JP3690067B2 - Permanent magnet rotating electric machine - Google Patents

Permanent magnet rotating electric machine Download PDF

Info

Publication number
JP3690067B2
JP3690067B2 JP15327697A JP15327697A JP3690067B2 JP 3690067 B2 JP3690067 B2 JP 3690067B2 JP 15327697 A JP15327697 A JP 15327697A JP 15327697 A JP15327697 A JP 15327697A JP 3690067 B2 JP3690067 B2 JP 3690067B2
Authority
JP
Japan
Prior art keywords
unit
permanent magnet
rotor
magnet
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15327697A
Other languages
Japanese (ja)
Other versions
JPH114555A (en
Inventor
昭一 川又
文男 田島
豊 松延
末太郎 渋川
修 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15327697A priority Critical patent/JP3690067B2/en
Publication of JPH114555A publication Critical patent/JPH114555A/en
Application granted granted Critical
Publication of JP3690067B2 publication Critical patent/JP3690067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Description

【0001】
【発明の属する技術分野】
本発明は永久磁石回転電機に関する。
【0002】
【従来の技術】
回転電機は従来より小型軽量かつ高効率であることが望まれている。例えば電気自動車等の電動車両用に用いる場合、経済走行の要請や、バッテリの単位当たりの走行距離の向上が望まれ、そのためには小型軽量で高効率であることが必要である。
【0003】
小型軽量で高効率の回転電機としては、磁束発生手段に永久磁石を用いた永久磁石回転電機が最適であることが知られている。
【0004】
最近では、永久磁石として希土類磁石を用いることにより、高い磁束密度を確保し、効率を向上することが図られている。
【0005】
しかしながら希土類磁石は導電性が高く,抵抗が小さいために、渦電流が発生し易く、逆に効率を下げる原因となってしまう。
【0006】
その問題を解決するため、希土類磁石に代表される磁束密度の高い導電性永久磁石と非導電性永久磁石を回転子軸方向に交互に配置することによって、永久磁石内部の渦電流を減少させるものが特開平5−227686 号公報に記載されている。
【0007】
【発明が解決しようとする課題】
しかしながら上記公報に記載の技術は、非導電性永久磁石を一部に用いるため、導電性永久磁石のみを使用する場合に比して、磁石の利用率が悪くなり、効率を上げることができない。
【0008】
また、上記技術は永久磁石を異種材料で構成するため、2種の材料のうち機械強度の弱い材料を基準に回転電機を構成しなければならず、信頼性が低下するという問題がある。
【0009】
上記に鑑み本発明は、磁石表面の渦電流を低減しながら、高効率を達成できる永久磁石回転電機を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の永久磁石回転電機は、回転子鉄心の内部に形成された複数の永久磁石挿入孔に挿入されると共に、回転子周方向に互いに異なる極性となるように、互いに間隔をもって回転子周方向に環状に並設された永久磁石が、導電性の磁石からなるものであって、その電気抵抗を大きくしてその表面に発生する渦電流を低減するように、導電性の単位磁石を回転子周方向に複数個並設した単位磁石群から構成されており、絶縁部材が形成された単位磁石を永久磁石挿入孔に挿入することにより、単位磁石間に絶縁部材が介在することを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の一実施形態を図を用いて説明する。
【0012】
図1は永久磁石回転電機の断面図、図2は図1の永久磁石回転電機の平面図、図3は回転子の斜視図を示す。
【0013】
なお本実施形態は固定子巻線突極数が12極,回転子の永久磁石極数が8極のものであるが、他の突極数,極数のものに対しても本発明を適用可能である。
【0014】
図において、永久磁石回転電機1は固定子2と回転子3からなり、固定子2は固定子鉄心4と固定子巻線5とで構成される。
【0015】
回転子3は、回転子3の回転方向に分割され、かつ磁石幅τm1の単位磁石群で構成された導電性永久磁石6が円周方向に互いに異なる極性となるように配置した構成としている。
【0016】
すなわち、図3のように、N・Sの極性を持った単位磁石群で構成された永久磁石とS・Nの極性を持った単位磁石群で構成された導電性永久磁石が回転子鉄心7に形成された永久磁石挿入孔12に挿入されて構成され、シャフト8,ベアリング10,101を介してエンドブラケット11,111に回転自在に保持されている。
【0017】
なお、ここでは固定子鉄心4の外周にフレーム9がある構成で示したが、必要によってはフレームを省いても良い。
【0018】
ここで、単位磁石の磁石幅をτm1,固定子巻線突極41,42の間隔をτm とした場合、τm1<τm としている。
【0019】
このような構成とすることにより、例えば、固定子巻線突極41,42に対向する導電性永久磁石6は、複数個の単位磁石で形成されているため、各単位磁石の表面積が小さくなり、電気抵抗を大きくできる。このため、高調波磁束による渦電流が流れにくくなり、渦電流による損失も低減できる。
【0020】
従って、希土類磁石に代表される磁束密度の高い導電性永久磁石を用いても、高効率の回転電機を実現でき、小型軽量,高効率の永久磁石回転電機を提供することができる。
【0021】
なお、この例ではN・SあるいはS・Nの単位磁石が極性を持った後(着磁後)に、永久磁石挿入孔12に挿入する構成としたが、単位磁石材を挿入後に着磁しても良い。この場合、単位磁石材の挿入作業が向上する効果が得られる。
【0022】
図4は、本発明の他の実施形態を示す。
【0023】
図2の実施形態との違いは、単位磁石が絶縁物13を介して形成されている点にある。
【0024】
前記絶縁物13は、単位磁石間に挿入する構成としても良いが、接着剤や樹脂などで単位磁石と共に一体に充填,固着する構成とすると、単位磁石の固着と絶縁物13の構成が同時にできる効果が得られる。
【0025】
上記構成によれば、単位磁石が絶縁物13で絶縁されるため、渦電流が単位磁石間で流れなくなり、さらなる渦電流損失の低減が図れる。
【0026】
なお、以上の説明では、絶縁物13を挿入あるいは、接着剤などによる充填での構成で示したが、単位磁石に予め、コーティングなどで必要箇所に絶縁物13を形成しておいても良い。この場合、絶縁物13の挿入あるいは、接着剤などによる充填等の作業工程を省くことができるので、作業性が向上する効果が得られる。
【0027】
図5及び図6は、本発明の他の実施形態を示す。
【0028】
図2の実施形態との違いは、単位磁石群の中央に位置する単位磁石の高さhを、その両側にある単位磁石の高さh1,h2と異ならしめた点にある。
【0029】
すなわち図5は、中央部の単位磁石2個の高さhに対して、両端部の単位磁石の高さh1を小さくしたものであり、図6は、中央部の単位磁石の高さhに対して、端部へ行くに従って高さh1,h2を小さくしたものである。
【0030】
上記構成によれば、導電性永久磁石6の形状を、単位磁石の高さhの選択によって略台形,略半円形など容易に形成することができる効果が得られる。
【0031】
なお、希土類などの導電性の高い永久磁石を用いない場合も同様に、単位磁石の高さhの選択によって略台形,略半円形など容易に形成することができるものである。
【0032】
なお、上記実施形態では、回転子鉄心7の磁石挿入口13の形状と各単位磁石の形状をほぼ同形状としているが、図7及び図8の様に、図3に示した永久磁石挿入孔12と同じ形状(この例では、長方形)として、永久磁石挿入孔12と単位磁石の間に絶縁物13あるいは空気層等の絶縁空間を設けても良い。
【0033】
以上の構成によれば、導電性永久磁石両端部の磁束量を抑制できるので、固定子巻線突極と磁石間に生ずるコギングトルクを低減できる効果が得られる。
【0034】
図9は、本発明の永久磁石回転電機の他の実施形態を示す。
【0035】
図2との違いは、中央部にある単位磁石の幅τm1と両端部にある単位磁石の幅τm2を異ならしめた点にある。
【0036】
すなわち、図9は、中央部の単位磁石4個の幅τm1に対して、両端部の単位磁石のτm2を小さくしたものである。
【0037】
上記構成によれば、単位磁石の幅τm1を磁石の位置によって変えることで、導電性永久磁石6の形状を、より台形,半円形に近づけることができる効果が得られる。
【0038】
なお、以上は導電性永久磁石6の形状を長方形の例で説明したが、図10及び図11の様な円弧形状及び星形形状など、特に永久磁石形状にこだわるものではない。
【0039】
また、導電性永久磁石が回転子鉄心の表面に配置される構成のものに使用しても同様の効果が得られる。
【0040】
また、以上は永久磁石回転子構造を有する永久磁石回転電機について説明したが、回転電機だけでなく、発電機でもよく、外転型,内転型回転子を用いた回転電機にも適用可能である。
【0041】
さらには、回転電機のみならず、リニアモータ等への適用も可能である。
【0042】
【発明の効果】
導電性永久磁石を複数個の導電性単位磁石群で構成することにより、磁石表面の渦電流を低減しながら、高効率の永久磁石回転電機を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態をなす永久磁石回転電機の断面図を示す。
【図2】図1の永久磁石回転電機の平面図を示す。
【図3】図1の永久磁石回転子の斜視図を示す。
【図4】本発明の他の実施形態をなす永久磁石回転電機の一部平面図を示す。
【図5】本発明の他の実施形態をなす永久磁石回転電機の一部平面図を示す。
【図6】本発明の他の実施形態をなす永久磁石回転電機の一部平面図を示す。
【図7】本発明の他の実施形態をなす永久磁石回転電機の一部平面図を示す。
【図8】本発明の他の実施形態をなす永久磁石回転電機の一部平面図を示す。
【図9】本発明の他の実施形態をなす永久磁石回転電機の一部平面図を示す。
【図10】本発明の他の実施形態をなす永久磁石回転電機の一部平面図を示す。
【図11】本発明の他の実施形態をなす永久磁石回転電機の一部平面図を示す。
【符号の説明】
1…回転電機、2…固定子、3…回転子、4…固定子鉄心、5…固定子巻線、6…導電性永久磁石、7…回転子鉄心、8…シャフト、9…外周フレーム、10,101…ベアリング、11,111…エンドブラケット、12…永久磁石挿入孔、13…絶縁物、41,42…固定子巻線突極。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a permanent magnet rotating electrical machine.
[0002]
[Prior art]
Rotating electric machines are desired to be smaller, lighter and more efficient than before. For example, when it is used for an electric vehicle such as an electric vehicle, there is a demand for economical driving and an improvement in a driving distance per unit of battery. To that end, it is necessary to be small and light and highly efficient.
[0003]
As a small, lightweight and highly efficient rotating electrical machine, it is known that a permanent magnet rotating electrical machine using a permanent magnet as a magnetic flux generating means is optimal.
[0004]
Recently, by using rare earth magnets as permanent magnets, it has been attempted to ensure high magnetic flux density and improve efficiency.
[0005]
However, since rare earth magnets have high conductivity and low resistance, eddy currents are likely to occur, and conversely cause a reduction in efficiency.
[0006]
In order to solve this problem, eddy currents inside permanent magnets are reduced by alternately arranging conductive permanent magnets with high magnetic flux density, represented by rare earth magnets, and non-conductive permanent magnets in the rotor axis direction. Is described in JP-A-5-227686.
[0007]
[Problems to be solved by the invention]
However, since the technique described in the above publication uses a non-conductive permanent magnet in part, the utilization rate of the magnet is deteriorated and efficiency cannot be increased as compared with the case where only the conductive permanent magnet is used.
[0008]
Further, in the above technique, since the permanent magnet is composed of different materials, the rotating electric machine has to be configured on the basis of the material with low mechanical strength out of the two types of materials, and there is a problem that reliability is lowered.
[0009]
In view of the above, an object of the present invention is to provide a permanent magnet rotating electrical machine that can achieve high efficiency while reducing eddy current on the surface of a magnet.
[0010]
[Means for Solving the Problems]
The permanent magnet rotating electrical machine of the present invention is inserted into a plurality of permanent magnet insertion holes formed inside the rotor core, and has a mutually different polarity in the rotor circumferential direction with a space between each other in the rotor circumferential direction. The permanent magnets arranged in parallel to each other are made of conductive magnets, and the conductive unit magnets are arranged in the rotor so as to increase the electric resistance and reduce the eddy current generated on the surface. It is composed of a plurality of unit magnet groups arranged side by side in the circumferential direction, and the insulating member is interposed between the unit magnets by inserting the unit magnet formed with the insulating member into the permanent magnet insertion hole. .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0012]
1 is a cross-sectional view of a permanent magnet rotating electrical machine, FIG. 2 is a plan view of the permanent magnet rotating electrical machine of FIG. 1, and FIG. 3 is a perspective view of a rotor.
[0013]
In this embodiment, the number of salient stator windings is 12 and the number of permanent magnet poles of the rotor is 8. However, the present invention can be applied to other salient poles and poles. Is possible.
[0014]
In the figure, a permanent magnet rotating electrical machine 1 includes a stator 2 and a rotor 3, and the stator 2 includes a stator core 4 and a stator winding 5.
[0015]
The rotor 3 is configured such that the conductive permanent magnets 6 that are divided in the rotation direction of the rotor 3 and configured of unit magnet groups having a magnet width τ m1 are arranged to have different polarities in the circumferential direction. .
[0016]
That is, as shown in FIG. 3, a permanent magnet composed of a unit magnet group having N / S polarity and a conductive permanent magnet composed of a unit magnet group having S / N polarity are composed of a rotor core 7. It is inserted into the permanent magnet insertion hole 12 formed in the above, and is rotatably held by the end brackets 11 and 111 via the shaft 8 and bearings 10 and 101.
[0017]
Here, the frame 9 is shown on the outer periphery of the stator core 4, but the frame may be omitted if necessary.
[0018]
Here, when the magnet width of the unit magnet is τ m1 and the interval between the stator winding salient poles 41 and 42 is τ m , τ m1m .
[0019]
By adopting such a configuration, for example, the conductive permanent magnet 6 facing the stator winding salient poles 41 and 42 is formed of a plurality of unit magnets, so the surface area of each unit magnet is reduced. The electric resistance can be increased. For this reason, the eddy current due to the harmonic magnetic flux hardly flows and the loss due to the eddy current can be reduced.
[0020]
Therefore, even when a conductive permanent magnet having a high magnetic flux density typified by a rare earth magnet is used, a highly efficient rotating electrical machine can be realized, and a small, light, and highly efficient permanent magnet rotating electrical machine can be provided.
[0021]
In this example, the N · S or S · N unit magnet is inserted into the permanent magnet insertion hole 12 after being polarized (after magnetization). However, the unit magnet material is magnetized after insertion. May be. In this case, the effect of improving the operation of inserting the unit magnet material can be obtained.
[0022]
FIG. 4 shows another embodiment of the present invention.
[0023]
The difference from the embodiment of FIG. 2 is that the unit magnet is formed via an insulator 13.
[0024]
The insulator 13 may be inserted between the unit magnets, but if the unit magnet is filled and fixed together with an adhesive or resin, the unit magnet can be fixed and the insulator 13 can be fixed at the same time. An effect is obtained.
[0025]
According to the said structure, since a unit magnet is insulated by the insulator 13, an eddy current stops flowing between unit magnets, and the reduction of an eddy current loss can be aimed at further.
[0026]
In the above description, the insulator 13 is inserted or filled with an adhesive or the like. However, the insulator 13 may be formed on a unit magnet in advance by coating or the like. In this case, work steps such as insertion of the insulator 13 or filling with an adhesive or the like can be omitted, so that an effect of improving workability can be obtained.
[0027]
5 and 6 show another embodiment of the present invention.
[0028]
The difference from the embodiment of FIG. 2 is that the height h of the unit magnet located at the center of the unit magnet group is made different from the heights h1 and h2 of the unit magnets on both sides thereof.
[0029]
That is, FIG. 5 shows the height h1 of the unit magnets at both ends smaller than the height h of the two unit magnets at the center, and FIG. 6 shows the height h of the unit magnet at the center. On the other hand, the heights h1 and h2 are made smaller toward the end.
[0030]
According to the said structure, the effect that the shape of the electroconductive permanent magnet 6 can be easily formed, such as a substantially trapezoid and a substantially semicircle, by the selection of the height h of a unit magnet is acquired.
[0031]
Similarly, when a highly conductive permanent magnet such as rare earth is not used, it can be easily formed in a substantially trapezoidal shape or a substantially semicircular shape by selecting the height h of the unit magnet.
[0032]
In the above embodiment, the shape of the magnet insertion port 13 of the rotor core 7 and the shape of each unit magnet are substantially the same, but as shown in FIGS. 7 and 8, the permanent magnet insertion hole shown in FIG. 12 may be provided with an insulating space such as an insulator 13 or an air layer between the permanent magnet insertion hole 12 and the unit magnet.
[0033]
According to the above configuration, since the amount of magnetic flux at both ends of the conductive permanent magnet can be suppressed, an effect of reducing the cogging torque generated between the stator winding salient pole and the magnet can be obtained.
[0034]
FIG. 9 shows another embodiment of the permanent magnet rotating electrical machine of the present invention.
[0035]
The difference from FIG. 2 is that the width τ m1 of the unit magnet at the center is different from the width τ m2 of the unit magnets at both ends.
[0036]
That is, in FIG. 9, τ m2 of the unit magnets at both ends is made smaller than the width τ m1 of the four unit magnets at the center.
[0037]
According to the above configuration, the effect that the shape of the conductive permanent magnet 6 can be made closer to a trapezoidal shape or a semicircular shape can be obtained by changing the width τ m1 of the unit magnet according to the position of the magnet.
[0038]
In the above description, the conductive permanent magnet 6 has been described as having a rectangular shape. However, the shape of the permanent magnet 6 is not particularly limited to a permanent magnet shape such as an arc shape or a star shape as shown in FIGS.
[0039]
Further, the same effect can be obtained even when the conductive permanent magnet is used in a configuration in which it is arranged on the surface of the rotor core.
[0040]
Further, the description has been given of the permanent magnet rotating electric machine having the permanent magnet rotor structure. However, the rotating electric machine is not limited to a rotating electric machine, and may be applied to a rotating electric machine using an outer rotation type and an inner rotation type rotor. is there.
[0041]
Furthermore, it can be applied not only to rotating electrical machines but also to linear motors and the like.
[0042]
【The invention's effect】
By configuring the conductive permanent magnet with a plurality of conductive unit magnet groups, a highly efficient permanent magnet rotating electrical machine can be obtained while reducing eddy currents on the magnet surface.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a permanent magnet rotating electric machine that constitutes an embodiment of the present invention.
2 is a plan view of the permanent magnet rotating electric machine of FIG. 1. FIG.
3 shows a perspective view of the permanent magnet rotor of FIG. 1. FIG.
FIG. 4 is a partial plan view of a permanent magnet rotating electric machine according to another embodiment of the present invention.
FIG. 5 is a partial plan view of a permanent magnet rotating electric machine according to another embodiment of the present invention.
FIG. 6 is a partial plan view of a permanent magnet rotating electric machine according to another embodiment of the present invention.
FIG. 7 is a partial plan view of a permanent magnet rotating electric machine that constitutes another embodiment of the present invention.
FIG. 8 is a partial plan view of a permanent magnet rotating electric machine according to another embodiment of the present invention.
FIG. 9 is a partial plan view of a permanent magnet rotating electric machine according to another embodiment of the present invention.
FIG. 10 is a partial plan view of a permanent magnet rotating electric machine according to another embodiment of the present invention.
FIG. 11 is a partial plan view of a permanent magnet rotating electric machine according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rotary electric machine, 2 ... Stator, 3 ... Rotor, 4 ... Stator core, 5 ... Stator winding, 6 ... Conductive permanent magnet, 7 ... Rotor core, 8 ... Shaft, 9 ... Outer frame, DESCRIPTION OF SYMBOLS 10,101 ... Bearing, 11, 111 ... End bracket, 12 ... Permanent magnet insertion hole, 13 ... Insulator, 41, 42 ... Stator winding salient pole.

Claims (5)

巻線が巻回された複数の固定子突極を有する固定子と、
該固定子に回転空隙をもって回転可能に保持された回転子とを有し、
前記回転子は、
複数の永久磁石挿入孔が内部に形成された回転子鉄心と、
前記複数の永久磁石挿入孔に挿入されると共に、回転子周方向に互いに異なる極性となるように、互いに間隔をもって回転子周方向に環状に並設された永久磁石とを備えており、
前記永久磁石は、
導電性の磁石からなるものであって、
その電気抵抗を大きくしてその表面に発生する渦電流を低減するように、導電性の単位磁石が回転子周方向に複数個並設された単位磁石群から構成されており、
前記単位磁石間には絶縁部材が介在しており、
前記絶縁部材は、前記単位磁石に形成されて、この単位磁石が前記永久磁石挿入孔に挿入されることにより前記単位磁石間に介在する
ことを特徴とする永久磁石回転電機。
A stator having a plurality of stator salient poles wound with windings;
A rotor rotatably held by the stator with a rotation gap;
The rotor is
A rotor core in which a plurality of permanent magnet insertion holes are formed;
The permanent magnets are inserted into the plurality of permanent magnet insertion holes, and have permanent magnets arranged in a ring in the circumferential direction of the rotor so as to have different polarities in the circumferential direction of the rotor,
The permanent magnet is
It consists of a conductive magnet,
In order to increase the electrical resistance and reduce the eddy current generated on the surface, the conductive unit magnet is composed of a group of unit magnets arranged in parallel in the circumferential direction of the rotor ,
An insulating member is interposed between the unit magnets,
The permanent magnet rotating electrical machine according to claim 1, wherein the insulating member is formed on the unit magnet, and the unit magnet is interposed between the unit magnets by being inserted into the permanent magnet insertion hole .
巻線が巻回された複数の固定子突極を有する固定子と、
該固定子に回転空隙をもって回転可能に保持された回転子とを有し、
前記回転子は、
複数の永久磁石挿入孔が内部に形成された回転子鉄心と、
前記複数の永久磁石挿入孔に挿入されると共に、回転子周方向に互いに異なる極性となるように、互いに間隔をもって回転子周方向に環状に並設された永久磁石とを備えており、
前記永久磁石は、
導電性の磁石からなるものであって、
その電気抵抗を大きくしてその表面に発生する渦電流を低減するように、導電性の単位磁石が回転子周方向に複数個並設された単位磁石群から構成されており、
前記単位磁石間には絶縁部材が介在しており、
前記絶縁部材は、前記単位磁石に形成されて、この単位磁石が前記永久磁石挿入孔に挿入されることにより前記単位磁石間に介在しており、
前記単位磁石群の回転子周方向両端部に位置する前記単位磁石と前記永久磁石挿入孔との間には、前記固定子突極と前記永久磁石との間に生じるコギングトルクを低減するための絶縁空間が形成されている
ことを特徴とする永久磁石回転電機。
A stator having a plurality of stator salient poles wound with windings;
A rotor rotatably held by the stator with a rotation gap;
The rotor is
A rotor core in which a plurality of permanent magnet insertion holes are formed;
The permanent magnets are inserted into the plurality of permanent magnet insertion holes, and have permanent magnets arranged in a ring in the circumferential direction of the rotor so as to have different polarities in the circumferential direction of the rotor,
The permanent magnet is
It consists of a conductive magnet,
In order to increase the electrical resistance and reduce the eddy current generated on the surface, the conductive unit magnet is composed of a group of unit magnets arranged in parallel in the circumferential direction of the rotor,
An insulating member is interposed between the unit magnets,
The insulating member is formed in the unit magnet, and the unit magnet is interposed between the unit magnets by being inserted into the permanent magnet insertion hole,
Between the unit magnets located at both ends of the unit magnet group in the circumferential direction of the rotor and the permanent magnet insertion holes, to reduce cogging torque generated between the stator salient poles and the permanent magnets. A permanent magnet rotating electrical machine, wherein an insulating space is formed.
請求項1又は2に記載の永久磁石回転電機において、
前記単位磁石群を構成する前記単位磁石の少なくとも一つは、同じ前記単位磁石群に含まれる他の前記単位磁石とはその大きさが異なる
ことを特徴とする永久磁石回転電機。
In the permanent magnet rotating electric machine according to claim 1 or 2,
A permanent magnet rotating electrical machine characterized in that at least one of the unit magnets constituting the unit magnet group is different in size from other unit magnets included in the same unit magnet group.
請求項3に記載の永久磁石回転電機において、
回転子周方向両端部に位置する前記単位磁石の径方向の高さは、同じ前記単位磁石群に含まれる他の前記単位磁石の径方向の高さよりも小さい
ことを特徴とする永久磁石回転電機。
In the permanent magnet rotating electric machine according to claim 3,
A permanent magnet rotating electrical machine characterized in that a radial height of the unit magnets located at both ends of a rotor circumferential direction is smaller than a radial height of other unit magnets included in the same unit magnet group .
請求項3に記載の永久磁石回転電機において、
回転子周方向両端部に位置する前記単位磁石の回転子周方向の幅は、同じ前記単位磁石群に含まれる他の前記単位磁石の回転子周方向の幅よりも小さい
ことを特徴とする永久磁石回転電機。
In the permanent magnet rotating electric machine according to claim 3,
The width of the unit magnets positioned at both ends of the rotor in the circumferential direction of the rotor is smaller than the width of the other unit magnets included in the same unit magnet group in the circumferential direction of the rotor. Magnet rotating electric machine.
JP15327697A 1997-06-11 1997-06-11 Permanent magnet rotating electric machine Expired - Lifetime JP3690067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15327697A JP3690067B2 (en) 1997-06-11 1997-06-11 Permanent magnet rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15327697A JP3690067B2 (en) 1997-06-11 1997-06-11 Permanent magnet rotating electric machine

Publications (2)

Publication Number Publication Date
JPH114555A JPH114555A (en) 1999-01-06
JP3690067B2 true JP3690067B2 (en) 2005-08-31

Family

ID=15558935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15327697A Expired - Lifetime JP3690067B2 (en) 1997-06-11 1997-06-11 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JP3690067B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114692A1 (en) 2007-03-15 2008-09-25 Daikin Industries, Ltd. Field system
WO2019189143A1 (en) 2018-03-30 2019-10-03 愛知製鋼株式会社 Electric motor and field element
US10483816B2 (en) 2015-10-30 2019-11-19 Mitsubishi Electric Corporation Motor, rotor, compressor, and refrigeration and air conditioning apparatus

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324736A (en) * 1999-05-12 2000-11-24 Mitsubishi Electric Corp Permanent magnet mounted motor
JP4336446B2 (en) * 1999-06-30 2009-09-30 信越化学工業株式会社 Rare earth sintered permanent magnet sintered body and permanent magnet type synchronous motor
DE10010248A1 (en) * 2000-03-02 2001-09-13 Hatz Motoren Current generator unit for vehicle, has rotor built on fan wheel attached by flange to crankshaft of drive engine and stator designed as laminated iron packet
US6800967B2 (en) 2000-06-09 2004-10-05 Neomax Co., Ltd. Integrated magnet body and motor incorporating it
JP2002237973A (en) 2001-02-07 2002-08-23 Canon Inc Recorder, recording method and imaging device
JP3707539B2 (en) * 2001-03-02 2005-10-19 日産自動車株式会社 Electric motor or generator
JP4854867B2 (en) * 2001-05-10 2012-01-18 三菱電機株式会社 Electric motor
JP4089341B2 (en) * 2002-04-16 2008-05-28 日立金属株式会社 Rotor and rotating machine
JP4240949B2 (en) 2002-08-09 2009-03-18 日立アプライアンス株式会社 Permanent magnet type rotating electrical machine rotor
JP4491211B2 (en) * 2003-09-19 2010-06-30 日立アプライアンス株式会社 Permanent magnet rotating electric machine
JP2005354899A (en) * 2005-09-09 2005-12-22 Mitsubishi Electric Corp Permanent magnet type motor
EP1786085B1 (en) * 2005-11-15 2016-08-03 Shin-Etsu Chemical Co., Ltd. Permanent magnet rotating electric machine
JP4990599B2 (en) * 2005-11-15 2012-08-01 信越化学工業株式会社 Permanent magnet rotating electric machine
JP2007266032A (en) * 2006-03-27 2007-10-11 Japan Magnetic Chemical Institute Permanent magnet and manufacturing method therefor
JP2007300787A (en) * 2006-04-27 2007-11-15 Sun Tech Generator Co Ltd Rotor for generator/motor
US7834505B2 (en) 2006-04-27 2010-11-16 Sun Tech Generator Co., Ltd. Rotary device of generator or motor
JP4466681B2 (en) * 2007-05-11 2010-05-26 トヨタ自動車株式会社 Rotating electric machine rotor and rotating electric machine
JP5361261B2 (en) * 2008-06-20 2013-12-04 株式会社東芝 Permanent magnet rotating electric machine
US20100253169A1 (en) * 2009-04-01 2010-10-07 General Electric Company Electric machine
US8222787B2 (en) * 2009-04-01 2012-07-17 General Electric Company Electric machine
JP5581013B2 (en) * 2009-06-23 2014-08-27 株式会社三井ハイテック Rotor core
US8967441B2 (en) 2009-07-10 2015-03-03 Toyota Jidosha Kabushiki Kaisha Magnet splitting device and magnet splitting method
EP2461461A4 (en) 2009-07-29 2017-05-17 Toyota Jidosha Kabushiki Kaisha Apparatus for handling magnet and method for handling magnet
JP2011045197A (en) * 2009-08-21 2011-03-03 Mitsubishi Electric Corp Permanent magnet type rotary electric machine and manufacturing method of the same
WO2012084031A2 (en) * 2010-12-22 2012-06-28 Abb Research Ltd Rotor with incremental poles
JP5307849B2 (en) * 2011-05-02 2013-10-02 三菱電機株式会社 Electric motor
JP5787673B2 (en) * 2011-08-30 2015-09-30 株式会社東芝 Permanent magnet type rotating electric machine
JP5761068B2 (en) * 2012-02-13 2015-08-12 トヨタ自動車株式会社 Manufacturing method of rotor for IPM motor
FR2987184B1 (en) * 2012-02-20 2016-07-29 Moteurs Leroy-Somer ROTOR OF ROTATING ELECTRIC MACHINE WITH FLOW CONCENTRATION.
JP5977155B2 (en) * 2012-11-26 2016-08-24 アイチエレック株式会社 Permanent magnet motor
WO2016027338A1 (en) 2014-08-21 2016-02-25 三菱電機株式会社 Permanent magnet embedded electric motor and compressor
JP6537613B2 (en) 2015-08-05 2019-07-03 三菱電機株式会社 Motor rotor, motor, blower and refrigeration air conditioner
CN110326191B (en) * 2017-02-28 2022-02-08 日立安斯泰莫株式会社 Rotor of rotating electrical machine and rotating electrical machine provided with same
JP2019096868A (en) * 2017-11-24 2019-06-20 Tdk株式会社 Magnet and motor using the same
CN109412298B (en) * 2018-05-14 2022-04-05 滨州学院 Permanent magnet motor
US11581766B2 (en) * 2018-09-11 2023-02-14 Lg Electronics Inc. Drive motor with flux barriers, and compressor having the same
EP3799262A1 (en) * 2019-09-27 2021-03-31 Siemens Aktiengesellschaft Electric rotating machine with permanent magnets
JP2022080085A (en) * 2020-11-17 2022-05-27 株式会社東芝 Rotary electric machine rotator and rotary electric machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114692A1 (en) 2007-03-15 2008-09-25 Daikin Industries, Ltd. Field system
US8040009B2 (en) 2007-03-15 2011-10-18 Daikin Industries, Ltd. Filed element
US10483816B2 (en) 2015-10-30 2019-11-19 Mitsubishi Electric Corporation Motor, rotor, compressor, and refrigeration and air conditioning apparatus
WO2019189143A1 (en) 2018-03-30 2019-10-03 愛知製鋼株式会社 Electric motor and field element
US11362557B2 (en) 2018-03-30 2022-06-14 Aichi Steel Corporation Electric motor and field element

Also Published As

Publication number Publication date
JPH114555A (en) 1999-01-06

Similar Documents

Publication Publication Date Title
JP3690067B2 (en) Permanent magnet rotating electric machine
JP5033552B2 (en) Axial gap type coreless rotating machine
KR101231024B1 (en) Consequent pole permanent magnet motor
JP3983423B2 (en) Electric motor
JP3995450B2 (en) Permanent magnet type rotating electric machine
JP2000228838A (en) Permanent magnet motor
JP4728765B2 (en) Rotating machine
JPH10322948A (en) Permanent magnet buried type of rotor
US20060145561A1 (en) Three-phase synchronous reluctance motor
JP4113353B2 (en) Rotating electric machine
US7557482B2 (en) Axial-flux electric machine
JP6539141B2 (en) Stator of rotating electric machine and rotating electric machine
WO2001097363A1 (en) Permanent magnet synchronous motor
WO2020194390A1 (en) Rotating electric machine
JPS6223536B2 (en)
JP2007174885A (en) Rotor of synchronous motor
JP4823425B2 (en) DC motor
EP0431178B1 (en) Synchronous machine
JP6451990B2 (en) Rotating electric machine
JP2006025486A (en) Electric electric machine
JP4666726B2 (en) Permanent magnet motor rotor
JP2007288838A (en) Embedded magnet type motor
GB2349748A (en) Rotor/stator relationship in a brushless machine
JP2021010211A (en) Rotary electric machine and rotary electric machine manufacturing method
JP2019216530A (en) Permanent magnet generator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

EXPY Cancellation because of completion of term