JP4336446B2 - Rare earth sintered permanent magnet sintered body and permanent magnet type synchronous motor - Google Patents

Rare earth sintered permanent magnet sintered body and permanent magnet type synchronous motor Download PDF

Info

Publication number
JP4336446B2
JP4336446B2 JP2000198015A JP2000198015A JP4336446B2 JP 4336446 B2 JP4336446 B2 JP 4336446B2 JP 2000198015 A JP2000198015 A JP 2000198015A JP 2000198015 A JP2000198015 A JP 2000198015A JP 4336446 B2 JP4336446 B2 JP 4336446B2
Authority
JP
Japan
Prior art keywords
magnet
slit
permanent magnet
rare earth
slits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000198015A
Other languages
Japanese (ja)
Other versions
JP2001078402A (en
Inventor
健 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000198015A priority Critical patent/JP4336446B2/en
Publication of JP2001078402A publication Critical patent/JP2001078402A/en
Application granted granted Critical
Publication of JP4336446B2 publication Critical patent/JP4336446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Description

【0001】
【発明の属する技術分野】
本発明は、希土類焼結永久磁石焼結体と、高速回転を行う電気自動車用モータやFAモータ等に最適な永久磁石型同期モータに関する。
【0002】
【従来の技術】
希土類磁石は、主に音響・映像分野の電気・電子機器に使用される小型モータの材料として用いられている。その理由は、保磁力及び残留磁束密度の大きな希土類磁石を用いると、モータ設計の自由度が大幅に向上するため、小型で、偏平かつ高効率なモータを作製して、電気・電子機器に組込むことが可能となるからである。
このような小型モータは、概ね定格が100W以下であるため、モータ効率を損失させる要素として、希土類磁石に発生する渦電流やそれに伴う発熱は、他のモータ効率損失要素に比べると、モータ効率に与える影響は小さかったことから特に問題にはならなかった。
【0003】
ところが、近年、ACサーボモータとして、定格が数百W〜数十kW、電気自動車駆動用モータとして、10kW〜数十kW級の大容量DCブラシレスモータに希土類磁石が使用されるようになった。大容量ACサーボモータや電気自動車駆動用モータのロータ(回転子)に使用される希土類磁石は、小型モータのロータに使用されるものよりも格段に大きく、かつ高回転(例えば、5000rpm以上)を要求されることが多い。そのため、希土類磁石に生じる渦電流やそれに伴う発熱による永久磁石の熱減磁やモータ効率の低下が問題となっている。また、ロータの磁石に逆磁場が印加されたり、電機子磁場の急激な変化を伴う制御など、モータ制御の面からも同様に渦電流が深刻な問題となっている。これらは小型モータにはなかった問題である。
【0004】
希土類磁石の電気抵抗は10-4Ω・cm台であり、鉄系材料の10-6Ω・cm台に比較すれば相対的に高い抵抗を示す。しかし、希土類磁石は脆性材料で、かつバルク形状で使用されるため、鉄系材料のように薄板化して打抜き・絶縁積層することにより高抵抗化することはできない。
従来のモータに用いられていたフェライト磁石は本質的に絶縁体であるので、フェライト磁石を用いた従来の同期モータでは、磁石に生じる渦電流は全く問題にならなかった。しかし、フェライト磁石は磁気特性が低いため、フェライト磁石を用いた大型同期モータは実用化されていない。一方、希土類磁石は抵抗値に程度の差はあるが、金属材料であるといえる。
したがって、前記のような使用分野・条件下では、希土類磁石に生じる渦電流によるモータ効率の低下、希土類磁石の発熱による該磁石の減磁が深刻である。なお、ロータコアは鉄系薄板の積層又は鉄系バルクコアであるため、この部分に生じる損失(渦電流損、鉄損)は従来と同じである。
【0005】
希土類磁石に生じる渦電流を低減するには、フェライト磁石のように磁石素材の電気抵抗を大きくするか、磁石を細分化したセグメント磁石を接着固化して所要の大きさの磁石とする方法が有効である。
しかし、前者の方法は磁石特性と両立させることが極めて困難であるため、現在のところ実際になされた報告はほとんどない。
一方、後者の方法は現実的な方法ではあるものの、磁石の製造工程が増加し、製造コストの増加や磁石重量歩留まりの低下を招く。また、磁石の表面処理の工程において、セグメント磁石の接着部に良好なコーティングを施すことができないため、耐蝕性の低下を招く危険性がある。セグメント磁石を接着固化せず小磁石のまま用いることも考えられるが、磁石間の反発力に抗して小磁石をロータに組込み、固着することは難しく、また、組み合わせた時の寸法精度も低下する。
【0006】
磁石に生じる渦電流の問題を解決することはできないが、取敢えず高温で使用できるようにする方法として、希土類磁石の耐熱性を向上させて、磁石が昇温しても減磁させないようにする方法も考えられる。例えば、NdFeB系焼結磁石では、Dyのような元素を合金組成に加えることにより、保磁力が増大し、耐熱性が向上することが知られている。室温での保磁力を増大させることにより、磁石が高温に晒されても減磁しないだけの充分な保磁力が確保できる。なお、電装用モータとしては、NdFeB磁石に150℃程度の耐熱性が要求され、電気自動車駆動用モータとしては、200℃までの耐熱性が要求される。
しかしながら、NdFeB系磁石では、保磁力を増大させるために上記元素を添加すると、残留磁化の低下を伴うため、磁石から取出せる磁束が減少する。また、耐熱性を向上させた磁石は、原料コストの増加を招くため、使用できる分野が限定される。
【0007】
こうした問題点に対し、本発明者は、表面に複数のスリットを設けて、磁石の有効断面積を低下させ、それにより渦電流を低減させる希土類磁石と同期モータを発明した(特願平11−95440号参照)。該発明は渦電流の低減に有効であるが、スリットを設けた磁石の下部には、スリットの入らないバルク状の部分が存在する。そして、スリットのある部分では渦電流が低減されるが、スリットのない部分には渦電流が流れるため、渦電流の低減効果はスリットの深さと相関していた。しかし、該スリットの深さを大きくしすぎると、磁石の抗折力など、機械特性が低下しすぎるので好ましくない。したがって、上記発明には、渦電流の低減効果はあるが、その低減効果の程度は、スリットの深さに概ね比例していた。
【0008】
【発明が解決しようとする課題】
以上説明したように、容量がkW級以上の永久磁石型同期モータでは、高速回転時にロータの希土類磁石に生じる渦電流による該磁石の昇温と、それに伴う磁石の減磁、モータ効率の低下が大きな問題であった。
そこで、本発明は、耐渦電流性を有する希土類焼結磁石焼結体と、ロータに該焼結体を使用して、希土類磁石に生じる渦電流の発生を大幅に低減させた永久磁石型同期モータを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者は、上記課題を解決するため、希土類焼結磁石の実効的な電気抵抗を向上させることについて鋭意検討した結果、本発明を完成するに至った。
すなわち、本発明は、上面及び下面の両方にスリットが設けられており、これらの面の一方の面にあるスリットは、他方の面にあるスリットと面上の方向が異なり、かつ、上面及び下面のそれぞれにおける最も深いスリットの深さの合計が、上面と下面の間の長さの1〜5/3倍である希土類焼結永久磁石焼結体と、前記スリットを設けた面が概ね電機子に対向するように該焼結体を配した内部磁石ロータを有する永久磁石型同期モータである。
【0010】
【発明の実施の形態】
本発明の特徴は、上記したように、永久磁石型同期モータのロータに組み込む希土類焼結永久磁石焼結体の上面及び下面、すなわち、渦電流が主に生じる電機子側の磁石表面及びその相対する面の両方にスリットを設けてあり、これらの面の一方の面にあるスリットは、他方の面にあるスリットと面上の方向が異なり、かつ、上面及び下面のそれぞれにおける最も深いスリットの深さの合計が、上面と下面の間の長さの1〜5/3倍とした点にある。これにより、渦電流の生じる実効面積を低下させて、渦電流の発生を大幅に抑制することができる。
渦電流は磁束変化を妨げる向きに導体上に発生する電流である。モータにおいて渦電流が生じる原因は、ロータが回転することによりロータとステータ(電機子)の相対位置が変化し、スロット部分で特に磁束変化が大きくなるのが1つの原因である。また、電機子で作る回転磁束が滑らかなサイン波ではない点も渦電流の原因の1つである。さらには、電機子に流す電機子電流の高周波キャリア電流に伴う渦電流である。したがって、渦電流が生じるのは磁石の部分のみではないが、渦電流による発熱により磁石では熱減磁が起きるため、他の部材より渦電流の影響が深刻である。
【0011】
渦電流は磁束変化部分で生じるため、ロータに組み込んだ磁石において渦電流が特に問題となる部分は、電機子側の磁石表面である。
磁束変化により渦電流の流れる近傍の実効的抵抗値を上げることができれば、渦電流による影響を避けることができることになる。磁石の厚み方向全域を切断して非導電剤で固着一体化することにより、渦電流の流れる実質的な表面積を低減することが一番確実であるが、既に述べたように製造コストの増加や歩留まりの低下等の問題がある。そこで、渦電流の表皮深さより十分に深いスリットを磁石の表面に形成してやることにより、渦電流の低減が可能となる。
本発明においてスリットの形成は、磁束変化の主に起こる面である電機子側の表面とそれに相対する面で行い、該一対の面のスリットは互いに有意な角度をなしていることが特徴である。
【0012】
以下、本発明について図面を参照して詳細に説明する。
図1は、本発明の希土類焼結磁石焼結体の1例を示した説明図である。図1に示す希土類焼結磁石焼結体では、スリット磁石上面3と、スリット磁石側面4に示されたスリット磁石下面には、それぞれ上面スリット1、下面スリット2が2本ずつ、2対のスリットが設けられているが、スリットの数は、目標とする渦電流の低減度合いによるので、最低、上面及び下面に1本ずつ、1対あればよい。なお、スリットの数は、上面及び下面で同数にする必要はない。
また、図1ではスリット磁石上面とスリット磁石下面に設けられた相対するスリット1、2はほぼ直交しているが、面上の方向が異なっていればよく、特に直角である必要はない。概ね10°以上の角度を持っていればよく、90°までの間の任意の角度でよい。
【0013】
スリットの深さは、図1の例では上面及び下面に設けられた一対のスリットの深さの合計は、ほぼ磁石焼結体の厚みと同等となっているが、本発明では、上面及び下面のそれぞれにおける最も深いスリットの深さの合計が、上面と下両の間の長さ(すなわち、磁石焼結体の厚み)の1〜5/3倍の範囲となるようにする限りにおいて任意である。上記したスリットの深さの合計が、上面と下面の間の長さの5/3倍を超えると、磁石焼結体の機械強度(とりわけ抗折力)が大きく低下する。逆に、上記したスリットの深さの合計が1倍未満であると、渦電流の低減効果が小さくなる。
【0014】
スリットの長さは、図1に示したように、磁石幅の方向に磁石幅と同じ長さ、すなわち、磁石の端から端までスリットの入っている場合が、渦電流低減のためには一番望ましい。しかし、図2に例示したように、磁石幅よりも短い長さであっても、磁石幅の2/3程度以上の長さがあれば、渦電流の流れる経路を充分に大きくすることができるので、渦電流の優れた低減効果が認められる。しかも、この場合は磁石焼結体の機械強度の低下を低減できるというメリットもある。
なお、図2の(a)は、磁石焼結体の端から面の途中にスリット1、2を設けた場合、(b)は面内にスリット1、2を設けた場合を示す。
【0015】
スリットの幅は、磁束分布を乱す効果が少なく、かつ磁束量の減少がなるべく起こらないように、1mm以下の狭い幅にするのが好ましい。スリットの幅が1mmを超えると、表面の磁石ロスによる磁束密度分布への影響が大きくなりすぎるので好ましくない。スリットは内周刃あるいは外周刃切断機やワイヤーソー等で溝切りして形成するため、切断刃やワイヤーの厚みを考慮すると、望ましくは0.8mm以下である。一方、スリットの幅の下限は幾らでもよいが、切断機であるワイヤーソーの制約から0.05mm以上が実際的である。
【0016】
希土類焼結磁石の表面にスリットを形成するには、該磁石の大きさや形状等を考慮して有利な方法を選択すればよい。例えば、ワイヤーソーを使用すると、1度に複数のスリットを刻むことができ、かつスリットの幅をワイヤー径近くまで狭くできるが、溝切り速度が遅い。また、切断機を使用すると、溝切り速度が速く、外周刃切断機ならば複数のスリットを刻めるが、スリットの幅がワイヤーソーより大きくなる。磁粉の圧粉成形時に、パンチに突起を設けて成形体にスリットを形成する方法も考えられるが、かかる方法ではスリットの幅が0.8mm以下の狭いスリットを設けることが比較的難しい。
【0017】
上記のスリットを磁石表面に設けることにより渦電流は低減されるが、既に述べたように抗折力は低下する。特に表面磁石型ロータ(SPMタイプ)の場合は、高速回転で磁石に大きな遠心力が働くため、機械特性が良好でなければ磁石が破損し、飛散してしまう可能性がある。しかし、内部磁石型ロータ(IPMタイプ)の場合は、ロータ内のキャビティーに磁石が挿入され、機械的に保持されるため、スリットを入れたことによる機械特性上の問題は軽減される。
このような問題を解決するには、スリットに接着剤や樹脂等の非導電性物質を充填して機械強度の低下を補うのが好ましい。これにより渦電流低減の効果を確保しつつ、抗折力の低下を補償することが可能となる。本発明の希土類焼結磁石焼結体は、表面磁石型ロータ(SPMタイプ)よりも、内部磁石型ロータ(IPMタイプ)に適する。
上記接着剤や樹脂は、耐熱性と接着強度を両立できるものが望ましく、例えばエポキシ系やアクリル系の接着剤や樹脂が挙げられる。エポキシ系接着剤としては、例えば、スコッチウェルドEW−2(住友3M社製、商品名)が挙げられ、SPMタイプ、IPMタイプの両方に用いることが可能である。なお、シリコーン系樹脂は耐熱性と弾力性に優れているが、接着強度は高くないので、IPMタイプに用いることが望ましい。
【0018】
スリットに充填する非導電性物質として、ボンド磁石等に使用される永久磁石粉と樹脂を混練した複合樹脂も使用することができる。該複合樹脂は磁石特性を有するので、スリットを形成したことによる磁石特性の低下を、ある程度補償することができる。ただし、接着強度はほとんど期待できないので、内部磁石型ロータ(IPMタイプ)に用いることが望ましい。上記永久磁石粉としては、NdFeB系急冷薄帯や2−17系SmCo磁石粉等を使用することができる。
上記した各種非導電性物質をスリットに充填させるには、該非導電性物質をスリットに埋め込み、固化させればよい。
【0019】
本発明の希土類焼結磁石焼結体は、矩形や瓦状等の希土類焼結磁石であり、具体的にはNdFeB系焼結磁石やSmCo系焼結磁石等である。希土類ボンド磁石は樹脂と混合した複合磁石で、元々の電気抵抗が高く渦電流の影響が少ない上に、樹脂の耐熱性の限界や磁気特性が低いことから、大型同期モータ用の磁石の候補として考えられていない。そのため該ボンド磁石は本発明の対象とはならない。
【0020】
本発明の希土類焼結磁石焼結体の製造は、スリットを磁石表面に設ける工程が通常のスリットのない磁石を製造する粉末冶金法に比べて増えるが、セグメント磁石を接着固化した磁石を製造するための分割接着法に比較すると簡単で、それでいて該磁石とほぼ同等の渦電流低減効果を奏することができる。
また、スリットを磁石表面に設けることにより減少する磁石の体積量は僅かであり、磁束の低下も僅かで済むため、電磁トルクの低下は小さい。したがって、従来の永久磁石型同期モータにおけるように、渦電流による発熱・昇温を前提として、むやみに大きな保磁力を予め磁石に付与する必要がなく、磁石の磁気特性や原料コストの面からも非常に大きな効果が期待できる。
さらに、本発明で使用する磁石はスリットを設けた状態でもコーティングを良好に行うことができるので、耐蝕性の点でも問題はない。
【0021】
【実施例】
(実施例、比較例)
寸法が40mm×60mm×5mmで、42MGOeグレードのNdFeB焼結磁石(信越化学社製/N42H)の成型体を4枚使用し、直径70mm、長さ62mmの珪素鋼鈑積層(0.5mm厚の珪素鋼鈑)からなるロータに、該磁石焼結体を挿入してIPMタイプのロータを作製した。上記焼結体は、上記磁石の電機子に対向する面(上面)とその相対する面(下面)に、上面には60mm幅方向に平行な、長さ60mm、幅0.5mm、深さ2.5mmのスリットを、10mm間隔で3本入れ、下面には40mm幅方向に平行な、長さ40mm、幅0.5mm、深さ2.5mmのスリットを、10mm間隔で5本入れたものとした。スリットは、0.4mm厚の外周刃をマルチに組んだ外周刃切断機により設けた。また、該磁石を電気Niメッキでコーティングした後、ロータに挿入する時に、エポキシ系1液常温硬化接着剤(スコッチウェルドEW−2)をスリットに充填した。
そして、該ロータを12スロットの電機子を持つステータに組込んで、該電機子に3相交流電流を投入して、6000rpmで1時間回転させた。停止後、直ちに分解し、ロータ端部の磁石部の温度を計測したところ90℃であった。
比較例として、上記と同一の寸法と材料で、スリットを設けていない磁石を使用して同様のロータを製作し、同じ条件で回転させて、温度上昇を計測した。その結果、ロータ端部の磁石部の温度は145℃で、スリットを設けた場合とは55℃以上昇温に差があった。すなわち、磁石にスリットを設けたことにより磁石の温度上昇が抑えられた。
【0022】
【発明の効果】
本発明により、ロータの磁石に生じる渦電流が低減され、高回転でも該磁石が減磁しない汎用性の高い永久磁石型同期モータを簡単な工程で提供することができるので、産業上、その利用価値は極めて高い。
【図面の簡単な説明】
【図1】本発明の希土類焼結永久磁石焼結体を例示した説明図である。
【図2】本発明の希土類焼結永久磁石焼結体を例示した説明図であり、(a)は、磁石焼結体の端から面の途中にスリットを設けた場合、(b)は面内にスリットを設けた場合を示す。
【符号の説明】
1 上面スリット 3 スリット磁石上面
2 下面スリット 4 スリット磁石側面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rare earth sintered permanent magnet sintered body, and a permanent magnet type synchronous motor that is most suitable for motors for electric vehicles, FA motors, and the like that perform high-speed rotation.
[0002]
[Prior art]
Rare earth magnets are mainly used as materials for small motors used in electrical and electronic equipment in the audio and video fields. The reason for this is that if a rare earth magnet with a large coercive force and residual magnetic flux density is used, the degree of freedom in motor design is greatly improved. Therefore, a small, flat and highly efficient motor can be produced and incorporated into electrical and electronic equipment. Because it becomes possible.
Since such a small motor generally has a rating of 100 W or less, the eddy current generated in the rare earth magnet and the accompanying heat generation are factors that cause the motor efficiency to be reduced compared to other motor efficiency loss factors. The effect was small, so it was not a problem.
[0003]
However, in recent years, rare earth magnets have come to be used in large-capacity DC brushless motors having a rating of several hundred watts to several tens of kW as AC servo motors and 10 kW to several tens of kWs as electric vehicle drive motors. Rare earth magnets used for rotors (rotors) of large-capacity AC servo motors and electric vehicle drive motors are significantly larger than those used for rotors of small motors and have high rotation (eg, 5000 rpm or more). Often required. Therefore, eddy currents generated in rare earth magnets and the accompanying heat generation cause permanent magnet demagnetization and motor efficiency reduction. In addition, eddy currents are also a serious problem from the aspect of motor control, such as control in which a reverse magnetic field is applied to the magnet of the rotor or the armature magnetic field changes rapidly. These are problems that were not found in small motors.
[0004]
The electric resistance of the rare earth magnet is on the order of 10 −4 Ω · cm, which is relatively high compared to the order of 10 −6 Ω · cm for iron-based materials. However, since the rare earth magnet is used in a brittle material and in a bulk shape, it cannot be increased in resistance by being thinned, punched and insulated and laminated like an iron-based material.
Since ferrite magnets used in conventional motors are essentially insulators, in conventional synchronous motors using ferrite magnets, eddy currents generated in the magnets were not a problem at all. However, since ferrite magnets have low magnetic properties, large synchronous motors using ferrite magnets have not been put into practical use. On the other hand, rare earth magnets can be said to be metallic materials, although there are differences in resistance values.
Therefore, under the above-mentioned fields of use and conditions, reduction of motor efficiency due to eddy current generated in the rare earth magnet and demagnetization of the magnet due to heat generation of the rare earth magnet are serious. In addition, since the rotor core is a lamination of iron-based thin plates or an iron-based bulk core, the loss (eddy current loss, iron loss) generated in this portion is the same as before.
[0005]
In order to reduce the eddy current generated in rare earth magnets, it is effective to increase the electrical resistance of the magnet material, such as ferrite magnets, or to bond and segment the segmented magnets into a magnet of the required size. It is.
However, since the former method is extremely difficult to be compatible with the magnet characteristics, there are few reports actually made at present.
On the other hand, although the latter method is a realistic method, the number of magnet manufacturing steps increases, resulting in an increase in manufacturing cost and a decrease in magnet weight yield. Moreover, in the surface treatment process of a magnet, since a favorable coating cannot be applied to the adhesion part of a segment magnet, there exists a danger of causing a fall of corrosion resistance. It is conceivable to use segment magnets as they are without solidifying them, but it is difficult to incorporate and fix the small magnets in the rotor against the repulsive force between the magnets, and the dimensional accuracy when combined is reduced. To do.
[0006]
Although the problem of eddy current generated in the magnet cannot be solved, the heat resistance of the rare earth magnet is improved so that it can be used at a high temperature for the time being so that the magnet does not demagnetize even if the temperature rises. It is also possible to make it. For example, in an NdFeB-based sintered magnet, it is known that by adding an element such as Dy to the alloy composition, the coercive force is increased and the heat resistance is improved. By increasing the coercive force at room temperature, it is possible to secure a sufficient coercive force that does not demagnetize even when the magnet is exposed to a high temperature. As an electric motor, the NdFeB magnet is required to have a heat resistance of about 150 ° C., and an electric vehicle driving motor is required to have a heat resistance of up to 200 ° C.
However, in the NdFeB magnet, when the above element is added to increase the coercive force, the residual magnetization is reduced, so that the magnetic flux that can be extracted from the magnet is reduced. Moreover, since the magnet which improved heat resistance causes the increase in raw material cost, the field | area which can be used is limited.
[0007]
In response to these problems, the present inventors have invented a rare earth magnet and a synchronous motor that are provided with a plurality of slits on the surface to reduce the effective sectional area of the magnet, thereby reducing eddy currents (Japanese Patent Application No. 11-11). No. 95440). The invention is effective in reducing eddy currents, but there is a bulk-like portion where no slit is formed under the magnet provided with the slit. The eddy current is reduced in the portion with the slit, but the eddy current flows in the portion without the slit. Therefore, the effect of reducing the eddy current is correlated with the depth of the slit. However, it is not preferable to make the depth of the slit too large because mechanical properties such as the bending strength of the magnet deteriorate too much. Therefore, although the above invention has an effect of reducing eddy current, the degree of the effect of reduction is generally proportional to the depth of the slit.
[0008]
[Problems to be solved by the invention]
As described above, in a permanent magnet type synchronous motor having a capacity of kW class or higher, the temperature of the magnet is increased by eddy current generated in the rare earth magnet of the rotor during high-speed rotation, and the resulting magnet demagnetization and motor efficiency decrease. It was a big problem.
Accordingly, the present invention provides a permanent magnet type synchronous magnet sintered body having resistance to eddy currents and a permanent magnet synchronous magnet which uses the sintered body for a rotor and greatly reduces the generation of eddy currents generated in a rare earth magnet. An object is to provide a motor.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventor diligently studied to improve the effective electrical resistance of the rare earth sintered magnet, and as a result, the present invention has been completed.
That is, in the present invention, slits are provided on both the upper surface and the lower surface, and the slit on one surface of these surfaces is different in direction on the surface from the slit on the other surface, and the upper surface and the lower surface. A rare earth sintered permanent magnet sintered body in which the total depth of the deepest slits in each of these is 1 to 5/3 times the length between the upper surface and the lower surface, and the surface provided with the slits is generally an armature. This is a permanent magnet type synchronous motor having an internal magnet rotor in which the sintered body is disposed so as to face the motor.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the feature of the present invention is that the rare earth sintered permanent magnet sintered body incorporated in the rotor of the permanent magnet type synchronous motor, that is, the armature side magnet surface on which the eddy current mainly occurs and the relative surface thereof. Slits are provided on both surfaces, and the slits on one of these surfaces are different in direction on the surface from the slits on the other surface, and the depth of the deepest slit on each of the upper and lower surfaces The total height is 1 to 5/3 times the length between the upper surface and the lower surface. Thereby, the effective area which an eddy current produces can be reduced and generation | occurrence | production of an eddy current can be suppressed significantly.
The eddy current is a current generated on the conductor in a direction that prevents the magnetic flux change. One cause of the generation of eddy current in the motor is that the relative position between the rotor and the stator (armature) changes due to the rotation of the rotor, and the magnetic flux changes particularly in the slot portion. Another cause of eddy current is that the rotating magnetic flux generated by the armature is not a smooth sine wave. Furthermore, it is an eddy current accompanying the high frequency carrier current of the armature current flowing through the armature. Therefore, the eddy current is generated not only in the magnet portion, but the magnet is thermally demagnetized due to the heat generated by the eddy current, so the influence of the eddy current is more serious than the other members.
[0011]
Since the eddy current is generated in the magnetic flux changing portion, the portion where the eddy current is particularly problematic in the magnet incorporated in the rotor is the armature side magnet surface.
If the effective resistance value in the vicinity of the flow of eddy current can be increased by the change of magnetic flux, the influence of eddy current can be avoided. It is most certain to reduce the substantial surface area through which the eddy current flows by cutting the entire magnet thickness direction and fixing and integrating with a non-conductive agent. There are problems such as a decrease in yield. Therefore, the eddy current can be reduced by forming a slit sufficiently deeper than the skin depth of the eddy current on the surface of the magnet.
In the present invention, the slits are formed on the armature side surface, which is the surface on which the magnetic flux change mainly occurs, and the surface opposite thereto, and the slits on the pair of surfaces form a significant angle with each other. .
[0012]
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory view showing an example of a rare earth sintered magnet sintered body of the present invention. In the rare earth sintered magnet sintered body shown in FIG. 1, two upper surface slits 1 and two lower surface slits 2 are provided on the slit magnet upper surface 3 and the slit magnet lower surface shown on the side surface 4 of the slit magnet. However, since the number of slits depends on the target degree of eddy current reduction, at least one pair of slits may be provided on the upper surface and the lower surface. The number of slits need not be the same on the upper surface and the lower surface.
In FIG. 1, the slits 1 and 2 provided on the slit magnet upper surface and the slit magnet lower surface are substantially orthogonal to each other. However, the directions on the surface may be different and do not need to be at right angles. It is only necessary to have an angle of approximately 10 ° or more, and any angle up to 90 ° may be used.
[0013]
In the example of FIG. 1, the depth of the slit is the sum of the depths of the pair of slits provided on the upper surface and the lower surface, which is substantially equal to the thickness of the magnet sintered body. As long as the sum of the depths of the deepest slits in each of the above is in the range of 1 to 5/3 times the length between the upper surface and the lower surface (that is, the thickness of the magnet sintered body), it is optional. is there. If the total depth of the slits exceeds 5/3 times the length between the upper surface and the lower surface, the mechanical strength (particularly the bending strength) of the magnet sintered body is greatly reduced. Conversely, when the total depth of the slits is less than 1 time, the effect of reducing eddy current is reduced.
[0014]
As shown in FIG. 1, the slit length is the same as the magnet width in the direction of the magnet width, that is, when the slit is inserted from one end of the magnet to the other end, the eddy current can be reduced. Most desirable. However, as illustrated in FIG. 2, even if the length is shorter than the magnet width, if the length is about 2/3 or more of the magnet width, the path through which the eddy current flows can be made sufficiently large. Therefore, an excellent reduction effect of eddy current is recognized. In addition, in this case, there is an advantage that a decrease in mechanical strength of the magnet sintered body can be reduced.
2A shows the case where slits 1 and 2 are provided in the middle of the surface from the end of the magnet sintered body, and FIG. 2B shows the case where slits 1 and 2 are provided in the surface.
[0015]
The width of the slit is preferably a narrow width of 1 mm or less so that the effect of disturbing the magnetic flux distribution is small and the amount of magnetic flux does not decrease as much as possible. When the width of the slit exceeds 1 mm, the influence on the magnetic flux density distribution due to the magnet loss on the surface becomes too large, which is not preferable. Since the slit is formed by grooving with an inner peripheral blade, an outer peripheral blade cutting machine, a wire saw, or the like, the thickness is preferably 0.8 mm or less in consideration of the thickness of the cutting blade or the wire. On the other hand, the lower limit of the width of the slit may be any number, but 0.05 mm or more is practical because of the restriction of the wire saw that is a cutting machine.
[0016]
In order to form the slit on the surface of the rare earth sintered magnet, an advantageous method may be selected in consideration of the size and shape of the magnet. For example, when a wire saw is used, a plurality of slits can be cut at a time and the width of the slit can be narrowed to near the wire diameter, but the grooving speed is slow. In addition, when a cutting machine is used, the grooving speed is high, and a peripheral blade cutting machine cuts a plurality of slits, but the width of the slit becomes larger than that of the wire saw. A method of forming protrusions on the punch and forming slits in the molded body at the time of compacting magnetic powder is also conceivable. However, in this method, it is relatively difficult to provide a narrow slit having a slit width of 0.8 mm or less.
[0017]
Although the eddy current is reduced by providing the slit on the magnet surface, the bending strength is reduced as described above. In particular, in the case of a surface magnet type rotor (SPM type), since a large centrifugal force acts on the magnet at high speed rotation, the magnet may be damaged and scattered if the mechanical properties are not good. However, in the case of the internal magnet type rotor (IPM type), the magnet is inserted into the cavity in the rotor and mechanically held, so that the problem in mechanical characteristics due to the slits is reduced.
In order to solve such a problem, it is preferable to fill the slit with a non-conductive substance such as an adhesive or a resin to compensate for a decrease in mechanical strength. As a result, it is possible to compensate for the decrease in the bending strength while ensuring the effect of reducing the eddy current. The rare earth sintered magnet sintered body of the present invention is more suitable for an internal magnet type rotor (IPM type) than a surface magnet type rotor (SPM type).
The adhesive and the resin are preferably those capable of achieving both heat resistance and adhesive strength, and examples thereof include epoxy and acrylic adhesives and resins. Examples of the epoxy adhesive include Scotch Weld EW-2 (trade name, manufactured by Sumitomo 3M Co.), and can be used for both SPM type and IPM type. Silicone resin is excellent in heat resistance and elasticity, but since it does not have high adhesive strength, it is desirable to use it for the IPM type.
[0018]
As the non-conductive substance that fills the slit, a composite resin obtained by kneading permanent magnet powder and resin used for a bond magnet or the like can also be used. Since the composite resin has magnet characteristics, the deterioration of the magnet characteristics due to the formation of the slit can be compensated to some extent. However, since adhesive strength can hardly be expected, it is desirable to use it for an internal magnet type rotor (IPM type). As the permanent magnet powder, NdFeB-based quenching ribbon, 2-17-based SmCo magnet powder, or the like can be used.
In order to fill the slits with the various nonconductive substances described above, the nonconductive substances may be embedded in the slits and solidified.
[0019]
The rare earth sintered magnet sintered body of the present invention is a rare earth sintered magnet such as a rectangle or a tile, and specifically, an NdFeB based sintered magnet, an SmCo based sintered magnet, or the like. Rare earth bonded magnets are composite magnets mixed with resin. The original electrical resistance is high and eddy currents are less affected, and the heat resistance limit and magnetic properties of the resin are low. Not considered. Therefore, the bonded magnet is not an object of the present invention.
[0020]
The rare earth sintered magnet sintered body according to the present invention is manufactured by manufacturing a magnet in which segment magnets are bonded and solidified, although the step of providing slits on the magnet surface is increased compared to the powder metallurgy method for manufacturing magnets without slits. Therefore, the eddy current reduction effect is almost the same as that of the magnet.
Further, since the volume of the magnet that is reduced by providing the slit on the magnet surface is small and the magnetic flux decreases only slightly, the electromagnetic torque decreases little. Therefore, unlike conventional permanent magnet type synchronous motors, it is not necessary to give a large coercive force to the magnet in advance, on the premise of heat generation and temperature rise due to eddy current, and from the viewpoint of magnet magnetic properties and raw material costs. A very large effect can be expected.
Furthermore, since the magnet used in the present invention can be satisfactorily coated even in a state where a slit is provided, there is no problem in terms of corrosion resistance.
[0021]
【Example】
(Examples and comparative examples)
Using 4 sheets of 42MGOe grade NdFeB sintered magnets (Shin-Etsu Chemical Co., Ltd./N42H) with dimensions of 40mm x 60mm x 5mm, a silicon steel sheet laminate of 70mm in diameter and 62mm in length (0.5mm thick) The magnet sintered body was inserted into a rotor made of silicon steel plate) to produce an IPM type rotor. The sintered body has a length of 60 mm, a width of 0.5 mm, and a depth of 2 parallel to a surface (upper surface) facing the armature of the magnet and a surface (lower surface) facing the armature, parallel to the width direction of 60 mm on the upper surface. Three slits of 5 mm are inserted at 10 mm intervals, and five slits having a length of 40 mm, a width of 0.5 mm, and a depth of 2.5 mm parallel to the width direction of 40 mm are put on the lower surface at intervals of 10 mm. did. The slit was provided by an outer peripheral blade cutting machine in which outer peripheral blades having a thickness of 0.4 mm were assembled in multi. Further, after coating the magnet with electric Ni plating, the slit was filled with an epoxy one-part room temperature curing adhesive (Scotch Weld EW-2) when inserted into the rotor.
The rotor was assembled in a stator having a 12-slot armature, a three-phase alternating current was applied to the armature, and the rotor was rotated at 6000 rpm for 1 hour. After stopping, it was immediately disassembled and the temperature of the magnet part at the end of the rotor was measured and found to be 90 ° C.
As a comparative example, a similar rotor was manufactured using magnets having the same dimensions and materials as described above and not provided with slits, rotated under the same conditions, and temperature rise was measured. As a result, the temperature of the magnet portion at the end of the rotor was 145 ° C., and there was a difference in temperature increase of 55 ° C. or more from the case where the slit was provided. That is, the temperature rise of the magnet was suppressed by providing the slit in the magnet.
[0022]
【The invention's effect】
According to the present invention, an eddy current generated in a magnet of a rotor is reduced, and a highly versatile permanent magnet type synchronous motor in which the magnet is not demagnetized even at high rotation can be provided in a simple process. The value is extremely high.
[Brief description of the drawings]
FIG. 1 is an explanatory view illustrating a rare earth sintered permanent magnet sintered body of the present invention.
FIG. 2 is an explanatory view illustrating a rare earth sintered permanent magnet sintered body according to the present invention. FIG. 2 (a) shows a case where a slit is provided in the middle of the surface from the end of the magnet sintered body. The case where a slit is provided is shown.
[Explanation of symbols]
1 Upper surface slit 3 Slit magnet upper surface 2 Lower surface slit 4 Slit magnet side surface

Claims (3)

上面及び下面の両方にスリットが設けられており、これらの面の一方の面にあるスリットは、他方の面にあるスリットと面上の方向が異なり、かつ、上面及び下面のそれぞれにおける最も深いスリットの深さの合計が、上面と下面の間の長さの1〜5/3倍である希土類焼結永久磁石焼結体。Slits are provided on both the upper and lower surfaces, and the slit on one of these surfaces is different in direction on the surface from the slit on the other surface, and the deepest slit on each of the upper and lower surfaces A rare earth sintered permanent magnet sintered body having a total depth of 1 to 5/3 times the length between the upper surface and the lower surface. 前記スリットを設けた面が概ね電機子に対向するように請求項1記載の焼結体を配した内部磁石ロータを有する永久磁石型同期モータ。A permanent magnet type synchronous motor having an internal magnet rotor in which the sintered body according to claim 1 is disposed so that the surface provided with the slit is substantially opposed to the armature. 前記スリットに非導電性物質を充填してなる請求項2記載の永久磁石型同期モータ。The permanent magnet type synchronous motor according to claim 2, wherein the slit is filled with a nonconductive material.
JP2000198015A 1999-06-30 2000-06-30 Rare earth sintered permanent magnet sintered body and permanent magnet type synchronous motor Expired - Fee Related JP4336446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000198015A JP4336446B2 (en) 1999-06-30 2000-06-30 Rare earth sintered permanent magnet sintered body and permanent magnet type synchronous motor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18568199 1999-06-30
JP11-185681 1999-06-30
JP2000198015A JP4336446B2 (en) 1999-06-30 2000-06-30 Rare earth sintered permanent magnet sintered body and permanent magnet type synchronous motor

Publications (2)

Publication Number Publication Date
JP2001078402A JP2001078402A (en) 2001-03-23
JP4336446B2 true JP4336446B2 (en) 2009-09-30

Family

ID=26503261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000198015A Expired - Fee Related JP4336446B2 (en) 1999-06-30 2000-06-30 Rare earth sintered permanent magnet sintered body and permanent magnet type synchronous motor

Country Status (1)

Country Link
JP (1) JP4336446B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674205B2 (en) * 2002-05-07 2004-01-06 General Motors Corporation Auxiliary magnetizing winding for interior permanent magnet rotor magnetization
KR100548293B1 (en) * 2003-12-30 2006-02-02 엘지전자 주식회사 Structure for fixing magnet of reciprocating compressor
US7559996B2 (en) * 2005-07-22 2009-07-14 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet, making method, and permanent magnet rotary machine
JP5555982B2 (en) * 2008-03-21 2014-07-23 セイコーエプソン株式会社 Brushless electric machine
US9287027B2 (en) * 2008-05-14 2016-03-15 Hitachi Metals, Ltd. Rare earth metal-based permanent magnet
EP2348518B1 (en) * 2008-11-06 2016-08-24 Intermetallics Co., Ltd. Method for producing sintered rare earth magnet
WO2016027338A1 (en) 2014-08-21 2016-02-25 三菱電機株式会社 Permanent magnet embedded electric motor and compressor
JP6878064B2 (en) 2017-03-16 2021-05-26 株式会社安川電機 Manufacturing method of permanent magnets for rotary electric machines, rotary electric machines, permanent magnets for rotary electric machines

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208815A (en) * 1985-03-14 1986-09-17 Ricoh Co Ltd Magnetic field generator
JPH06205554A (en) * 1992-11-16 1994-07-22 Yaskawa Electric Corp Rotor of synchronous rotary electric device
JP3365534B2 (en) * 1995-04-04 2003-01-14 富士電機株式会社 Rotor with permanent magnet of magnet synchronous rotating machine
JPH09308150A (en) * 1996-05-10 1997-11-28 Toshiba Corp Permanent magnet rotary machine
JP3690067B2 (en) * 1997-06-11 2005-08-31 株式会社日立製作所 Permanent magnet rotating electric machine
JPH1198729A (en) * 1997-09-18 1999-04-09 Fanuc Ltd Rotor structure of synchronous motor
JP2000291174A (en) * 1999-04-01 2000-10-17 Sekisui Chem Co Ltd Fire protecting and resistant panel wall

Also Published As

Publication number Publication date
JP2001078402A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
US6606019B1 (en) Rare earth-based sintered magnet and permanent magnet synchronous motor therewith
JP5600917B2 (en) Rotor for permanent magnet rotating machine
EP2722968B1 (en) Rotor for rotating electrical machine, rotating electric machine, and method for producing rotor for rotating electrical machine
WO2005101614A1 (en) Rotor and process for manufacturing the same
JP3655272B2 (en) Method for manufacturing a rotor for an electric traction motor
CN101151783B (en) Rotor magnet placement in interior permanent magnet machines
Du et al. High torque density and low torque ripple shaped-magnet machines using sinusoidal plus third harmonic shaped magnets
JP4096843B2 (en) Motor and manufacturing method thereof
US20100171386A1 (en) Rotor for magnet-embedded motor and magnet-embedded motor
CN103066719B (en) A kind of magneticfocusing stator permanent magnetic type vernier motor
JP2005354899A (en) Permanent magnet type motor
JP2000324736A (en) Permanent magnet mounted motor
CN112821702A (en) Hybrid stator core piece design for axial flux motor
JP2006261433A (en) Compound magnet, method for manufacturing the same and motor
US20210126514A1 (en) Robust material layers
JP2005020991A (en) Rotor and manufacturing method therefor
JP4336446B2 (en) Rare earth sintered permanent magnet sintered body and permanent magnet type synchronous motor
JPH08256441A (en) Permanent magnet rotor
JP5429515B2 (en) Field pole magnet body disposed on rotor or stator of permanent magnet type rotating electrical machine, and permanent magnet type rotating electrical machine
JP2000102202A (en) Rotor for permanent-magnet type electric motor
JP2000295804A (en) Rare earth sintered magnet and permanent magnet type synchronous motor
JP5692105B2 (en) Manufacturing method of rotor for IPM motor
JP2006180677A (en) Integrated skew magnetic rotor with core, and its manufacturing method
JP4238588B2 (en) Motor, motor rotor and composite anisotropic magnet
JP2014171387A (en) Rotor for permanent magnet type rotating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150703

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees