JP4706872B2 - Method for producing sintered permanent magnet and mold - Google Patents

Method for producing sintered permanent magnet and mold Download PDF

Info

Publication number
JP4706872B2
JP4706872B2 JP2008007983A JP2008007983A JP4706872B2 JP 4706872 B2 JP4706872 B2 JP 4706872B2 JP 2008007983 A JP2008007983 A JP 2008007983A JP 2008007983 A JP2008007983 A JP 2008007983A JP 4706872 B2 JP4706872 B2 JP 4706872B2
Authority
JP
Japan
Prior art keywords
slurry
sintered
mold
mass
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008007983A
Other languages
Japanese (ja)
Other versions
JP2008163466A (en
Inventor
信彦 藤森
和博 園田
高志 塚田
純二 松嶋
靖 木村
覚 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008007983A priority Critical patent/JP4706872B2/en
Publication of JP2008163466A publication Critical patent/JP2008163466A/en
Application granted granted Critical
Publication of JP4706872B2 publication Critical patent/JP4706872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は高性能なリング状焼結型R-Fe-B系永久磁石(RはYを含む希土類元素の中から選択される少なくとも1種の希土類元素である)、及びそれに用いる金型に関する。   The present invention relates to a high-performance ring-shaped sintered R-Fe-B permanent magnet (R is at least one rare earth element selected from rare earth elements including Y), and a mold used therefor.

R-Fe-B系永久磁石は長い間、磁界を印加しながら金型内で乾燥微粉を成形するいわゆる乾式成形法により生産されてきた。乾式成形法では通常、原料粗粉をジェットミルで微粉砕する際に、ジェットミル内に微量の酸素を導入し、粉砕媒体である窒素ガスやArガス中の酸素濃度を所望の範囲に制御する。これは、微粉表面を強制的に酸化させるためである。この酸化処理なしに微粉砕した微粉は、大気に触れると同時に発火してしまう。酸化処理した微粉の酸素含有量は5000〜6000 ppmであり、これから得られる焼結体の酸素含有量は4000〜5000 ppmとなる。焼結体中の酸素の大部分はNd等の希土類元素と結合し、粒界に酸化物として存在する。酸化された希土類元素の分を補充するため、焼結体中の希土類元素の総量を増加させる必要があるが、そうすると焼結磁石の飽和磁束密度が低下するという問題がある。   R-Fe-B permanent magnets have long been produced by a so-called dry molding method in which a dry fine powder is molded in a mold while applying a magnetic field. In the dry molding method, usually when a raw material coarse powder is finely pulverized with a jet mill, a small amount of oxygen is introduced into the jet mill, and the oxygen concentration in the nitrogen gas or Ar gas as a pulverization medium is controlled within a desired range. . This is to forcibly oxidize the fine powder surface. Fine powder finely pulverized without this oxidation treatment ignites at the same time as it comes into contact with the atmosphere. The oxygen content of the oxidized fine powder is 5000 to 6000 ppm, and the oxygen content of the sintered body obtained from this is 4000 to 5000 ppm. Most of the oxygen in the sintered body is combined with rare earth elements such as Nd and exists as oxides at the grain boundaries. In order to replenish the oxidized rare earth element, it is necessary to increase the total amount of the rare earth element in the sintered body, but there is a problem that the saturation magnetic flux density of the sintered magnet is lowered.

乾式成形法の問題を解決するため、希土類磁石用粉末と鉱物油又は合成油との混合物を配向磁界を印加した金型キャビティ内に加圧注入した後、低酸素の雰囲気中で磁界中湿式成形してリング状成形体を形成し、成形体から溶媒を除去した後、真空焼結することにより焼結希土類磁石を製造する方法が提案されている(特許文献1)。この製造方法は希土類元素の総量及び酸素含有量が少ない高性能な焼結型R-Fe-B系永久磁石を安定的に生産できる。しかしながら、配向磁界を印加した金型キャビティにスラリーを加圧注入するため、自発磁化の大きいR-Fe-B系微粉は配向磁界との相互作用による大きな拘束力を受け、金型キャビティ内への充填密度が不均一になり、その結果成形体の密度も不均一となり、焼結体の変形やクラックの発生が生じるという問題がある。またスラリーを金型キャビティに開口する注入孔からコアの中心に向かって加圧注入するために、コアに衝突して2方向に分かれたスラリーが、注入孔と180°反対側で合流し、この合流部から焼結体にクラックが発生するという問題もある。   In order to solve the problems of the dry molding method, a mixture of rare earth magnet powder and mineral oil or synthetic oil is injected under pressure into a mold cavity to which an orientation magnetic field is applied, and then wet molding in a magnetic field in a low oxygen atmosphere. Thus, a method of manufacturing a sintered rare earth magnet by forming a ring-shaped molded body, removing the solvent from the molded body, and then performing vacuum sintering has been proposed (Patent Document 1). This production method can stably produce a high-performance sintered R-Fe-B permanent magnet with a small total amount of rare earth elements and low oxygen content. However, because the slurry is pressurized and injected into the mold cavity to which the orientation magnetic field is applied, the R-Fe-B fine powder with a large spontaneous magnetization receives a large restraint force due to the interaction with the orientation magnetic field, and enters the mold cavity. There is a problem that the packing density becomes non-uniform, and as a result, the density of the molded body becomes non-uniform, and the sintered body is deformed and cracks are generated. In addition, in order to pressurize the slurry from the injection hole that opens into the mold cavity toward the center of the core, the slurry that collides with the core and splits in two directions merges on the opposite side of the injection hole by 180 °. There is also a problem that cracks occur in the sintered body from the junction.

また、R-Fe-B系永久磁石用磁粉と、鉱物油、合成油又は植物油とのスラリーを、磁界を印加した金型キャビティ内に挿入したスラリー供給管から吐出するとともに、スラリー供給管を徐々に引き抜きながら、キャビティ内に充填されたスラリーを加圧成形し、得られたリング状成形体から溶媒を除去した後、焼結することにより焼結型R-Fe-B系永久磁石を製造する方法が提案されている(特許文献2)。この方法では金型キャビティに奥深く挿入したスラリー供給管よりスラリーをキャビティ内に吐出するため、比較的長尺のリング状成形体を成形する場合でも金型キャビティへのスラリーの充填性は良いが、スラリー供給管を金型キャビティに奥深く挿入するとともにスラリーを吐出しながらスラリー供給管を引き抜くため、スラリーの供給時間が長いという欠点がある。またスラリー供給管のあった部位が成形体に空洞として残り、これが特異点となって焼結型R-Fe-B系永久磁石にクラックが発生する原因となる。   In addition, the slurry of R-Fe-B permanent magnet magnetic powder and mineral oil, synthetic oil or vegetable oil is discharged from a slurry supply pipe inserted into a mold cavity to which a magnetic field is applied, and the slurry supply pipe is gradually The slurry filled in the cavity is pressure-molded while being drawn, and the solvent is removed from the obtained ring-shaped molded body, followed by sintering to produce a sintered R-Fe-B permanent magnet A method has been proposed (Patent Document 2). In this method, since the slurry is discharged into the cavity from the slurry supply tube inserted deeply into the mold cavity, even when a relatively long ring-shaped molded body is molded, the filling property of the slurry into the mold cavity is good. Since the slurry supply pipe is inserted deeply into the mold cavity and the slurry supply pipe is pulled out while discharging the slurry, there is a drawback that the slurry supply time is long. Further, the portion where the slurry supply pipe was present remains as a cavity in the molded body, which becomes a singular point and causes cracks in the sintered R-Fe-B permanent magnet.

またラジアル異方性リング状R-Fe-B系永久磁石の製造方法として、R-Fe-B系磁石合金の急冷薄帯を粉砕することにより得られた粉末を室温で成形し、得られた成形体を不活性ガス雰囲気中でホットプレスして緻密化し、得られたホットプレス体を熱間塑性加工して、ラジアル方向に磁気的異方性が付与されたカップ体とし、この底部を切除してリング状とする方法も提案されている(特許文献3、特許文献4)。しかしながら、不活性ガス雰囲気中でのホットプレス体の熱間塑性加工は、結晶粒を粗大化させないように約700〜800℃と比較的低温で行なうので、クラックの発生を防止するために極めて低速で行なう必要がある。磁石の寸法により異なるが、1回の熱間塑性加工に要する時間は普通10〜30分であり、永久磁石の工業的な製造方法としては生産性が低い。またこのように製造した加圧加工体は端部にクラックが入りやすいので、クラック発生部を切除する必要がある。これらの理由から、この製造方法では製造コストが高い。さらに得られるリング状磁石の磁気特性のバラツキが大きい。ラジアル異方性の程度は熱間塑性加工時の変形量に依存するが、特に熱間塑性加工抵抗が大きい小口径品や長尺品では、表面磁束密度のバラツキが大きくなるという問題がある。
特開平7-057914号公報(第3頁) 特開平11-214216号公報(第3〜5頁) 特開平9-275004号公報(第3〜5頁) 特開2001-181802号公報(第2〜3頁)
In addition, as a method for producing a radial anisotropic ring-shaped R-Fe-B permanent magnet, a powder obtained by grinding a rapidly cooled ribbon of R-Fe-B magnet alloy was molded at room temperature, and obtained The molded body is hot pressed in an inert gas atmosphere to be densified, and the resulting hot pressed body is hot plastic processed into a cup body with magnetic anisotropy in the radial direction, and the bottom is cut off. A ring-shaped method has also been proposed (Patent Documents 3 and 4). However, hot plastic working of hot pressed bodies in an inert gas atmosphere is performed at a relatively low temperature of about 700 to 800 ° C. so as not to coarsen the crystal grains, so it is extremely slow to prevent cracks from occurring. It is necessary to do in. Although it differs depending on the size of the magnet, the time required for one hot plastic working is usually 10 to 30 minutes, and the productivity is low as an industrial production method for permanent magnets. Moreover, since the pressure-processed body manufactured in this way tends to crack at the end portion, it is necessary to excise the crack generation portion. For these reasons, this manufacturing method has a high manufacturing cost. Further, the variation in magnetic properties of the obtained ring-shaped magnet is large. Although the degree of radial anisotropy depends on the amount of deformation during hot plastic working, there is a problem in that the variation in surface magnetic flux density is particularly large in small diameter products and long products having high hot plastic working resistance.
JP 7-057914 A (page 3) JP 11-214216 A (pages 3 to 5) JP-A-9-275004 (pages 3 to 5) JP 2001-181802 (pages 2 to 3)

従って本発明の目的は、変形やクラックの発生がなく磁気的配向に優れたリング状、特にラジアル異方性を有するリング状焼結型R-Fe-B系永久磁石の製造方法を提供することである。本発明のもう一つの目的は、前記リング状焼結型R-Fe-B系永久磁石の製造に好適な金型を提供することである。   Accordingly, an object of the present invention is to provide a method for producing a ring-shaped sintered R-Fe-B permanent magnet having a ring shape, in particular, a radial anisotropy that has no magnetic deformation and cracks and excellent magnetic orientation. It is. Another object of the present invention is to provide a mold suitable for manufacturing the ring-shaped sintered R-Fe-B permanent magnet.

本発明に係る焼結型永久磁石は、質量%基準で27〜33.5%のR(RはYを含む希土類元素の中から選択される少なくとも1種の希土類元素である)と、0.5〜2%のBと、0.002〜0.15%のNと、0.25%以下のOと、0.15%以下のCと、0.001〜0.05%のPと、残部Feとからなる組成を有し、保磁力iHcが1MA/m以上であることが好ましい。ここで使用する用語「焼結型永久磁石」は、着磁前及び着磁後の永久磁石材料の焼結体のいずれも包含する。保磁力は室温(25℃)で測定したものである。Pは0.003〜0.05質量%であるのが好ましく、0.008〜0.05質量%であるのがより好ましい。   The sintered permanent magnet according to the present invention has 27 to 33.5% R (R is at least one rare earth element selected from rare earth elements including Y) and 0.5 to 2% on a mass% basis. B, 0.002 to 0.15% N, 0.25% or less O, 0.15% or less C, 0.001 to 0.05% P, and the balance Fe, with a coercive force iHc of 1 MA / It is preferable that it is m or more. The term “sintered permanent magnet” used here includes both sintered bodies of permanent magnet material before and after magnetization. The coercive force is measured at room temperature (25 ° C.). P is preferably 0.003 to 0.05% by mass, and more preferably 0.008 to 0.05% by mass.

本発明に係る焼結型永久磁石は、10〜100 mmの外径、8〜96 mmの内径、及び10〜70 mmの高さを有するリング状で、外周面の軸線方向に複数の磁極が延在しているのが好ましい。本発明に係る焼結型永久磁石は、外径10〜30 mm、内径8〜28 mm、高さ10〜50 mm、特に外径10〜25 mm、内径8〜23 mm、高さ10〜40 mmの小型リング磁石とすることもできる。また本発明に係る焼結型永久磁石はラジアル異方性焼結型R-Fe-B系永久磁石であるのが好ましい。本発明に係る焼結型永久磁石の密度は7.52〜7.85 g/cm3であるのが好ましい。 The sintered permanent magnet according to the present invention is a ring shape having an outer diameter of 10 to 100 mm, an inner diameter of 8 to 96 mm, and a height of 10 to 70 mm, and a plurality of magnetic poles in the axial direction of the outer peripheral surface. Preferably it extends. The sintered permanent magnet according to the present invention has an outer diameter of 10 to 30 mm, an inner diameter of 8 to 28 mm, a height of 10 to 50 mm, particularly an outer diameter of 10 to 25 mm, an inner diameter of 8 to 23 mm, and a height of 10 to 40. It can also be a small ring magnet of mm. The sintered permanent magnet according to the present invention is preferably a radial anisotropic sintered R-Fe-B permanent magnet. The density of the sintered permanent magnet according to the present invention is preferably 7.52 to 7.85 g / cm 3 .

上記リング磁石の軸線の磁極に沿った表面磁束密度B0の分布は、B0の最大値の92.5%以上の範囲内にあるのが好ましい。すなわち、上記リング磁石の軸線方向における磁極上の表面磁束密度B0のバラツキは、B0の最大値の7.5%以下であるのが好ましい。ここで表面磁束密度B0のバラツキは、(B0の最大値−B0の最小値)/B0の最大値)×100(%)により表される。B0の最大値及び最小値は上記リング磁石の高さHの範囲内で測定されたものである。表面磁束密度B0の分布は、ガウスメータのプローブを上記リング磁石の外周面に垂直に対向させ、かつ前記リング磁石の軸線方向(長さ方向)に沿って移動させることにより測定する。表面磁束密度B0のバラツキは5%以内であるのがより好ましく、3%以内であるのが特に好ましい。 The distribution of the surface magnetic flux density B 0 along the magnetic pole on the axis of the ring magnet is preferably in the range of 92.5% or more of the maximum value of B 0 . That is, the variation of the surface magnetic flux density B 0 on the magnetic pole in the axial direction of the ring magnet is preferably 7.5% or less of the maximum value of B 0 . Wherein the variation of the surface magnetic flux density B 0 is represented by the maximum value of / B 0 (minimum value of the maximum value -B 0 of B 0)) × 100 (% ). The maximum value and the minimum value of B 0 are measured within the range of the height H of the ring magnet. The distribution of the surface magnetic flux density B 0 is measured by making a gauss meter probe vertically face the outer peripheral surface of the ring magnet and moving it along the axial direction (length direction) of the ring magnet. The variation in the surface magnetic flux density B 0 is more preferably 5% or less, and particularly preferably 3% or less.

本発明に係る一実施態様では、Rは27〜32質量%である。また本発明に係る別の実施態様では、Rは32質量%超かつ33.5質量%以下である。後者の場合、本発明に係る焼結型永久磁石は、質量%基準で32%超かつ33.5%以下のRと、0.5〜2%のBと、0.25%超かつ0.6%以下のOと、0.01〜0.15%のCと、0.002〜0.05%のNと、0.001〜0.05%のPと、残部Feとからなる組成を有し、10〜100 mmの外径、8〜96 mmの内径、及び10〜70 mmの高さのリング状であり、前記リングの円周方向に磁気的異方性を有し、前記リングの軸線方向における磁極上の表面磁束密度B0の分布がB0の最大値の92.5%以上の範囲内にあることが好ましい。この場合でも、表面磁束密度B0のバラツキは7.5%以内であるのが好ましく、5%以下であるのがより好ましく、3%以内であるのが特に好ましい。この焼結型永久磁石の密度は7.42〜7.75 g/cm3であるのが好ましい。 In one embodiment according to the invention, R is 27-32% by weight. In another embodiment of the present invention, R is more than 32% by mass and not more than 33.5% by mass. In the latter case, the sintered permanent magnet according to the present invention has R of more than 32% and not more than 33.5%, 0.5 to 2% B, more than 0.25% and not more than 0.6% O, 0.01% It has a composition consisting of ~ 0.15% C, 0.002 to 0.05% N, 0.001 to 0.05% P, and the balance Fe, and has an outer diameter of 10 to 100 mm, an inner diameter of 8 to 96 mm, and 10 It is a ring shape with a height of ˜70 mm, has magnetic anisotropy in the circumferential direction of the ring, and the distribution of the surface magnetic flux density B 0 on the magnetic pole in the axial direction of the ring is the maximum value of B 0 It is preferable that it is in the range of 92.5% or more. Even in this case, the variation in the surface magnetic flux density B 0 is preferably within 7.5%, more preferably 5% or less, and particularly preferably within 3%. The density of the sintered permanent magnet is preferably 7.42-7.75 g / cm 3 .

本発明に係る焼結型永久磁石において、Feの一部は、質量%基準で0〜1%のNbと、0.01〜1%のAlと、0〜5%のCoと、0.01〜0.5%のGaと、0〜1%のCuとからなる群から選ばれた少なくとも1種で置換されていても良い。Nbは0.05〜1質量%であるのが好ましい。Alは0.01〜0.3質量%であるのが好ましい。Coは0.3〜5質量%であるのが好ましく、0.3〜4.5質量%であるのがより好ましい。Gaは0.03〜0.4質量%であるのが好ましい。Cuは0.01〜1質量%であるのが好ましく、0.01〜0.3質量%であるのがより好ましい。   In the sintered permanent magnet according to the present invention, part of Fe is 0 to 1% Nb, 0.01 to 1% Al, 0 to 5% Co, and 0.01 to 0.5% by mass%. It may be substituted with at least one selected from the group consisting of Ga and 0 to 1% Cu. Nb is preferably 0.05 to 1% by mass. Al is preferably 0.01 to 0.3% by mass. Co is preferably 0.3 to 5% by mass, and more preferably 0.3 to 4.5% by mass. Ga is preferably 0.03 to 0.4 mass%. Cu is preferably 0.01 to 1% by mass, and more preferably 0.01 to 0.3% by mass.

焼結型永久磁石を製造する本発明の方法は、焼結型R-Fe-B系永久磁石用粗粉(RはYを含む希土類元素の中から選択される少なくとも1種の希土類元素である)を粉砕して微粉として、直接鉱物油、合成油又はこれらの混合油中に回収してスラリーとし、前記スラリーを金型のキャビティに加圧注入して磁界中で湿式成形し、得られた成形体を減圧下で加熱して前記成形体から前記鉱物油、前記合成油又はこれらの混合油を除去し、前記成形体を真空中で焼結するもので、前記金型は中空構造のダイ部材と前記ダイ部材の内周側にリング形状のキャビティを介して配置されたコアとを有し、前記ダイ部材には前記スラリーを前記金型のキャビティに加圧注入するためのスラリー注入孔が設けられ、この注入孔の軸線方向が前記金型のコアの中心から外れていることを特徴とする。   The method of the present invention for producing a sintered permanent magnet is a coarse powder for sintered R-Fe-B permanent magnets (R is at least one rare earth element selected from rare earth elements including Y). ) To obtain a fine powder, directly recovered in mineral oil, synthetic oil or a mixed oil thereof to form a slurry. The slurry was injected into a cavity of a mold and wet-molded in a magnetic field. The molded body is heated under reduced pressure to remove the mineral oil, the synthetic oil or a mixed oil thereof from the molded body, and the molded body is sintered in a vacuum. The mold is a die having a hollow structure. And a core disposed on the inner peripheral side of the die member via a ring-shaped cavity, and the die member has a slurry injection hole for pressure-injecting the slurry into the cavity of the mold. The axial direction of the injection hole is the center of the core of the mold. Off, characterized in that is.

焼結型永久磁石を製造する本発明の方法において、前記キャビティに半径方向の配向磁界が印加されることが好ましい。
焼結型永久磁石を製造する本発明の方法において、前記スラリー注入孔の中心軸線と、前記中心軸線が前記ダイ部材の内周面と交差する点Aと前記コア中心点Oとを結ぶ直線AOとのなす角度θが5〜90°であることが好ましい。
In the method of the present invention for producing a sintered permanent magnet, it is preferable that a radial orientation magnetic field is applied to the cavity.
In the method of the present invention for producing a sintered permanent magnet, a central axis of the slurry injection hole, a straight line AO connecting the core central point O and the point A where the central axis intersects the inner peripheral surface of the die member Is preferably 5 to 90 °.

焼結型永久磁石を製造する本発明の金型は、焼結型R-Fe-B系永久磁石用粗粉(RはYを含む希土類元素の中から選択される少なくとも1種の希土類元素である)を粉砕して得られた微粉と鉱物油、合成油又はこれらの混合油との混合物からなるスラリーを磁界中で湿式成形するためのもので、前記金型は中空構造のダイ部材と前記ダイ部材の内周側にリング形状のキャビティを介して配置されたコアとを有し、前記ダイ部材には前記スラリーを前記金型のキャビティに加圧注入するための注入孔が設けられ、この注入孔の軸線方向が前記金型のコアの中心から外れていることを特徴とする。   The mold of the present invention for producing a sintered permanent magnet is a coarse powder for sintered R-Fe-B permanent magnets (R is at least one rare earth element selected from rare earth elements including Y). For molding a slurry comprising a mixture of fine powder obtained by pulverizing and a mineral oil, a synthetic oil or a mixed oil thereof in a magnetic field. A core disposed on the inner peripheral side of the die member via a ring-shaped cavity, and the die member is provided with an injection hole for pressure-injecting the slurry into the cavity of the mold. The axial direction of the injection hole is deviated from the center of the core of the mold.

本発明の金型において、前記キャビティに半径方向の配向磁界が印加されるのが望ましい。
本発明の金型において、前記スラリー注入孔の中心軸線と、前記中心軸線が前記ダイ部材の内周面と交差する点Aと前記コア中心点Oとを結ぶ直線AOとのなす角度θが5〜90°であることが望ましい。
In the mold of the present invention, it is preferable that a radial orientation magnetic field is applied to the cavity.
In the mold of the present invention, the angle θ formed by the central axis of the slurry injection hole and the straight line AO connecting the core central point O and the point A where the central axis intersects the inner peripheral surface of the die member is 5 It is desirable to be ~ 90 °.

本発明の焼結型永久磁石の製造方法において、前記微粉の酸素含有量が0.25質量%超かつ0.6質量%以下であるのが好ましい。   In the method for producing a sintered permanent magnet of the present invention, the oxygen content of the fine powder is preferably more than 0.25% by mass and not more than 0.6% by mass.

本発明の方法により、変形やクラックの発生がなくかつ磁気的配向性に優れたリング状、特にラジアル異方性を有するリング状焼結型R-Fe-B系永久磁石を製造することができる。本発明に係る焼結型永久磁石は特にモータ等に使用するリング磁石として好適である。また前記リング状焼結型R-Fe-B系永久磁石の製造に好適な金型を提供することができる。   By the method of the present invention, it is possible to produce a ring-shaped sintered R-Fe-B permanent magnet having a radial anisotropy, particularly a ring-shaped that has no deformation or cracking and excellent magnetic orientation. . The sintered permanent magnet according to the present invention is particularly suitable as a ring magnet used for a motor or the like. In addition, a mold suitable for manufacturing the ring-shaped sintered R-Fe-B permanent magnet can be provided.

[1]組成
本発明に係る焼結型永久磁石の組成は、質量%基準で27〜33.5%のR(RはYを含む希土類元素の中から選択される少なくとも1種の希土類元素である)と、0.5〜2%のBと、0.002〜0.15%のNと、0.25%以下のOと、0.15%以下のCと、0.001〜0.05%のPと、残部Feとからなるのが好ましい。なお各元素の含有量は蛍光X線分析等により測定することができる。
[1] Composition The composition of the sintered permanent magnet according to the present invention is 27 to 33.5% R based on mass% (R is at least one rare earth element selected from rare earth elements including Y). And 0.5 to 2% B, 0.002 to 0.15% N, 0.25% or less O, 0.15% or less C, 0.001 to 0.05% P, and the balance Fe. The content of each element can be measured by fluorescent X-ray analysis or the like.

(A) 主要元素
(1) 希土類元素R
希土類元素Rの含有量は27〜33.5質量%であるのが好ましい。Rの含有量が33.5質量%を超えると、飽和磁束密度が低下するとともに、耐食性が悪くなる。一方、Rの含有量が27質量%未満であると、焼結体の緻密化に必要な液相量が不足して、焼結体の密度が低いとともに、保磁力iHcも低い。本発明に係る好ましい第一の組成ではRは27〜32質量%であり、好ましい第二の組成ではRは32質量%超かつ33.5質量%以下である。
(A) Major elements
(1) Rare earth element R
The rare earth element R content is preferably 27 to 33.5% by mass. When the content of R exceeds 33.5% by mass, the saturation magnetic flux density is lowered and the corrosion resistance is deteriorated. On the other hand, when the R content is less than 27% by mass, the liquid phase amount necessary for densification of the sintered body is insufficient, the density of the sintered body is low, and the coercive force iHc is also low. In the preferred first composition according to the present invention, R is 27 to 32% by mass, and in the preferred second composition, R is more than 32% by mass and not more than 33.5% by mass.

Oの含有量が0.25質量%超かつ0.6質量%以下の場合、Rの量は質量%基準で32%超かつ33.5%以下であるのが好ましい。Rの量が33.5質量%を超えると焼結体内部の希土類に富む相の量が多くなり、かつ形態も粗大化して耐食性が悪くなる。一方、Rの量が32質量%以下であると、焼結体の緻密化に必要な液相量が不足して焼結体の密度が低下し、磁気特性のうち残留磁束密度Brと保磁力iHcがともに低くなる。高い耐食性を必要とする焼結型永久磁石の場合、Rを32質量%以下に抑えるのが望ましい。   When the content of O is more than 0.25% by mass and 0.6% by mass or less, the amount of R is preferably more than 32% and 33.5% or less on a mass% basis. When the amount of R exceeds 33.5% by mass, the amount of the rare earth-rich phase inside the sintered body increases, and the form becomes coarse and the corrosion resistance deteriorates. On the other hand, if the amount of R is 32% by mass or less, the liquid phase amount necessary for densification of the sintered body is insufficient and the density of the sintered body is lowered, and the residual magnetic flux density Br and the coercive force among the magnetic properties are reduced. Both iHc are low. In the case of a sintered permanent magnet that requires high corrosion resistance, it is desirable to suppress R to 32% by mass or less.

(2) 硼素B
Bの含有量は0.5〜2質量%であるのが好ましい。Bの含有量が0.5質量%未満の場合、主相であるR2Fe14B相の形成に必要なBが不足し、軟磁性を有するR2Fe17相が生成して保磁力iHcが低下する。一方、Bの含有量が2質量%を超えると、非磁性相であるBに富む相が増加して、残留磁束密度Brが低下する。
(2) Boron B
The content of B is preferably 0.5 to 2% by mass. When the B content is less than 0.5% by mass, the B required for forming the main phase R 2 Fe 14 B phase is insufficient, the soft magnetic R 2 Fe 17 phase is generated, and the coercive force iHc decreases. To do. On the other hand, if the content of B exceeds 2% by mass, the non-magnetic phase rich in B increases, and the residual magnetic flux density Br decreases.

(3) 窒素N
Nの含有量は0.002〜0.15質量%であるのが好ましい。焼結体中のNは主にRリッチ相に存在し、希土類元素の一部と結合して窒化物を形成する。窒化物の形成により粒界相の陽極酸化が抑制されるため、焼結体の耐食性が向上すると考えられる。しかしNの含有量が0.15質量%を超えると、窒化物の形成により保磁力iHcの発現に必要な希土類元素が減少して、保磁力iHcが低下する。またNの含有量が0.002質量%未満では、焼結体の耐食性が低い。なおArガス雰囲気での微粉砕では窒化が起こらないため、焼結体中のNの含有量は0.002〜0.05質量%となる。
(3) Nitrogen N
The N content is preferably 0.002 to 0.15% by mass. N in the sintered body is mainly present in the R-rich phase and combines with a part of the rare earth element to form a nitride. Since the formation of nitride suppresses anodic oxidation of the grain boundary phase, it is considered that the corrosion resistance of the sintered body is improved. However, when the N content exceeds 0.15 mass%, the rare earth elements necessary for the expression of the coercive force iHc decrease due to the formation of nitrides, and the coercive force iHc decreases. If the N content is less than 0.002% by mass, the sintered body has low corrosion resistance. In addition, since nitriding does not occur in the fine pulverization in an Ar gas atmosphere, the content of N in the sintered body is 0.002 to 0.05% by mass.

溶解したインゴットを粗粉化する過程で大気中の窒素により微量の窒化物が生成する。この粗粉を実質的に酸素を含有しない窒素ガス又は窒素含有Arガス中でジェットミルにより微粉砕すると、さらに窒化が起こる。ここで「実質的に酸素を含有しない」とは、酸素含有量が0.001%以下、より好ましくは0.0005%以下、さらに好ましくは0.0002%以下であることを意味する。従って、得られる焼結体のNの含有量が0.15質量%を超えないように、微粉砕時のジェットミルへの単位時間当たりの粗粉供給量や、Arガスと窒素ガスの比率を調整する。   In the process of coarsening the dissolved ingot, a small amount of nitride is generated by nitrogen in the atmosphere. When this coarse powder is finely pulverized by a jet mill in nitrogen gas or nitrogen-containing Ar gas substantially free of oxygen, further nitriding occurs. Here, “substantially free of oxygen” means that the oxygen content is 0.001% or less, more preferably 0.0005% or less, and still more preferably 0.0002% or less. Therefore, the coarse powder supply amount per unit time to the jet mill during fine pulverization and the ratio of Ar gas and nitrogen gas are adjusted so that the N content of the obtained sintered body does not exceed 0.15 mass%. .

(4) 酸素O
本発明に係る好ましい第一の組成ではOの含有量は0.25質量%以下であり、本発明に係る好ましい第二の組成ではOの含有量は0.25質量%超で0.6質量%以下である。Oの含有量が0.6質量%を超えると、希土類元素の一部が酸化物を形成するために、磁気的に有効な希土類元素の量が少なくなりすぎ、保磁力iHcが低下する。第一の組成ではRが27〜32質量%であるので、Oの含有量の上限は0.25質量%である。これに対して、第二の組成ではRが32質量%超かつ33.5質量%以下であるので、Oの含有量の上限は0.6質量%とすることができる。一方、第一の組成ではOの含有量の下限は限定的ではないが、0.05質量%であるのが好ましい。特に第一の組成では、酸素の含有量を抑え、窒素の含有量を制御することにより、高い耐食性を得ることができる。
(4) Oxygen O
In the preferred first composition according to the present invention, the O content is 0.25% by mass or less, and in the preferred second composition according to the present invention, the O content is more than 0.25% by mass and 0.6% by mass or less. When the O content exceeds 0.6 mass%, a part of the rare earth element forms an oxide, so that the amount of the magnetically effective rare earth element becomes too small, and the coercive force iHc decreases. Since R is 27 to 32% by mass in the first composition, the upper limit of the O content is 0.25% by mass. On the other hand, in the second composition, since R is more than 32% by mass and 33.5% by mass or less, the upper limit of the O content can be 0.6% by mass. On the other hand, in the first composition, the lower limit of the O content is not limited, but is preferably 0.05% by mass. In particular, in the first composition, high corrosion resistance can be obtained by suppressing the oxygen content and controlling the nitrogen content.

(5) 炭素C
Cの含有量は0.15質量%以下であるのが好ましい。Cの含有量が0.15質量%より多いと、希土類元素の一部が炭化物を形成し、磁気的に有効な希土類元素が減少して保磁力iHcが低下する。Cの含有量は0.12質量%以下であるのが好ましく、0.1質量%以下であるのがさらに好ましい。一方、Cの含有量の下限は限定的ではないが、0.01質量%であるのが好ましい。
(5) Carbon C
The C content is preferably 0.15% by mass or less. When the C content is more than 0.15% by mass, a part of the rare earth element forms a carbide, the magnetically effective rare earth element is reduced, and the coercive force iHc is lowered. The content of C is preferably 0.12% by mass or less, and more preferably 0.1% by mass or less. On the other hand, the lower limit of the C content is not limited, but is preferably 0.01% by mass.

(6) 燐P
R-Fe-B系永久磁石の保磁力iHcの向上には、微量のPの添加が有効であることが分かった。図1は、質量%基準で15.7%のNd、7.1%のPr、7.5%のDy、1.1%のB、2.0%のCo、0.09%のCu、0.08%のGa、x%のP、残部Feからなる組成を有する焼結体中のPの含有量xに対する保磁力iHcの変化を示す。保磁力iHcの向上はPの含有量が0.0005質量%で認められるが、0.001質量%以上のPの含有量で顕著である。0.001質量%以上では、Pの含有量の増加に従って保磁力iHcが増加する。しかし、Pの含有量が0.05質量%を超えると、焼結体の強度が低下する。従って、焼結体中のPの含有量は、0.001〜0.05質量%とする。この範囲では飽和磁化の低下は認められない。
(6) Phosphorus P
It was found that the addition of a small amount of P is effective for improving the coercive force iHc of R-Fe-B permanent magnets. Figure 1 shows 15.7% Nd, 7.1% Pr, 7.5% Dy, 1.1% B, 2.0% Co, 0.09% Cu, 0.08% Ga, x% P, balance Fe on a mass% basis. The change of coercive force iHc with respect to the content x of P in a sintered body having a composition consisting of: The improvement of the coercive force iHc is recognized when the P content is 0.0005 mass%, but is remarkable when the P content is 0.001 mass% or more. If it is 0.001% by mass or more, the coercive force iHc increases as the P content increases. However, when the P content exceeds 0.05 mass%, the strength of the sintered body decreases. Therefore, the content of P in the sintered body is set to 0.001 to 0.05 mass%. In this range, no decrease in saturation magnetization is observed.

Pによる保磁力iHcの向上の理由は必ずしも明確ではないが、焼結体の粒界相と主相結晶粒との界面に存在する磁壁を固着するピンニングサイトにPが存在して、ピンニングサイトの組成又は形態を変化させ、磁壁の固着力を強化するためであると推定される。Pの含有量の下限は好ましくは0.003質量%であり、より好ましくは0.008質量%である。またPの含有量の上限は好ましくは0.04質量%であり、より好ましくは0.02質量%である。   The reason for the improvement of the coercivity iHc by P is not necessarily clear, but P exists at the pinning site that fixes the domain wall existing at the interface between the grain boundary phase and the main phase crystal grain of the sintered body. It is presumed that the composition or form is changed to strengthen the adhesion of the domain wall. The lower limit of the P content is preferably 0.003% by mass, more preferably 0.008% by mass. The upper limit of the P content is preferably 0.04% by mass, and more preferably 0.02% by mass.

Pの含有量の制御方法は限定的でないが、(1)R-Fe-B系永久磁石用インゴットの原料金属として、Fe原料合金にPの含有量の判ったFe-P合金又はFe-B-P合金等のP含有Fe基合金を所定量配合することにより、インゴット中のPの含有量を制御する方法、(2)真空溶解により製造したR-Fe-B系永久磁石用インゴットを粗粉砕し、得られた20〜500μmの粗粉に所定量の次亜リン酸ナトリウム(NaPH2O2)を水溶液等の溶液状で混合し、乾燥することにより、R-Fe-B系永久磁石用粗粉中のPの含有量を制御する方法、及び(3)上記スラリー生成用の鉱物油、合成油又はこれらの混合油に、流動性向上剤として次亜リン酸ナトリウムをグリセリン又はエタノールの溶液状で添加して、次亜リン酸ナトリウムの割合を0.01質量%以上にし、湿式成形する方法がある。湿式成形法を利用して微粉の酸化を防止しつつ効率的に成形体を得る場合、(3)の方法が最も好ましい。 Although the control method of the P content is not limited, (1) As a raw metal of an ingot for an R-Fe-B permanent magnet, an Fe-P alloy or Fe-BP with a known P content in an Fe raw alloy A method of controlling the P content in an ingot by blending a predetermined amount of a P-containing Fe-based alloy such as an alloy, and (2) coarsely pulverizing an R-Fe-B permanent magnet ingot produced by vacuum melting. A predetermined amount of sodium hypophosphite (NaPH 2 O 2 ) is mixed with the obtained coarse powder of 20 to 500 μm in the form of an aqueous solution and dried to obtain a coarse for R-Fe-B permanent magnets. A method of controlling the content of P in the powder, and (3) a solution of the above-described mineral oil, synthetic oil or mixed oil for producing the slurry with sodium hypophosphite as a fluidity improver in a glycerin or ethanol solution There is a method in which the proportion of sodium hypophosphite is 0.01% by mass or more and wet molding is performed. The method (3) is most preferable when a molded body is efficiently obtained using a wet molding method while preventing oxidation of fine powder.

(3)の方法において、0.001質量%未満のPの含有量となるような次亜リン酸ナトリウム溶液の添加では、スラリーの流動性の改善効果が不十分である。また鉱物油、合成油又はこれらの混合油に対して次亜リン酸ナトリウムの割合が0.5質量%を超えないように、次亜リン酸ナトリウムグリセリン溶液又は次亜リン酸ナトリウムエタノール溶液の混合量を制御するのが好ましい。   In the method (3), the addition of a sodium hypophosphite solution that results in a P content of less than 0.001% by mass is insufficient in improving the fluidity of the slurry. The amount of sodium hypophosphite glycerin solution or sodium hypophosphite ethanol solution should be adjusted so that the ratio of sodium hypophosphite to mineral oil, synthetic oil or mixed oil does not exceed 0.5% by mass. It is preferable to control.

(B) 任意元素
本発明に係る焼結型永久磁石では、Feの一部をCo、Nb、Al、Ga及びCuからなる群から選ばれた少なくとも1種で置換しても良い。各置換元素の量は焼結型永久磁石全体に対する質量百分率で表す。
(B) Arbitrary Element In the sintered permanent magnet according to the present invention, a part of Fe may be substituted with at least one selected from the group consisting of Co, Nb, Al, Ga and Cu. The amount of each substitution element is expressed as a mass percentage with respect to the entire sintered permanent magnet.

(1) コバルトCo
Coの量は5質量%以下であるのが好ましい。Coは焼結磁石のキュリー点の向上、即ち、飽和磁化の温度係数の改善をもたらす。しかし、Coの量が5質量%を超えると、残留磁束密度Br及び保磁力iHcがともに急激に低下する。Coの好ましい置換量は0.3〜5質量%であり、特に0.3〜4.5質量%である。Coの量が0.3質量%より少ないと、温度係数の改善効果が小さい。
(1) Cobalt Co
The amount of Co is preferably 5% by mass or less. Co improves the Curie point of the sintered magnet, that is, improves the temperature coefficient of saturation magnetization. However, when the amount of Co exceeds 5% by mass, both the residual magnetic flux density Br and the coercive force iHc rapidly decrease. The preferable substitution amount of Co is 0.3 to 5% by mass, particularly 0.3 to 4.5% by mass. When the amount of Co is less than 0.3% by mass, the effect of improving the temperature coefficient is small.

(2) ニオブNb
Nbの量は0〜1質量%であるのが好ましい。焼結過程で生成するNbのホウ化物は結晶粒の異常成長を抑制する。しかしNbの量が1質量%を超えると、Nbのホウ化物の生成量が多くなるため、残留磁束密度Brが低下する。またNbの量が0.05質量%より少ないと、結晶粒の異常成長の抑制効果が不十分であるので、Nbの好ましい置換量は0.05〜1質量%である。
(2) Niobium Nb
The amount of Nb is preferably 0 to 1% by mass. Nb boride produced during the sintering process suppresses abnormal grain growth. However, if the amount of Nb exceeds 1% by mass, the amount of Nb boride produced increases, and the residual magnetic flux density Br decreases. On the other hand, if the amount of Nb is less than 0.05% by mass, the effect of suppressing the abnormal growth of crystal grains is insufficient, so that the preferable substitution amount of Nb is 0.05 to 1% by mass.

(3) アルミニウムAl
Alの量は0.01〜1質量%であるのが好ましい。Alは保磁力iHcを高める効果がある。Alの量が0.01質量%より少ないと、保磁力iHcの向上効果が不十分である。またAlの量が1質量%を超えると、残留磁束密度Brが急激に低下する。Alの上限値は0.3質量%であるのが好ましい。
(3) Aluminum Al
The amount of Al is preferably 0.01 to 1% by mass. Al has the effect of increasing the coercive force iHc. When the amount of Al is less than 0.01% by mass, the effect of improving the coercive force iHc is insufficient. When the amount of Al exceeds 1% by mass, the residual magnetic flux density Br is rapidly reduced. The upper limit of Al is preferably 0.3% by mass.

(4) ガリウムGa
Gaの量は0.01〜0.5質量%であるのが好ましい。微量のGaは保磁力iHcを向上させるが、Gaの量が0.01質量%より少ないと効果は不十分である。一方、Gaの量が0.5質量%を超えると、残留磁束密度Brの低下が顕著になるとともに、保磁力iHcも低下する。Gaの量は好ましくは0.03〜0.4質量%である。
(4) Gallium Ga
The amount of Ga is preferably 0.01 to 0.5% by mass. A small amount of Ga improves the coercive force iHc, but the effect is insufficient when the amount of Ga is less than 0.01% by mass. On the other hand, when the amount of Ga exceeds 0.5% by mass, the residual magnetic flux density Br is significantly decreased and the coercive force iHc is also decreased. The amount of Ga is preferably 0.03 to 0.4 mass%.

(5) 銅Cu
Cuの量は0〜1質量%であるのが好ましい。微量のCuは保磁力iHcの向上をもたらすが、Cuの量が1質量%を超えると添加効果は飽和する。またCuの添加量が0.01質量%より少ないと保磁力iHcの向上効果が不十分であるので、Cuの量は0.01〜1質量%であるのが好ましく、0.01〜0.3質量%であるのがより好ましい。
(5) Copper Cu
The amount of Cu is preferably 0 to 1% by mass. A small amount of Cu improves the coercive force iHc, but when the amount of Cu exceeds 1% by mass, the addition effect is saturated. Further, if the amount of Cu added is less than 0.01% by mass, the effect of improving the coercive force iHc is insufficient, so the amount of Cu is preferably 0.01-1% by mass, more preferably 0.01-0.3% by mass. preferable.

本発明に係る第一の実施態様による焼結型永久磁石は、質量%基準で27〜32%のRと、0.5〜2%のBと、0.002〜0.15%のNと、0.05〜0.25%のOと、0.01〜0.15%のCと、0.001〜0.05%のPと、残部Feとからなる組成を有する。   The sintered permanent magnet according to the first embodiment of the present invention comprises 27 to 32% R, 0.5 to 2% B, 0.002 to 0.15% N, and 0.05 to 0.25% on a mass% basis. It has a composition consisting of O, 0.01 to 0.15% C, 0.001 to 0.05% P, and the balance Fe.

また本発明に係る第二の実施態様による焼結型永久磁石は、質量%基準で32%超かつ33.5%以下のRと、0.5〜2%のBと、0.002〜0.05%のNと、0.25%超かつ0.6%以下のOと、0.01〜0.15%のCと、0.001〜0.05%のPと、残部Feとからなる組成を有する。この組成を有する焼結体は、酸素含有量が0.005〜0.5%の雰囲気中で微粉砕した乾燥微粉を鉱物油、合成油又はこれらの混合油と混合して作製したスラリーを用いて得られる。   Further, the sintered permanent magnet according to the second embodiment of the present invention has R of more than 32% and not more than 33.5%, 0.5 to 2% B, 0.002 to 0.05% N, and 0.25 on a mass% basis. % And 0.6% or less of O, 0.01 to 0.15% of C, 0.001 to 0.05% of P, and the balance Fe. The sintered body having this composition can be obtained by using a slurry prepared by mixing dry fine powder finely pulverized in an atmosphere having an oxygen content of 0.005 to 0.5% with mineral oil, synthetic oil or a mixed oil thereof.

いずれの実施態様の焼結型永久磁石においても、Feの一部を質量%基準で0.3〜5%のCo、0.05〜1%のNb、0.01〜1%のAl、0.01〜0.5%のGa、0.01〜1%のCuからなる群から選ばれた少なくとも1種で置換して良い。   In any sintered permanent magnet of any of the embodiments, a part of Fe is 0.3-5% Co, 0.05-1% Nb, 0.01-1% Al, 0.01-0.5% Ga, Substitution may be made with at least one selected from the group consisting of 0.01 to 1% Cu.

[2] 製造方法
(A) 微粉砕
上記組成を有する焼結型R-Fe-B系永久磁石用粗粉を、酸素含有量が実質的に0%の窒素ガス及び/又はArガスからなる雰囲気中、又は酸素含有量が0.005〜0.5%の窒素ガス及び/又はArガスからなる雰囲気中で、ジェットミルにより微粉砕し、3〜6μmの平均粒径を有する微粉とする。焼結体中のN量を制御するために、ジェットミル内の雰囲気をArガスとし、その中に窒素ガスを微量導入して、Arガス中の窒素ガスの濃度を調整するのが好ましい。
[2] Manufacturing method
(A) Fine pulverization Coarse powder for sintered R-Fe-B permanent magnet having the above composition in an atmosphere consisting of nitrogen gas and / or Ar gas with an oxygen content of substantially 0%, or containing oxygen Finely pulverize with a jet mill in an atmosphere of nitrogen gas and / or Ar gas in an amount of 0.005 to 0.5% to obtain a fine powder having an average particle diameter of 3 to 6 μm. In order to control the amount of N in the sintered body, it is preferable to adjust the concentration of the nitrogen gas in the Ar gas by using an atmosphere in the jet mill as Ar gas and introducing a small amount of nitrogen gas therein.

ジェットミル内を窒素ガス雰囲気にする場合、粉砕時の粗粉の供給量により磁石粉末へのNの混入度を制御し、得られる焼結体中のN量を制御するのが好ましい。なお「酸素濃度が実質的に0%」とは、酸素濃度が完全に0%である場合に限定されず、微粉の表面にごく僅かに酸化被膜を形成する程度の量の酸素を含有しても良いことを意味する。このような低酸素濃度は、例えば0.001%以下であり、好ましくは0.0005%以下、より好ましくは0.0002%以下である。また0.002〜0.15質量%のNを含有する粗粉を酸素含有量が0.005〜0.5%の雰囲気中で微粉砕する場合、粗粉中の希土類元素の酸化反応が優先的に起こり、窒化反応はほとんど無視できる程度である。   When making the inside of a jet mill a nitrogen gas atmosphere, it is preferable to control the amount of N in the magnetic powder by controlling the amount of coarse powder supplied during pulverization and to control the amount of N in the resulting sintered body. Note that “the oxygen concentration is substantially 0%” is not limited to the case where the oxygen concentration is completely 0%, but includes an amount of oxygen that forms a very slight oxide film on the surface of the fine powder. Also means good. Such a low oxygen concentration is, for example, 0.001% or less, preferably 0.0005% or less, and more preferably 0.0002% or less. When coarse powder containing 0.002 to 0.15% by mass of N is finely pulverized in an atmosphere having an oxygen content of 0.005 to 0.5%, the oxidation reaction of rare earth elements in the coarse powder occurs preferentially, and the nitriding reaction is almost complete. It can be ignored.

(B) スラリーの生成
ジェットミルの微粉回収口に、鉱物油、合成油又はこれらの混合油の入った容器を設置し、この容器内も窒素ガス及び/又はArガスからなる雰囲気とし、微粉を大気に触れさせずに直接鉱物油、合成油又はこれらの混合油中に回収して、スラリーとする。
(B) Slurry generation A container containing mineral oil, synthetic oil or a mixture of these oils is installed at the fine powder collection port of the jet mill, and this container also has an atmosphere of nitrogen gas and / or Ar gas. It is recovered directly in mineral oil, synthetic oil or a mixed oil thereof without being exposed to the atmosphere to form a slurry.

鉱物油、合成油又はこれらの混合油に、流動性向上剤として次亜リン酸ナトリウムを配合するのが好ましい。次亜リン酸ナトリウムはグリセリン又はエタノールの溶液の状態で鉱物油、合成油又はこれらの混合油に添加するのが好ましい。次亜リン酸ナトリウムのグリセリン又はエタノール溶液の濃度は特に制限されないが、鉱物油、合成油又はこれらの混合油に対する次亜リン酸ナトリウムの割合を0.01〜0.5質量%の範囲とするのが好ましい。次亜リン酸ナトリウムの割合が0.01質量%未満であると、スラリーの流動性の改善効果は不十分である。鉱物油、合成油又はこれらの混合油に次亜リン酸ナトリウムのグリセリン又はエタノールの溶液を混合すると、鉱物油、合成油又はこれらの混合油は酸性を示し、これらに回収された微粉は次亜リン酸ナトリウムと化学的に反応する。   It is preferable to add sodium hypophosphite as a fluidity improver to mineral oil, synthetic oil or a mixed oil thereof. Sodium hypophosphite is preferably added to mineral oil, synthetic oil or a mixed oil thereof in the form of a solution of glycerin or ethanol. The concentration of sodium hypophosphite in glycerin or ethanol solution is not particularly limited, but it is preferable that the ratio of sodium hypophosphite to mineral oil, synthetic oil or mixed oil thereof is in the range of 0.01 to 0.5 mass%. When the proportion of sodium hypophosphite is less than 0.01% by mass, the effect of improving the fluidity of the slurry is insufficient. When a solution of sodium phosphite in glycerin or ethanol is mixed with mineral oil, synthetic oil or a mixture of these, the mineral oil, synthetic oil or a mixture of these becomes acidic, and the fine powder collected in these is hypochlorous. Reacts chemically with sodium phosphate.

この結果、得られるラジアル異方性焼結型R-Fe-B系永久磁石におけるPの含有量は増加する。ラジアル異方性焼結型R-Fe-B系永久磁石中で、Pは主に希土類元素に富む非磁性の粒界相に入る。発明者等の研究の結果、焼結体中のPの含有量を0.001〜0.05質量%とするには、鉱物油、合成油又はこれらの混合油に対する次亜リン酸ナトリウムの割合を0.01〜0.5質量%にするのが好ましい。次亜リン酸ナトリウムグリセリン溶液や次亜リン酸ナトリウムエタノール溶液の添加は、鉱物油、合成油又はこれらの混合油に微粉を回収する前でも後でも良い。いずれの場合も、微粉を鉱物油、合成油又はこれらの混合油と混合してスラリーにすると、鉱物油、合成油又はこれらの混合油による大気からの遮断効果により微粉の酸化や窒化が防止される。そのため、得られる焼結体のOやNの含有量は、微粉のOやNの含有量の値と実質的に変わらない。   As a result, the P content in the obtained radial anisotropic sintered R-Fe-B permanent magnet increases. In the radially anisotropic sintered R-Fe-B permanent magnet, P enters a non-magnetic grain boundary phase mainly rich in rare earth elements. As a result of the inventors' research, in order to make the content of P in the sintered body 0.001 to 0.05 mass%, the ratio of sodium hypophosphite to mineral oil, synthetic oil or mixed oil thereof is 0.01 to 0.5. It is preferable to make it into the mass%. The addition of the sodium hypophosphite glycerin solution or the sodium hypophosphite ethanol solution may be performed before or after the fine powder is recovered in the mineral oil, synthetic oil or mixed oil thereof. In any case, when the fine powder is mixed with mineral oil, synthetic oil or a mixed oil thereof to form a slurry, the fine powder is prevented from being oxidized or nitrided due to the shielding effect from the atmosphere by the mineral oil, synthetic oil or mixed oil thereof. The Therefore, the content of O or N in the obtained sintered body is not substantially different from the value of the content of O or N in the fine powder.

(C)スラリーの成形
図2は本発明の方法に用いる成形装置の一例を示す。符号11で示す領域は成形装置の縦断面を示し、符号12で示す領域は同成形装置の金型の横断面及びその拡大図(四角で囲った領域)を示す。金型は円柱状のコア4と、円筒状ダイ部材3と、下パンチ9と、上パンチ10とを有し、これらに囲まれた空間がキャビティ6を構成する。円筒状ダイ部材3はダイスケース2に支持されている。一対の磁界発生コイル1がコア4の上下位置に配置されており、コア4を通して磁力線7をキャビティ6に印加する。ダイスケース2にはキャビティ6に開口するスラリー注入孔5が設けられている。
(C) Slurry Molding FIG. 2 shows an example of a molding apparatus used in the method of the present invention. An area denoted by reference numeral 11 represents a longitudinal section of the molding apparatus, and an area denoted by reference numeral 12 represents a transverse section of the mold of the molding apparatus and an enlarged view thereof (area enclosed by a square). The mold has a columnar core 4, a cylindrical die member 3, a lower punch 9, and an upper punch 10, and a space surrounded by these constitutes a cavity 6. The cylindrical die member 3 is supported by the die case 2. A pair of magnetic field generating coils 1 are disposed at the upper and lower positions of the core 4, and magnetic lines 7 are applied to the cavity 6 through the core 4. The die case 2 is provided with a slurry injection hole 5 that opens into the cavity 6.

スラリーを加圧注入する金型は、キャビティに開口するスラリー注入孔5の軸線方向が金型のセンターコア4の中心Oから外れているのが好ましい。スラリー注入孔4の軸線方向がコア中心Oから外れていると、加圧注入された微粉スラリーは金型コア4に垂直に衝突せずに、コア4の外周面又はダイス内周面に沿ってなめらかにほぼスパイラル状にリング状キャビティ6を満たし、高い充填密度が得られる。   In the mold for injecting the slurry under pressure, it is preferable that the axial direction of the slurry injection hole 5 opening in the cavity is deviated from the center O of the center core 4 of the mold. When the axial direction of the slurry injection hole 4 deviates from the core center O, the finely powder slurry injected under pressure does not collide perpendicularly to the mold core 4, but along the outer peripheral surface of the core 4 or the inner peripheral surface of the die. The ring-shaped cavity 6 is smoothly filled almost spirally, and a high packing density can be obtained.

これに対して、スラリー注入孔5の軸線方向が金型コアの中心Oと一致する場合、加圧注入されたスラリーは金型コア4に垂直に衝突し、左右に分かれてスラリー注入孔5と180°反対の位置で合流衝突する。これによりいわゆる継ぎ目が生じて、得られる焼結体にクラックが発生する。   On the other hand, when the axial direction of the slurry injection hole 5 coincides with the center O of the mold core, the pressure-injected slurry collides perpendicularly with the mold core 4 and is divided into left and right slurry injection holes 5 and Collide and collide at 180 ° opposite position. As a result, so-called seams are generated, and cracks are generated in the obtained sintered body.

本発明では、図2に示すように、スラリー注入孔5の中心軸線と、金型コア4の半径方向(スラリー注入孔5の中心軸線が円筒状ダイ部材3の内周面と交差する点Aとコア中心点Oとを結ぶ直線AO)との角度θ(直角又は鋭角側)は、金型キャビティ6の寸法により若干異なるが、5°〜90°、好ましくは10°〜90°であり、特に30°〜 90°である。金型キャビティ6へのスラリーの注入圧力は限定的でないが、4.9×104 Pa〜3.9×106 Pa(約0.5〜40 kgf/cm2)が好ましく、9.8×104 Pa〜2.9×106 Pa(約1〜30 kgf/cm2)がより好ましく、2.0×105 Pa〜1.5×106 Pa(約2〜15 kgf/cm2)が特に好ましい。 In the present invention, as shown in FIG. 2, the central axis of the slurry injection hole 5 and the radial direction of the mold core 4 (the point A where the central axis of the slurry injection hole 5 intersects the inner peripheral surface of the cylindrical die member 3). The angle θ (right angle or acute angle side) with the straight line AO connecting the core center point O) is slightly different depending on the dimension of the mold cavity 6, but is 5 ° to 90 °, preferably 10 ° to 90 °, In particular, it is 30 ° to 90 °. Although the injection pressure of the slurry into the mold cavity 6 is not limited, it is preferably 4.9 × 10 4 Pa to 3.9 × 10 6 Pa (about 0.5 to 40 kgf / cm 2 ), and 9.8 × 10 4 Pa to 2.9 × 10 6. Pa (about 1 to 30 kgf / cm 2 ) is more preferable, and 2.0 × 10 5 Pa to 1.5 × 10 6 Pa (about 2 to 15 kgf / cm 2 ) is particularly preferable.

スラリー中の微粉を配向させるために金型キャビティ6に印加する半径方向の配向磁界の強さは好ましくは159 kA/m(約2 kOe)以上であり、より好ましくは239 kA/m(約3 kOe)以上である。スラリーを加圧注入後、配向磁界を維持したまま加圧湿式成形を行なう。配向磁界の強さが159 kA/m(約2 kOe)未満では、微粉の配向が不十分であり、良好な磁気特性が得られない。また金型キャビティ6に159 kA/m(約2 kOe)以上の配向磁界を印加しながらスラリーを注入し、注入途中又は注入終了後に、当初の配向磁界強度よりも高い配向磁界を与えて加圧湿式成形しても良い。流動性の改善されたスラリーを上記条件で湿式成形することにより、4.0〜4.8 g/cm3という高い密度を有する成形体が得られる。 The strength of the radial orientation magnetic field applied to the mold cavity 6 for orienting the fine powder in the slurry is preferably 159 kA / m (about 2 kOe) or more, more preferably 239 kA / m (about 3 kOe) or more. After pressure injection of the slurry, pressure wet molding is performed while maintaining the orientation magnetic field. If the strength of the orientation magnetic field is less than 159 kA / m (about 2 kOe), the orientation of the fine powder is insufficient and good magnetic properties cannot be obtained. In addition, slurry is injected while applying an orientation magnetic field of 159 kA / m (about 2 kOe) or more to the mold cavity 6, and during or after the injection, pressurization is performed by applying an orientation magnetic field higher than the initial orientation magnetic field strength. Wet molding may be used. A molded body having a high density of 4.0 to 4.8 g / cm 3 can be obtained by wet-molding the slurry with improved fluidity under the above conditions.

(D) 脱油
得られた成形体を減圧下で加熱して、成形体中の鉱物油、合成油又はこれらの混合油を除去する。成形体の減圧下での加熱処理の条件は、13.3 Pa(約0.1 Torr)以下、例えば6.7 Pa(約5.0×10-2 Torr)程度の真空度、及び100℃以上、例えば200℃前後の加熱温度である。加熱時間は成形体の重量や処理量により異なるが、1時間以上が好ましい。
(D) Deoiling The obtained molded body is heated under reduced pressure to remove mineral oil, synthetic oil or a mixed oil thereof in the molded body. The condition of the heat treatment under reduced pressure of the molded body is 13.3 Pa (about 0.1 Torr) or less, for example, a vacuum degree of about 6.7 Pa (about 5.0 × 10 −2 Torr), and heating at 100 ° C. or higher, for example, around 200 ° C. Temperature. The heating time varies depending on the weight of the molded body and the processing amount, but is preferably 1 hour or longer.

(E) 焼結
成形体の焼結は、0.13 Pa(約0.001 Torr)以下、好ましくは6.7×10-2 Pa(約5.0×10-4 Torr)以下の真空度で、1000〜1150℃の範囲で行なうのが好ましい。これにより、酸素含有量が実質0%の雰囲気中で微粉砕されたスラリーを用いた焼結体では7.52〜7.85 g/cm3の密度が得られ、酸素含有量が0.005〜0.5%の雰囲気中で微粉砕されたスラリーを用いた焼結体では7.42〜7.75 g/cm3の密度が得られる。いずれの場合も、鉱物油、合成油又はこれらの混合油による大気からの遮断効果により、微粉や成形体の酸化が防止され、前者の焼結体のO含有量は0.05〜0.25質量%であり、後者の焼結体のO含有量は0.25質量%超かつ0.60質量%以下である。
(E) Sintering The compact is sintered in a range of 1000 to 1150 ° C. at a vacuum of 0.13 Pa (about 0.001 Torr) or less, preferably 6.7 × 10 −2 Pa (about 5.0 × 10 −4 Torr) or less. Is preferable. As a result, in the sintered body using the slurry finely pulverized in an atmosphere having an oxygen content of substantially 0%, a density of 7.52 to 7.85 g / cm 3 is obtained, and in an atmosphere having an oxygen content of 0.005 to 0.5% A density of 7.42 to 7.75 g / cm 3 is obtained in the sintered body using the slurry finely pulverized in step (b). In any case, due to the shielding effect from the atmosphere by mineral oil, synthetic oil or mixed oil thereof, oxidation of fine powder and molded body is prevented, and the O content of the former sintered body is 0.05 to 0.25% by mass The latter sintered body has an O content of more than 0.25% by mass and not more than 0.60% by mass.

以上の通り、半径方向の配向磁界中でリング形状の金型キャビティに、流動性が改善されたスラリーをほぼスパイラル状になめらかに加圧注入することにより、高い充填性、従って高い成形体密度が得られ、成形体や焼結体に割れ、欠け、変形等が発生するのを防止することができる。従って、半径方向に配向したリング状焼結型永久磁石で、外径10〜100 mm、内径8〜96 mm、高さ10〜70 mmの寸法を有するものが得られる。特に本発明は、外径10〜30 mm、内径8〜28 mm、高さ10〜50 mmという小型のリング磁石の製造に好適である。   As described above, the slurry with improved fluidity is injected into the ring-shaped mold cavity in a radial orientation magnetic field smoothly and in a spiral manner, thereby achieving high filling properties and therefore high molded body density. As a result, it is possible to prevent the molded body and the sintered body from being cracked, chipped and deformed. Therefore, a ring-shaped sintered permanent magnet oriented in the radial direction having an outer diameter of 10 to 100 mm, an inner diameter of 8 to 96 mm, and a height of 10 to 70 mm is obtained. In particular, the present invention is suitable for manufacturing a small ring magnet having an outer diameter of 10 to 30 mm, an inner diameter of 8 to 28 mm, and a height of 10 to 50 mm.

また配向磁界中でなめらかなスラリーの充填が行われるので、成形体の密度は高いのみならず均一であり、従ってリング磁石の軸線方向における表面磁束密度の分布の均一化も達成できる。リング磁石の軸線方向における表面磁束密度のバラツキを7.5%以下にすると、リング磁石を回転機に用いたときに発生するコギングトルク(特により高次のコギングトルク)を十分に抑制することができる。表面磁束密度のバラツキが5%以下、特に3%以下になると、エネルギーのロスがなく、極めて静音性のよい回転機を構成することができる。   In addition, since smooth slurry filling is performed in an orientation magnetic field, the density of the compact is not only high, but also uniform, and therefore, uniform distribution of the surface magnetic flux density in the axial direction of the ring magnet can be achieved. If the variation of the surface magnetic flux density in the axial direction of the ring magnet is 7.5% or less, the cogging torque (particularly higher-order cogging torque) generated when the ring magnet is used in a rotating machine can be sufficiently suppressed. When the variation in the surface magnetic flux density is 5% or less, particularly 3% or less, there is no energy loss, and a rotating machine with extremely good silence can be configured.

本発明を以下の実施例により更に詳細に説明するが、本発明はそれらに限定されるものではない。なお磁気特性は室温(25℃)で測定した。また粉末の平均粒径は空気透過法により測定した。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. Magnetic properties were measured at room temperature (25 ° C.). The average particle size of the powder was measured by an air permeation method.

参考例1
質量%基準で17.6%のNd、7.9%のPr、5%のDy、1.1%のB、0.08%のAl、1.5%のCo、0.1%のCu、0.01%のP、0.01%のO、0.004%のC、0.006%のN、残部Feからなる組成を有するインゴットを作製した。このインゴットを粉砕して、20〜500μmの粒径の粗粉とした。この粗粉の組成を分析したところ、質量%基準で17.5%のNd、7.7%のPr、5%のDy、1.1%のB、0.08%のAl、1.5%のCo、0.1%のCu、0.01%のP、0.15%のO、0.015%のC、0.006%のN、残部Feであった。
Reference example 1
17.6% Nd, 7.9% Pr, 5% Dy, 1.1% B, 0.08% Al, 1.5% Co, 0.1% Cu, 0.01% P, 0.01% O, 0.004 by weight percent An ingot having a composition consisting of% C, 0.006% N and the balance Fe was produced. This ingot was pulverized into a coarse powder having a particle size of 20 to 500 μm. Analysis of the composition of this coarse powder revealed that 17.5% Nd, 7.7% Pr, 5% Dy, 1.1% B, 0.08% Al, 1.5% Co, 0.1% Cu, 0.01% by weight percent. % P, 0.15% O, 0.015% C, 0.006% N, balance Fe.

この粗粉100 kgをジェットミル内に装入した後、ジェットミル内をArガスで置換し、酸素濃度を実質的に0%とした。次に窒素ガスを導入し、Arガス中の窒素ガスの濃度を0.005%とした。この雰囲気中で、圧力6.9×105 Pa(約7.0 kgf/cm2)、1時間当たりの粗粉供給量12 kg/hで粗粉を微粉砕した。ジェットミルの微粉回収口に鉱物油を満たした容器を設置し、Arガス雰囲気中で、得られた微粉を直接鉱物油中に回収した。得られた微粉の平均粒径は4.5μmであった。鉱物油の量を調整することで、得られるスラリー中の微粉濃度を75質量%とした。 After 100 kg of this coarse powder was charged into the jet mill, the inside of the jet mill was replaced with Ar gas, so that the oxygen concentration was substantially 0%. Next, nitrogen gas was introduced, and the concentration of nitrogen gas in Ar gas was set to 0.005%. In this atmosphere, the coarse powder was finely pulverized at a pressure of 6.9 × 10 5 Pa (about 7.0 kgf / cm 2 ) and a coarse powder supply rate of 12 kg / h per hour. A container filled with mineral oil was installed at the fine powder collection port of the jet mill, and the fine powder obtained was directly collected in mineral oil in an Ar gas atmosphere. The average particle size of the fine powder obtained was 4.5 μm. By adjusting the amount of mineral oil, the fine powder concentration in the resulting slurry was 75% by mass.

このスラリーを金型キャビティ内で796 kA/m(約10 kOe)の配向磁界を印加しながら4.9×107 Pa(約0.5 ton/cm2)の圧力で湿式成形した。配向磁界の印加方向は成形方向と垂直であった。得られた成形体を5.3 Pa(約4.0×10-2 Torr)の真空中で80℃で2時間加熱して、鉱物油を除去し、次いで6.7×10-3 Pa(約5.0×10-5 Torr)の真空中で1065℃で4時間焼結した。得られた焼結体の組成は、質量%基準で17.5%のNd、7.7%のPr、5%のDy、1.1%のB、0.08%のAl、1.5%のCo、0.1%のCu、0.010%のP、0.17%のO、0.070%のC、0.045%のN、残部Feであった。この焼結体にArガス雰囲気中で480℃×2時間の熱処理を施した。機械加工後、焼結磁石の磁気特性を測定したところ、表2に示すように良好であった。 This slurry was wet-molded at a pressure of 4.9 × 10 7 Pa (about 0.5 ton / cm 2 ) while applying an orientation magnetic field of 796 kA / m (about 10 kOe) in the mold cavity. The direction in which the orientation magnetic field was applied was perpendicular to the molding direction. The resulting molded body was heated in a vacuum of 5.3 Pa (about 4.0 × 10 −2 Torr) at 80 ° C. for 2 hours to remove mineral oil, and then 6.7 × 10 −3 Pa (about 5.0 × 10 −5 Torr) was sintered at 1065 ° C. for 4 hours. The composition of the obtained sintered body is 17.5% Nd, 7.7% Pr, 5% Dy, 1.1% B, 0.08% Al, 1.5% Co, 0.1% Cu, 0.010 on a mass% basis. % P, 0.17% O, 0.070% C, 0.045% N, balance Fe. This sintered body was heat-treated at 480 ° C. for 2 hours in an Ar gas atmosphere. After machining, the magnetic properties of the sintered magnet were measured and found to be good as shown in Table 2.

比較例1
Pを含有しない以外参考例1と同じ組成のインゴットを作製し、参考例1と同様にして粗粉を作製した。この粗粉の組成は、Pを含有せずかつOが0.14質量%である以外、参考例1と同じであった。この粗粉を参考例1と同様に微粉砕した。得られた微粉の平均粒径は4.5μmであった。この微粉から参考例1と同様に作製した焼結体の組成を分析したところ、質量%基準で17.5%のNd、7.7%のPr、5%のDy、1.1%のB、0.08%のAl、1.5%のCo、0.1%のCu、0.16%のO、0.070%のC、0.045%のN、残部Feであった。この焼結体を機械加工し、磁気特性を測定した。結果を表2に示す。表2から、比較例1の保磁力iHcは参考例1より低いことが分かる。
Comparative Example 1
An ingot having the same composition as in Reference Example 1 was prepared except that P was not contained, and coarse powder was prepared in the same manner as in Reference Example 1. The composition of this coarse powder was the same as in Reference Example 1 except that it did not contain P and O was 0.14% by mass. This coarse powder was pulverized in the same manner as in Reference Example 1. The average particle size of the fine powder obtained was 4.5 μm. When the composition of the sintered body produced from this fine powder in the same manner as in Reference Example 1 was analyzed, 17.5% Nd, 7.7% Pr, 5% Dy, 1.1% B, 0.08% Al, based on mass%, 1.5% Co, 0.1% Cu, 0.16% O, 0.070% C, 0.045% N, balance Fe. The sintered body was machined and the magnetic properties were measured. The results are shown in Table 2. From Table 2, it can be seen that the coercive force iHc of Comparative Example 1 is lower than that of Reference Example 1.

参考例2
質量%基準で19.8%のNd、8.9%のPr、1.3%のDy、1.1%のB、0.10%のAl、2.5%のCo、0.2%のNb、0.08%のGa、0.01%のO、0.003%のC、0.005%のN、残部Feからなる組成を有するインゴットを作製した。このインゴットを粉砕して、20〜500μmの粒径の粗粉とした。この粗粉の組成を分析したところ、質量%基準で19.7%のNd、8.8%のPr、1.3%のDy、1.1%のB、0.10%のAl、2.5%のCo、0.2%のNb、0.08%のGa、0.12%のO、0.013%のC、0.007%のN、残部Feであった。
Reference example 2
19.8% Nd, 8.9% Pr, 1.3% Dy, 1.1% B, 0.10% Al, 2.5% Co, 0.2% Nb, 0.08% Ga, 0.01% O, 0.003 on a weight percent basis An ingot having a composition composed of% C, 0.005% N and the balance Fe was prepared. This ingot was pulverized into a coarse powder having a particle size of 20 to 500 μm. Analysis of the composition of this coarse powder revealed that 19.7% Nd, 8.8% Pr, 1.3% Dy, 1.1% B, 0.10% Al, 2.5% Co, 0.2% Nb, 0.08 on a mass percent basis. % Ga, 0.12% O, 0.013% C, 0.007% N, balance Fe.

この粗粉100kgに、純水に5質量%の次亜リン酸ナトリウムを溶かした水溶液454gを混合し、真空中で乾燥した。乾燥後の粗粉の組成を分析したところ、質量%基準で19.7%のNd、8.8%のPr、1.3%のDy、1.1%のB、0.10%のAl、2.5%のCo、0.2%のNb、0.08%のGa、0.008%のP、0.16%のO、0.013%のC、0.009%のN、残部Feであった。参考例1と同様にこの粗粉を微粉砕した。得られた微粉の平均粒径は4.7μmであった。この微粉から参考例1と同様に作製した焼結体の組成を分析したところ、質量%基準で19.7%のNd、8.8%のPr、1.3%のDy、1.1%のB、0.10%のAl、2.5%のCo、0.2%のNb、0.08%のGa、0.008%のP、0.18%のO、0.067%のC、0.055%のN、残部Feであった。この焼結体を機械加工し、磁気特性を測定したところ、表2に示すように良好であった。   To 100 kg of this coarse powder, 454 g of an aqueous solution in which 5% by mass of sodium hypophosphite was dissolved in pure water was mixed and dried in vacuum. When the composition of the coarse powder after drying was analyzed, 19.7% Nd, 8.8% Pr, 1.3% Dy, 1.1% B, 0.10% Al, 2.5% Co, 0.2% Nb on a mass percent basis 0.08% Ga, 0.008% P, 0.16% O, 0.013% C, 0.009% N and the balance Fe. This coarse powder was pulverized in the same manner as in Reference Example 1. The average particle size of the fine powder obtained was 4.7 μm. When the composition of the sintered body produced from this fine powder in the same manner as in Reference Example 1 was analyzed, 19.7% Nd, 8.8% Pr, 1.3% Dy, 1.1% B, 0.10% Al, based on mass%, 2.5% Co, 0.2% Nb, 0.08% Ga, 0.008% P, 0.18% O, 0.067% C, 0.055% N, balance Fe. When this sintered body was machined and the magnetic properties were measured, it was good as shown in Table 2.

比較例2
参考例2と同じ粗粉100kgを、次亜リン酸ナトリウム水溶液を添加しない以外参考例1と同様に微粉砕した。得られた微粉の平均粒径は4.7μmであった。この微粉から参考例1と同様に作製した焼結体の組成を分析したところ、質量%基準で19.7%のNd、8.8%のPr、1.3%のDy、1.1%のB、0.10%のAl、2.5%のCo、0.2%のNb、0.08%のGa、0.16%のO、0.067%のC、0.050%のN、残部Feであった。この焼結体を機械加工し、磁気特性を測定したところ、表2に示すように、保磁力iHcが参考例2より低かった。
Comparative Example 2
100 kg of the same coarse powder as in Reference Example 2 was finely pulverized in the same manner as in Reference Example 1 except that no sodium hypophosphite aqueous solution was added. The average particle size of the fine powder obtained was 4.7 μm. When the composition of the sintered body produced from this fine powder in the same manner as in Reference Example 1 was analyzed, 19.7% Nd, 8.8% Pr, 1.3% Dy, 1.1% B, 0.10% Al, based on mass%, 2.5% Co, 0.2% Nb, 0.08% Ga, 0.16% O, 0.067% C, 0.050% N, balance Fe. The sintered body was machined and measured for magnetic properties. As shown in Table 2, the coercive force iHc was lower than that of Reference Example 2.

Figure 0004706872
Figure 0004706872

Figure 0004706872
Figure 0004706872

実施例1
質量%基準で、19.85%のNd、8.95%のPr、1.00%のDy、1.02%のB、0.10%のAl、2.00%のCo、0.10%のCu、0.15%のO、0.04%のC、0.02%のN、残部Feからなる組成を有するR-Fe-B系永久磁石用の粗粉をジェットミルに装入し、窒素ガスで置換した後、圧力6.9×105Pa(7.0 kgf/cm2)、粗粉供給量15 kg/hで微粉砕した。得られた微粉をジェットミルの排出口に設置された鉱物油(「スーパーゾルPA30」、出光興産(株)製)中に大気に触れさせずに直接回収し、スラリーとした。
Example 1
19.85% Nd, 8.95% Pr, 1.00% Dy, 1.02% B, 0.10% Al, 2.00% Co, 0.10% Cu, 0.15% O, 0.04% C, on a weight percent basis A coarse powder for an R-Fe-B permanent magnet having a composition of 0.02% N and the balance Fe was charged into a jet mill and replaced with nitrogen gas, and then pressure 6.9 × 10 5 Pa (7.0 kgf / cm 2 ) Finely pulverized at a coarse powder feed rate of 15 kg / h. The obtained fine powder was directly collected in a mineral oil ("Supersol PA30", manufactured by Idemitsu Kosan Co., Ltd.) installed at the discharge port of the jet mill without being exposed to the atmosphere, and used as a slurry.

この鉱物油には、鉱物油に対する次亜リン酸ナトリウムの割合が0.1質量%になるように、5質量%次亜リン酸ナトリウムグリセリン溶液をあらかじめ混合しておいた。スラリー中の鉱物油と微粉の質量比は1:3であった。得られた微粉の平均粒径は4.5μmであった。このようにして作製したスラリーを、図2に示す配向磁界発生コイルを配置した金型のキャビティに加圧注入して、成形した。   This mineral oil was previously mixed with a 5% by mass sodium hypophosphite glycerin solution so that the ratio of sodium hypophosphite to the mineral oil was 0.1% by mass. The mass ratio of mineral oil to fine powder in the slurry was 1: 3. The average particle size of the fine powder obtained was 4.5 μm. The slurry thus produced was injected by pressure into a mold cavity in which an orientation magnetic field generating coil shown in FIG.

スラリー注入孔5の軸線方向と金型コア4の半径方向との角度θは30°とした。キャビティに印加した半径方向の配向磁界の強度は239 kA/m(3 kOe)であり、スラリーの注入圧力は3.9×105Pa(4 kgf/cm2)であった。スラリー注入後、配向磁界強度を239 kA/m(3 kOe)に維持したまま、7.8×107Pa(0.8 ton/cm2)の圧力で磁界中で湿式成形し、外径24.5 mm×内径17.4 mm×高さ30.0 mmの成形体を得た。成形体の密度は4.30 g/cm3であった。 The angle θ between the axial direction of the slurry injection hole 5 and the radial direction of the mold core 4 was 30 °. The intensity of the radial orientation magnetic field applied to the cavity was 239 kA / m (3 kOe), and the injection pressure of the slurry was 3.9 × 10 5 Pa (4 kgf / cm 2 ). After slurry injection, wet forming was performed in a magnetic field at a pressure of 7.8 × 10 7 Pa (0.8 ton / cm 2 ) while maintaining the orientation magnetic field strength at 239 kA / m (3 kOe), outer diameter 24.5 mm × inner diameter 17.4 A molded body of mm × height 30.0 mm was obtained. The density of the molded body was 4.30 g / cm 3 .

この成形体を6.7 Pa(5×10-2 Torr)の減圧下で200℃×2時間の脱油処理を行い、次いで2.7×10-2Pa(2×10-4 Torr)の減圧下で1050℃×3時間の焼結を行った。得られた焼結体は外径20.0 mm×内径15.0 mm×高さ26.0 mmの寸法、及び7.58 g/cm3の密度を有していた。焼結体に500℃×2時間の熱処理を施した後、機械加工し、外径19.6 mm×内径15.4 mm×高さ25.0 mmの寸法に仕上げた。4極着磁を行った後表面磁束密度の測定を行ったところ、表4に示すように高いピーク値を示した。 This molded body was deoiled at 200 ° C. for 2 hours under a reduced pressure of 6.7 Pa (5 × 10 −2 Torr), and then 1050 under a reduced pressure of 2.7 × 10 −2 Pa (2 × 10 −4 Torr). Sintering was performed at 3 ° C. for 3 hours. The obtained sintered body had a size of an outer diameter of 20.0 mm × an inner diameter of 15.0 mm × a height of 26.0 mm, and a density of 7.58 g / cm 3 . The sintered body was heat-treated at 500 ° C. for 2 hours and then machined to finish the dimensions of outer diameter 19.6 mm × inner diameter 15.4 mm × height 25.0 mm. When the surface magnetic flux density was measured after quadrupole magnetization, a high peak value was shown as shown in Table 4.

図3に示すように、焼結体20から5mm×7mm×1mmの試料21b(1mmの厚さ方向が磁化方向)を切り出した。なお21は切り出す前の試料を示す。試料21bを厚さ方向に8枚重ねて磁気特性を測定したところ、表4に示すような高い値を示した。この焼結体の組成を分析したところ、質量%基準で19.85%のNd、8.95%のPr、1.00%のDy、1.02%のB、0.10%のAl、2.00%のCo、0.10%のCu、0.17%のO、0.06%のC、0.05%のN、0.01%のP、残部Feからなっていた。試料21bをEPMAでライン分析したところ、図4に示すようにPのピークが確認できた。図4から、Pは主に結晶粒界の希土類に富む相に存在していることが分かる。   As shown in FIG. 3, a 5 mm × 7 mm × 1 mm sample 21b (1 mm thickness direction is the magnetization direction) was cut out from the sintered body 20. Reference numeral 21 denotes a sample before cutting out. When eight samples 21b were stacked in the thickness direction and the magnetic characteristics were measured, a high value as shown in Table 4 was obtained. When the composition of this sintered body was analyzed, 19.85% Nd, 8.95% Pr, 1.00% Dy, 1.02% B, 0.10% Al, 2.00% Co, 0.10% Cu, It consisted of 0.17% O, 0.06% C, 0.05% N, 0.01% P and the balance Fe. When sample 21b was subjected to line analysis by EPMA, a peak of P was confirmed as shown in FIG. From FIG. 4, it can be seen that P exists mainly in the rare earth-rich phase at the grain boundaries.

実施例2
実施例1と同じ粗粉を実施例1と同様に微粉砕するとともに鉱物油(「スーパーゾルPA30」、出光興産(株)製)中に回収して、スラリーとした。鉱物油と微粉との質量比は1:3であった。得られた微粉の平均粒径は4.8μmであった。このスラリーに、鉱物油に対する次亜リン酸ナトリウムの割合が0.3質量%になるように、10質量%次亜リン酸ナトリウムエタノール溶液を混合した。得られたスラリーを実施例1と同様に、スラリー注入孔の軸線と金型コアの半径との角度θが5°の金型キャビティに加圧注入し、磁界中で湿式成形して、外径24.5 mm×内径17.4 mm×高さ30.0 mmの成形体を得た。成形体の密度は4.40 g/cm3であった。
Example 2
The same coarse powder as in Example 1 was pulverized in the same manner as in Example 1 and recovered in mineral oil ("Supersol PA30", manufactured by Idemitsu Kosan Co., Ltd.) to prepare a slurry. The mass ratio of mineral oil to fine powder was 1: 3. The average particle size of the fine powder obtained was 4.8 μm. To this slurry, a 10% by mass sodium hypophosphite ethanol solution was mixed so that the ratio of sodium hypophosphite to mineral oil was 0.3% by mass. As in Example 1, the obtained slurry was pressure-injected into a mold cavity having an angle θ between the axis of the slurry injection hole and the radius of the mold core of 5 °, wet-formed in a magnetic field, and the outer diameter A molded body of 24.5 mm × inner diameter 17.4 mm × height 30.0 mm was obtained. The density of the molded body was 4.40 g / cm 3 .

この成形体を実施例1と同様に脱油、焼結し、外径20.1 mm×内径14.9 mm×高さ26.2 mmの焼結体を得た。焼結体の密度は7.56 g/cm3であった。この焼結体に500℃×2時間の熱処理を施した。この焼結体を機械加工して外径19.6 mm×内径15.4 mm×高さ25.0 mmの寸法に仕上げ、実施例1と同様に4極着磁を行った。表面磁束密度の測定を行ったところ、表4に示すように高いピーク値を示した。 This molded body was deoiled and sintered in the same manner as in Example 1 to obtain a sintered body having an outer diameter of 20.1 mm, an inner diameter of 14.9 mm, and a height of 26.2 mm. The density of the sintered body was 7.56 g / cm 3 . This sintered body was heat-treated at 500 ° C. for 2 hours. This sintered body was machined and finished to a size of outer diameter 19.6 mm × inner diameter 15.4 mm × height 25.0 mm, and four-pole magnetization was performed in the same manner as in Example 1. When the surface magnetic flux density was measured, a high peak value was shown as shown in Table 4.

この焼結体から図3に示すように試料21bを切り出した。試料21bの切り出し位置、寸法及び磁気特性の測定条件は実施例1と同一とした。磁気特性は表4に示すように良好であった。焼結体の組成を分析したところ、質量%基準で19.85%のNd、8.95%のPr、1.00%のDy、1.02%のB、0.10%のAl、2.00%のCo、0.10%のCu、0.16%のO、0.06%のC、0.04%のN、0.03%のP、残部Feであった。試料21bをEPMAでライン分析した結果、図5に示すようにPのピークが確認できた。   A sample 21b was cut out from the sintered body as shown in FIG. The cutting position, size, and measurement conditions of the sample 21b were the same as those in Example 1. The magnetic properties were good as shown in Table 4. When the composition of the sintered body was analyzed, 19.85% Nd, 8.95% Pr, 1.00% Dy, 1.02% B, 0.10% Al, 2.00% Co, 0.10% Cu, 0.16 on a mass percent basis % O, 0.06% C, 0.04% N, 0.03% P, balance Fe. As a result of line analysis of sample 21b by EPMA, a peak of P was confirmed as shown in FIG.

実施例3
実施例1で作製したスラリーを実施例1と同様に、半径方向に239 kA/m(3 kOe)の配向磁界が印加されている金型キャビティに加圧注入し、磁界中で湿式成形した。スラリーの注入圧力は3.9×105Pa(4 kgf/cm2)であった。スラリーの注入開始から0.5秒後に配向磁界の強度を398 kA/m(5 kOe)に増加させ、スラリーの注入終了後この磁界強度を維持しながら、湿式成形し、外径24.5 mm×内径17.4 mm×高さ30.0 mmの成形体を得た。得られた成形体の密度は4.25 g/cm3であった。
Example 3
In the same manner as in Example 1, the slurry produced in Example 1 was injected under pressure into a mold cavity to which an orientation magnetic field of 239 kA / m (3 kOe) was applied in the radial direction, and wet-molded in the magnetic field. The slurry injection pressure was 3.9 × 10 5 Pa (4 kgf / cm 2 ). 0.5 seconds after the start of slurry injection, the orientation magnetic field strength is increased to 398 kA / m (5 kOe). After the slurry injection is completed, the magnetic field strength is maintained and wet molding is performed, and the outer diameter is 24.5 mm × the inner diameter is 17.4 mm. X A molded body having a height of 30.0 mm was obtained. The density of the obtained molded body was 4.25 g / cm 3 .

この成形体を実施例1と同様に脱油、焼結し、外径19.9mm×内径15.1mm×高さ26.1mmの焼結体を得た。焼結体の密度は7.59g/cm3であった。この焼結体を実施例1と同様に熱処理し、外径19.6mm×内径15.4mm×高さ25.0mmの寸法に機械加工した。得られた製品に4極着磁をして、軸線方向の磁極に沿って表面磁束密度を測定したところ、表4に示すように良好であった。また実施例1と同様に切り出した試料の磁気特性を測定したところ、表4に示すような高い値を有していた。 This molded body was deoiled and sintered in the same manner as in Example 1 to obtain a sintered body having an outer diameter of 19.9 mm, an inner diameter of 15.1 mm, and a height of 26.1 mm. The density of the sintered body was 7.59 g / cm 3 . This sintered body was heat-treated in the same manner as in Example 1 and machined to dimensions of outer diameter 19.6 mm × inner diameter 15.4 mm × height 25.0 mm. When the obtained product was magnetized with four poles and the surface magnetic flux density was measured along the magnetic pole in the axial direction, it was good as shown in Table 4. Further, when the magnetic properties of the sample cut out in the same manner as in Example 1 were measured, the samples had high values as shown in Table 4.

実施例4
実施例1で作製したスラリーを実施例1と同様に、スラリー注入孔の軸線と金型コアの半径との角度θが45°の金型キャビティに加圧注入し、磁界中で湿式成形した。ただし、金型は大口径リング磁石用に変更した。キャビティに印加した半径方向の配向磁界の強度は478 kA/m(約6 kOe)であり、注入圧力は5.9×105 Pa(約6 kgf/cm2)であった。スラリー注入後、配向磁界強度を478 kA/m(約6 kOe)に維持したまま、4.9×107 Pa(0.5 ton/cm2)の圧力で磁界中で湿式成形し、外径114.0 mm×内径95.0 mm×高さ20.5 mmの成形体を得た。得られた成形体の密度は4.28 g/cm3であった。
Example 4
In the same manner as in Example 1, the slurry produced in Example 1 was pressure-injected into a mold cavity having an angle θ between the axis of the slurry injection hole and the radius of the mold core of 45 °, and wet-molded in a magnetic field. However, the mold was changed for a large-diameter ring magnet. The intensity of the radial orientation magnetic field applied to the cavity was 478 kA / m (about 6 kOe), and the injection pressure was 5.9 × 10 5 Pa (about 6 kgf / cm 2 ). After slurry injection, wet-molding was performed in a magnetic field at a pressure of 4.9 × 10 7 Pa (0.5 ton / cm 2 ) while maintaining the orientation magnetic field strength at 478 kA / m (about 6 kOe). A molded body of 95.0 mm × height 20.5 mm was obtained. The density of the obtained molded body was 4.28 g / cm 3 .

この成形体を実施例1と同様に脱油、焼結し、外径92.5 mm×内径81.5 mm×高さ18 mmの焼結体を得た。焼結体の密度は7.57 g/cm3であった。焼結体に500℃×2時間の熱処理を施した。この焼結体を機械加工して、外径91.5 mm×内径80.5 mm×高さ16 mmの寸法に仕上げた。16極着磁を行って軸線方向の磁極に沿って表面磁束密度を測定したところ、表4に示すように良好であった。焼結体から切り出した5 mm×10 mm×2 mmの試料を厚さ方向に4枚重ねて磁気特性を測定したところ、表4に示すような高い値を有していた。 This molded body was deoiled and sintered in the same manner as in Example 1 to obtain a sintered body having an outer diameter of 92.5 mm, an inner diameter of 81.5 mm, and a height of 18 mm. The density of the sintered body was 7.57 g / cm 3 . The sintered body was heat-treated at 500 ° C. for 2 hours. This sintered body was machined and finished to dimensions of an outer diameter of 91.5 mm, an inner diameter of 80.5 mm, and a height of 16 mm. When the 16-pole magnetization was performed and the surface magnetic flux density was measured along the magnetic pole in the axial direction, it was good as shown in Table 4. When 4 samples of 5 mm × 10 mm × 2 mm cut out from the sintered body were stacked in the thickness direction and the magnetic properties were measured, they had high values as shown in Table 4.

実施例5
実施例1で作製したスラリーを実施例1と同様に、スラリー注入孔の軸線と金型コアの半径との角度θが15°の金型キャビティに加圧注入し、磁界中で湿式成形した。ただし、金型は中口径の長尺リング磁石用に変更した。キャビティに印加した半径方向の配向磁界の強度は199 kA/m(約2.5 kOe)であり、注入圧力は2.0×105 Pa(約2 kgf/cm2)であった。スラリー注入後配向磁界強度を637 kA/m(8 kOe)に増加させ、この配向磁界強度を維持したまま3.9×107 Pa(0.4 ton/cm2)の圧力で磁界中で湿式成形し、外径50 mm×内径40 mm×高さ76 mmの成形体を得た。成形体の密度は4.15 g/cm3であった。
Example 5
In the same manner as in Example 1, the slurry produced in Example 1 was pressure-injected into a mold cavity having an angle θ between the axis of the slurry injection hole and the radius of the mold core of 15 °, and wet-molded in a magnetic field. However, the mold was changed for a medium ring long ring magnet. The intensity of the radial orientation magnetic field applied to the cavity was 199 kA / m (about 2.5 kOe), and the injection pressure was 2.0 × 10 5 Pa (about 2 kgf / cm 2 ). After injecting the slurry, the orientation magnetic field strength was increased to 637 kA / m (8 kOe), and wet molding was performed in a magnetic field at a pressure of 3.9 × 10 7 Pa (0.4 ton / cm 2 ) while maintaining this orientation magnetic field strength. A molded body having a diameter of 50 mm, an inner diameter of 40 mm, and a height of 76 mm was obtained. The density of the molded body was 4.15 g / cm 3 .

この成形体を実施例1と同様に脱油、焼結し、外径40.4mm×内径35.0mm×高さ65.2mmの焼結体を得た。焼結体の密度は7.59g/cm3であった。焼結体に500℃×2時間の熱処理を施した。この焼結体を機械加工し、外径40.0mm×内径35.4mm×高さ64.2mmの寸法に仕上げた。8極着磁を行って軸線方向の磁極に沿って表面磁束密度を測定したところ、表4に示すように良好であった。焼結体から切り出した5mm×8mm×1mmの試料を厚さ方向に8枚重ねて磁気特性を測定したところ、表4に示すような高い値を有していた。 This molded body was deoiled and sintered in the same manner as in Example 1 to obtain a sintered body having an outer diameter of 40.4 mm, an inner diameter of 35.0 mm, and a height of 65.2 mm. The density of the sintered body was 7.59 g / cm 3 . The sintered body was heat-treated at 500 ° C. for 2 hours. This sintered body was machined and finished to a size of an outer diameter of 40.0 mm, an inner diameter of 35.4 mm, and a height of 64.2 mm. When the surface magnetic flux density was measured along the magnetic pole in the axial direction after octopole magnetization, it was good as shown in Table 4. When 8 samples of 5 mm × 8 mm × 1 mm cut out from the sintered body were stacked in the thickness direction and the magnetic properties were measured, they had high values as shown in Table 4.

比較例3
実施例1と同じ粗粉を実施例1と同様に微粉砕し、得られた微粉を鉱物油(「スーパーゾルPA30」、出光興産(株)製)中に回収して、スラリーとした。鉱物油と微粉との質量比は1:3であった。微粉の平均粒径は4.5μmであった。鉱物油に対する次亜リン酸ナトリウムの割合が1質量%になるように、5質量%次亜リン酸ナトリウムグリセリン溶液をあらかじめ鉱物油に混合しておいた。得られたスラリーを実施例1と同様に金型キャビティに加圧注入し、磁界中で湿式成形し、外径24.5 mm×内径17.4 mm×高さ30.0 mmの成形体を得た。成形体の密度は4.35 g/cm3であった。
Comparative Example 3
The same coarse powder as in Example 1 was finely pulverized in the same manner as in Example 1, and the resulting fine powder was recovered in mineral oil ("Supersol PA30", manufactured by Idemitsu Kosan Co., Ltd.) to prepare a slurry. The mass ratio of mineral oil to fine powder was 1: 3. The average particle size of the fine powder was 4.5 μm. A 5 mass% sodium hypophosphite glycerin solution was previously mixed with mineral oil so that the ratio of sodium hypophosphite to mineral oil was 1 mass%. The obtained slurry was pressure-injected into the mold cavity in the same manner as in Example 1 and wet-molded in a magnetic field to obtain a molded body having an outer diameter of 24.5 mm, an inner diameter of 17.4 mm, and a height of 30.0 mm. The density of the molded body was 4.35 g / cm 3 .

この成形体を実施例1と同様に脱油、焼結し、外径20.2 mm×内径15.1 mm×高さ25.9 mmの焼結体を得た。焼結体の密度は7.58 g/cm3であった。焼結体に500℃×2時間の熱処理を施した。この焼結体を機械加工しようとしたが、焼結体の機械的強度が低いために加工時の負荷により割れてしまい、評価できなかった。焼結体の破片から切り出した5 mm×7 mm×1 mmの試料を厚さ方向に8枚重ねて磁気特性を測定した。結果を表4に示す。焼結体の組成を分析したところ、質量%基準で19.85%のNd、8.95%のPr、1.00%のDy、1.02%のB、0.10%のAl、2.00%のCo、0.10%のCu、0.16%のO、0.07%のC、0.04%のN、0.09%のP、残部Feであった。 This molded body was deoiled and sintered in the same manner as in Example 1 to obtain a sintered body having an outer diameter of 20.2 mm, an inner diameter of 15.1 mm, and a height of 25.9 mm. The density of the sintered body was 7.58 g / cm 3 . The sintered body was heat-treated at 500 ° C. for 2 hours. An attempt was made to machine this sintered body. However, since the mechanical strength of the sintered body was low, the sintered body was cracked by the load during processing and could not be evaluated. Eight samples of 5 mm × 7 mm × 1 mm cut out from the sinter of the sintered body were stacked in the thickness direction, and the magnetic properties were measured. The results are shown in Table 4. When the composition of the sintered body was analyzed, 19.85% Nd, 8.95% Pr, 1.00% Dy, 1.02% B, 0.10% Al, 2.00% Co, 0.10% Cu, 0.16 on a mass percent basis % O, 0.07% C, 0.04% N, 0.09% P, balance Fe.

比較例4
実施例1と同じ粗粉を実施例1と同様に微粉砕し、得られた微粉を鉱物油(「スーパーゾルPA30」、出光興産(株)製)中に回収して、スラリーとした。鉱物油と微粉との質量比は1:3であった。微粉の平均粒径は4.5μmであった。鉱物油及びスラリーのいずれにも、流動性向上剤(次亜リン酸ナトリウムグリセリン溶液又は次亜リン酸ナトリウムエタノール溶液)を混合しなかった。このスラリーを実施例1と同様に金型キャビティに加圧注入し、磁界中で湿式成形したが、加圧注入時のスラリーの流動性が悪く、金型キャビティへの充填性が低いために、得られた成形体の寸法は外径24.5 mm×内径17.4 mm×高さ26.5 mmであった。成形体の密度は3.80 g/cm3であった。
Comparative Example 4
The same coarse powder as in Example 1 was finely pulverized in the same manner as in Example 1, and the resulting fine powder was recovered in mineral oil ("Supersol PA30", manufactured by Idemitsu Kosan Co., Ltd.) to prepare a slurry. The mass ratio of mineral oil to fine powder was 1: 3. The average particle size of the fine powder was 4.5 μm. Neither the mineral oil nor the slurry was mixed with a fluidity improver (sodium hypophosphite glycerin solution or sodium hypophosphite ethanol solution). This slurry was pressure-injected into the mold cavity in the same manner as in Example 1, and wet-molded in a magnetic field. However, because the fluidity of the slurry at the time of pressure injection was poor and the filling ability into the mold cavity was low, The dimensions of the obtained molded body were outer diameter 24.5 mm × inner diameter 17.4 mm × height 26.5 mm. The density of the molded body was 3.80 g / cm 3 .

この成形体を実施例1と同様に脱油、焼結し、外径19.7mm×内径14.8mm×高さ23.3mmの焼結体を得た。焼結体の密度は7.57g/cm3であった。上パンチ側へのスラリーの充填性が悪いために、焼結体の上パンチ側が楕円状に変形していた。変形のため、焼結体を所望の製品寸法に機械加工できなかった。焼結体に500℃×2時間の熱処理を施し、変形部以外の部位から5mm×7mm×1mmの試料を切り出した。8枚の試料を厚さ方向に重ねて磁気特性を測定した。結果を表4に示す。焼結体の組成を分析したところ、質量%基準で19.85%のNd、8.95%のPr、1.00%のDy、1.02%のB、0.10%のAl、2.00%のCo、0.10%のCu、0.16%のO、0.07%のC、0.06%のN、残部Feであった。この焼結体をEPMAでライン分析したが、図6に示すように、実施例1及び2の焼結体に存在したPのピークはなかった。 This molded body was deoiled and sintered in the same manner as in Example 1 to obtain a sintered body having an outer diameter of 19.7 mm, an inner diameter of 14.8 mm, and a height of 23.3 mm. The density of the sintered body was 7.57 g / cm 3 . Since the filling property of the slurry to the upper punch side was poor, the upper punch side of the sintered body was deformed into an elliptical shape. Due to deformation, the sintered body could not be machined to the desired product dimensions. The sintered body was subjected to heat treatment at 500 ° C. for 2 hours, and a 5 mm × 7 mm × 1 mm sample was cut out from a portion other than the deformed portion. Eight samples were stacked in the thickness direction to measure magnetic properties. The results are shown in Table 4. When the composition of the sintered body was analyzed, 19.85% Nd, 8.95% Pr, 1.00% Dy, 1.02% B, 0.10% Al, 2.00% Co, 0.10% Cu, 0.16 on a mass percent basis % O, 0.07% C, 0.06% N, balance Fe. This sintered body was subjected to line analysis by EPMA. As shown in FIG. 6, there was no P peak present in the sintered bodies of Examples 1 and 2.

比較例5
実施例1で作製したスラリーを実施例1と同様に、スラリー注入孔の軸線方向が金型コアの半径方向と一致した(θ=0°)金型キャビティに加圧注入し、磁界中で湿式成形し、外径24.5 mm×内径17.4 mm×高さ30.0 mmの成形体を得た。成形体の密度は4.29 g/cm3であった。この成形体を実施例1と同様に脱油、焼結し、外径20.1 mm×内径15.1 mm×高さ25.9 mmの焼結体を得た。焼結体の密度は7.60 g/cm3であった。得られた焼結体には、注入孔と180°反対の位置に長手方向のクラックが発生していた。クラックのため、この焼結体は所望の寸法に機械加工できなかった。クラックのない部位から切り出した5mm×7mm×1mmの試料を厚さ方向に8枚重ねて磁気特性を測定した。結果を表4に示す。
Comparative Example 5
As in Example 1, the slurry produced in Example 1 was pressure-injected into a mold cavity in which the axial direction of the slurry injection hole coincided with the radial direction of the mold core (θ = 0 °), and wetted in a magnetic field. Molding was performed to obtain a molded body having an outer diameter of 24.5 mm, an inner diameter of 17.4 mm, and a height of 30.0 mm. The density of the molded body was 4.29 g / cm 3 . This molded body was deoiled and sintered in the same manner as in Example 1 to obtain a sintered body having an outer diameter of 20.1 mm, an inner diameter of 15.1 mm, and a height of 25.9 mm. The density of the sintered body was 7.60 g / cm 3 . In the obtained sintered body, a crack in the longitudinal direction was generated at a position 180 ° opposite to the injection hole. Due to cracks, the sintered body could not be machined to the desired dimensions. Magnetic properties were measured by stacking eight 5 mm x 7 mm x 1 mm samples cut from the crack-free region in the thickness direction. The results are shown in Table 4.

比較例6
実施例1で作製したスラリーを実施例1と同様に金型キャビティに加圧注入し、79.6 kA/m(1.0 kOe)の配向磁界中で湿式成形して、外径24.5 mm×内径17.4 mm×高さ30.0 mmの成形体を得た。成形体の密度は4.32 g/cm3であった。この成形体を実施例1と同様に脱油、焼結し、外径20.3 mm×内径15.2 mm×高さ25.8 mmの焼結体を得た。焼結体の密度は7.59 g/cm3であった。この焼結体に500℃×2時間の熱処理を施した。この焼結体を機械加工し、外径19.6 mm×内径15.4 mm×高さ25.0 mmの寸法に仕上げた。4極着磁を行った後表面磁束密度の測定を行ったが、表4に示すようにピーク値は実施例1より低かった。焼結体から切り出した5 mm×7 mm×1 mmの試料を厚さ方向に8枚重ねて磁気特性を測定したところ、表4に示すように実施例1より低かった。
Comparative Example 6
The slurry prepared in Example 1 was pressure-injected into the mold cavity in the same manner as in Example 1, and wet-molded in an orientation magnetic field of 79.6 kA / m (1.0 kOe), and the outer diameter was 24.5 mm × the inner diameter was 17.4 mm × A molded body having a height of 30.0 mm was obtained. The density of the molded body was 4.32 g / cm 3 . This molded body was deoiled and sintered in the same manner as in Example 1 to obtain a sintered body having an outer diameter of 20.3 mm, an inner diameter of 15.2 mm, and a height of 25.8 mm. The density of the sintered body was 7.59 g / cm 3 . This sintered body was heat-treated at 500 ° C. for 2 hours. This sintered body was machined and finished to a size of outer diameter 19.6 mm × inner diameter 15.4 mm × height 25.0 mm. The surface magnetic flux density was measured after quadrupole magnetization, and the peak value was lower than that of Example 1 as shown in Table 4. When 8 samples of 5 mm × 7 mm × 1 mm cut out from the sintered body were stacked in the thickness direction and the magnetic characteristics were measured, as shown in Table 4, it was lower than Example 1.

実施例6
質量%基準で22.00%のNd、5.50%のPr、5.00%のDy、1.03%のB、0.08%のAl、1.00%のCo、0.12%のCu、0.10%のGa、0.09%のO、0.03%のC、0.015%のN、残部Feからなる組成を有するR-Fe-B系永久磁石用の粗粉をジェットミルに装入し、窒素ガスで置換した後、6.4×105Pa(6.5 kgf/cm2)の圧力及び20 kg/hの粗粉供給量で微粉砕した。粉砕中、ジェットミルの内に微量の酸素を導入し、窒素ガス中の酸素濃度を0.080〜0.120%に制御した。得られた微粉の粒径は5.0μmであった。微粉の組成は、質量%基準で22.00%のNd、5.50%のPr、5.00%のDy、1.03%のB、0.08%のAl、1.00%のCo、0.12%のCu、0.10%のGa、0.48%のO、0.06%のC、0.015%のN、残部Feであった。
Example 6
22.00% Nd, 5.50% Pr, 5.00% Dy, 1.03% B, 0.08% Al, 1.00% Co, 0.12% Cu, 0.10% Ga, 0.09% O, 0.03 by weight percent Coarse powder for an R-Fe-B permanent magnet having a composition consisting of 1% C, 0.015% N and the balance Fe was charged into a jet mill and replaced with nitrogen gas, and then 6.4 × 10 5 Pa (6.5 The powder was pulverized at a pressure of kgf / cm 2 ) and a coarse powder feed rate of 20 kg / h. During the pulverization, a small amount of oxygen was introduced into the jet mill, and the oxygen concentration in the nitrogen gas was controlled to 0.080 to 0.120%. The particle size of the obtained fine powder was 5.0 μm. The composition of the fine powder is 22.00% Nd, 5.50% Pr, 5.00% Dy, 1.03% B, 0.08% Al, 1.00% Co, 0.12% Cu, 0.10% Ga, 0.48 on a weight percent basis. % O, 0.06% C, 0.015% N, balance Fe.

この微粉を鉱物油(「スーパーゾルPA30」、出光興産(株)製)と混ぜてスラリーとした。鉱物油は、鉱物油に対する次亜リン酸ナトリウムの割合が0.2質量%になるように、5質量%次亜リン酸ナトリウムグリセリン溶液を含有していた。鉱物油と微粉の質量比は1:3であった。得られたスラリーを実施例1と同様に、半径方向に配向磁界が印加されたリング状の金型キャビティに加圧注入し、湿式成形して、外径24.5 mm×内径17.4 mm×高さ30.0 mmの成形体を得た。成形体の密度は4.45 g/cm3であった。 This fine powder was mixed with mineral oil ("Supersol PA30", manufactured by Idemitsu Kosan Co., Ltd.) to form a slurry. The mineral oil contained a 5% by weight sodium hypophosphite glycerin solution such that the ratio of sodium hypophosphite to mineral oil was 0.2% by weight. The mass ratio of mineral oil to fine powder was 1: 3. In the same manner as in Example 1, the obtained slurry was pressure-injected into a ring-shaped mold cavity to which an orientation magnetic field was applied in the radial direction, wet-molded, and outer diameter 24.5 mm × inner diameter 17.4 mm × height 30.0. A molded product of mm was obtained. The density of the molded body was 4.45 g / cm 3 .

この成形体を6.7 Pa(5×10-5 Torr)の減圧下で1070℃×3時間で焼結し、外径20.3 mm×内径15.1 mm×高さ25.8 mmの焼結体を得た。焼結体の密度は7.61 g/cm3であった。焼結体に550℃×2時間の熱処理を施した。この焼結体を外径19.6 mm×内径15.4 mm×高さ25.0 mmの寸法に機械加工し、8極着磁を行った。表面磁束密度の測定結果を表4に示す。また焼結体から実施例1と同じ寸法の試料を切り出し、磁気特性を測定したところ、表4に示すように良好であった。また焼結体の組成を分析したところ、質量%基準で22.00%のNd、5.50%のPr、5.00%のDy、1.03%のB、0.08%のAl、1.00%のCo、0.12%のCu、0.10%のGa、0.46%のO、0.06%のC、0.015%のN、0.02%のP、残部Feであった。 The compact was sintered at 1070 ° C. for 3 hours under a reduced pressure of 6.7 Pa (5 × 10 −5 Torr) to obtain a sintered body having an outer diameter of 20.3 mm × inner diameter of 15.1 mm × height of 25.8 mm. The density of the sintered body was 7.61 g / cm 3 . The sintered body was heat-treated at 550 ° C. for 2 hours. This sintered body was machined to dimensions of outer diameter 19.6 mm × inner diameter 15.4 mm × height 25.0 mm, and 8-pole magnetization was performed. Table 4 shows the measurement results of the surface magnetic flux density. Further, a sample having the same dimensions as in Example 1 was cut out from the sintered body and measured for magnetic properties. As a result, it was good as shown in Table 4. When the composition of the sintered body was analyzed, 22.00% Nd, 5.50% Pr, 5.00% Dy, 1.03% B, 0.08% Al, 1.00% Co, 0.12% Cu, based on mass%, It was 0.10% Ga, 0.46% O, 0.06% C, 0.015% N, 0.02% P, and the balance Fe.

比較例7
実施例6で作製した乾燥微粉を鉱物油と混合せずに実施例6と同じ金型キャビティに充填し、239 kA/m(3kOe)の配向磁界中で7.8×107 Pa(0.8 ton/cm2)の圧力下で成形して、外径24.5 mm×内径17.4 mm×高さ30.0 mmの成形体を作製した。成形体の密度は3.78 g/cm3であった。この成形体を2.7 Pa(2×10-5Torr)の減圧下で1070℃×3時間で焼結し、外径20.1 mm×内径15.0 mm×高さ25.9 mmの焼結体を得た。焼結体の密度は7.59 g/cm3であった。この焼結体に550℃×2時間の熱処理を施した後、機械加工により外径19.6 mm×内径15.4 mm×高さ25.0 mmの寸法とした。これを8極着磁し、軸線方向の磁極に沿って表面磁束密度を測定したところ、表4に示すように実施例6り低かった。焼結体から切り出した5 mm×7 mm×1 mmの試料を厚さ方向に8枚重ねて磁気特性を測定したところ、表4に示すように実施例6より低かった。
Comparative Example 7
The dry fine powder prepared in Example 6 was filled in the same mold cavity as Example 6 without mixing with mineral oil, and 7.8 × 10 7 Pa (0.8 ton / cm) in an orientation magnetic field of 239 kA / m (3 kOe). Molding was performed under the pressure of 2 ) to produce a molded body having an outer diameter of 24.5 mm, an inner diameter of 17.4 mm, and a height of 30.0 mm. The density of the molded body was 3.78 g / cm 3 . The compact was sintered at 1070 ° C. for 3 hours under a reduced pressure of 2.7 Pa (2 × 10 −5 Torr) to obtain a sintered body having an outer diameter of 20.1 mm × inner diameter of 15.0 mm × height of 25.9 mm. The density of the sintered body was 7.59 g / cm 3 . The sintered body was heat treated at 550 ° C. for 2 hours, and then machined to obtain a size of outer diameter 19.6 mm × inner diameter 15.4 mm × height 25.0 mm. When this was magnetized in 8 poles and the surface magnetic flux density was measured along the magnetic poles in the axial direction, it was lower than in Example 6 as shown in Table 4. When 8 samples of 5 mm × 7 mm × 1 mm cut out from the sintered body were stacked in the thickness direction and the magnetic properties were measured, as shown in Table 4, it was lower than Example 6.

比較例8
実施例6の金型キャビティに実施例6で作製した乾燥微粉を鉱物油と混合せずに上から充填し、318 kA/m(4 kOe)の配向磁界中で7.8×107 Pa(0.8 ton/cm2)の圧力で成形して外径24.5 mm×内径17.4 mm×高さ10.0 mmの第一の成形体を作製した。次いで下パンチを降下させて、第一の成形体の上に再度乾燥微粉を充填し、7.8×107 Pa(0.8 ton/cm2)の圧力で第一の成形体と同容積で一体的な第二の成形体(外径24.5 mm×内径17.4 mm×高さ10.0 mm)を作製した。さらに同じ要領で3度目の充填と成形を行い、同容積の第三の成形体を一体的に作製した。得られた一体的な成形体の寸法は、外径24.5 mm×内径17.4 mm×高さ30.0 mmであった。成形体の密度は3.74 g/cm3であった。
Comparative Example 8
The mold fine cavity of Example 6 was filled with the dry fine powder prepared in Example 6 from above without being mixed with mineral oil, and 7.8 × 10 7 Pa (0.8 ton) in an orientation magnetic field of 318 kA / m (4 kOe). / cm 2 ) to form a first molded body having an outer diameter of 24.5 mm, an inner diameter of 17.4 mm, and a height of 10.0 mm. Next, the lower punch is lowered, and the dry powder is filled again on the first molded body, and is integrated with the first molded body at the same volume with a pressure of 7.8 × 10 7 Pa (0.8 ton / cm 2 ). A second compact (outer diameter 24.5 mm × inner diameter 17.4 mm × height 10.0 mm) was produced. Further, the third filling and molding were performed in the same manner to integrally produce a third molded body having the same volume. The dimensions of the obtained integrally molded body were an outer diameter of 24.5 mm, an inner diameter of 17.4 mm, and a height of 30.0 mm. The density of the molded body was 3.74 g / cm 3 .

この成形体を、6.7 Pa(5.0×10-5 Torr)の減圧下で1070℃×3時間で焼結し、外径20.0 mm×内径14.9 mm×高さ26.1 mmの焼結体を得た。焼結体の密度は7.58 g/cm3であった。この焼結体に550℃×2時間の熱処理を施した後、機械的加工により外径19.6 mm×内径15.4 mm×高さ25.0 mmの寸法とした。これを8極着磁し、軸線方向の磁極に沿って表面磁束密度を測定したところ、表4に示すように比較例7より高かったが、実施例6より低かった。焼結体から切り出した5 mm×7 mm×1 mmの試料を厚さ方向に8枚重ねて磁気特性を測定したところ、表4に示すように、比較例7より高かったが、実施例6より低かった。また焼結体の三段重ね成形の継ぎ目部で表面磁束密度が局部的に低下しており、モータに組み込んだ時のコギング特性は実施例6より悪かった。 This compact was sintered at 1070 ° C. for 3 hours under a reduced pressure of 6.7 Pa (5.0 × 10 −5 Torr) to obtain a sintered body having an outer diameter of 20.0 mm × inner diameter of 14.9 mm × height of 26.1 mm. The density of the sintered body was 7.58 g / cm 3 . The sintered body was heat-treated at 550 ° C. for 2 hours and then mechanically processed to obtain an outer diameter of 19.6 mm × an inner diameter of 15.4 mm × a height of 25.0 mm. When this was magnetized in 8 poles and the surface magnetic flux density was measured along the magnetic pole in the axial direction, it was higher than Comparative Example 7 as shown in Table 4, but lower than Example 6. When 8 samples of 5 mm × 7 mm × 1 mm cut out from the sintered body were stacked in the thickness direction and the magnetic properties were measured, as shown in Table 4, it was higher than Comparative Example 7, but Example 6 It was lower. Further, the surface magnetic flux density was locally reduced at the joint portion of the three-stage sinter molding of the sintered body, and the cogging characteristics when incorporated in the motor were worse than those in Example 6.

Figure 0004706872
Figure 0004706872

Figure 0004706872
Figure 0004706872

実施例7
質量%基準で、20.50%のNd、9.25%のPr、0.25%のDy、1.03%のB、0.08%のAl、2.00%のCo、0.10%のCu、0.13%のO、0.04%のC、0.02%のN、残部Feからなる組成を有するR-Fe-B系永久磁石用の粗粉をジェットミルに装入し、窒素ガスで置換した後、6.9×105Pa(7.0 kgf/cm2)の圧力及び20 kg/hの粗粉供給量で微粉砕した。得られた微粉をジェットミルの排出口に設置された鉱物油(「スーパーゾルPA30」、出光興産(株)製)中に大気に触れさせずに直接回収して、スラリーとした。
Example 7
On a weight percent basis, 20.50% Nd, 9.25% Pr, 0.25% Dy, 1.03% B, 0.08% Al, 2.00% Co, 0.10% Cu, 0.13% O, 0.04% C, Coarse powder for an R-Fe-B permanent magnet having a composition consisting of 0.02% N and the balance Fe was charged into a jet mill and replaced with nitrogen gas, then 6.9 × 10 5 Pa (7.0 kgf / cm 2 ) And a coarse powder feed rate of 20 kg / h. The obtained fine powder was directly collected in a mineral oil ("Supersol PA30", manufactured by Idemitsu Kosan Co., Ltd.) installed at the discharge port of a jet mill without being exposed to the atmosphere, to obtain a slurry.

この鉱物油には、鉱物油に対する次亜リン酸ナトリウムの割合が0.2質量%になるように5質量%次亜リン酸ナトリウムグリセリン溶液をあらかじめ混合しておいた。鉱物油と微粉の質量比は1:3であった。微粉の平均粒径は4.7μmであった。このようにして作製したスラリーを図2に示すスラリー注入孔5の軸線と金型コア4の半径との角度θが45°の金型に加圧注入した。キャビティに印加した半径方向の配向磁界の強度は239 kA/m(約3 kOe)、スラリーの注入圧力は2.9×105 Pa(約3 kgf/cm2)であった。スラリー注入後、配向磁界強度を239 kA/m(約3 kOe)に維持したまま、3.9×107 Pa(約0.4 ton/cm2)の圧力で磁界中で湿式成形し、外径25.3 mm×内径17.5 mm×高さ21.8 mmの成形体を得た。成形体の密度は4.40 g/cm3であった。 This mineral oil was previously mixed with a 5% by mass sodium hypophosphite glycerin solution so that the ratio of sodium hypophosphite to the mineral oil was 0.2% by mass. The mass ratio of mineral oil to fine powder was 1: 3. The average particle size of the fine powder was 4.7 μm. The slurry thus produced was pressurized and injected into a mold having an angle θ of 45 ° between the axis of the slurry injection hole 5 and the radius of the mold core 4 shown in FIG. The strength of the radial orientation magnetic field applied to the cavity was 239 kA / m (about 3 kOe), and the injection pressure of the slurry was 2.9 × 10 5 Pa (about 3 kgf / cm 2 ). After slurry injection, wet molding was performed in a magnetic field at a pressure of 3.9 × 10 7 Pa (about 0.4 ton / cm 2 ) while maintaining the orientation magnetic field strength at 239 kA / m (about 3 kOe), and the outer diameter was 25.3 mm × A molded body having an inner diameter of 17.5 mm and a height of 21.8 mm was obtained. The density of the molded body was 4.40 g / cm 3 .

この成形体を6.7 Pa(約5.0×10-2 Torr)の減圧下で180℃×4時間の脱油処理を行ない、次いで6.7×10-2Pa(約5.0×10-4 Torr)の減圧下で1040℃×3時間で焼結した。得られた焼結体の寸法は外径20.6 mm×内径15.3 mm×高さ18.8 mmであり、密度は7.56 g/cm3であった。焼結体に480℃×2時間の熱処理を施した。この焼結体を機械加工して、外径20.1 mm×内径15.9 mm×高さ17.2 mmの寸法に仕上げた。単重率(加工後の焼結体の重量/加工前の焼結体の重量×100%)は72.7%であった。単重率は加工率と呼ぶこともある。 This molded body was deoiled at 180 ° C. for 4 hours under a reduced pressure of 6.7 Pa (about 5.0 × 10 −2 Torr), and then under reduced pressure of 6.7 × 10 −2 Pa (about 5.0 × 10 −4 Torr) And sintered at 1040 ° C. for 3 hours. The dimensions of the obtained sintered body were outer diameter 20.6 mm × inner diameter 15.3 mm × height 18.8 mm, and the density was 7.56 g / cm 3 . The sintered body was heat-treated at 480 ° C. for 2 hours. This sintered body was machined and finished to dimensions of an outer diameter of 20.1 mm, an inner diameter of 15.9 mm, and a height of 17.2 mm. The unit weight ratio (weight of sintered body after processing / weight of sintered body before processing × 100%) was 72.7%. The unit weight rate is sometimes called a processing rate.

4極着磁したリング磁石の外周面上の軸線方向の磁極に沿って表面磁束密度B0をホールセンサのプローブで測定した。表面磁束密度B0の測定結果から、表面磁束密度B0のピーク値(最大値)及び表面磁束密度B0のバラツキ[(B0の最大値−B0の最小値)/B0の最大値]×100(%)を求めた。結果を表6及び図7に示す。図7において、縦軸はリング磁石の軸線方向の磁極に沿った表面磁束密度B0(T)を示し、横軸はプローブをリング磁石の軸線方向に沿って移動させた距離(mm)を示す。距離Hはリング磁石の軸線方向長さ(17.2mm)に相当する。表6から明らかなように、表面磁束密度B0のピーク値は高く、表面磁束密度B0のバラツキは小さかった。 The surface magnetic flux density B 0 was measured with the Hall sensor probe along the magnetic pole in the axial direction on the outer peripheral surface of the four-pole magnetized ring magnet. From the measurement results of the surface magnetic flux density B 0, the peak value of the surface magnetic flux density B 0 (maximum value) and (minimum value of the maximum value -B 0 of B 0) variation [a surface magnetic flux density B 0 / B maximum value of 0 ] × 100 (%) was determined. The results are shown in Table 6 and FIG. In FIG. 7, the vertical axis indicates the surface magnetic flux density B 0 (T) along the magnetic pole in the axial direction of the ring magnet, and the horizontal axis indicates the distance (mm) by which the probe is moved along the axial direction of the ring magnet. . The distance H corresponds to the axial length (17.2 mm) of the ring magnet. Table 6 As is apparent, the peak value of the surface magnetic flux density B 0 is high, the variation of the surface magnetic flux density B 0 was small.

同様に作製した焼結体20から図3に示すように4 mm×7 mm×1 mmの試料21bを切り出し、試料21bを厚さ方向に8枚重ねて磁気特性を測定したところ、表6に示すような高い値を有していた。焼結体の組成を分析したところ、質量%基準で20.50%のNd、9.25%のPr、0.25%のDy、1.03%のB、0.08%のAl、2.00%のCo、0.10%のCu、0.15%のO、0.06%のC、0.05%のN、0.018%のP、残部Feであった。また試料21bをEPMAでライン分析したところ、図8に示すようにPのピークが確認できた。図8から、Pは主に結晶粒界の希土類に富む相に存在していることが分かる。   As shown in FIG. 3, a sample 21b of 4 mm × 7 mm × 1 mm was cut out from the sintered body 20 produced in the same manner, and eight samples 21b were stacked in the thickness direction to measure the magnetic characteristics. It had a high value as shown. When the composition of the sintered body was analyzed, 20.50% Nd, 9.25% Pr, 0.25% Dy, 1.03% B, 0.08% Al, 2.00% Co, 0.10% Cu, 0.15 on a mass% basis. % O, 0.06% C, 0.05% N, 0.018% P, balance Fe. Further, when line analysis was performed on sample 21b by EPMA, a peak of P was confirmed as shown in FIG. FIG. 8 shows that P exists mainly in the rare earth-rich phase at the grain boundaries.

実施例8
実施例7と同じ粗粉を実施例7と同様に微粉砕し、鉱物油(「スーパーゾルPA30」、出光興産(株)製)中に回収して、スラリーとした。鉱物油と微粉との質量比は1:3であった。得られた微粉の平均粒径は4.6μmであった。このスラリーに、鉱物油に対する次亜リン酸ナトリウムの割合が0.4質量%になるように、10質量%次亜リン酸ナトリウムエタノール溶液を混合した。このスラリーを実施例7と同様に、スラリー注入孔の軸線と金型コアの半径との角度θが30°の金型キャビティに加圧注入して、磁界中で湿式成形し、外径25.3 mm×内径17.5 mm×高さ21.8 mmの成形体を得た。成形体の密度は4.35 g/cm3であった。1時間当りの成形体の製造個数は123個であった。製品の単重率は72.9%であった。
Example 8
The same coarse powder as in Example 7 was finely pulverized in the same manner as in Example 7, and recovered in mineral oil ("Supersol PA30", manufactured by Idemitsu Kosan Co., Ltd.) to obtain a slurry. The mass ratio of mineral oil to fine powder was 1: 3. The average particle size of the fine powder obtained was 4.6 μm. To this slurry, a 10% by mass sodium hypophosphite ethanol solution was mixed so that the ratio of sodium hypophosphite to mineral oil was 0.4% by mass. As in Example 7, this slurry was pressure injected into a mold cavity having an angle θ between the slurry injection hole axis and the radius of the mold core of 30 °, wet-molded in a magnetic field, and an outer diameter of 25.3 mm. A molded body having an inner diameter of 17.5 mm and a height of 21.8 mm was obtained. The density of the molded body was 4.35 g / cm 3 . The number of manufactured compacts per hour was 123. The product unit weight was 72.9%.

この成形体を実施例7と同様に脱油、焼結し、外径20.6mm×内径15.3mm×高さ18.75mmの焼結体を得た。焼結体の密度は7.55g/cm3であった。この焼結体に480℃×2時間の熱処理を施した。この焼結体を機械加工して、外径20.1mm×内径15.9mm×高さ17.2mmの寸法に仕上げた。実施例7と同様に4極着磁を行った後、軸線方向の磁極に沿って表面磁束密度B0の測定を行ったところ、表6に示すように表面磁束密度B0の高いピーク値を示した。また表面磁束密度B0の軸線方向のバラツキを計算したところ、表6に示すように小さかった。 The molded body was deoiled and sintered in the same manner as in Example 7 to obtain a sintered body having an outer diameter of 20.6 mm, an inner diameter of 15.3 mm, and a height of 18.75 mm. The density of the sintered body was 7.55 g / cm 3 . This sintered body was heat-treated at 480 ° C. for 2 hours. This sintered body was machined and finished to dimensions of outer diameter 20.1 mm × inner diameter 15.9 mm × height 17.2 mm. After performing quadrupole magnetization in the same manner as in Example 7, the surface magnetic flux density B 0 was measured along the magnetic pole in the axial direction. As shown in Table 6, a high peak value of the surface magnetic flux density B 0 was obtained. Indicated. Further, when the variation in the axial direction of the surface magnetic flux density B 0 was calculated, it was small as shown in Table 6.

実施例7と同様に焼結体から図3に示すように試料を切り出した。磁気特性の測定の結果を表6に示す。焼結体の組成を分析したところ、質量%基準で20.50%のNd、9.25%のPr、0.25%のDy、1.03%のB、0.08%のAl、2.00%のCo、0.10%のCu、0.16%のO、0.07%のC、0.06%のN、0.037%のP、残部Feであった。またこの焼結体をEPMAでライン分析した結果、図9に示すようにPのピークが確認できた。   As in Example 7, a sample was cut out from the sintered body as shown in FIG. Table 6 shows the measurement results of the magnetic characteristics. When the composition of the sintered body was analyzed, 20.50% Nd, 9.25% Pr, 0.25% Dy, 1.03% B, 0.08% Al, 2.00% Co, 0.10% Cu, 0.16 on a mass% basis. % O, 0.07% C, 0.06% N, 0.037% P, balance Fe. Further, as a result of line analysis of this sintered body by EPMA, a peak of P was confirmed as shown in FIG.

実施例9
実施例7で作製したスラリーを、実施例7と同様にスラリー注入孔の軸線と金型コアの半径との角度θが60°の金型キャビティに加圧注入し、磁界中で湿式成形した。ただし、金型のキャビティ部の寸法は変更した。キャビティに印加した半径方向の配向磁界の強度は398 kA/m(約5 kOe)、注入圧力は5.9×105 Pa(約6 kgf/cm2)であった。スラリー注入後、配向磁界強度を398 kA/m(約5 kOe)に維持したまま、7.8×107 Pa(約0.8 ton/cm2)の圧力で磁界中で湿式成形し、外径33.4 mm×内径24.3 mm×高さ55.1 mmの成形体を得た。1時間当りの成形体の製造個数は125個であった。成形体の密度は4.45 g/cm3であった。
Example 9
The slurry produced in Example 7 was pressure-injected into a mold cavity having an angle θ between the axis of the slurry injection hole and the radius of the mold core of 60 ° in the same manner as in Example 7, and wet-molded in a magnetic field. However, the dimensions of the mold cavity were changed. The intensity of the radial orientation magnetic field applied to the cavity was 398 kA / m (about 5 kOe), and the injection pressure was 5.9 × 10 5 Pa (about 6 kgf / cm 2 ). After slurry injection, wet forming was performed in a magnetic field at a pressure of 7.8 × 10 7 Pa (about 0.8 ton / cm 2 ) while maintaining the orientation magnetic field strength at 398 kA / m (about 5 kOe). A molded body having an inner diameter of 24.3 mm and a height of 55.1 mm was obtained. The number of manufactured compacts per hour was 125. The density of the molded body was 4.45 g / cm 3 .

この成形体を実施例7と同様に脱油、焼結し、外径27.4 mm×内径21.1 mm×高さ47.4 mmの焼結体を得た。焼結体の密度は7.57 g/cm3であった。焼結体に480℃×2時間の熱処理を施した。この焼結体を機械加工して、外径26.8 mm×内径21.8 mm×高さ45.0 mmの寸法に仕上げた。製品の単重率は75.5%であった。4極着磁を行って軸線方向の磁極に沿って表面磁束密度を測定したところ、そのピーク値及びバラツキは表6に示すように良好であった。焼結体から切り出した4 mm×7 mm×1 mmの試料を厚さ方向に8枚重ねて磁気特性を測定したところ、表6に示すような高い値を有していた。 This molded body was deoiled and sintered in the same manner as in Example 7 to obtain a sintered body having an outer diameter of 27.4 mm, an inner diameter of 21.1 mm, and a height of 47.4 mm. The density of the sintered body was 7.57 g / cm 3 . The sintered body was heat-treated at 480 ° C. for 2 hours. This sintered body was machined and finished to a size of outer diameter 26.8 mm × inner diameter 21.8 mm × height 45.0 mm. The unit weight of the product was 75.5%. When the surface magnetic flux density was measured along the magnetic pole in the axial direction by performing quadrupole magnetization, the peak value and variation were good as shown in Table 6. When 8 samples of 4 mm × 7 mm × 1 mm cut out from the sintered body were stacked in the thickness direction and the magnetic properties were measured, they had high values as shown in Table 6.

実施例10
実施例9で作製したスラリーを実施例9と同様に、半径方向に159 kA/m(約2 kOe)の配向磁界を印加した金型キャビティに3.9×105 Pa(約4 kgf/cm2)の圧力で注入し、磁界中で湿式成形した。スラリーの注入開始から0.5秒後に配向磁界の強度を318 kA/m(約4 kOe)に増加させ、注入終了後この磁界強度を維持しながら磁界中で湿式成形し、外径33.4 mm×内径24.3 mm×高さ54.8 mmの成形体を得た。成形体の密度は4.45 g/cm3であった。1時間当りの成形体の製造個数は121個であった。
Example 10
In the same manner as in Example 9, the slurry prepared in Example 9 was applied to a mold cavity to which an orientation magnetic field of 159 kA / m (about 2 kOe) was applied in the radial direction, to 3.9 × 10 5 Pa (about 4 kgf / cm 2 ). And wet-molded in a magnetic field. 0.5 seconds after the start of slurry injection, the strength of the orientation magnetic field is increased to 318 kA / m (about 4 kOe), and after the completion of injection, wet forming is performed in the magnetic field while maintaining this magnetic field strength, outer diameter 33.4 mm × inner diameter 24.3 A molded body of mm × height 54.8 mm was obtained. The density of the molded body was 4.45 g / cm 3 . The number of manufactured compacts per hour was 121.

この成形体を実施例7と同様に脱油、焼結し、外径27.4mm×内径21.1mm×高さ47.1mmの焼結体を得た。焼結体の密度は7.57g/cm3であった。この焼結体を実施例7と同様に熱処理し、外径26.8mm×内径21.8mm×高さ45.0mmの寸法に機械加工した。製品の単重率は6.0%であった。4極着磁をした後表面磁束密度B0を測定したところ、そのピーク値及びバラツキは表6に示すように良好であった。また実施例7と同様に切り出した試料の磁気特性を測定したところ、表6に示すような高い値を有していた。 This molded body was deoiled and sintered in the same manner as in Example 7 to obtain a sintered body having an outer diameter of 27.4 mm, an inner diameter of 21.1 mm, and a height of 47.1 mm. The density of the sintered body was 7.57 g / cm 3 . This sintered body was heat-treated in the same manner as in Example 7 and machined to dimensions of outer diameter 26.8 mm × inner diameter 21.8 mm × height 45.0 mm. The unit weight of the product was 6.0%. When the surface magnetic flux density B 0 was measured after quadrupole magnetization, the peak value and variation were good as shown in Table 6. Further, when the magnetic properties of the sample cut out in the same manner as in Example 7 were measured, it had a high value as shown in Table 6.

実施例11
実施例7で作製したスラリーを実施例7と同様に、スラリー注入孔の軸線と金型コアの半径との角度θが15°の金型キャビティに加圧注入し、磁界中で湿式成形した。ただし、金型のキャビティ部の寸法は変更した。キャビティに印加した半径方向の配向磁界の強度は223 kA/m(2.8 kOe)であり、注入圧力は3.9×105 Pa(約4 kgf/cm2)であった。スラリー注入後、配向磁界強度を223 kA/m(2.8 kOe)に維持したまま、3.9×107 Pa(約0.4 ton/cm2)の圧力で磁界中で湿式成形し、外径17.9 mm×内径11.1 mm×高さ16.4 mmの成形体を得た。成形体の密度は4.40 g/cm3であった。1時間当りの成形体の製造個数は140個であった。
Example 11
In the same manner as in Example 7, the slurry produced in Example 7 was pressure-injected into a mold cavity having an angle θ between the axis of the slurry injection hole and the radius of the mold core of 15 °, and wet-molded in a magnetic field. However, the dimensions of the mold cavity were changed. The intensity of the radial orientation magnetic field applied to the cavity was 223 kA / m (2.8 kOe), and the injection pressure was 3.9 × 10 5 Pa (about 4 kgf / cm 2 ). After slurry injection, wet molding was performed in a magnetic field at a pressure of 3.9 × 10 7 Pa (approximately 0.4 ton / cm 2 ) while maintaining the orientation magnetic field strength at 223 kA / m (2.8 kOe), and the outer diameter was 17.9 mm × inner diameter. A molded body of 11.1 mm × height 16.4 mm was obtained. The density of the molded body was 4.40 g / cm 3 . The number of manufactured compacts per hour was 140.

この成形体を実施例7と同様に脱油、焼結し、外径14.6 mm×内径9.6 mm×高さ14.2 mmの焼結体を得た。焼結体の密度は7.58 g/cm3であった。焼結体に480℃×2時間の熱処理を施した。この焼結体を機械加工して、外径14.0 mm×内径10.0 mm×高さ12.5 mmの寸法に仕上げた。製品の単重率は69.8%であった。4極着磁を行って軸線方向の磁極に沿って表面磁束密度を測定したところ、そのピーク値及びそのバラツキは表6に示すように良好であった。焼結体から切り出した3 mm×7 mm×1 mmの試料を厚さ方向に8枚重ねて磁気特性を測定したところ、表6に示すような高い値を有していた。 This molded body was deoiled and sintered in the same manner as in Example 7 to obtain a sintered body having an outer diameter of 14.6 mm, an inner diameter of 9.6 mm, and a height of 14.2 mm. The density of the sintered body was 7.58 g / cm 3 . The sintered body was heat-treated at 480 ° C. for 2 hours. This sintered body was machined and finished to a size of outer diameter 14.0 mm × inner diameter 10.0 mm × height 12.5 mm. The unit weight of the product was 69.8%. When the surface magnetic flux density was measured along the magnetic pole in the axial direction by performing quadrupole magnetization, the peak value and its variation were good as shown in Table 6. When 8 samples of 3 mm × 7 mm × 1 mm cut out from the sintered body were stacked in the thickness direction and the magnetic properties were measured, they had high values as shown in Table 6.

比較例9
実施例7と同じ粗粉を実施例7と同様に微粉砕し、鉱物油(「スーパーゾルPA30」、出光興産(株)製)中に回収して、スラリーとした。鉱物油と微粉との質量比は1:3であった。得られた微粉の平均粒径は4.6μmであった。鉱物油及びスラリーには、次亜リン酸ナトリウムグリセリン溶液又は次亜リン酸ナトリウムエタノール溶液を混合しなかった。このスラリーを実施例7と同様に加圧注入し、磁界中で湿式成形した。しかし、スラリーの流動性が悪いために金型キャビティへの充填性が低く、得られた成形体の寸法は外径25.3 mm×内径17.5 mm×高さ19.5 mmであった。成形体の密度は3.85 g/cm3であった。1時間当りの成形体の製造個数は116個であった。
Comparative Example 9
The same coarse powder as in Example 7 was finely pulverized in the same manner as in Example 7, and recovered in mineral oil ("Supersol PA30", manufactured by Idemitsu Kosan Co., Ltd.) to obtain a slurry. The mass ratio of mineral oil to fine powder was 1: 3. The average particle size of the fine powder obtained was 4.6 μm. The mineral oil and slurry were not mixed with sodium hypophosphite glycerin solution or sodium hypophosphite ethanol solution. This slurry was injected under pressure in the same manner as in Example 7 and wet-formed in a magnetic field. However, since the fluidity of the slurry was poor, the filling property into the mold cavity was low, and the size of the obtained molded body was 25.3 mm outer diameter × 17.5 mm inner diameter × 19.5 mm height. The density of the molded body was 3.85 g / cm 3 . The number of manufactured compacts per hour was 116.

この成形体を実施例7と同様に脱油、焼結し、外径20.3 mm×内径15.0 mm×高さ15.9 mmの焼結体を得た。焼結体の密度は7.55 g/cm3であった。しかし、スラリーの充填性が悪いため、焼結体の上パンチ側の部分が楕円状に変形しており、焼結体を機械加工しても製品寸法にならなかった。焼結体に480℃×2時間の熱処理を施し、変形部以外の部位から4 mm×7 mm×1 mmの試料を切り出し、試料を厚さ方向に8枚重ねて磁気特性を測定した。結果を表6に示す。焼結体の組成を分析したところ、質量%基準で20.50%のNd、9.25%のPr、0.25%のDy、1.03%のB、0.08%のAl、2.00%のCo、0.10%のCu、0.15%のO、0.07%のC、0.05%のN、残部Feであった。この焼結体をEPMAでライン分析したが、図10に示すようにPのピークがないことが確認された。 This molded body was deoiled and sintered in the same manner as in Example 7 to obtain a sintered body having an outer diameter of 20.3 mm, an inner diameter of 15.0 mm, and a height of 15.9 mm. The density of the sintered body was 7.55 g / cm 3 . However, since the filling property of the slurry was poor, the upper punch side portion of the sintered body was deformed into an ellipse, and even when the sintered body was machined, the product dimensions were not achieved. The sintered body was subjected to heat treatment at 480 ° C. for 2 hours, a 4 mm × 7 mm × 1 mm sample was cut out from a portion other than the deformed portion, and eight samples were stacked in the thickness direction to measure the magnetic properties. The results are shown in Table 6. When the composition of the sintered body was analyzed, 20.50% Nd, 9.25% Pr, 0.25% Dy, 1.03% B, 0.08% Al, 2.00% Co, 0.10% Cu, 0.15 on a mass% basis. % O, 0.07% C, 0.05% N, balance Fe. This sintered body was subjected to line analysis by EPMA, and it was confirmed that there was no P peak as shown in FIG.

比較例10
実施例7で作製したスラリーを実施例7と同様に、スラリー注入孔の軸線方向が金型コアの半径方向である(θ=0°)金型キャビティに加圧注入し、磁界中で湿式成形し、外径25.3 mm×内径17.5 mm×高さ21.7 mmの成形体を得た。成形体の密度は4.38 g/cm3であった。1時間当りの成形体の製造個数は118個であった。この成形体を実施例7と同様に脱油、焼結し、外径20.6 mm×内径15.3 mm×高さ18.7 mmの焼結体を得た。焼結体の密度は7.56 g/cm3であった。焼結体には、注入孔と180°反対の位置に、長手方向クラックが発生していた。クラックのため、焼結体を機械加工しても製品寸法にならなかった。クラックのない部位から切り出した4 mm×7 mm×1 mmの試料を厚さ方向に8枚重ねて磁気特性を測定した。結果を表6に示す。
Comparative Example 10
As in Example 7, the slurry produced in Example 7 was pressure-injected into the mold cavity where the axial direction of the slurry injection hole was the radial direction of the mold core (θ = 0 °), and wet-molded in a magnetic field. Thus, a molded body having an outer diameter of 25.3 mm, an inner diameter of 17.5 mm, and a height of 21.7 mm was obtained. The density of the molded body was 4.38 g / cm 3 . The number of manufactured compacts per hour was 118. This molded body was deoiled and sintered in the same manner as in Example 7 to obtain a sintered body having an outer diameter of 20.6 mm, an inner diameter of 15.3 mm, and a height of 18.7 mm. The density of the sintered body was 7.56 g / cm 3 . In the sintered body, a longitudinal crack occurred at a position opposite to the injection hole by 180 °. Due to cracks, the sintered body was not machined even when machined. Magnetic properties were measured by stacking 8 4 mm x 7 mm x 1 mm specimens cut from the crack-free region in the thickness direction. The results are shown in Table 6.

比較例11
質量%基準で22.25%のNd、10.00%のPr、0.25%のDy、1.03%のB、0.07%のAl、2.00%のCo、0.12%のCu、0.10%のGa、0.15%のO、0.03%のC、0.015%のN、残部Feからなる組成を有するR-Fe-B系永久磁石用の粗粉をジェットミルに装入し、窒素ガスで置換した後、6.4×105Pa(6.5 kgf/cm2)の圧力及び30 kg/hの粗粉供給量で微粉砕した。微粉砕中、ジェットミル内に微量の酸素を導入し、窒素ガス中の酸素濃度を0.080〜0.120%に制御した。得られた微粉の粒径は4.8μmであり、その組成は質量%基準で22.25%のNd、10.00%のPr、0.25%のDy、1.03%のB、0.07%のAl、2.00%のCo、0.12%のCu、0.10%のGa、0.52%のO、0.06%のC、0.015%のN、残部Feであった。
Comparative Example 11
22.25% Nd, 10.00% Pr, 0.25% Dy, 1.03% B, 0.07% Al, 2.00% Co, 0.12% Cu, 0.10% Ga, 0.15% O, 0.03 by weight percent Coarse powder for an R-Fe-B permanent magnet having a composition consisting of 1% C, 0.015% N and the balance Fe was charged into a jet mill and replaced with nitrogen gas, and then 6.4 × 10 5 Pa (6.5 The powder was pulverized at a pressure of kgf / cm 2 ) and a coarse powder feed rate of 30 kg / h. During pulverization, a small amount of oxygen was introduced into the jet mill, and the oxygen concentration in the nitrogen gas was controlled to 0.080 to 0.120%. The particle size of the fine powder obtained is 4.8 μm, and its composition is 22.25% Nd, 10.00% Pr, 0.25% Dy, 1.03% B, 0.07% Al, 2.00% Co, based on mass%. 0.12% Cu, 0.10% Ga, 0.52% O, 0.06% C, 0.015% N, balance Fe.

得られた乾燥微粉を鉱物油と混合せずに、スラリーの注入孔がなく、キャビティ深さが1/3である以外実施例7と同じ金型キャビティに上から充填し、398kA/m(約5kOe)の配向磁界中で7.8×107Pa(約0.8 ton/cm2)の圧力で第一の成形体を作製した。次いで下パンチを降下させて、第一の成形体の上に再度乾燥微粉を充填し、7.8×107Pa(0.8 ton/cm2)の圧力で第一の成形体と同容積で一体的な第二の成形体を作製した。さらに同じ要領で3度目の充填と成形を行い、同容積の第三の成形体を一体的に作製した。得られた一体的な成形体の寸法は、外径25.3 mm×内径17.5 mm×高さ21.5 mmであった。成形体の密度は3.80 g/cm3であった。1時間当りの成形体の製造個数は48個であった。 The obtained dry fine powder was not mixed with mineral oil, filled with the same mold cavity as in Example 7 except that there was no slurry injection hole and the cavity depth was 1/3, and 398 kA / m (approximately A first compact was produced at a pressure of 7.8 × 10 7 Pa (about 0.8 ton / cm 2 ) in an orientation magnetic field of 5 kOe). Next, the lower punch is lowered, and the dry powder is filled again on the first molded body, and is integrated with the first molded body at the same volume with a pressure of 7.8 × 10 7 Pa (0.8 ton / cm 2 ). A second molded body was produced. Further, the third filling and molding were performed in the same manner to integrally produce a third molded body having the same volume. The dimensions of the obtained integral molded body were outer diameter 25.3 mm × inner diameter 17.5 mm × height 21.5 mm. The density of the molded body was 3.80 g / cm 3 . The number of manufactured compacts per hour was 48.

この成形体を6.7×10-3 Pa(約5×10-5 Torr)の減圧下で1070℃×3時間で焼結し、外径20.7 mm×内径15.4 mm×高さ18.8 mmの焼結体を得た。焼結体の密度は7.52 g/cm3であった。この焼結体に480℃×2時間の熱処理を施した。さらに機械的加工により外径20.1 mm×内径15.9 mm×高さ17.2 mmの寸法とした。製品の単重率は72.3%であった。この焼結体を4極着磁し、軸線方向の磁極に沿って表面磁束密度を測定したところ、表6及び図11に示すように、実施例7よりピーク値が低く、バラツキは三段成形の接合部の影響で大きかった。焼結体から切り出した4 mm×7 mm×1 mmの試料を厚さの方向に8枚重ねて磁気特性を測定したところ、表6に示すように実施例7より低かった。また焼結体の表面磁束密度B0は三段重ね成形の接合部で局部的に低く、モータに組み込んだ時のコギングは実施例7より大きかった。 This compact was sintered at 1070 ° C for 3 hours under a reduced pressure of 6.7 × 10 -3 Pa (about 5 × 10 -5 Torr), and the sintered body had an outer diameter of 20.7 mm, an inner diameter of 15.4 mm, and a height of 18.8 mm. Got. The density of the sintered body was 7.52 g / cm 3 . This sintered body was heat-treated at 480 ° C. for 2 hours. Furthermore, the dimensions were 20.1 mm outer diameter × 15.9 mm inner diameter × 17.2 mm height by mechanical processing. The unit weight of the product was 72.3%. When this sintered body was magnetized with four poles and the surface magnetic flux density was measured along the magnetic poles in the axial direction, the peak value was lower than in Example 7 and the variation was three-stage molded as shown in Table 6 and FIG. It was big by the influence of the joint part. When 8 samples of 4 mm × 7 mm × 1 mm cut out from the sintered body were stacked in the thickness direction and the magnetic properties were measured, as shown in Table 6, it was lower than Example 7. Further, the surface magnetic flux density B 0 of the sintered body was locally low at the joint portion of the three-stage lap molding, and cogging when incorporated in the motor was larger than that in Example 7.

比較例12
乾燥微粉を鉱物油と混合せずに、スラリーの注入孔がなく、キャビティ深さが1/3である以外比較例11と同じ金型キャビティに上から充填した。478 kA/m(約6 kOe)の配向磁界中で7.8×107Pa(約0.8 ton/cm2)の圧力で第一の成形体を作製した。次いで下パンチを降下させて、第一の成形体の上に再度乾燥微粉を充填し、7.8×107Pa(0.8 ton/cm2)の圧力で第一の成形体と同容積で一体的な第二の成形体を作製した。さらに同じ要領で3度目の充填と成形を行い、同容積の第三の成形体を一体的に作製した。得られた一体的な成形体の寸法は、外径33.4 mm×内径24.3 mm×高さ54.6 mmであった。成形体の密度は3.75 g/cm3であった。1時間当りの成形体の製造個数は45個であった。
Comparative Example 12
The dry fine powder was not mixed with mineral oil, and was filled from above into the same mold cavity as Comparative Example 11 except that there was no slurry injection hole and the cavity depth was 1/3. A first molded body was produced at a pressure of 7.8 × 10 7 Pa (about 0.8 ton / cm 2 ) in an orientation magnetic field of 478 kA / m (about 6 kOe). Next, the lower punch is lowered, and the dry powder is filled again on the first molded body, and is integrated with the first molded body at the same volume with a pressure of 7.8 × 10 7 Pa (0.8 ton / cm 2 ). A second molded body was produced. Further, the third filling and molding were performed in the same manner to integrally produce a third molded body having the same volume. The dimensions of the obtained integrally molded body were an outer diameter of 33.4 mm, an inner diameter of 24.3 mm, and a height of 54.6 mm. The density of the molded body was 3.75 g / cm 3 . The number of manufactured compacts per hour was 45.

この成形体を6.7×10-3 Pa(約5×10-5 Torr)の減圧下で1070℃×3時間で焼結し、外径27.3 mm×内径21.4 mm×高さ47.5 mmの焼結体を得た。焼結体の密度は7.51 g/cm3であった。この焼結体に480℃×2時間の熱処理を施した。さらに機械的加工により外径26.8 mm×内径21.8 mm×高さ45.0 mmの寸法とした。製品の単重率は80.1%であった。これを4極着磁し、軸線方向の磁極に沿って表面磁束密度を測定したところ、表6に示すように、実施例9よりピーク値が低く、バラツキは大きかった。焼結体から切り出した4mm×7mm×1mmの試料を厚さ方向に8枚重ねて磁気特性を測定したところ、表6に示すように、実施例9より低かった。また焼結体の表面磁束密度B0は三段重ね成形の接合部で局部的に低く、モータに組み込んだ時のコギングは実施例9より大きかった。 This compact was sintered at 1070 ° C for 3 hours under a reduced pressure of 6.7 × 10 -3 Pa (about 5 × 10 -5 Torr), and the sintered body had an outer diameter of 27.3 mm, an inner diameter of 21.4 mm, and a height of 47.5 mm. Got. The density of the sintered body was 7.51 g / cm 3 . This sintered body was heat-treated at 480 ° C. for 2 hours. Furthermore, the dimensions were 26.8 mm outer diameter x 21.8 mm inner diameter x 45.0 mm height by mechanical processing. The unit weight of the product was 80.1%. When this was magnetized with four poles and the surface magnetic flux density was measured along the magnetic poles in the axial direction, as shown in Table 6, the peak value was lower than in Example 9, and the variation was large. When 8 samples of 4 mm × 7 mm × 1 mm cut out from the sintered body were stacked in the thickness direction and the magnetic properties were measured, as shown in Table 6, it was lower than Example 9. Further, the surface magnetic flux density B 0 of the sintered body was locally low at the joint portion of the three-stage lap molding, and cogging when incorporated in the motor was larger than that in Example 9.

比較例13
質量%基準で30.0%のNd、0.90%のB、5.00%のCo、0.20%のGa、残部Feからなる組成を有する母合金を、下部に孔を有する石英ノズルに入れ、石英ノズル内を0.4 Pa(約3×10-3 Torr)に減圧した。5.3×104 Pa(約400 Torr)の圧力になるまでArガスを導入した雰囲気中で高周波により母合金を溶解し、得られた溶湯を270 g/cm3のAr圧力で、周速30 m/sで回転するBe-Cuロール上に噴出させた。これにより、平均厚さ30μmの薄帯状の合金を得た。
Comparative Example 13
A master alloy having a composition consisting of 30.0% Nd, 0.90% B, 5.00% Co, 0.20% Ga, and the balance Fe on a mass% basis is put into a quartz nozzle having holes in the lower part, and 0.4 inside the quartz nozzle. The pressure was reduced to Pa (about 3 × 10 −3 Torr). The mother alloy was melted by high frequency in an atmosphere in which Ar gas was introduced until a pressure of 5.3 × 10 4 Pa (about 400 Torr) was reached, and the resulting molten metal at an Ar pressure of 270 g / cm 3 and a peripheral speed of 30 m It was ejected onto a Be-Cu roll rotating at / s. Thereby, a ribbon-like alloy having an average thickness of 30 μm was obtained.

薄帯状の合金を500μm以下に粗粉砕し、得られた粗粉に0.2質量%の鱗状黒鉛と0.3質量%の硼珪酸ビスマス系の低融点非晶質ガラスを混合した。得られた粗粉混合物を4.9×108Pa(約5 ton/cm2)の圧力で冷間プレスし、5.8 g/cm3の密度を有する圧粉体とした。この圧粉体を0.67 Pa(5.0×10-3 Torr)の真空中で740℃及び2×108 Pa(2 ton/cm2)でホットプレスし、7.40 g/cm3の密度を有する焼結体とした。この焼結体をさらに0.67 Pa(5.0×10-3 Torr)の真空中で740℃で熱間塑性加工し、外径22.0 mm×内径14.5 mm×高さ48.0 mmで、底部の厚さが10 mmのカップ体とした。ラジアル異方性を付与するため、1時間当りの熱間塑性加工数は3個と少なかった。カップ体の底部を機械加工により切除した。また底部と反対側でクラックが発生した端部も切除した。得られたリングの内周及び外周を機械加工し、外径20.1 mm×内径15.9 mm×高さ28.0 mmの製品寸法とした。製品の熱間塑性加工体に対する単重率は17.0%と低かった。 The ribbon-shaped alloy was coarsely pulverized to 500 μm or less, and 0.2% by mass of scaly graphite and 0.3% by mass of bismuth borosilicate low melting point amorphous glass were mixed with the obtained coarse powder. The obtained coarse powder mixture was cold-pressed at a pressure of 4.9 × 10 8 Pa (about 5 ton / cm 2 ) to obtain a green compact having a density of 5.8 g / cm 3 . This green compact was hot pressed in a vacuum of 0.67 Pa (5.0 × 10 −3 Torr) at 740 ° C. and 2 × 10 8 Pa (2 ton / cm 2 ) and sintered with a density of 7.40 g / cm 3 The body. This sintered body was further subjected to hot plastic processing at 740 ° C. in a vacuum of 0.67 Pa (5.0 × 10 −3 Torr), the outer diameter was 22.0 mm, the inner diameter was 14.5 mm, the height was 48.0 mm, and the bottom thickness was 10 A cup body of mm was used. In order to impart radial anisotropy, the number of hot plastic working per hour was as small as three. The bottom of the cup body was excised by machining. Also, the end where the crack occurred on the side opposite to the bottom was cut off. The inner and outer circumferences of the obtained ring were machined to obtain product dimensions of outer diameter 20.1 mm × inner diameter 15.9 mm × height 28.0 mm. The unit weight ratio of the product to the hot plastic work was as low as 17.0%.

このリング磁石に実施例7と同様に4極着磁を行った。表面磁束密度の測定を行ったところ、表6及び図12に示すように、実施例7よりピーク値が低く、また軸線方向両端部の表面磁束密度が低く、表面磁束密度のバラツキは大きかった。製品から切り出した4 mm×7 mm×1 mmの試料の磁気特性の測定の結果、表6に示すように、実施例7より低かった。また製品をモータに組み込んだ時のコギングは実施例7より大きかった。   This ring magnet was subjected to quadrupole magnetization in the same manner as in Example 7. When the surface magnetic flux density was measured, as shown in Table 6 and FIG. 12, the peak value was lower than that in Example 7, the surface magnetic flux density at both ends in the axial direction was low, and the variation in the surface magnetic flux density was large. As a result of measuring the magnetic properties of a 4 mm × 7 mm × 1 mm sample cut out from the product, it was lower than Example 7 as shown in Table 6. Further, cogging when the product was incorporated in the motor was larger than that in Example 7.

比較例14
質量%基準で28.0%のNd、0.50%のCe、0.90%のB、3.0%のCo、0.15%のGa、残部Feからなる組成の母合金から比較例13と同様に薄帯を作製し、薄帯を粉砕して粗粉とした。この粗粉から比較例13と同様に5.7 g/cm3の圧粉体を作製し、0.4 Pa(3×10-3 Torr)の真空中で720℃で7.30 g/cm3の密度にホットプレスした。得られたプレス体を比較例13と同様に0.4 Pa(3×10-3 Torr)の真空中で720℃で熱間塑性加工し、外径30.0 mm×内径19.5 mm×高さ65.0 mmで、底部の厚さが10 mmのカップ体を得た。1時間当りの熱間塑性加工数は4個であった。
Comparative Example 14
A ribbon was prepared in the same manner as in Comparative Example 13 from a mother alloy having a composition of 28.0% Nd, 0.50% Ce, 0.90% B, 3.0% Co, 0.15% Ga, and the balance Fe on a mass% basis. The ribbon was crushed into coarse powder. A green compact of 5.7 g / cm 3 was produced from this coarse powder in the same manner as in Comparative Example 13, and hot pressed to a density of 7.30 g / cm 3 at 720 ° C. in a vacuum of 0.4 Pa (3 × 10 −3 Torr). did. The obtained pressed body was hot plastic processed at 720 ° C. in a vacuum of 0.4 Pa (3 × 10 −3 Torr) in the same manner as in Comparative Example 13, and the outer diameter was 30.0 mm × the inner diameter was 19.5 mm × the height was 65.0 mm. A cup body having a bottom thickness of 10 mm was obtained. The number of hot plastic working per hour was 4.

カップ体の底部を機械加工により切除した。また底部と反対側でクラックが発生した端部も切除した。得られたリングの内周及び外周を機械加工し、外径26.8 mm×内径21.8 mm×高さ45.0 mmの製品寸法とした。製品の熱間塑性加工体に対する単重率は29.1%と低かった。この製品に実施例9と同様に4極着磁を行った。表面磁束密度の測定を行ったところ、表6に示すように、実施例9よりピーク値が低く、軸線方向両端部の表面磁束密度B0が低く、表面磁束密度B0のバラツキは大きかった。製品から切り出した4 mm×7 mm×1 mmの試料の磁気特性の測定の結果、表6に示すように、実施例9より低かった。またモータに組み込んだ時のコギングは実施例9より大きかった。 The bottom of the cup body was excised by machining. Also, the end where the crack occurred on the side opposite to the bottom was cut off. The inner and outer circumferences of the resulting ring were machined to obtain product dimensions of outer diameter 26.8 mm x inner diameter 21.8 mm x height 45.0 mm. The unit weight ratio of the product to the hot plastic work was as low as 29.1%. This product was subjected to 4-pole magnetization in the same manner as in Example 9. When the surface magnetic flux density was measured, as shown in Table 6, the peak value was lower than in Example 9, the surface magnetic flux density B 0 at both ends in the axial direction was low, and the variation in the surface magnetic flux density B 0 was large. As a result of measuring the magnetic properties of a 4 mm × 7 mm × 1 mm sample cut out from the product, it was lower than Example 9 as shown in Table 6. The cogging when incorporated in the motor was greater than that of Example 9.

Figure 0004706872
Figure 0004706872

Figure 0004706872
Figure 0004706872

本発明は高性能なラジアル異方性の焼結型R-Fe-B系永久磁石及びその製造方法に利用することができる。特に表面磁束密度の均一性に優れた高性能なラジアル異方性の焼結型R-Fe-B系永久磁石、及びその効率的な製造方法に利用することができる。   The present invention can be used for a high-performance radially anisotropic sintered R-Fe-B permanent magnet and a method for producing the same. In particular, it can be used for a high-performance radial anisotropic sintered R-Fe-B permanent magnet excellent in surface magnetic flux density uniformity and an efficient manufacturing method thereof.

焼結型永久磁石の保磁力iHcとPの含有量との関係を示すグラフである。6 is a graph showing the relationship between the coercive force iHc and the P content of a sintered permanent magnet. 本発明の方法を実施するための成形装置を示す概略図である。It is the schematic which shows the shaping | molding apparatus for enforcing the method of this invention. (a)はリング状焼結体から試料を切り出す様子を示す概略斜視図であり、(b)はリング状焼結体から試料を切り出す様子を示す横断面図である。(a) is a schematic perspective view which shows a mode that a sample is cut out from a ring-shaped sintered compact, (b) is a cross-sectional view which shows a mode that a sample is cut out from a ring-shaped sintered body. 実施例1の焼結体のEPMAライン分析結果を示すグラフである。4 is a graph showing the results of EPMA line analysis of the sintered body of Example 1. 実施例2の焼結体のEPMAライン分析結果を示すグラフである。6 is a graph showing the results of EPMA line analysis of the sintered body of Example 2. 比較例4の焼結体のEPMAライン分析結果を示すグラフである。6 is a graph showing an EPMA line analysis result of a sintered body of Comparative Example 4. 実施例7のリング磁石の表面磁束密度分布を示すグラフである。It is a graph which shows the surface magnetic flux density distribution of the ring magnet of Example 7. 実施例7の焼結体のEPMAライン分析結果を示すグラフである。10 is a graph showing an EPMA line analysis result of the sintered body of Example 7. 実施例8の焼結体のEPMAライン分析結果を示すグラフである。It is a graph which shows the EPMA line analysis result of the sintered compact of Example 8. 比較例9の焼結体のEPMAライン分析結果を示すグラフである。10 is a graph showing an EPMA line analysis result of a sintered body of Comparative Example 9. 比較例11のリング磁石の表面磁束密度分布を示すグラフである。10 is a graph showing a surface magnetic flux density distribution of a ring magnet of Comparative Example 11. 比較例13のリング磁石の表面磁束密度分布を示すグラフである。14 is a graph showing a surface magnetic flux density distribution of a ring magnet of Comparative Example 13.

符号の説明Explanation of symbols

1 磁界発生コイル、 2 ダイスケース、 3 円筒状ダイ部材、 4 コア、
5 スラリー注入孔、 6 キャビティ、 7 磁力線、 9 下パンチ、
10 上パンチ、 11 成形装置の縦断面、 12 金型の横断面及びその拡大図、
20 焼結体、 21 切り出す前の試料、 21b 試料
1 magnetic field generating coil, 2 die case, 3 cylindrical die member, 4 core,
5 slurry injection holes, 6 cavities, 7 magnetic field lines, 9 bottom punch,
10 Upper punch, 11 Longitudinal section of molding equipment, 12 Cross section of mold and enlarged view,
20 Sintered body, 21 Sample before cutting, 21b sample

Claims (6)

焼結型R-Fe-B系永久磁石用粗粉(RはYを含む希土類元素の中から選択される少なくとも1種の希土類元素である)を粉砕して微粉として、直接鉱物油、合成油又はこれらの混合油中に回収してスラリーとし、前記スラリーを金型のキャビティに加圧注入して磁界中で湿式成形し、得られた成形体を減圧下で加熱して前記成形体から前記鉱物油、前記合成油又はこれらの混合油を除去し、前記成形体を真空中で焼結する焼結型永久磁石の製造方法であって、前記金型は中空構造のダイ部材と前記ダイ部材の内周側にリング形状のキャビティを介して配置されたコアとを有し、前記ダイ部材には前記スラリーを前記金型のキャビティに加圧注入するためのスラリー注入孔が設けられ、この注入孔の軸線方向が前記金型のコアの中心から外れていることを特徴とする焼結型永久磁石の製造方法。 Coarse powder for sintered R-Fe-B permanent magnets (R is at least one rare earth element selected from Y-containing rare earth elements) is pulverized as a fine powder directly into mineral oil or synthetic oil Alternatively, these are recovered in a mixed oil to form a slurry, and the slurry is pressure-injected into a cavity of a mold and wet-molded in a magnetic field, and the obtained molded body is heated under reduced pressure from the molded body. A method for producing a sintered permanent magnet that removes mineral oil, the synthetic oil or a mixed oil thereof, and sinters the molded body in a vacuum, wherein the die has a hollow structure die member and the die member And a core disposed through a ring-shaped cavity on the inner peripheral side of the die, and the die member is provided with a slurry injection hole for pressure-injecting the slurry into the cavity of the mold. Check that the axial direction of the hole is off the center of the mold core. Method for producing a sintered permanent magnet according to claim. 請求項1に記載の焼結型永久磁石の製造方法において、前記キャビティに半径方向の配向磁界が印加されることを特徴とする焼結型永久磁石の製造方法。 2. The method of manufacturing a sintered permanent magnet according to claim 1, wherein a radial orientation magnetic field is applied to the cavity. 請求項1又は2に記載の焼結型永久磁石の製造方法において、前記スラリー注入孔の中心軸線と、前記中心軸線が前記ダイ部材の内周面と交差する点Aと前記コア中心点Oとを結ぶ直線AOとのなす角度θが5〜90°であることを特徴とする焼結型永久磁石の製造方法。 3. The method for manufacturing a sintered permanent magnet according to claim 1, wherein a center axis of the slurry injection hole, a point A at which the center axis intersects an inner peripheral surface of the die member, and the core center point O, A method for producing a sintered permanent magnet, characterized in that an angle θ formed by a straight line AO connecting the two is 5 to 90 °. 焼結型R-Fe-B系永久磁石用粗粉(RはYを含む希土類元素の中から選択される少なくとも1種の希土類元素である)を粉砕して得られた微粉と鉱物油、合成油又はこれらの混合油との混合物からなるスラリーを磁界中で湿式成形するための金型であって、前記金型は中空構造のダイ部材と前記ダイ部材の内周側にリング形状のキャビティを介して配置されたコアとを有し、前記ダイ部材には前記スラリーを前記金型のキャビティに加圧注入するためのスラリー注入孔が設けられ、この注入孔の軸線方向が前記金型のコアの中心から外れていることを特徴とする金型。 Fine powder and mineral oil obtained by pulverizing coarse powder for sintered R-Fe-B permanent magnets (R is at least one rare earth element selected from Y-containing rare earth elements), synthesis oil A mold for wet-molding a slurry made of oil or a mixture of these oils in a magnetic field, wherein the mold has a hollow die member and a ring-shaped cavity on the inner peripheral side of the die member The die member is provided with a slurry injection hole for pressurizing and injecting the slurry into the cavity of the mold, and the axial direction of the injection hole is the core of the mold. A mold characterized by being off the center. 請求項4に記載の焼結型永久磁石の金型において、前記キャビティに半径方向の配向磁界が印加されることを特徴とする金型。 5. The mold for sintered permanent magnets according to claim 4, wherein a radial orientation magnetic field is applied to the cavity. 請求項4又は5に記載の焼結型永久磁石の金型において、前記スラリー注入孔の中心軸線と、前記中心軸線が前記ダイ部材の内周面と交差する点Aと前記コア中心点Oとを結ぶ直線AOとのなす角度θが5〜90°であることを特徴とする金型。 6. The sintered permanent magnet mold according to claim 4, wherein a center axis of the slurry injection hole, a point A at which the center axis intersects an inner peripheral surface of the die member, and the core center point O, A mold having an angle θ of 5 to 90 ° with a straight line AO.
JP2008007983A 2002-10-08 2008-01-17 Method for producing sintered permanent magnet and mold Expired - Lifetime JP4706872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008007983A JP4706872B2 (en) 2002-10-08 2008-01-17 Method for producing sintered permanent magnet and mold

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2002294431 2002-10-08
JP2002294431 2002-10-08
JP2002362391 2002-12-13
JP2002362391 2002-12-13
JP2003020669 2003-01-29
JP2003020669 2003-01-29
JP2008007983A JP4706872B2 (en) 2002-10-08 2008-01-17 Method for producing sintered permanent magnet and mold

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003349469A Division JP2004250781A (en) 2002-10-08 2003-10-08 Sintered type permanent magnet, and production method therefor

Publications (2)

Publication Number Publication Date
JP2008163466A JP2008163466A (en) 2008-07-17
JP4706872B2 true JP4706872B2 (en) 2011-06-22

Family

ID=39693298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007983A Expired - Lifetime JP4706872B2 (en) 2002-10-08 2008-01-17 Method for producing sintered permanent magnet and mold

Country Status (1)

Country Link
JP (1) JP4706872B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359513B2 (en) * 2009-04-23 2013-12-04 日立金属株式会社 Method for producing R-TM-B radial anisotropic ring magnet
JP5999181B2 (en) * 2012-06-29 2016-09-28 日立金属株式会社 Manufacturing method of rare earth sintered magnet
CN103123864B (en) * 2013-02-26 2016-01-06 江苏东瑞磁材科技有限公司 A kind of method and manufacturing installation thereof preparing radial permanent magnetic ring
KR101367797B1 (en) * 2013-04-10 2014-02-28 세아씰텍(주) Magnetic alignment apparatus for manufacturing permanent magnet
BR112015031725A2 (en) * 2013-06-17 2017-07-25 Urban Mining Tech Company Llc method for manufacturing a recycled nd-fe-b permanent magnet
CN106252054B (en) * 2016-06-21 2019-04-09 东莞市海天磁业股份有限公司 Anisotropic neodymium iron boron magnetic body is molded oriontation shaping device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164238A (en) * 2000-09-14 2002-06-07 Hitachi Metals Ltd Manufacturing method of rare earth sintered magnet and ring magnet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2859517B2 (en) * 1993-08-12 1999-02-17 日立金属株式会社 Rare earth magnet manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164238A (en) * 2000-09-14 2002-06-07 Hitachi Metals Ltd Manufacturing method of rare earth sintered magnet and ring magnet

Also Published As

Publication number Publication date
JP2008163466A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
US7645349B2 (en) Sintered R-Fe-B permanent magnet and its production method
JP5690141B2 (en) Rare earth sintered magnet manufacturing method and powder filled container for manufacturing rare earth sintered magnet
JP4706872B2 (en) Method for producing sintered permanent magnet and mold
EP2760032B1 (en) Manufacturing method of R-T-B-M-C sintered magnet
US11232889B2 (en) R-T-B based permanent magnet
JPWO2007135981A1 (en) R-Fe-B porous magnet and method for producing the same
JP2004250781A5 (en)
JP2004250781A (en) Sintered type permanent magnet, and production method therefor
KR20150033423A (en) Method for fabricating anisotropic permanent hot-deformed magnet using hot deformaion and the magnet fabricated thereby
EP1717828A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet
US10672544B2 (en) R-T-B based permanent magnet
CN104112559A (en) R-t-b based sintered magnet
KR100651147B1 (en) Arc segment magnet, ring magnet and method for producing them
JP6613730B2 (en) Rare earth magnet manufacturing method
JP2005268538A (en) Sintered rare earth permanent magnet and manufacturing method thereof
JP2021038464A (en) R-tm-b sintered magnet
JP7537536B2 (en) RTB based sintered magnet
JP2005268538A5 (en)
WO2022209466A1 (en) Method for producing r-t-b-based sintered magnet
JP3116885B2 (en) Manufacturing method of rare earth permanent magnet and rare earth permanent magnet
CN101447331B (en) Production method of sintered R-Fe-B permanent magnet
JP2005197299A (en) Rare earth sintered magnet and manufacturing method thereof
CN107026002A (en) The preparation method of Nd Fe B alloys magnet
JP2002164238A5 (en)
JP4415683B2 (en) Manufacturing method of rare earth sintered magnet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Ref document number: 4706872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term