的に市場に供給することができる。 Therefore, grain boundary diffusion treatment is performed in order to increase the coercive force while suppressing the content of the heavy rare earth element RH (see Patent Documents 1 and 2, for example). In the grain boundary diffusion treatment, on the surface of the R L FeB system sintered magnet containing the light rare earth element R L as a rare earth element or the R L FeB system hot plastic deformation magnet, the R H containing material containing the heavy rare earth element R H are adhered and then heated, the atoms of the heavy rare earth element RH penetrate into the interior of the magnet through the grain boundaries, and the heavy rare earth element RH is diffused only in the vicinity of the surface of each crystal grain. Hereinafter, the R L FeB system sintered magnet or the R L FeB system hot plastically worked magnet before the grain boundary diffusion treatment is referred to as a "base material". The decrease in coercive force occurs when magnetization reversal occurs in the crystal grains near the surface and then spreads throughout the crystal grains . By increasing the concentration, magnetization reversal can be suppressed and the coercive force can be increased. On the other hand, since the heavy rare earth element RH is unevenly distributed only in the vicinity of the surface (grain boundary) of each crystal grain, it is possible to suppress the content as a whole, thereby suppressing the decrease in residual magnetic flux density and maximum energy product. In addition, RFeB magnets can be stably supplied to the market at low cost.

特開2011-159983号公報JP 2011-159983 A 国際公開WO2014/148353号International publication WO2014/148353 特開2006-019521号公報Japanese Patent Application Laid-Open No. 2006-019521

日置敬子、服部篤 著、「超急冷粉末を原料とした省Dy型Nd-Fe-B系熱間加工磁石の開発」、素形材 第52巻第8号第19~24頁、一般財団法人素形材センター、2011年8月発行Keiko Hioki, Atsushi Hattori, "Development of Dy-saving Nd-Fe-B system hot-worked magnets made from ultra-quenched powder", Sokeizai Vol.52, No.8, pp.19-24, General Incorporated Foundation Sokeizai Center, published in August 2011 L.G. Zhang 他6名、"Thermodynamic assessment of Al-Cu-Dy system"(Al-Cu-Dy系の熱力学的評価)、Journal of Alloys and Compounds、Elsevier社、(オランダ)、第480巻、第403-408頁、2009年7月8日L.G. Zhang et al., "Thermodynamic assessment of Al-Cu-Dy system", Journal of Alloys and Compounds, Elsevier, (Netherlands), 480, 403 -408 pages, July 8, 2009

特許文献1に記載の発明では、基材の表面に付着させる材料として、1種又は複数種の重希土類元素RHと他の1種又は複数種の金属元素Mから成る種々の合金が列挙されている。同文献には、この合金中の重希土類元素RHの質量に対する他の金属元素Mの質量の比(「M/RH比」とする)は、1/100~5/1(1~500%)とすることが望ましく、1/20~2/1(5~200%)とすることがより望ましい、と記載されている。しかし、M/RH比が数%の場合と数百%の場合では、基材の粒界を通して内部の結晶粒の表面近傍に到達する重希土類元素RHの量が全く異なる。さらに、特許文献1には、RH含有物中の金属元素が粒界に拡散することによって、粒界中に存在する、結晶粒よりも希土類元素の含有率が高い希土類リッチ相が溶融し易くなり、重希土類元素RHを粒界に拡散させやすくなると記載されているが、この粒界中の希土類リッチ相の溶融のしやすさは、RH含有物のM/RH比や金属元素Mの種類によって異なる。このように、内部の結晶粒の表面近傍に到達する重希土類元素RHの量は、単にM/RH比の大小だけではなく複雑な要因で定まるため、特許文献1に記載の要件では、他のRH含有物を用いた場合よりも保磁力を増加させることができるとは限らない。 In the invention described in Patent Document 1, various alloys composed of one or more heavy rare earth elements RH and one or more other metal elements M are listed as materials to be attached to the surface of the substrate. ing. In the same document, the ratio of the mass of the other metal element M to the mass of the heavy rare earth element RH in this alloy (referred to as "M/R H ratio") is 1/100 to 5/1 (1 to 500 %), and more preferably 1/20 to 2/1 (5 to 200%). However, when the M/R H ratio is several percent and when it is several hundred percent, the amount of the heavy rare earth element R H reaching the vicinity of the surface of the inner crystal grain through the grain boundary of the base material is completely different. Furthermore, in Patent Document 1, the metal element in the RH- containing material diffuses to the grain boundary, so that the rare earth-rich phase, which has a higher rare earth element content than the crystal grains, is easily melted. It is described that the heavy rare earth element R H is easily diffused into the grain boundary, but the ease of melting of the rare earth rich phase in the grain boundary depends on the M/R H ratio of the R H inclusion and the metal element It depends on the type of M. In this way, the amount of the heavy rare earth element R H that reaches the vicinity of the surface of the inner crystal grain is determined not only by the magnitude of the M/R H ratio but also by complex factors. It is not always possible to increase the coercive force over other RH inclusions.

一方、特許文献2には、基材の表面に付着させるRH含有物の材料として、RH、Ni及びAlを質量比で約92:4:4で含有するRHNiAl合金を使用することが記載されている。Ni及びAlを用いる理由は、これらの元素には希土類リッチ相の融点を低下させる作用により、粒界拡散処理時に粒界中の希土類リッチ相が融解するため、該粒界を通して重希土類元素RHを基材内に拡散させやすくすることができることにある。しかし、RHNiAl合金が粒界拡散処理に用いるRH含有物に最適な材料であるとは限らず、より適した材料が求められている。 On the other hand, in Patent Document 2, an RH NiAl alloy containing RH , Ni and Al at a mass ratio of about 92:4:4 is used as a material for the RH inclusion attached to the surface of the base material. is described. The reason for using Ni and Al is that these elements have the effect of lowering the melting point of the rare earth-rich phase, and the rare earth-rich phase in the grain boundary melts during the grain boundary diffusion treatment, so the heavy rare earth element RH can be easily diffused into the base material. However, the R H NiAl alloy is not necessarily the most suitable material for the R H inclusion used in the grain boundary diffusion treatment, and a more suitable material is desired.

本発明が解決しようとする課題は、従来よりも適した材料から成るRH含有物を用いて効率よく粒界拡散処理を行うことができ、それにより確実に、保磁力が高いRFeB系磁石及び該RFeB系磁石を製造する方法を提供することである。 The problem to be solved by the present invention is that it is possible to efficiently perform grain boundary diffusion treatment using RH- containing materials made of materials more suitable than conventional ones, thereby reliably producing RFeB magnets with high coercive force and An object of the present invention is to provide a method for manufacturing the RFeB magnet.

上記課題を解決するために成された本発明に係るRFeB系磁石の製造方法は、
1種又は複数種の重希土類元素RHから成る含有重希土類RC H、Cu及びAlから成り、RC H、Cu及びAlを頂点とする三元組成図における8点の座標(RC H at%, Cuat%, Alat%)=(50, 40, 10)、(58, 30, 12)、(58, 20, 22)、(48, 20, 32)、(33, 24, 43)、(17, 50, 33)、(17, 60, 23)及び(33, 58, 9)を頂点とする八角形内又は該八角形の辺上の点で表される組成を有するRHCuAl合金を含有する付着物を準備する付着物準備工程と、
前記付着物を、1種又は2種の軽希土類元素RLから成る含有軽希土類RC L、Fe及びBを含有するRLFeB系焼結磁石体又はRLFeB系熱間塑性加工磁石体から成る基材の表面に付着させる付着物付着工程と、
前記付着物を付着させた前記基材を、該付着物内の含有重希土類RC Hの原子が該基材の粒界を通して該基材内に拡散する所定温度に加熱する加熱工程と
を有することを特徴とする。
A method for manufacturing an RFeB magnet according to the present invention, which has been made to solve the above problems, comprises:
Containing heavy rare earth elements R C H consisting of one or more heavy rare earth elements R H , consisting of Cu and Al , the coordinates of eight points (R C H at% , Cu at% , Al at% )=(50, 40, 10), (58, 30, 12), (58, 20, 22), (48, 20, 32), (33, 24, 43 ), (17, 50, 33), (17, 60, 23) and (33, 58, 9) with RH having a composition represented by points within or on the sides of the octagon a deposit preparation step of preparing a deposit containing a CuAl alloy;
RL FeB system sintered magnet body containing light rare earth elements RCL , Fe and B or RL FeB system hot plastic working magnet body A deposit attaching step of attaching to the surface of the substrate consisting of
a heating step of heating the substrate to which the deposit is attached to a predetermined temperature at which the atoms of the heavy rare earth element R C H contained in the deposit diffuse into the substrate through the grain boundaries of the substrate. It is characterized by

前記RHCuAl合金は、前記三元組成図における6点の座標(RC H at%, Cuat%, Alat%)=(50, 40, 10)、(50, 32, 18)、(33, 24, 43)、(17, 50, 33)、(17, 60, 23)及び(33, 58, 9)を頂点とする六角形内又は該六角形の辺上の点で表される組成を有することが好ましい。 The RH CuAl alloy has six coordinates (R CH at% , Cu at% , Al at% ) = (50, 40, 10), (50, 32, 18), ( 33, 24, 43), (17, 50, 33), (17, 60, 23) and (33, 58, 9) as points within or on the sides of the hexagon It is preferred to have the composition

本発明に係るRFeB系磁石の製造方法では、特許文献2に記載のRHNiAl合金におけるNiの代わりにCuを用いたRHCuAl合金を用いる。ここでRHCuAl合金に含まれる含有重希土類RC Hは、1種又は複数種の重希土類元素RH、すなわちTb, Dy及びHoのうちの1種、2種又は3種の元素である。また、特許文献2のRHNiAl合金ではNiの含有率が約4質量%、すなわち約9原子%であるのに対して、このRHCuAl合金では、Cuの含有率は最低でも20原子%である。このような特許文献2のRHNiAl合金との相違を有するRHCuAl合金を含有する付着物(RHCuAl合金含有物)を用いることにより、RLFeB系焼結磁石体又はRLFeB系熱間塑性加工磁石体から成る基材の粒界が溶融し易くなる。これにより、RHCuAl合金に含まれる含有重希土類RC Hの原子をより効率的に結晶粒の表面近傍に到達させることができ、残留磁束密度及び最大エネルギー積の低下を抑えつつ保磁力が高いRFeB系焼結磁石やRFeB系熱間塑性加工磁石を得ることができる。 In the method for producing an RFeB magnet according to the present invention, an RH CuAl alloy is used in which Cu is used instead of Ni in the RH NiAl alloy described in Patent Document 2. Here, the included heavy rare earth element R CH contained in the RH CuAl alloy is one or more heavy rare earth elements RH , i.e. one, two or three of Tb, Dy and Ho. . In addition, in the RH NiAl alloy of Patent Document 2, the Ni content is about 4% by mass, that is, about 9 atomic%, whereas in this RH CuAl alloy, the Cu content is at least 20 atomic%. is. By using such deposits containing RH CuAl alloys ( RH CuAl alloy-containing materials) that are different from the RH NiAl alloys of Patent Document 2, R L FeB -based sintered magnet bodies or R L FeB The grain boundaries of the base material made of the hot plastically worked magnet body are easily melted. As a result, the atoms of the heavy rare earth element R C H contained in the R H CuAl alloy can more efficiently reach the vicinity of the surface of the crystal grain, and the coercive force can be increased while suppressing the decrease in the residual magnetic flux density and the maximum energy product. A high quality RFeB system sintered magnet and RFeB system hot plastic working magnet can be obtained.

一方、RHCuAl合金中では一般に、RH、Cu及びAlの組成比が異なる複数種のRHCuAl相(RHCuAl、RHCu4Al8、RH 2Cu17Al17、RHCu5Al5、RHCuAl3、RH 4Cu4Al11、RHCu3Al3等)や、Alを含有しないRHCu相、あるいはCuを含有しないRHAl相が混合した状態となる。そして、RHCuAl合金全体におけるRH、Cu及びAlの含有率により、それらの各相のうちのどの相が含まれるかが定まる。RFeB系焼結磁石やRFeB系熱間塑性加工磁石の保磁力を高くするためには、上記の各RHCuAl相のうちRHの組成比が最も高いRHCuAl相(RH、Cu、Alが1:1:1)が含まれていることが望ましい。そこで、RHCuAl相が含まれる合金である、三元組成図において6点の座標(RC H at%, Cuat%, Alat%)=(50, 40, 10)、(50, 32, 18)、(33, 24, 43)、(17, 50, 33)、(17, 60, 23)及び(33, 58, 9)を頂点とする六角形内又は該六角形の辺上の点で表される組成を有するRHCuAl合金(非特許文献2参照)を用いることが望ましい。 On the other hand, in RH CuAl alloys, there are generally multiple types of RH CuAl phases with different composition ratios of RH , Cu and Al ( RH CuAl , RH Cu4Al8 , RH2Cu17Al17 , RH Cu5Al5 , RH CuAl3 , RH4Cu4Al11 , RHCu3Al3 , etc. ) , Al-free RH Cu phase , or Cu-free RH Al phase mixed becomes. The contents of RH , Cu and Al in the RH CuAl alloy as a whole determine which of these phases are included. In order to increase the coercive force of RFeB sintered magnets and RFeB hot plastically deformed magnets, the RH CuAl phase ( RH , Cu, Al is 1:1:1) is preferably included. Therefore, the coordinates of six points in the ternary composition diagram (R CH at% , Cu at% , Al at% ) = ( 50, 40, 10), (50, 32 , 18), (33, 24, 43), (17, 50, 33), (17, 60, 23) and (33, 58, 9) in or on the sides of the hexagon It is desirable to use an R H CuAl alloy (see Non-Patent Document 2) having a composition represented by a point.

さらに、本発明者が実験を行ったところ、RH、Cu、Alの三元組成図において前記六角形に接する領域である、座標(RC H at%, Cuat%, Alat%)=(50, 40, 10)、(58, 30, 12)、(58, 20, 22)、(48, 20, 32)、(33, 24, 43)及び(50, 32, 18)を頂点(うち、(50, 40, 10)、(33, 24, 43)及び(50, 32, 18)は前記六角形の頂点と共通)とする第2の六角形内又は該第2の六角形の辺上の点で表される組成を有するRHCuAl合金を用いる場合にも同様の効果を奏することが確認された。従って、これら六角形及び第2の六角形を合わせた領域である前記八角形内又は該八角形の辺上の点で表される組成を有するRHCuAl合金を含有する付着物を用いて粒界拡散処理を行うことにより、残留磁束密度及び最大エネルギー積の低下を抑えつつ保磁力が高いRFeB系焼結磁石やRFeB系熱間塑性加工磁石を得ることができる。 Furthermore, according to experiments conducted by the present inventors, coordinates (R CH at% , Cu at% , Al at% ) = (50, 40, 10), (58, 30, 12), (58, 20, 22), (48, 20, 32), (33, 24, 43) and (50, 32, 18) are vertices ( Among them, (50, 40, 10), (33, 24, 43) and (50, 32, 18) are common with the vertices of the hexagon) within the second hexagon or in the second hexagon It was confirmed that the same effect is obtained when using the R H CuAl alloy having the composition represented by the points on the side. Therefore, a deposit containing a R H CuAl alloy having a composition represented by a point within or on a side of the octagon, which is the area of the combined hexagon and the second hexagon, can be used to obtain grains. By performing the field diffusion treatment, it is possible to obtain an RFeB-based sintered magnet or an RFeB-based hot plastically worked magnet having high coercive force while suppressing a decrease in residual magnetic flux density and maximum energy product.

また、本発明に係るRFeB系磁石の製造方法により、RFeB系焼結磁石やRFeB系熱間塑性加工磁石の粒界にCuが拡散することで、RHNiAl合金を使用した場合よりもRFeB系磁石の耐食性が向上するという効果も奏する。 Further, according to the method for producing an RFeB magnet according to the present invention, Cu is diffused into the grain boundaries of the RFeB sintered magnet and the RFeB hot plastically worked magnet, so that the RFeB magnet is more effective than the case where the RH NiAl alloy is used. It also has the effect of improving the corrosion resistance of the magnet.

本発明に係るRFeB系磁石の製造方法により、以下の構成を有するRFeB系磁石が得られる。本発明に係るRFeB系磁石は、1種又は2種の軽希土類元素RLから成る含有軽希土類RC L、1種又は複数種の重希土類元素RHから成る含有重希土類RC H、Fe及びBを含有し、略平行に対向する2つの表面を有するRFeB系焼結磁石又はRFeB系熱間塑性加工磁石であって、
含有重希土類RC Hの含有率が結晶粒の粒内よりも粒界においてより高く、
前記RFeB系磁石内の前記2つの表面から等距離にある面内において、粒界における含有重希土類RC Hの含有率が0.40~1.25質量%、Cuの含有率が3.9~14.0質量%、Alの含有率が0.09~1.00質量%
であることを特徴とする。
An RFeB magnet having the following configuration is obtained by the method for manufacturing an RFeB magnet according to the present invention. The RFeB-based magnet according to the present invention includes a light rare earth element R C L composed of one or two light rare earth elements R L , a heavy rare earth element R C H composed of one or more heavy rare earth elements R H , Fe An RFeB-based sintered magnet or an RFeB-based hot plastically worked magnet containing two surfaces substantially parallel to each other and containing B and B,
the content of the contained heavy rare earth R C H is higher at the grain boundaries than in the grains of the crystal grains,
In the plane equidistant from the two surfaces in the RFeB magnet, the content of heavy rare earth elements R C at grain boundaries is 0.40 to 1.25% by mass, the content of Cu is 3.9 to 14.0 % by mass, and Al The content of 0.09 to 1.00% by mass
It is characterized by

なお、本発明に係るRFeB系磁石の製造方法のRHCuAl合金におけるRC H、Cu及びAlの含有率は原子百分率で示したが、本発明に係るRFeB系磁石の粒界におけるRC H、Cu及びAlの含有率は実測値に基づいて質量百分率で示した。粒界には、RHCuAl合金に由来するRC H、Cu及びAlの他に、基材の粒界に存在していたRC L、Fe、B等が含まれている。 The contents of R C H , Cu, and Al in the R H CuAl alloy in the method for producing an RFeB magnet according to the present invention are shown in terms of atomic percentages, but R C H at the grain boundaries of the RFeB magnet according to the present invention , Cu and Al are shown in mass percentage based on actual measurements. The grain boundaries contain R C H , Cu, and Al derived from the R H CuAl alloy, as well as R C L , Fe, B, etc. that existed at the grain boundaries of the base material.

保磁力は、粒界における含有重希土類RC Hの含有率が比較的小さい範囲内では該含有率が大きくなるほど高くなる。しかし、後述の実測値によれば、略平行に対向する2つの表面を有する基材のそれら表面に前記付着物を付着させたうえで粒界拡散処理を行った場合に、RFeB系磁石内の該2つの表面から等距離にある面内において、含有重希土類RC Hの含有率が1.25質量%を超えると、該含有率を大きくしても保磁力が高くならない。従って、粒界における含有重希土類RC Hの含有率が1.25質量%を超えても含有重希土類RC Hが無駄となる。そのため、本発明に係るRFeB系磁石では粒界における含有重希土類RC Hの含有率の上限値を1.25質量%とした。一方、粒界における含有重希土類RC Hの含有率が0.40を下回ると十分な保磁力を得ることができないため、本発明に係るRFeB系磁石では粒界における含有重希土類RC Hの含有率の下限値を0.40質量%とした。粒界におけるCu及びAlの含有率の範囲は、本発明に係るRFeB系磁石の製造方法で規定した範囲内の組成を有するRHCuAl合金を使用して、粒界における含有重希土類RC Hの含有率が0.40~1.25質量%となるように粒界拡散処理を行った場合に、Cu及びAlの粒界における含有率を実測することにより求めた。 The coercive force increases as the content of the heavy rare earth element R CH in the grain boundaries increases within a relatively small range. However, according to the measured values described later, when a base material having two surfaces facing substantially parallel to each other is subjected to a grain boundary diffusion treatment after attaching the deposits to those surfaces, the inside of the RFeB magnet If the content of the heavy rare earth element R CH exceeds 1.25% by mass in a plane equidistant from the two surfaces, the coercive force does not increase even if the content is increased. Therefore, even if the content of the heavy rare earth elements R C H at the grain boundaries exceeds 1.25% by mass, the heavy rare earth elements R C H are wasted. Therefore, in the RFeB magnet according to the present invention, the upper limit of the content of the heavy rare earth element R CH in the grain boundary is set to 1.25% by mass. On the other hand, if the content of the heavy rare earth elements R C H at the grain boundaries is less than 0.40, sufficient coercive force cannot be obtained. The lower limit of is set to 0.40% by mass. The range of the content of Cu and Al at the grain boundary is determined by using the R H CuAl alloy having a composition within the range specified in the method for producing an RFeB magnet according to the present invention, and the heavy rare earth R C H It was found by actually measuring the contents of Cu and Al at grain boundaries when the grain boundary diffusion treatment was performed so that the content of Cu and Al was 0.40 to 1.25% by mass.

保磁力をさらに高くする必要があり、且つ残留磁束密度の値がやや低下することが許容される場合には、基材に重希土類元素RHを含有させることがある。本発明に係るRFeB系磁石の製造方法において用いる基材が重希土類元素RHを含有する場合には、それによって製造されるRFeB系磁石では、粒界における含有重希土類RC Hの含有率と共に、結晶粒内においても含有重希土類RC Hの含有率が0ではない値を有する。このように重希土類元素RHを含有し、略平行に対向する2つの表面を有する基材のそれら表面に前記付着物を付着させたうえで粒界拡散処理を行った場合には、RFeB系磁石内の該2つの表面から等距離にある面内において、粒界における含有重希土類RC Hの含有率から結晶粒内における含有重希土類RC Hの含有率を減じた値が、0.40~1.25質量%となる。一方、Cu及びAlは、基材に含有させる量は微量である。そのため、本発明に係る方法で基材に重希土類元素RHを含有させて製造されるRFeB系磁石における前記面内での粒界中のCu及びAlの含有量は、上記と同様にCuでは3.9~14.0質量%、Alでは0.09~1.00質量%となる。 If it is necessary to further increase the coercive force and a slight decrease in the residual magnetic flux density is acceptable, the base material may contain a heavy rare earth element RH . When the base material used in the method for producing an RFeB magnet according to the present invention contains the heavy rare earth element R H , in the RFeB magnet produced thereby, the content of the heavy rare earth element R C at the grain boundaries and , the content of the heavy rare earth element R C H is not 0 even in the crystal grains. In this way, when a substrate containing a heavy rare earth element RH and having two surfaces facing substantially parallel to each other is subjected to a grain boundary diffusion treatment after the deposit is attached to the surfaces, the RFeB system In a plane equidistant from the two surfaces in the magnet, the value obtained by subtracting the content of the heavy rare earth R C H contained in the grain from the content of the heavy rare earth R C H contained in the grain boundary is 0.40 to 1.25% by mass. On the other hand, the amounts of Cu and Al contained in the base material are very small. Therefore, the content of Cu and Al in the grain boundaries in the plane of the RFeB magnet manufactured by adding the heavy rare earth element RH to the base material by the method according to the present invention is 3.9 to 14.0% by mass, and 0.09 to 1.00% by mass for Al.

本発明により、従来よりも適した材料から成るRH含有物を用いて効率よく粒界拡散処理を行うことができ、それにより確実に残留磁束密度及び最大エネルギー積の低下を抑えつつ保磁力が高いRFeB系磁石、及びRFeB系磁石の製造方法が得られる。 According to the present invention, the grain boundary diffusion treatment can be efficiently performed using the RH- containing material made of a material more suitable than the conventional one. A high RFeB magnet and a method for manufacturing the RFeB magnet are obtained.

本発明に係るRFeB系磁石の製造方法において使用するRHCuAl合金の組成を示す三元組成図。FIG. 3 is a ternary composition diagram showing the composition of the R H CuAl alloy used in the method for producing an RFeB magnet according to the present invention. 本実施形態のRFeB系磁石の製造方法の工程を示す概略図。Schematic diagrams showing steps of a method for manufacturing an RFeB magnet according to the present embodiment. EPMA装置で得られた試料の像に基づいて、組成分析を行う箇所を指定した例を示す図。FIG. 4 is a diagram showing an example of designating a location for composition analysis based on an image of a sample obtained by an EPMA apparatus; 本実施例のRFeB系磁石の製造方法で作製したRFeB系磁石につき、保磁力iHcを測定した結果を示すグラフ。4 is a graph showing the results of measuring the coercive force iHc of the RFeB-based magnet produced by the RFeB-based magnet manufacturing method of the present example. 本実施例のRFeB系磁石の製造方法で作製したRFeB系磁石につき、粒界中のTbの含有率を測定した結果を示すグラフ。4 is a graph showing the results of measuring the content of Tb in the grain boundaries of the RFeB-based magnet produced by the RFeB-based magnet manufacturing method of the present example. 本発明に係るRFeB系磁石の製造方法において使用する、他のRHCuAl合金の組成を示す三元組成図。FIG. 3 is a ternary composition diagram showing the composition of another R H CuAl alloy used in the method for producing an RFeB magnet according to the present invention. 本実施例及び比較例のRFeB系磁石につき、耐食性試験を行った結果を示すグラフ。4 is a graph showing the results of a corrosion resistance test performed on the RFeB magnets of Examples and Comparative Examples.

図1~図7を用いて、本発明に係るRFeB系磁石及びその製造方法の実施形態を説明する。 An embodiment of an RFeB magnet and a method for manufacturing the same according to the present invention will be described with reference to FIGS. 1 to 7. FIG.

(1) 本発明に係るRFeB系磁石の製造方法の実施形態
(1-1) 基材
本実施形態のRFeB系磁石の製造方法において使用する基材は、1種又は2種の軽希土類元素RL、すなわちNd又は/及びPr、Fe並びにBを含有するRLFeB系焼結磁石体又はRLFeB系熱間塑性加工磁石体から成る。このうちRLFeB系焼結磁石体は、原料のRLFeB系合金粉末を磁界により配向させながらプレス成形を行った後に焼結するプレス法で作製してもよいし、特許文献3に記載のようにRLFeB系合金粉末をプレス成形することなくモールド中で磁界により配向させたうえでそのまま焼結するPLP(Press-less process)法で作製してもよい。保磁力をより高くすることができるという点、及び機械加工をすることなく複雑な形状のRLFeB系焼結磁石体を作製することができるという点で、PLP法の方が好ましい。RLFeB系熱間塑性加工磁石体は、非特許文献1に記載の方法で作製することができる。
(1) Embodiment of RFeB magnet manufacturing method according to the present invention
(1-1) Substrate The substrate used in the method for producing an RFeB magnet according to the present embodiment is R containing one or two light rare earth elements R L , that is, Nd or/and Pr, Fe and B. It consists of an L FeB based sintered magnet or an R L FeB based hot plastically worked magnet. Of these, the RL FeB-based sintered magnet body may be produced by a press method in which the raw material RL FeB-based alloy powder is sintered after being press-molded while being oriented by a magnetic field. As in (1) above, a PLP (Press-less process) method may be used in which the RL FeB-based alloy powder is oriented by a magnetic field in a mold without being press-molded and then sintered as it is. The PLP method is preferable in that the coercive force can be increased and that an RL FeB based sintered magnet body having a complicated shape can be produced without machining. The R L FeB system hot plastically worked magnet body can be produced by the method described in Non-Patent Document 1.

(1-2) RHCuAl合金
図1に、本実施形態のRFeB系磁石の製造方法において使用するRHCuAl合金の組成を示す。この図は一般に、三元組成図と呼ばれる図であり、図中の1つの点は3種の元素RC H、Cu及びAlの含有率を示している。ここでRC Hは、Tb、Dy及びHoのいずれであってもよい。この図では、RC Hは1種類の元素(すなわちTb、Dy及びHoのうちのいずれか1種)を想定しているが、実際のRHCuAl合金では、Tb、Dy及びHoのうちの2種又は3種の元素の原子が混合していてもよい。
(1-2) RH CuAl alloy Fig. 1 shows the composition of the RH CuAl alloy used in the method for producing an RFeB magnet according to the present embodiment. This diagram is generally called a ternary composition diagram, and one point in the diagram indicates the content of the three elements R CH , Cu and Al. Here, R CH may be any of Tb, Dy and Ho. In this figure, R C H is assumed to be one type of element (that is, one of Tb, Dy and Ho), but in the actual R H CuAl alloy, Tb, Dy and Ho Atoms of two or three elements may be mixed.

RC Hの含有率は、図1中に「RC H」と記載した三角形の頂点が100原子%、該頂点の対辺が0原子%である。例えば図1中で、点3から該対辺に平行な直線を延ばして「RC Hの含有率」と記載した辺と交差するところの数値である「33」が、点3におけるRC Hの含有率が33原子%であることを示している。同様に、点3における、Cuの含有率は24原子%、Alの含有率は43原子%である。 The content of R CH is 100 atomic % at the vertex of the triangle indicated as "R CH " in FIG. 1 and 0 atomic % at the opposite side of the vertex. For example, in FIG. 1, a straight line extending from point 3 parallel to the opposite side and intersecting with the side indicated as "R CH content" is "33", which is the value of R CH at point 3. It shows that the content is 33 atomic %. Similarly, at point 3, the Cu content is 24 atomic % and the Al content is 43 atomic %.

図1中の点1~9におけるRC H、Cu及びAlの各原子の含有率は表1の通りである。表1には、原子含有率の他に、RC HがDyである場合及びTbである場合についてそれぞれ質量含有率を併せて示す。

Figure 0007251053000001
Table 1 shows the content of R C H , Cu and Al atoms at points 1 to 9 in FIG. In addition to the atomic content, Table 1 also shows the mass content when R CH is Dy and when R C H is Tb.
Figure 0007251053000001

本実施形態のRFeB系磁石の製造方法では、後述の粒界拡散処理において、図1に太実線で示した、点1~点6を頂点とする第1の六角形(同図中に左上から右下に向かう斜線を付して示したもの)内又は該六角形の辺上の点が示す、RC H、Cu及びAlの各原子の含有率を有するRHCuAl合金を用いることができる。このような含有率を有するRHCuAl合金では、他の相よりもRC Hの組成比が大きい三元系であるRHCuAl相(RC H、Cu、Alの組成比が1:1:1)が存在するため、RFeB系焼結磁石やRFeB系熱間塑性加工磁石の保磁力を高くすることができる。なお、ここで挙げたRHCuAl相が存在する範囲は、非特許文献2に示された573K(300℃)における三元組成図に基づいている。 In the method for producing an RFeB magnet according to the present embodiment, in the grain boundary diffusion treatment described later, a first hexagon (from the upper left in the figure) having points 1 to 6 as vertices indicated by a thick solid line in FIG. A R H CuAl alloy having the R C H , Cu and Al atom contents indicated by the dots in (shown with diagonal lines toward the lower right) or on the sides of the hexagon can be used. . In the R H CuAl alloy having such a content, the R H CuAl phase, which is a ternary system in which the composition ratio of R C H is larger than that of the other phases (the composition ratio of R C H , Cu, and Al is 1:1 :1) exists, so the coercive force of RFeB sintered magnets and RFeB hot plastically worked magnets can be increased. The range in which the R H CuAl phase exists is based on the ternary composition diagram at 573 K (300° C.) shown in Non-Patent Document 2.

また、本実施形態のRFeB系磁石の製造方法では、後述の粒界拡散処理において、図1に太破線で示した、点1、7、8、9、3、2を頂点とする第2の六角形(同図中に右上から左下に向かう斜線を付して示したもの)内又は該六角形の辺上の点が示す、RC H、Cu及びAlの各原子の含有率を有するRHCuAl合金を用いることもできる。これらの含有率を有するRHCuAl合金は、後述の実験によって、第1の六角形で含有率が示されたRHCuAl合金と同等の作用を奏することが示されたものである。 In addition, in the method for manufacturing an RFeB magnet of the present embodiment, in the grain boundary diffusion treatment to be described later, second grains indicated by the thick broken lines in FIG. R having a content of each atom of R CH , Cu and Al indicated by a point within a hexagon (hatched from upper right to lower left in the figure) or on a side of the hexagon H CuAl alloys can also be used. The RH CuAl alloys having these contents have been shown by experiments described later to have the same effect as the RH CuAl alloys whose contents are indicated by the first hexagons.

従って、本実施形態のRFeB系磁石の製造方法では、これら第1の六角形と第2の六角形を合わせた、点1、7、8、9、3、4、5、6を頂点とする八角形内又は該八角形の辺上の点が示す、RC H、Cu及びAlの各原子の含有率を有するRHCuAl合金を用いる。 Therefore, in the manufacturing method of the RFeB magnet of the present embodiment, points 1, 7, 8, 9, 3, 4, 5, and 6, which are the combination of the first hexagon and the second hexagon, are the vertices. An R H CuAl alloy is used having the R C H , Cu and Al atom contents indicated by the points within the octagon or on the sides of the octagon.

(1-3) 付着物(RHCuAl合金含有物)、付着物準備工程
本実施形態のRFeB系磁石の製造方法において使用する付着物は、上記RHCuAl合金を含有している。付着物は、RHCuAl合金の粉末や箔等、RHCuAl合金のみから成るものであってもよいが、以下のようにRHCuAl合金の粉末とそれ以外の物を混合したものであってもよい。RHCuAl合金の粉末と混合する物として、典型的には有機溶剤が挙げられる。有機溶剤を用いることにより、付着物を基材の表面に付着させ易くすることができる。有機溶剤のうち、特にシリコーングリースやシリコーンオイル、あるいはそれらを混合したものから成るシリコーン系の有機溶剤を好適に用いることができる。このようなシリコーン系の有機溶剤を用いることにより、基材への付着物の密着性がより高くなり、粒界拡散処理の際にRC Hの原子を基材の粒界に移動させやすくなるため、RFeB系磁石の保磁力をより一層高めることができる。シリコーングリースとシリコーンオイルを適宜の比で混合することにより、付着物の粘度を調整することができる。
(1-3) Deposits (R H CuAl Alloy Containing Matter), Deposit Preparing Step The deposits used in the method for manufacturing the RFeB magnet of the present embodiment contain the R H CuAl alloy. The deposit may consist of only RH CuAl alloy, such as RH CuAl alloy powder or foil, but should not be a mixture of RH CuAl alloy powder and other materials as described below. may An organic solvent is typically used as a substance to be mixed with the RH CuAl alloy powder. By using an organic solvent, it is possible to make the deposits adhere to the surface of the base material easily. Among organic solvents, silicone grease, silicone oil, or a silicone-based organic solvent composed of a mixture thereof can be preferably used. By using such a silicone-based organic solvent, the adherence to the substrate is enhanced, and the R CH atoms are easily moved to the grain boundary of the substrate during the grain boundary diffusion treatment . Therefore, the coercive force of the RFeB magnet can be further enhanced. By mixing silicone grease and silicone oil at an appropriate ratio, the viscosity of the deposit can be adjusted.

(1-4) 粒界拡散処理
以上のように用意した基材及び付着物を用いて、以下のように粒界拡散処理を行う。まず、基材11の表面に付着物12を付着させる(図2(a)、付着物(RHCuAl合金含有物)付着工程)。付着物12は、基材11の表面の全体に付着させてもよいし、該表面の一部にのみ付着させてもよい。例えば、板状の基材11の2つの板面に、シリコーン系の有機溶剤を混合した付着物12を塗布により付着させることができる。この場合、基材11の側面に付着物12は塗布しない。
(1-4) Grain Boundary Diffusion Treatment Grain boundary diffusion treatment is performed as follows using the base material and deposits prepared as described above. First, the deposit 12 is attached to the surface of the base material 11 (Fig. 2(a), deposit (R H CuAl alloy containing material) attaching step). The deposit 12 may be attached to the entire surface of the substrate 11 or may be attached only to a portion of the surface. For example, the deposit 12 mixed with a silicone-based organic solvent can be applied to two plate surfaces of the plate-like substrate 11 by coating. In this case, the adhering matter 12 is not applied to the side surface of the substrate 11 .

次に、付着物12が塗布された基材11を所定温度に加熱する(図2(b)、加熱工程)。ここで所定温度は、付着物12内の含有重希土類RC Hの原子が基材11の粒界を通して該基材11内に拡散する温度であって、典型的には700~1000℃である。この加熱工程により、付着物12内の含有重希土類RC Hの原子が基材11の粒界を通して該基材11内に拡散し、それにより基材11内の主に結晶粒の表面付近においてRC Hの濃度が高くなる。一方、含有重希土類RC Hの原子は結晶粒内には侵入し難い。そのため、この加熱工程により、含有重希土類RC Hの含有率が結晶粒の粒内よりも粒界においてより高いRFeB系磁石(RFeB系焼結磁石又はRFeB系熱間塑性加工磁石)が得られる。その後、必要に応じて、時効処理(500℃程度の比較的低温で加熱する処理)や基材11の表面に残留した付着物12の残渣を除去するための研削処理、磁石の成形処理を行うことにより、最終製品であるRFeB系磁石が得られる。 Next, the substrate 11 coated with the deposit 12 is heated to a predetermined temperature (FIG. 2(b), heating step). Here, the predetermined temperature is the temperature at which the atoms of the heavy rare earth element R C H contained in the deposit 12 diffuse into the substrate 11 through the grain boundaries of the substrate 11, and is typically 700 to 1000°C. . This heating process causes the atoms of the heavy rare earth element R C H contained in the deposit 12 to diffuse into the base material 11 through the grain boundaries of the base material 11 , thereby causing the crystal grains in the base material 11 to diffuse mainly near the surface of the crystal grains. The concentration of R CH increases. On the other hand, the atoms of the contained heavy rare earth element R CH are difficult to penetrate into the crystal grains. Therefore, by this heating step, an RFeB-based magnet (RFeB-based sintered magnet or RFeB-based hot plastically worked magnet) having a higher content of the heavy rare earth element RCH at the grain boundaries than in the grains of the crystal grains can be obtained. . After that, if necessary, aging treatment (treatment of heating at a relatively low temperature of about 500° C.), grinding treatment for removing residues of deposits 12 remaining on the surface of base material 11, and magnet molding treatment are performed. Thus, an RFeB-based magnet, which is the final product, is obtained.

得られたRFeB系磁石の粒界における含有重希土類RC Hの含有率は、RHCuAl合金における含有重希土類RC Hの含有率及び基材11の含有軽希土類RC Lの種類にも依るが、質量百分率で0.45~1.25質量%となる。また、得られたRFeB系磁石の粒界におけるCuの含有率は3.9~14.0質量%、Alの含有率は0.09~1.00質量%となる。 The content of the heavy rare earth elements R C H contained in the grain boundaries of the obtained RFeB magnet is similar to the content of the heavy rare earth elements R C H contained in the R H CuAl alloy and the type of light rare earth elements R C L contained in the base material 11. Although it depends, the mass percentage is 0.45 to 1.25% by mass. The grain boundary of the obtained RFeB magnet has a Cu content of 3.9 to 14.0% by mass and an Al content of 0.09 to 1.00% by mass.

(2) 本発明に係るRFeB系磁石の製造方法の実施例、及び本発明に係るRFeB系磁石の実施形態
次に、本実施形態のRFeB系磁石の製造方法によりRFeB系磁石を作製し、得られたRFeB系磁石の粒界における組成分析を行った実施例を説明すると共に、当該実施例の実験結果に基づいて、本発明に係るRFeB系磁石の実施形態について説明する。
(2) Examples of the RFeB-based magnet manufacturing method according to the present invention and embodiments of the RFeB-based magnet according to the present invention Examples of composition analysis at the grain boundaries of the obtained RFeB-based magnets will be described, and embodiments of the RFeB-based magnets according to the present invention will be described based on the experimental results of the examples.

実施例1では、基材には、RHを含有せず、Cu及びAlを少量(Cu:0.1質量%、Al:0.2質量%)含有する、厚さ5mmの板状のRLFeB系焼結磁石体を用いた。RHCuAl合金には、RC HがTbであって、Tbの含有率が46.00原子%(74.53質量%)、Cuの含有率が30.00原子%(19.01質量%)、Alの含有率が24.00原子%(6.46質量%)であるものを、ストリップキャスト法により作製した。このRHCuAl合金の各元素の含有量は、図1中に三角印を付した点に対応する。付着物は、このRHCuAl合金を水素解砕法により粉砕した後に水素を除去することにより得られたRHCuAl合金粉末と、シリコーングリースを混合することにより作製した。基材に付着させる付着物の量は基材の質量に対する付着物中のTbの質量が0.2~1.4%の範囲内となるようにし、該付着物の量が異なる複数の実験を行った。付着物は、板状の基材の2つの板面の全体に付着させ、4つの側面には付着させなかった。得られたRFeB系磁石の粒界中の組成分析は、EPMA装置(日本電子株式会社製、JXA-8500F)を用いて行った。この分析では、基材の表面に相当する位置から深さ2.5mm(すなわち、基材の両表面から等距離の位置)において粒界中の位置を無作為に、互いに異なる粒界三重点から1箇所ずつ合計7箇所指定し、Tbの含有率が最大及び最小である2箇所を除いた5箇所における平均値で求めた。図3に、EPMA装置で得られた試料の反射電子像に基づいて、7箇所の粒界三重点中の位置(i)~(vii)を指定した例を示す。 In Example 1, the base material was a plate-shaped R L FeB-based sintered plate with a thickness of 5 mm containing no R H and a small amount of Cu and Al (Cu: 0.1% by mass, Al: 0.2% by mass). A magnet body was used. The RH CuAl alloy has a Tb content of 46.00 atomic percent (74.53 mass percent), a Cu content of 30.00 atomic percent (19.01 mass percent), and an Al content of 24.00 Atomic % (6.46 mass %) was made by strip casting. The content of each element in this RH CuAl alloy corresponds to the point marked with a triangle in FIG. The deposit was produced by mixing silicone grease with RH CuAl alloy powder obtained by pulverizing this RH CuAl alloy by a hydrogen pulverization method and then removing hydrogen. A plurality of experiments with different amounts of deposits were conducted by adjusting the amount of deposits deposited on the substrate so that the mass of Tb in the deposits with respect to the mass of the substrate was within the range of 0.2 to 1.4%. The deposit was adhered to the entire two plate surfaces of the plate-shaped base material, and was not adhered to the four side surfaces. The grain boundary composition analysis of the obtained RFeB magnet was performed using an EPMA apparatus (manufactured by JEOL Ltd., JXA-8500F). In this analysis, positions in the grain boundary were randomly selected at a depth of 2.5 mm from the position corresponding to the surface of the substrate (i.e., equidistant from both surfaces of the substrate), and A total of 7 locations were specified, and the average value at 5 locations excluding the 2 locations with the highest and lowest Tb contents was obtained. FIG. 3 shows an example in which the positions (i) to (vii) in the seven grain boundary triple points are specified based on the backscattered electron image of the sample obtained by the EPMA apparatus.

得られたRFeB系磁石につき、保磁力iHcを測定した結果を図4に示し、粒界中のTbの含有率を測定した結果を図5に示す。図4より、基材の質量に対する付着物中のTbの質量が0.2~1.2質量%の範囲内では、付着物中のTbの質量が増加するのに伴って保磁力が増加しているのに対して、基材の質量に対する付着物中のTbの質量が1.2質量%を超えると、そのような保磁力の増加が認められない。このように保磁力の増加の効果が認められた、基材の質量に対する付着物中のTbの質量が0.2~1.2質量%の範囲内では、図5に示すように、粒界中のTbの含有率は0.40~1.25質量%である。 FIG. 4 shows the results of measuring the coercive force iHc of the obtained RFeB magnet, and FIG. 5 shows the results of measuring the content of Tb in grain boundaries. As shown in FIG. 4, when the mass of Tb in the deposit relative to the mass of the substrate is within the range of 0.2 to 1.2% by mass, the coercive force increases as the mass of Tb in the deposit increases. On the other hand, when the mass of Tb in the deposit relative to the mass of the substrate exceeds 1.2% by mass, no such increase in coercive force is observed. As shown in FIG. The content is 0.40-1.25% by mass.

そこでさらに、表1に示した、図1中の点1~6に対応する6種類の組成を有するTbCuAl合金について、基材の質量に対する付着物中のTbの質量を0.2質量%とした場合と、1.2質量%とした場合でそれぞれ、使用するTbCuAl合金以外は実施例1と同じ条件でRFeB系磁石を作製し、粒界中のTb、Cu及びAlの含有率を測定した。また、表1に示した、図1中の点7~9に対応する3種類の組成を有するTbCuAl合金、並びに図6中の点A~F及び表2に示す6種類の組成を有するTbCuAl合金について、基材の質量に対する付着物中のTbの質量を1.0質量%とした場合でそれぞれ、使用するTbCuAl合金以外は実施例1と同じ条件でRFeB系磁石を作製し、粒界中のTb、Cu及びAlの含有率を測定した(以上、実施例2)。ここで図6中の点A~Fはいずれも、上述の八角形内に存在する。

Figure 0007251053000002
Therefore, for the TbCuAl alloys shown in Table 1, which have six types of compositions corresponding to points 1 to 6 in FIG. , and 1.2% by mass, RFeB magnets were produced under the same conditions as in Example 1 except for the TbCuAl alloy used, and the contents of Tb, Cu and Al in the grain boundaries were measured. In addition, TbCuAl alloys having three types of compositions shown in Table 1 corresponding to points 7 to 9 in FIG. 1, and points A to F in FIG. 6 and TbCuAl alloys having six types of compositions shown in Table 2 Regarding, when the mass of Tb in the deposit relative to the mass of the base material is 1.0% by mass, RFeB magnets were produced under the same conditions as in Example 1 except for the TbCuAl alloy used, and Tb in the grain boundary, The contents of Cu and Al were measured (above, Example 2). Here, points A to F in FIG. 6 all lie within the aforementioned octagon.
Figure 0007251053000002

実施例2の結果を表3に示す。

Figure 0007251053000003
The results of Example 2 are shown in Table 3.
Figure 0007251053000003

表3より、各試料の粒界におけるTbの含有率は、実施例1の場合とほぼ同じ値となった。また、粒界におけるCuの含有率は3.9~14.0質量%、Alの含有率は0.09~1.00質量%となった。 From Table 3, the content of Tb at the grain boundary of each sample was almost the same value as in Example 1. Also, the content of Cu in the grain boundary was 3.9 to 14.0% by mass, and the content of Al was 0.09 to 1.00% by mass.

次に、表4に示す組成を有する合金を含有する付着物を用いて、実施例1及び2と同様の方法で比較例1~6のRFeB系焼結磁石を作製した。付着物中の合金は、比較例1~3ではCuの代わりにNi又はCoを含有する合金を用い、比較例4~6ではTbとCu, Ni, Coのうちの1つから成る(Alを含有しない)2元系の合金を用いた。各例の付着物の量は、基材に付着させた付着物中のTbが全ての例で同じ量になるように調整した。こうして作製した実施例1及び2並びに比較例1~6のRFeB系焼結磁石につき、基材の2つの板面からそれぞれ0.15mmずつ研磨した試料を作製し、それらの試料中のTbの量を測定した。ここでこのような研磨を行った理由は、実際のRFeB系焼結磁石の製品においても仕上げ加工として表面の研磨を行うことと、基材の表面付近には基材内に拡散することなく残留した無駄なTbが存在することから、粒界拡散処理の効率を確認するために無駄なTbを除去することにある。各試料中のTbの量を、基材に付着させた付着物中のTbの量に対する比として表4中に示す。なお、表4中の「実施例2-X」(Xは、7~9及びA~Fのうちのいずれか)は、使用したTbCuAl合金の組成を表す、表1及び表2並びに図1及び図6に示した記号である。

Figure 0007251053000004
Next, RFeB based sintered magnets of Comparative Examples 1 to 6 were produced in the same manner as in Examples 1 and 2 using deposits containing alloys having the compositions shown in Table 4. The alloy in the deposits used alloys containing Ni or Co instead of Cu in Comparative Examples 1-3, and consisted of Tb and one of Cu, Ni, Co (Al (not containing) was used. The amount of deposit in each example was adjusted so that the amount of Tb in the deposit deposited on the substrate was the same in all examples. For the RFeB sintered magnets of Examples 1 and 2 and Comparative Examples 1 to 6 thus produced, samples were prepared by polishing each of the two plate surfaces of the base material by 0.15 mm, and the amount of Tb in these samples was measured. It was measured. The reason why this kind of polishing was performed here is that the surface of the actual RFeB sintered magnet product is also polished as a finishing process, and that residual particles near the surface of the base material do not diffuse into the base material. Since the wasteful Tb exists, the purpose is to remove the wasteful Tb in order to confirm the efficiency of the grain boundary diffusion treatment. The amount of Tb in each sample is shown in Table 4 as a ratio to the amount of Tb in the deposit applied to the substrate. In Table 4, "Example 2-X" (X is one of 7 to 9 and A to F) represents the composition of the TbCuAl alloy used, Tables 1 and 2, Figures 1 and It is the symbol shown in FIG.
Figure 0007251053000004

この実験の結果より、比較例1~6よりも実施例1及び2の方が、試料中のTbの量が多く、Tbをより効率よく基材中に拡散させることができることが確認された。 From the results of this experiment, it was confirmed that Examples 1 and 2 had a larger amount of Tb in the sample than Comparative Examples 1 to 6, and that Tb could be diffused into the substrate more efficiently.

次に、実施例1及び比較例1の試料につき、耐食性試験を行った結果を図7に示す。この試験では、試料の質量を測定したうえで、温度120℃、湿度100%、圧力2気圧(飽和水蒸気圧)の高温・高湿条件で試料を400~1000時間維持し、その後の試料の質量を測定することにより、試料の質量の減少率を求めた。質量の減少率の絶対値が小さいほど、耐食性が高いことを意味している。図7より、比較例1では高温・高湿条件に維持する時間が長くなるに従って質量の減少率の絶対値が大きくなるのに対して、実施例1では高温・高湿条件に1000時間維持しても質量の減少率がほぼ0であった。この耐食性試験より、比較例1よりも本実施例1の試料の方が、耐食性が高いことが確認された。これは、実施例において粒界にCuが存在することで、粒界における電位が引き上げられ、希土類リッチ(Ndリッチ)粒界相の溶出及びRFeB(NdFeB)粒子の脱落が抑制されたものと考えられる。 Next, the results of a corrosion resistance test performed on the samples of Example 1 and Comparative Example 1 are shown in FIG. In this test, after measuring the mass of the sample, the sample was maintained for 400 to 1000 hours under high temperature and high humidity conditions with a temperature of 120°C, humidity of 100%, and pressure of 2 atm (saturated water vapor pressure). was determined to determine the mass reduction rate of the sample. It means that the smaller the absolute value of the mass reduction rate, the higher the corrosion resistance. From FIG. 7, in Comparative Example 1, the absolute value of the mass reduction rate increases as the time maintained under high temperature and high humidity conditions increases, whereas in Example 1, it was maintained under high temperature and high humidity conditions for 1000 hours. However, the mass reduction rate was almost zero. From this corrosion resistance test, it was confirmed that the sample of Example 1 had higher corrosion resistance than that of Comparative Example 1. Presumably, this is because the presence of Cu at the grain boundaries in the example raised the potential at the grain boundaries, and suppressed the elution of the rare earth-rich (Nd-rich) grain boundary phase and the falling off of the RFeB (NdFeB) particles. be done.

次に、本発明に係るRFeB系磁石の製造方法の実施形態として、RHを含有する基材に対してRHCuAl合金を用いて粒界拡散処理を行った結果を示す。本実施形態では、RHとしてTbをそれぞれ0.20質量%、4.40質量%、及び10.0質量%含有し、Cu及びAlを実施例1と同じ量(Cu:0.1質量%、Al:0.2質量%)だけ含有する3種類のRFeB系焼結磁石の基材と、RHCuAl合金としてそれぞれ図6中の点8、B及びFで示される組成を有するTbCuAl合金である付着物を用いた。付着物の量は、基材に対する付着物中のTbの含有率が0.20質量%又は1.00質量%となるように調整した。これら3種類の基材、3種類の付着物の組成、及び2種類の付着物中のTbの含有率を組み合わせた18種類の試料につき、実施例1及び2と同じ条件で粒界中のTb, Cu及びAlの含有率を測定した。また、粒界中のTb等の含有率を測定したところと同じ基材表面からの深さにある結晶粒内のTbの含有率もEPMAにより測定した。結晶粒内でTbの含有率を測定する位置は、互いに異なる結晶粒から1箇所ずつ合計7箇所指定し、Tbの含有率が最大及び最小である2箇所を除いた5箇所における平均値で求めた。図3に、EPMA装置で得られた試料の反射電子像に基づいて、7箇所の結晶粒中の位置(A)~(G)を指定した例を示す。

Figure 0007251053000005
Next, as an embodiment of the method for producing an RFeB magnet according to the present invention, the results of grain boundary diffusion treatment performed on a base material containing R H using an R H CuAl alloy will be shown. In this embodiment, RH contains 0.20% by mass, 4.40% by mass, and 10.0% by mass of Tb, respectively, and the same amount of Cu and Al as in Example 1 (Cu: 0.1% by mass, Al: 0.2% by mass). Three types of RFeB-based sintered magnet base materials and deposits of TbCuAl alloys having compositions indicated by points 8, B and F in FIG. 6 were used as R H CuAl alloys. The amount of deposit was adjusted so that the content of Tb in the deposit relative to the substrate was 0.20% by mass or 1.00% by mass. For 18 types of samples that combined these three types of substrates, three types of deposit compositions, and two types of Tb content in the deposits, Tb in the grain boundary was measured under the same conditions as in Examples 1 and 2. , Cu and Al contents were measured. In addition, the content of Tb in the crystal grains at the same depth from the base material surface as the content of Tb in the grain boundary was also measured by EPMA. A total of 7 locations were designated to measure the Tb content within the crystal grains, one from each of the different crystal grains, and the average value of the five locations excluding the two locations with the highest and lowest Tb content was obtained. rice field. FIG. 3 shows an example in which seven positions (A) to (G) in crystal grains are designated based on the backscattered electron image of the sample obtained by the EPMA apparatus.
Figure 0007251053000005

表5より、粒界中のTbの含有率は、基材におけるTbの含有率に依存して0.67~11.06質量%という広い範囲に亘るものの、粒界中のTbの含有率と粒内のTbの含有率の差は、基材におけるTbの含有率に関わらず、0.40~1.25質量%の範囲内に収まることがわかる。この範囲は、粒界拡散処理による保磁力向上の効果に過不足無く粒界に供給されるTb(RH)量である。 From Table 5, the content of Tb in the grain boundary ranges widely from 0.67 to 11.06% by mass, depending on the Tb content in the base material. is within the range of 0.40 to 1.25% by mass regardless of the Tb content in the substrate. This range is the amount of Tb(R H ) supplied to the grain boundary just enough for the coercive force improvement effect of the grain boundary diffusion treatment.

11…基材
12…付着物(RHCuAl合金含有物)
11... Base material 12... Deposits (R H CuAl alloy inclusions)

Claims (3)

Tb、Cu及びAlから成りDyを含有しない合金であって、Tb、Cu及びAlを頂点とする三元組成図における8点の座標(Tbat%, Cuat%, Alat%)=(50, 40, 10)、(58, 30, 12)、(58, 20, 22)、(48, 20, 32)、(33, 24, 43)、(17, 50, 33)、(17, 60, 23)及び(33, 58, 9)を頂点とする八角形内又は該八角形の辺上の点で表される組成を有するTbCuAl合金を含有する付着物を準備する付着物準備工程と、
前記付着物を、1種又は2種の軽希土類元素RLから成る含有軽希土類RC L、Fe及びBを含有するRLFeB系焼結磁石体から成る基材の表面に付着させる付着物付着工程と、
前記付着物を付着させた前記基材を700~1000℃の範囲内の所定温度に加熱する加熱工程と
を有することを特徴とするRFeB系磁石の製造方法。
Coordinates of eight points (Tb at% , Cu at% , Al at% ) = (50 , 40, 10), (58, 30, 12), (58, 20, 22), (48, 20, 32), (33, 24, 43), (17, 50, 33), (17, 60 , 23) and (33, 58, 9) and a deposit preparation step of preparing a deposit containing a TbCuAl alloy having a composition represented by points within or on the sides of the octagon;
An attachment that adheres to the surface of a base material comprising an R L FeB-based sintered magnet body containing one or two light rare earth elements R L , Fe , and B. an attachment step;
A method for producing an RFeB magnet, comprising heating the substrate to which the deposit is attached to a predetermined temperature within a range of 700 to 1000°C.
前記TbCuAl合金が、前記三元組成図における6点の座標(Tbat%, Cuat%, Alat%)=(50, 40, 10)、(50, 32, 18)、(33, 24, 43)、(17, 50, 33)、(17, 60, 23)及び(33, 58, 9)を頂点とする六角形内又は該六角形の辺上の点で表される組成を有することを特徴とする請求項1に記載のRFeB系磁石の製造方法。 The TbCuAl alloy has six coordinates (Tb at% , Cu at% , Al at% )=(50, 40, 10), (50, 32, 18), (33, 24, 43), (17, 50, 33), (17, 60, 23) and (33, 58, 9) having a composition represented by points within or on the sides of the hexagon The method for manufacturing an RFeB magnet according to claim 1, characterized by: 1種又は2種の軽希土類元素RLから成る含有軽希土類RC L、Tb、Fe及びBを含有し、略平行に対向する2つの表面を有するRFeB系焼結磁石であって、
Tbの含有率が結晶粒の粒内よりも粒界においてより高く、
前記RFeB系焼結磁石内の前記2つの表面から等距離にある面内において、粒界におけるTbの含有率から結晶粒内におけるTbの含有率を減じた値が0.73~1.25質量%であり、
粒界におけるCuの含有率が3.9~14.0質量%、Alの含有率が0.09~1.00質量%
であることを特徴とするRFeB系焼結磁石。
An RFeB-based sintered magnet containing light rare earth elements R C L composed of one or two light rare earth elements R L , Tb, Fe and B , and having two surfaces facing substantially parallel to each other,
The content of Tb is higher at grain boundaries than inside grains,
In the plane equidistant from the two surfaces in the RFeB sintered magnet, the value obtained by subtracting the Tb content in the crystal grain from the Tb content in the grain boundary is 0.73 to 1.25% by mass,
The content of Cu in the grain boundary is 3.9-14.0% by mass, and the content of Al is 0.09-1.00% by mass.
An RFeB-based sintered magnet characterized by:
JP2018092254A 2017-06-27 2018-05-11 RFeB magnet and method for manufacturing RFeB magnet Active JP7251053B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/017,691 US11328845B2 (en) 2017-06-27 2018-06-25 RFeB-based magnet and method for producing RFeB-based magnet
EP18179916.4A EP3425643B1 (en) 2017-06-27 2018-06-26 Rfeb-based magnet and method for producing rfeb-based magnet
CN201810681773.9A CN109148069B (en) 2017-06-27 2018-06-27 RFeB-based magnet and method for producing RFeB-based magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017124954 2017-06-27
JP2017124954 2017-06-27

Publications (2)

Publication Number Publication Date
JP2019009421A JP2019009421A (en) 2019-01-17
JP7251053B2 true JP7251053B2 (en) 2023-04-04

Family

ID=65029092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018092254A Active JP7251053B2 (en) 2017-06-27 2018-05-11 RFeB magnet and method for manufacturing RFeB magnet

Country Status (1)

Country Link
JP (1) JP7251053B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7400317B2 (en) * 2019-10-04 2023-12-19 大同特殊鋼株式会社 Sintered magnet and method of manufacturing sintered magnet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112403A1 (en) 2005-04-15 2006-10-26 Hitachi Metals, Ltd. Rare earth sintered magnet and process for producing the same
WO2008032667A1 (en) 2006-09-14 2008-03-20 Ulvac, Inc. Permanent magnet and process for producing the same
JP2010114200A (en) 2008-11-05 2010-05-20 Daido Steel Co Ltd Method of manufacturing rare-earth magnet
JP2011114335A (en) 2009-11-23 2011-06-09 Yantai Shougang Magnetic Materials Inc Method of manufacturing rare earth permanent magnet material
JP2011199180A (en) 2010-03-23 2011-10-06 Tdk Corp Rare earth magnet and rotating machine
WO2012013086A1 (en) 2010-07-30 2012-02-02 沈阳中北通磁科技股份有限公司 High performance sintered ndfeb magnet and manufacturing method of the same
WO2013100008A1 (en) 2011-12-27 2013-07-04 インターメタリックス株式会社 Sintered neodymium magnet and manufacturing method therefor
JP2013191849A (en) 2006-09-15 2013-09-26 Inter Metallics Kk Ndfeb sintered magnet
JP2014192460A (en) 2013-03-28 2014-10-06 Sumitomo Electric Ind Ltd Method of manufacturing r-t-x based powder-compacted magnet, and r-t-x based powder-compacted magnet
US20170037504A1 (en) 2015-05-07 2017-02-09 Advanced Technology & Materials Co., Ltd. Method for preparing rare-earth permanent magnetic material with grain boundary diffusion using composite target by vapor deposition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112403A1 (en) 2005-04-15 2006-10-26 Hitachi Metals, Ltd. Rare earth sintered magnet and process for producing the same
WO2008032667A1 (en) 2006-09-14 2008-03-20 Ulvac, Inc. Permanent magnet and process for producing the same
JP2013191849A (en) 2006-09-15 2013-09-26 Inter Metallics Kk Ndfeb sintered magnet
JP2010114200A (en) 2008-11-05 2010-05-20 Daido Steel Co Ltd Method of manufacturing rare-earth magnet
JP2011114335A (en) 2009-11-23 2011-06-09 Yantai Shougang Magnetic Materials Inc Method of manufacturing rare earth permanent magnet material
JP2011199180A (en) 2010-03-23 2011-10-06 Tdk Corp Rare earth magnet and rotating machine
WO2012013086A1 (en) 2010-07-30 2012-02-02 沈阳中北通磁科技股份有限公司 High performance sintered ndfeb magnet and manufacturing method of the same
WO2013100008A1 (en) 2011-12-27 2013-07-04 インターメタリックス株式会社 Sintered neodymium magnet and manufacturing method therefor
JP2014192460A (en) 2013-03-28 2014-10-06 Sumitomo Electric Ind Ltd Method of manufacturing r-t-x based powder-compacted magnet, and r-t-x based powder-compacted magnet
US20170037504A1 (en) 2015-05-07 2017-02-09 Advanced Technology & Materials Co., Ltd. Method for preparing rare-earth permanent magnetic material with grain boundary diffusion using composite target by vapor deposition

Also Published As

Publication number Publication date
JP2019009421A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
RU2704989C2 (en) Sintered r-fe-b magnet and method for production thereof
JP5363314B2 (en) NdFeB-based sintered magnet manufacturing method
JP5687621B2 (en) NdFeB sintered magnet and manufacturing method thereof
CN103650073B (en) The manufacture method of NdFeB based sintered magnet and this NdFeB based sintered magnet
JP6488976B2 (en) R-T-B sintered magnet
EP3499530B1 (en) Method of producing r-t-b sintered magnet
JP2018504769A (en) Manufacturing method of RTB permanent magnet
JP6484300B2 (en) RFeB magnet manufacturing method, RFeB magnet, and grain boundary diffusion coating
WO2015186550A1 (en) RFeB-BASED MAGNET AND PROCESS FOR PRODUCING RFeB-BASED MAGNET
US9818515B2 (en) Modified Nd—Fe—B permanent magnet with high corrosion resistance
CN107492429A (en) A kind of high temperature resistant neodymium iron boron magnetic body and preparation method thereof
JP5643355B2 (en) Manufacturing method of NdFeB sintered magnet
WO2013146781A1 (en) NdFeB-BASED SINTERED MAGNET
CN107710360B (en) Method for producing rare earth sintered magnet
JP2018018859A (en) R-T-B based sintered magnet
US11328845B2 (en) RFeB-based magnet and method for producing RFeB-based magnet
JP2009224413A (en) MANUFACTURING METHOD OF NdFeB SINTERED MAGNET
KR101735988B1 (en) RFeB-BASED MAGNET PRODUCTION METHOD AND RFeB-BASED SINTERED MAGNETS
JP7251053B2 (en) RFeB magnet and method for manufacturing RFeB magnet
WO2013100009A1 (en) Sintered neodymium magnet
JP6794993B2 (en) Manufacturing method of RTB-based sintered magnet and RTB-based sintered magnet
CN112614641B (en) Sintered magnet and method for producing sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230118

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230130

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R150 Certificate of patent or registration of utility model

Ref document number: 7251053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150