JPWO2010016371A1 - Microchip, microchip manufacturing method, and microchip manufacturing apparatus - Google Patents

Microchip, microchip manufacturing method, and microchip manufacturing apparatus

Info

Publication number
JPWO2010016371A1
JPWO2010016371A1 JP2010523820A JP2010523820A JPWO2010016371A1 JP WO2010016371 A1 JPWO2010016371 A1 JP WO2010016371A1 JP 2010523820 A JP2010523820 A JP 2010523820A JP 2010523820 A JP2010523820 A JP 2010523820A JP WO2010016371 A1 JPWO2010016371 A1 JP WO2010016371A1
Authority
JP
Japan
Prior art keywords
microchip
substrate
peeling
hot plate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010523820A
Other languages
Japanese (ja)
Inventor
清水 直紀
直紀 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Publication of JPWO2010016371A1 publication Critical patent/JPWO2010016371A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/442Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with mechanical ejector or drive means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/005Detaching the article from the joining tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micromachines (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

生産性の低下を防止することのできるマイクロチップの製造方法及び製造装置を提供する。前記製造方法において、2つの樹脂製基板10、20を加熱接合するマイクロチップの製造装置5は、互いに対向して間に樹脂製基板10、20を挟んで加熱接合する2枚の熱板51、52と、熱板51、52を互いに接離させる移動手段53と、一方の熱板51に貼り付いた樹脂製基板10を、当該熱板51から剥離する剥離手段55と、を備える。剥離手段55は、熱板51の厚さ方向に形成された貫通孔510を通して樹脂製基板10に外力を与えることにより、当該熱板51から樹脂製基板10を剥離する。A microchip manufacturing method and a manufacturing apparatus capable of preventing a decrease in productivity In the manufacturing method, the microchip manufacturing apparatus 5 that heat-bonds two resin substrates 10 and 20 includes two hot plates 51 that are heat-bonded so as to face each other and sandwich the resin substrates 10 and 20 therebetween. 52, a moving means 53 for bringing the hot plates 51 and 52 into and away from each other, and a peeling means 55 for peeling the resin substrate 10 attached to one hot plate 51 from the hot plate 51. The peeling means 55 peels the resin substrate 10 from the hot plate 51 by applying an external force to the resin substrate 10 through the through hole 510 formed in the thickness direction of the hot plate 51.

Description

本発明は、マイクロチップ、マイクロチップの製造方法及びマイクロチップの製造装置に関する。   The present invention relates to a microchip, a microchip manufacturing method, and a microchip manufacturing apparatus.

従来、微小空間内で核酸、タンパク質、血液などの液体試料の化学反応や分離、分析などを行う技術分野においては、内部に微細な流路や回路を形成したマイクロチップが実用化されている。   2. Description of the Related Art Conventionally, in a technical field that performs chemical reaction, separation, analysis, and the like of a liquid sample such as nucleic acid, protein, and blood in a minute space, a microchip having a minute channel or circuit formed therein has been put into practical use.

このようなマイクロチップは、樹脂などで形成された2つの基板を有しており、少なくとも一方の基板に対して微細加工を施した後、これら2つの基板を熱板の間に挟んで貼り合わせる等によって製造されている(例えば、特許文献1参照)。   Such a microchip has two substrates formed of resin or the like, and after fine processing is performed on at least one substrate, the two substrates are sandwiched between hot plates and bonded together. It is manufactured (for example, refer to Patent Document 1).

ところで、上記のマイクロチップにおいて、接合面の剥離は流路内での分析試料の流れ方や移動の仕方を変化させたり、分析試料の漏れを引き起こしたりしてしまうため、このような不具合を防止する観点からは、強固で均一な接合強度が求められる。   By the way, in the above-mentioned microchip, peeling of the joint surface changes the way the analysis sample flows and moves in the flow path and causes the analysis sample to leak, thus preventing such problems. From this viewpoint, strong and uniform bonding strength is required.

そのため、マイクロチップの接合においては、均一に加圧することを目的とするため、熱板の表面と、基板における熱板との当接面とを予め平滑に形成している。   Therefore, in order to pressurize uniformly in the bonding of the microchip, the surface of the hot plate and the contact surface of the substrate with the hot plate are formed in advance smoothly.

特開2005−77218号公報JP-A-2005-77218

しかしながら、平滑な熱板で平滑な基板を接合すると、接合したマイクロチップが熱板に貼り付く結果、生産性が低下してしまう。   However, when a smooth substrate is bonded with a smooth hot plate, the bonded microchip sticks to the hot plate, resulting in reduced productivity.

この点、マイクロチップの熱板への貼り付きを防止する方法としては、予め熱板の表面に剥離剤を塗布しておく方法も考えられるが、このような方法を単純に用いても、接合作業の繰り返しによって塗布した剥離剤が剥がれる結果、剥離効果が低下してしまい、貼り付きが生じて生産性が低下する場合がある。   In this regard, as a method for preventing the sticking of the microchip to the hot plate, a method of applying a release agent to the surface of the hot plate in advance can be considered, but even if such a method is simply used, bonding is possible. As a result of peeling off the applied release agent by repeating the work, the peeling effect may be reduced, sticking may occur, and productivity may be reduced.

本発明の課題は、生産性の低下を防止することのできるマイクロチップ、マイクロチップの製造方法及び製造装置を提供することである。   The subject of this invention is providing the manufacturing method and manufacturing apparatus of a microchip which can prevent the fall of productivity.

本発明の第1の側面によれば、積層されて内側に流路を形成した2つの基板を、互いに対向する2枚の熱板の間に挟んで加熱接合するマイクロチップの製造方法であって、
前記2枚の熱板によって前記2つの基板を加熱接合する接合工程と、
前記接合工程の後に、前記2枚の熱板を離間させる離間工程と、
前記離間工程の後に、前記2枚の熱板における一方の熱板に貼り付いた前記基板を、当該一方の熱板から剥離する剥離工程とを有し、
前記剥離工程は、
前記一方の熱板の厚さ方向に形成された貫通孔を通して前記基板に外力を与えることにより、当該一方の熱板から前記基板を剥離する工程を含むことを特徴とする。
According to a first aspect of the present invention, there is provided a method for manufacturing a microchip, in which two substrates that are laminated and have a flow path formed inside are sandwiched between two hot plates facing each other and are heat-bonded.
A bonding step of heat-bonding the two substrates with the two hot plates;
A separation step of separating the two hot plates after the joining step;
A peeling step of peeling the substrate attached to one of the two hot plates from the one hot plate after the separating step;
The peeling step includes
The method includes a step of peeling the substrate from the one hot plate by applying an external force to the substrate through a through hole formed in the thickness direction of the one hot plate.

このマイクロチップの製造方法においては、
前記剥離工程は、
棒状の突き出しピンを前記貫通孔に挿通させて他方の前記熱板の側に突出させることにより、前記一方の熱板から前記基板を剥離する工程を含むことが好ましい。
In this microchip manufacturing method,
The peeling step includes
It is preferable to include a step of peeling the substrate from the one hot plate by inserting a rod-like protruding pin through the through hole and projecting it toward the other hot plate.

また、このマイクロチップの製造方法においては、
前記剥離工程は、
前記貫通孔を通して外部から前記基板に対して空気を噴射することにより、前記一方の熱板から前記基板を剥離する工程を含むことが好ましい。
Moreover, in this microchip manufacturing method,
The peeling step includes
It is preferable to include a step of peeling the substrate from the one hot plate by injecting air from the outside to the substrate through the through hole.

本発明の第2の側面によれば、積層されて内側に流路を形成した2つの基板を、互いに対向する2枚の熱板の間に挟んで加熱接合するマイクロチップの製造方法であって、
前記2枚の熱板によって前記2つの基板を加熱接合する接合工程と、
前記接合工程の後に、前記2枚の熱板を離間させる離間工程と、
前記離間工程の後に、前記2枚の熱板における一方の熱板に貼り付いた前記基板を、当該一方の熱板から剥離する剥離工程とを有し、
前記剥離工程は、
前記基板の側部に係合する係合部材を用いて当該基板の側部を前記一方の熱板から引き剥がすことにより、当該一方の熱板から前記基板を剥離する工程を含むことを特徴とする。
According to a second aspect of the present invention, there is provided a method of manufacturing a microchip, in which two substrates that are stacked and have a flow path formed inside are sandwiched between two hot plates facing each other and heat bonded.
A bonding step of heat-bonding the two substrates with the two hot plates;
A separation step of separating the two hot plates after the joining step;
A peeling step of peeling the substrate attached to one of the two hot plates from the one hot plate after the separating step;
The peeling step includes
Including a step of peeling the substrate from the one hot plate by peeling off the side portion of the substrate from the one hot plate using an engaging member that engages with the side portion of the substrate. To do.

本発明のマイクロチップの製造方法においては、
前記接合工程の前に、前記2枚の熱板に対し、前記基板の貼り付きを防止する剥離剤を塗布する塗布工程を有することが好ましい。
In the manufacturing method of the microchip of the present invention,
Before the joining step, it is preferable to have a coating step of applying a release agent that prevents the substrate from sticking to the two hot plates.

本発明の第3の側面によれば、マイクロチップにおいて、
本発明のマイクロチップの製造方法によって製造されたことを特徴とする。
According to a third aspect of the present invention, in a microchip,
It is manufactured by the method for manufacturing a microchip of the present invention.

本発明の第4の側面によれば、積層されて内側に流路を形成した2つの基板を加熱接合するマイクロチップの製造装置であって、
互いに対向して間に前記2つの基板を挟んで加熱接合する2枚の熱板と、
前記2枚の熱板を互いに接離させる移動手段と、
前記2枚の熱板における一方の熱板に貼り付いた前記基板を、当該熱板から剥離する剥離手段とを有し、
前記剥離手段は、
前記一方の熱板の厚さ方向に形成された貫通孔を通して前記基板に外力を与えることにより、当該一方の熱板から前記基板を剥離することを特徴とする。
According to a fourth aspect of the present invention, there is provided a microchip manufacturing apparatus that heat-bonds two substrates that are stacked and have a flow path formed inside thereof.
Two hot plates that are heated and bonded to each other with the two substrates sandwiched therebetween,
Moving means for bringing the two hot plates into contact with and away from each other;
A peeling means for peeling off the substrate attached to one of the two hot plates from the hot plate;
The peeling means includes
The substrate is separated from the one hot plate by applying an external force to the substrate through a through hole formed in the thickness direction of the one hot plate.

このマイクロチップの製造装置においては、
前記剥離手段は、
前記貫通孔に挿通されて他方の前記熱板の側に突出することで前記一方の熱板から前記基板を剥離する棒状の突き出しピンを有することが好ましい。
In this microchip manufacturing equipment,
The peeling means includes
It is preferable to have a rod-like protruding pin that is inserted into the through hole and protrudes toward the other hot plate to peel the substrate from the one hot plate.

また、このマイクロチップの製造装置においては、
前記剥離手段は、
前記貫通孔を通して外部から前記基板に対して空気を噴射することで前記一方の熱板から前記基板を剥離する噴射手段を有することが好ましい。
Moreover, in this microchip manufacturing apparatus,
The peeling means includes
It is preferable to have a jetting means for peeling the substrate from the one hot plate by jetting air from the outside to the substrate through the through hole.

本発明の第5の側面によれば、積層されて内側に流路を形成した2つの基板を加熱接合するマイクロチップの製造装置であって、
互いに対向して間に前記2つの基板を挟んで加熱接合する2枚の熱板と、
前記2枚の熱板を互いに接離させる移動手段と、
前記2枚の熱板における一方の熱板に貼り付いた前記基板を、当該熱板から剥離する剥離手段とを有し、
前記剥離手段は、
前記基板の側部に係合する係合部材と、
前記係合部材を前記基板の側部に係合させた状態で前記一方の熱板から離間させる駆動手段とを含み、
前記係合部材によって当該基板の側部を前記一方の熱板から引き剥がすことにより、当該一方の熱板から前記基板を剥離することを特徴とする。
According to a fifth aspect of the present invention, there is provided a microchip manufacturing apparatus that heat-bonds two substrates that are laminated to form a flow path on the inside,
Two hot plates that are heated and bonded to each other with the two substrates sandwiched therebetween,
Moving means for bringing the two hot plates into contact with and away from each other;
A peeling means for peeling off the substrate attached to one of the two hot plates from the hot plate;
The peeling means includes
An engaging member that engages a side of the substrate;
Drive means for separating the engagement member from the one heat plate in a state of being engaged with the side portion of the substrate;
The substrate is peeled from the one hot plate by peeling the side portion of the substrate from the one hot plate by the engaging member.

本発明のマイクロチップの製造装置においては、
前記2枚の熱板には、前記基板の貼り付きを防止する剥離剤が塗布されていることが好ましい。
In the microchip manufacturing apparatus of the present invention,
It is preferable that a release agent for preventing the substrate from sticking is applied to the two hot plates.

本発明によれば、2枚の熱板を離間させた後に、熱板に貼り付いた基板を当該熱板から剥離するので、生産性の低下を防止することができる。   According to the present invention, after separating the two hot plates, the substrate attached to the hot plate is peeled off from the hot plate, so that it is possible to prevent a decrease in productivity.

本発明に係るマイクロチップの上面図である。It is a top view of the microchip concerning the present invention. 本発明に係るマイクロチップの断面図であり、図1のIV―IV断面図である。4 is a cross-sectional view of the microchip according to the present invention, and is a cross-sectional view taken along the line IV-IV in FIG. 流路用溝の形成された樹脂製基板の上面図である。It is a top view of the resin-made board | substrates in which the groove | channel for flow paths was formed. 本発明に係るマイクロチップの製造装置の概略構成を示す概念図である。It is a conceptual diagram which shows schematic structure of the manufacturing apparatus of the microchip which concerns on this invention. 本発明に係るマイクロチップの製造装置の変形例の概略構成を示す概念図である。It is a conceptual diagram which shows schematic structure of the modification of the manufacturing apparatus of the microchip which concerns on this invention. 本発明に係るマイクロチップの製造装置の変形例の概略構成を示す概念図である。It is a conceptual diagram which shows schematic structure of the modification of the manufacturing apparatus of the microchip which concerns on this invention. 樹脂製基板の変形例の断面図である。It is sectional drawing of the modification of a resin-made board | substrate.

以下、図面を参照しながら本発明の好ましい実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係るマイクロチップ1の上面図であり、図2は図1のIV−IV断面図である。   FIG. 1 is a top view of a microchip 1 according to the present invention, and FIG. 2 is a sectional view taken along line IV-IV in FIG.

これらの図に示すように、マイクロチップ1は、互いに貼合わせられた2枚の矩形板状の樹脂製基板10、20を備えている。   As shown in these drawings, the microchip 1 includes two rectangular plate-like resin substrates 10 and 20 bonded to each other.

このうち、樹脂製基板10には、図2、図3に示すように、一方の表面(図2の上面)に直線状の流路用溝12、13が形成されている。また、図3に示すように、これら流路用溝12、13の両端部には、樹脂製基板10の厚さ方向に貫通する貫通孔14がそれぞれ形成されている。なお、本実施の形態においては、樹脂製基板10における他方の表面(流路用溝12、13の形成されていない面)は平滑となっている。また、本実施形態における流路用溝12と流路用溝13とは、互いに直交して形成されているが、直交せずに形成されていても良い。   Among these, as shown in FIGS. 2 and 3, the resin substrate 10 has linear flow channel grooves 12 and 13 formed on one surface (the upper surface in FIG. 2). Further, as shown in FIG. 3, through holes 14 penetrating in the thickness direction of the resin substrate 10 are respectively formed at both ends of the flow path grooves 12 and 13. In the present embodiment, the other surface of the resin substrate 10 (the surface where the channel grooves 12 and 13 are not formed) is smooth. Further, the channel groove 12 and the channel groove 13 in the present embodiment are formed orthogonal to each other, but may be formed without being orthogonal to each other.

一方、図2に示すように、樹脂製基板20は、表面の平滑な部材であり、樹脂製基板10における流路用溝12、13の形成面に対して接合されている。この接合によって樹脂製基板20は流路用溝12、13や貫通孔14の蓋(カバー)として機能し、樹脂製基板10の流路用溝12との間に微細流路15を、流路用溝13との間に微細流路16を、貫通孔14とで開口部17を形成している。   On the other hand, as shown in FIG. 2, the resin substrate 20 is a member having a smooth surface, and is bonded to the formation surface of the flow path grooves 12 and 13 in the resin substrate 10. By this bonding, the resin substrate 20 functions as a cover (cover) for the flow path grooves 12 and 13 and the through hole 14, and the fine flow path 15 is formed between the flow path grooves 12 of the resin substrate 10 and the flow path. A fine channel 16 is formed between the groove 13 and the through hole 14 to form an opening 17.

ここで、微細流路15、16(流路用溝12、13)の形状は、分析試料、試薬の使用量を少なくできること、成形金型の作製精度、転写性、離型性などを考慮して、幅、深さともに10μm〜200μmの範囲内の形状であることが好ましいが、特に限定されるものではなく、マイクロチップの用途によって決めれば良く、また、微細流路15と微細流路16とで同じであっても良いし、異なっていても良い。本実施の形態においては、微細流路15、16の断面の形状は矩形状となっているが、この形状は1例であり、円形状など、他の形状となっていても良い。   Here, the shape of the microchannels 15 and 16 (channel grooves 12 and 13) takes into consideration the fact that the amount of analysis sample and reagent used can be reduced, the fabrication accuracy of molds, transferability and mold release properties. The width and the depth are preferably in the range of 10 μm to 200 μm, but are not particularly limited, and may be determined according to the use of the microchip. And may be the same or different. In the present embodiment, the cross-sectional shape of the microchannels 15 and 16 is a rectangular shape, but this shape is an example, and other shapes such as a circular shape may be used.

また、上述のように樹脂製基板10の貫通孔14は流路用溝12、13と繋がっているため、この貫通孔14により形成される開口部17は微細流路15、16に繋がっている。この開口部17は、ゲル、試料、緩衝液の導入、保存、排出を行うための孔であり、分析装置(図示せず)に設けられたチューブやノズルに接続されて、このチューブやノズルを介してゲルや試料、緩衝液などを微細流路15、16に導入したり、微細流路15、16から排出したりする。なお、開口部17(貫通孔14)の形状は、円形状に限らず、矩形状など、他の様々な形状であっても良い。また、開口部17(貫通孔14)の内径は、分析手法や分析装置に合わせれば良く、例えば2mm程度であることが好ましい。   Since the through hole 14 of the resin substrate 10 is connected to the flow path grooves 12 and 13 as described above, the opening 17 formed by the through hole 14 is connected to the fine flow paths 15 and 16. . The opening 17 is a hole for introducing, storing, and discharging a gel, a sample, and a buffer solution, and is connected to a tube or nozzle provided in an analyzer (not shown). Thus, a gel, a sample, a buffer solution, or the like is introduced into or discharged from the fine channels 15 and 16. Note that the shape of the opening 17 (through hole 14) is not limited to a circular shape, and may be various other shapes such as a rectangular shape. Further, the inner diameter of the opening 17 (through hole 14) may be adjusted to the analysis method or the analysis apparatus, and is preferably about 2 mm, for example.

以上の樹脂製基板10、20の形状は、ハンドリング、分析しやすい形状であればどのような形状であっても良いが、例えば正方形、長方形、円形などの形状が好ましい。また、樹脂製基板10、20の大きさは、10mm角〜200mm角程度が好ましく、10mm角〜100mm角がより好ましい。また、流路用溝12、13が形成された樹脂製基板10の板厚は、成形性を考慮して、0.2mm〜5mm程度が好ましく、0.5mm〜2mmがより好ましい。蓋(カバー)として機能する樹脂製基板20の板厚は、成形性を考慮して、0.2mm〜5mm程度が好ましく、0.5mm〜2mmがより好ましい。但し、本実施の形態のように樹脂製基板20に流路用溝を形成しない場合には、樹脂製基板20として、板状の部材ではなく、フィルム(シート状の部材)を用いても良い。この場合、フィルムの厚さは、30μm〜300μmであることが好ましく、50μm〜150μmであることがより好ましい。   The shape of the resin substrates 10 and 20 may be any shape as long as it is easy to handle and analyze. For example, a shape such as a square, a rectangle, or a circle is preferable. Moreover, the size of the resin substrates 10 and 20 is preferably about 10 mm square to 200 mm square, and more preferably 10 mm square to 100 mm square. In addition, the plate thickness of the resin substrate 10 on which the channel grooves 12 and 13 are formed is preferably about 0.2 mm to 5 mm, more preferably 0.5 mm to 2 mm in consideration of moldability. The thickness of the resin substrate 20 functioning as a lid (cover) is preferably about 0.2 mm to 5 mm, more preferably 0.5 mm to 2 mm in consideration of moldability. However, when the channel groove is not formed in the resin substrate 20 as in the present embodiment, a film (sheet member) may be used as the resin substrate 20 instead of a plate member. . In this case, the thickness of the film is preferably 30 μm to 300 μm, and more preferably 50 μm to 150 μm.

また、樹脂製基板10、20の材料には樹脂が用いられる。この樹脂としては、成形性(転写性、離型性)が良く、透明性が高く、紫外線や可視光に対する自己蛍光性が低いものが好ましく、例えば熱可塑性樹脂が用いられる。   Resin is used for the material of the resin substrates 10 and 20. As this resin, those having good moldability (transferability, releasability), high transparency, and low autofluorescence with respect to ultraviolet rays and visible light are preferable. For example, thermoplastic resins are used.

熱可塑性樹脂としては、例えば、ポリカーボネート、ポリメタクリル酸メチル、ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリアミド、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリイソプレン、ポリエチレン、ポリジメチルシロキサン、環状ポリオレフィンなどを用いることが好ましい。特に好ましいのは、ポリメタクリル酸メチル、環状ポリオレフィンを用いることである。なお、樹脂製基板10と樹脂製基板20とで、同じ材料を用いても良いし、異なる材料を用いても良い。   Examples of the thermoplastic resin include polycarbonate, polymethyl methacrylate, polystyrene, polyacrylonitrile, polyvinyl chloride, polyethylene terephthalate, polyamide, polyvinyl acetate, polyvinylidene chloride, polypropylene, polyisoprene, polyethylene, polydimethylsiloxane, and cyclic polyolefin. Etc. are preferably used. It is particularly preferable to use polymethyl methacrylate and cyclic polyolefin. The resin substrate 10 and the resin substrate 20 may be made of the same material or different materials.

また、流路用溝が形成されない樹脂製基板20には、熱可塑性樹脂の他、熱硬化性樹脂や紫外線硬化性樹脂などを用いても良い。熱硬化性樹脂としては、ポリジメチルシロキサンを用いることが好ましい。   In addition to the thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, or the like may be used for the resin substrate 20 in which the channel groove is not formed. As the thermosetting resin, polydimethylsiloxane is preferably used.

また、流路用溝12、13の形成される樹脂製基板10は射出成形法又はプレス成形法によって形成されることが好ましく、流路用溝が形成されていない樹脂製基板20は押出成形法、Tダイ成形法、インフレーション成形法、又はカレンダ成形法などの射出成形法以外の方法によって作製されていても良いし、射出成形法によって作製されていても良い。   The resin substrate 10 on which the flow path grooves 12 and 13 are formed is preferably formed by an injection molding method or a press molding method, and the resin substrate 20 on which the flow path grooves are not formed is formed by an extrusion molding method. It may be produced by a method other than an injection molding method such as a T-die molding method, an inflation molding method, or a calendar molding method, or by an injection molding method.

続いて、上記のマイクロチップ1の製造装置について説明する。   Then, the manufacturing apparatus of said microchip 1 is demonstrated.

図4は、マイクロチップの製造装置(以下、製造装置とする)5の概略構成を示す概念図である。なお、この図では、マイクロチップ1を簡略化して図示している。   FIG. 4 is a conceptual diagram showing a schematic configuration of a microchip manufacturing apparatus (hereinafter referred to as a manufacturing apparatus) 5. In this figure, the microchip 1 is shown in a simplified manner.

この図に示すように、製造装置5は、互いに対向して上下に配設された2枚の熱板51、52と、熱板51(または52)から樹脂製基板10(または20)を剥離する剥離手段55とを備えている。   As shown in this figure, the manufacturing apparatus 5 peels the resin board 10 (or 20) from the two hot plates 51 and 52 disposed vertically opposite to each other and the hot plate 51 (or 52). The peeling means 55 to be provided.

熱板51、52は、樹脂製基板10、20を間に挟んで加熱接合する平板状の部材であり、移動手段53によって接離方向(図中の上下方向)に移動するようになっている。なお、移動手段53は、熱板51、52をそれぞれ移動させることとしても良いし、一方のみを移動させることとしても良い。このような移動手段53としては、従来より公知の装置を用いることができる。また、以下の説明においては、熱板51、52の間には、樹脂製基板10が上側、樹脂製基板20が下側となるように配設されて、これら樹脂製基板10、20が挟まれることとして説明する。また、熱板51、52によって加熱接合されたマイクロチップ1は、樹脂製基板10の側で熱板51に貼り付くこととして説明する。   The hot plates 51 and 52 are plate-like members that are heat-bonded with the resin substrates 10 and 20 therebetween, and are moved in the contact / separation direction (vertical direction in the figure) by the moving means 53. . The moving means 53 may move the hot plates 51 and 52, respectively, or only one of them. As such a moving means 53, a conventionally known apparatus can be used. Further, in the following description, the resin substrate 10 is disposed on the upper side and the resin substrate 20 is disposed on the lower side between the hot plates 51 and 52, and the resin substrates 10 and 20 are sandwiched. This will be explained. Further, the microchip 1 heated and bonded by the hot plates 51 and 52 will be described as being attached to the hot plate 51 on the resin substrate 10 side.

この熱板51、52のうち、上側に配設された熱板51には、厚さ方向に貫通する複数の貫通孔510が形成されている。より詳細には、これらの貫通孔510は、熱板51の下面のうち、樹脂製基板10の端部との当接領域で開口するよう、熱板51に設けられている。なお、本実施の形態においては、熱板51、52の内側面(熱板51の下面,熱板52の上面)は、貫通孔510以外の部分で平滑となっている。また。図4では、貫通孔510は、熱板51の下面のうち、樹脂製基板10における2つの短辺側の端部との当接領域で開口するように2つ設けられた状態を図示しているが、長辺側の端部との当接領域で開口するよう設けられていても良いし、短辺側及び長辺側の端部との当接領域で開口するよう設けられても良い。   Among the hot plates 51 and 52, the hot plate 51 disposed on the upper side is formed with a plurality of through holes 510 penetrating in the thickness direction. More specifically, these through holes 510 are provided in the hot plate 51 so as to open in a contact area with the end of the resin substrate 10 on the lower surface of the hot plate 51. In the present embodiment, the inner side surfaces of the hot plates 51 and 52 (the lower surface of the hot plate 51 and the upper surface of the hot plate 52) are smooth at portions other than the through holes 510. Also. In FIG. 4, a state is shown in which two through holes 510 are provided so as to open in the contact area with the two short side ends of the resin substrate 10 on the lower surface of the hot plate 51. However, it may be provided so as to open in a contact area with the end portion on the long side, or may be provided so as to open in a contact area with the end portion on the short side and the long side. .

剥離手段55は、熱板51の貫通孔510を通して樹脂製基板10に外力を与えることで当該熱板51から樹脂製基板10を剥離するものであり、熱板51の各貫通孔510に上方(熱板52とは反対の側)から挿入された棒状の突き出しピン511と、これらの突き出しピン511を軸方向に往復移動させて熱板51の下面から出没させる駆動手段512とを有している。なお、突き出しピン511の出没動作は、同期して行われても良いし、別々に独立して行われても良い。   The peeling means 55 peels the resin substrate 10 from the hot plate 51 by applying an external force to the resin substrate 10 through the through hole 510 of the hot plate 51. It has rod-like protruding pins 511 inserted from the side opposite to the heat plate 52, and driving means 512 for reciprocating these protruding pins 511 in the axial direction so as to protrude and retract from the lower surface of the heat plate 51. . It should be noted that the protrusion / disengagement operation of the protrusion pin 511 may be performed synchronously or separately and independently.

なお、本実施の形態においては、突き出しピン511は熱板51側にのみ配置されているが、熱板52側に配置されていても、両側に配置されていても良く、斯かる構成は樹脂製基板10、20のどちらが熱板51、52に貼り付くかによって適宜決定される。通常、樹脂製基板がフィルムの場合には、当該フィルムが熱板に貼り付く傾向にあるため、当該フィルム側の熱板側にピン構成を配置する構成が好ましい。   In the present embodiment, the protruding pin 511 is disposed only on the heat plate 51 side, but may be disposed on the heat plate 52 side or on both sides. It is determined as appropriate depending on which of the substrates 10 and 20 is attached to the hot plates 51 and 52. Usually, when the resin substrate is a film, since the film tends to stick to the hot plate, a configuration in which a pin configuration is arranged on the hot plate side on the film side is preferable.

また、突き出しピン511が剥離の際に樹脂製基板10に当接する領域は、樹脂製基板10における流路形成部分を避けた領域であることが好ましく、また、樹脂製基板10、20の接合面を避けた領域であることが好ましい。前者の場合には、剥離動作による流路形状の変形を防止することができ、また、フィルム状の樹脂製基板10に貫通孔510の形状が転写されて流路の観察が妨げられてしまうのを防止することができる。また、後者の場合には、突き出しピン511の当接による接合面の面変形を避け、平面性を保つことができる。   Moreover, it is preferable that the area | region which the protrusion pin 511 contact | abuts to the resin-made board | substrates 10 at the time of peeling is an area | region which avoided the flow path formation part in the resin-made board | substrates 10 It is preferable that the region avoids the above. In the former case, the deformation of the flow path shape due to the peeling operation can be prevented, and the shape of the through hole 510 is transferred to the film-like resin substrate 10 and the observation of the flow path is hindered. Can be prevented. In the latter case, it is possible to avoid the deformation of the joint surface due to the contact of the protruding pin 511 and to maintain the flatness.

続いて、マイクロチップ1の製造方法について説明する。   Then, the manufacturing method of the microchip 1 is demonstrated.

まず、2枚の熱板51、52の内側面(熱板51の下面,熱板52の上面)に対し、樹脂製基板10、20の貼り付きを防止する剥離剤(図示せず)を塗布する(塗布工程)。なお、このような剥離剤としては、従来より公知のものを用いることができる。   First, a release agent (not shown) for preventing the resin substrates 10 and 20 from sticking is applied to the inner side surfaces of the two hot plates 51 and 52 (the lower surface of the hot plate 51 and the upper surface of the hot plate 52). (Application process). A conventionally known release agent can be used as such a release agent.

次に、樹脂製基板10における流路用溝12、13の形成面を内側(下側)に向けた状態で樹脂製基板10、20を上下に重ね、熱板51、52の間に配設する。   Next, the resin substrates 10 and 20 are stacked one above the other with the formation surfaces of the flow path grooves 12 and 13 in the resin substrate 10 facing inward (lower side), and disposed between the hot plates 51 and 52. To do.

次に、移動手段53に熱板51、52を近接させることにより熱板51、52で樹脂製基板10、20を挟み、この状態で樹脂製基板10、20を加圧しながら加熱接合する(接合工程)。   Next, the hot plates 51 and 52 are brought close to the moving means 53 so that the resin substrates 10 and 20 are sandwiched between the hot plates 51 and 52, and in this state, the resin substrates 10 and 20 are heated and bonded while being pressed (bonding). Process).

ここで、樹脂製基板10と樹脂製基板20との接合は、熱圧着又は熱ラミネートなどの加熱溶着によって行われる。樹脂製基板10、20に対して熱圧着又は熱ラミネートを施すことにより、樹脂製基板10、20の接合面における樹脂が溶融して、樹脂製基板10と樹脂製基板20とが接合されてマイクロチップ1が形成される。なお、加熱温度としては、例えば、70℃〜200℃の温度を用いることができる。   Here, the resin substrate 10 and the resin substrate 20 are joined by heat welding such as thermocompression bonding or heat lamination. By applying thermocompression bonding or heat laminating to the resin substrates 10 and 20, the resin on the bonding surface of the resin substrates 10 and 20 is melted, and the resin substrate 10 and the resin substrate 20 are bonded to each other. Chip 1 is formed. In addition, as heating temperature, the temperature of 70 to 200 degreeC can be used, for example.

次に、図4(a)に示すように、移動手段53に熱板51、52を互いに離間させる(離間工程)。このとき、樹脂製基板10の外側面(樹脂製基板20とは反対側の面)や、熱板51の下面は平滑に形成されているため、マイクロチップ1の樹脂製基板10は熱板51に貼り付くこととなる。   Next, as shown in FIG. 4A, the hot plates 51 and 52 are separated from the moving means 53 (a separation step). At this time, since the outer surface of the resin substrate 10 (surface opposite to the resin substrate 20) and the lower surface of the hot plate 51 are formed smoothly, the resin substrate 10 of the microchip 1 is the hot plate 51. Will be pasted on.

そして、図4(b)に示すように、突き出しピン511を貫通孔510から熱板52の側に突出させ、熱板51に貼り付いた樹脂製基板10(マイクロチップ1)を当該熱板51から剥離することにより(剥離工程)、マイクロチップ1が製造される。   Then, as shown in FIG. 4B, the protruding pin 511 is protruded from the through hole 510 toward the heat plate 52, and the resin substrate 10 (microchip 1) attached to the heat plate 51 is attached to the heat plate 51. The microchip 1 is manufactured by peeling from the substrate (peeling step).

以上のマイクロチップの製造方法によれば、2枚の熱板51、52を離間させた後に、熱板51に貼り付いた樹脂製基板10を熱板51から剥離するので、生産性の低下を防止することができる。   According to the microchip manufacturing method described above, after the two hot plates 51 and 52 are separated from each other, the resin substrate 10 attached to the hot plate 51 is peeled off from the hot plate 51. Can be prevented.

また、樹脂製基板10、20を接合する前に予め熱板51、52の内側面に対し剥離剤を塗布するので、熱板51に貼り付いた樹脂製基板10の剥離を容易化することができる。従って、生産性の低下を確実に防止することができる。
[変形例(1)]
続いて、本発明に係るマイクロチップの製造装置の変形例(1)について説明する。なお、上記の実施形態と同様の構成要素には同一の符号を付し、その説明を省略する。
In addition, since the release agent is applied to the inner side surfaces of the hot plates 51 and 52 in advance before the resin substrates 10 and 20 are bonded, the peeling of the resin substrate 10 attached to the hot plate 51 can be facilitated. it can. Therefore, it is possible to reliably prevent a decrease in productivity.
[Modification (1)]
Next, a modification (1) of the microchip manufacturing apparatus according to the present invention will be described. In addition, the same code | symbol is attached | subjected to the component similar to said embodiment, and the description is abbreviate | omitted.

図5に示すように、本変形例におけるマイクロチップの製造装置5Aは、熱板51の代わりに熱板51Aを、剥離手段55の代わりに剥離手段55Aを備えている。   As shown in FIG. 5, the microchip manufacturing apparatus 5 </ b> A according to the present modification includes a hot plate 51 </ b> A instead of the hot plate 51, and a peeling unit 55 </ b> A instead of the peeling unit 55.

熱板51Aは、熱板52側の表面、つまり下面から開口した空気噴射口510Aを有している。なお、本実施の形態においては、空気噴射口510Aは、熱板51Aの下面のうち、樹脂製基板10の端部との当接領域で開口するよう、熱板51Aの厚さ方向に貫通して設けられているが、下面で開口する限りにおいて、下面から側端面に向かって屈曲して設けられても良い。   The heat plate 51A has an air injection port 510A that opens from the surface on the heat plate 52 side, that is, from the lower surface. In the present embodiment, air injection port 510A penetrates in the thickness direction of heat plate 51A so as to open in a contact area with the end of resin substrate 10 on the lower surface of heat plate 51A. However, as long as it opens on the lower surface, it may be bent from the lower surface toward the side end surface.

剥離手段55Aは、熱板51Aの空気噴射口510Aを介して熱板51Aの上面側から下面側(樹脂製基板10の側)にエアーを噴射する噴射手段550を有している。なお、このような噴射手段550としては、従来より公知の噴射装置を用いることができる。   The peeling means 55A has an injection means 550 for injecting air from the upper surface side to the lower surface side (resin substrate 10 side) of the hot plate 51A via the air injection port 510A of the hot plate 51A. As such an injection unit 550, a conventionally known injection device can be used.

以上のような製造装置5Aによれば、剥離工程において噴射手段550が空気噴射口510Aからエアーを噴射することにより、熱板51Aに貼り付いた樹脂製基板10(マイクロチップ1)を当該熱板51Aから剥離することができるため、上記実施形態と同様の効果を得ることができる。
[変形例(2)]
続いて、本発明に係るマイクロチップの製造装置の変形例(2)について説明する。なお、上記の実施形態と同様の構成要素には同一の符号を付し、その説明を省略する。また、本変形例(2)では、樹脂製基板20は樹脂製基板10よりも大きく形成され、側方に延出した状態となっている。
According to the manufacturing apparatus 5A as described above, the injection means 550 injects air from the air injection port 510A in the peeling step, so that the resin substrate 10 (microchip 1) attached to the hot plate 51A is attached to the hot plate. Since it can peel from 51A, the effect similar to the said embodiment can be acquired.
[Modification (2)]
Next, a modification (2) of the microchip manufacturing apparatus according to the present invention will be described. In addition, the same code | symbol is attached | subjected to the component similar to said embodiment, and the description is abbreviate | omitted. Moreover, in this modification (2), the resin board | substrate 20 is formed larger than the resin board | substrate 10, and is in the state extended to the side.

図6に示すように、本変形例におけるマイクロチップの製造装置5Bは、熱板51の代わりに熱板51Bを、剥離手段55の代わりに剥離手段55Bを備えている。   As shown in FIG. 6, the microchip manufacturing apparatus 5 </ b> B according to this modification includes a hot plate 51 </ b> B instead of the hot plate 51 and a peeling unit 55 </ b> B instead of the peeling unit 55.

熱板51Bは、熱板51とは異なり、貫通孔510の設けられていない平板状の部材となっている。   Unlike the hot plate 51, the hot plate 51 </ b> B is a flat plate member in which the through hole 510 is not provided.

剥離手段55Bは、樹脂製基板20の側部に係合する係合部材500と、係合部材500を樹脂製基板20の側部に係合させた状態で熱板51Bから離間させる駆動手段501とを備えている。なお、本実施の形態においては、係合部材500は、先端部が鉤状に形成されており、この鉤状部分で樹脂製基板20の側部に係合するようになっている。但し、係合部材500は、摩擦係合など、他の形態で樹脂製基板20に係合するものであっても良い。また、係合部材500は、樹脂製基板10に係合するものであっても良いし、樹脂製基板10、20の両方に係合するものであっても良い。   The peeling means 55B includes an engaging member 500 that engages with a side portion of the resin substrate 20, and a driving means 501 that separates the engaging member 500 from the heat plate 51B in a state where the engaging member 500 is engaged with the side portion of the resin substrate 20. And. In the present embodiment, the engaging member 500 is formed in a hook shape at the tip, and is engaged with the side portion of the resin substrate 20 at this hook-shaped portion. However, the engaging member 500 may be engaged with the resin substrate 20 in other forms such as friction engagement. The engaging member 500 may be engaged with the resin substrate 10 or may be engaged with both the resin substrates 10 and 20.

以上のような製造装置5Bによれば、剥離工程において駆動手段501が係合部材500を介して樹脂製基板20の側部を熱板51Bから引き剥がすことにより、熱板51Bに貼り付いた樹脂製基板20(マイクロチップ1)を当該熱板51Bから剥離することができるため、上記実施形態と同様の効果を得ることができる。   According to the manufacturing apparatus 5B as described above, the resin adhered to the hot plate 51B by the driving means 501 peeling the side portion of the resin substrate 20 from the hot plate 51B via the engaging member 500 in the peeling process. Since the substrate-making substrate 20 (microchip 1) can be peeled from the hot plate 51B, the same effect as the above embodiment can be obtained.

なお、本発明は上記の実施形態及び変形例に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。   It should be noted that the present invention should not be construed as being limited to the above-described embodiments and modifications, and of course can be modified or improved as appropriate.

例えば、上記実施形態及び変形例では、貫通孔14を樹脂製基板10に形成することとして説明したが、貫通孔を樹脂製基板20に形成することで、微細流路と繋がる開口部を形成しても良い。   For example, in the embodiment and the modification described above, the through hole 14 is formed in the resin substrate 10, but by forming the through hole in the resin substrate 20, an opening connected to the fine flow path is formed. May be.

また、マイクロチップ1は、流路用溝12、13の非形成面が平滑な樹脂製基板10を備えることとして説明したが、図7に示すような樹脂製基板40を樹脂製基板10の代わりに備えることとしても良い。ここで、樹脂製基板40には、一方の表面に流路用溝12、13が形成されており、他方の表面のうち、各貫通孔14の周囲に円筒状の突起部41が設けられている。これらの突起部41は、貫通孔14を囲んで樹脂製基板40の厚さ方向に突出しており、分析装置(図示せず)のチューブやノズルに嵌合されて、試料などの導入や排出を行うようになっている。このような突起部41は円筒状の形状を有していても良いし、多角形状など、他の形状を有していても良い。但し、樹脂製基板40における流路用溝12、13の非形成面に設けられる凹凸部材は、この突起部41に限定されず、例えば、微細流路内を流れる試料の流動を制御するためのスイッチや、分析装置からの光を集光するためのレンズなどであっても良い。   Further, the microchip 1 has been described as including the resin substrate 10 in which the non-formation surfaces of the flow path grooves 12 and 13 are smooth, but a resin substrate 40 as shown in FIG. It is good also as preparing for. Here, the resin substrate 40 is formed with flow channel grooves 12 and 13 on one surface, and a cylindrical protrusion 41 is provided around each through hole 14 on the other surface. Yes. These protrusions 41 surround the through-holes 14 and protrude in the thickness direction of the resin substrate 40 and are fitted into tubes and nozzles of an analyzer (not shown) to introduce and discharge samples and the like. To do. Such a protrusion 41 may have a cylindrical shape, or may have another shape such as a polygonal shape. However, the concavo-convex member provided on the non-formation surface of the flow path grooves 12 and 13 in the resin substrate 40 is not limited to the protrusion 41, and for example, for controlling the flow of the sample flowing in the fine flow path. It may be a switch or a lens for collecting light from the analyzer.

また、マイクロチップ1の樹脂製基板10が熱板51(51A,51B)に貼り付くこととして説明したが、樹脂製基板20が熱板52に貼り付くこととしても良い。この場合には、貫通孔510(空気噴射口510A)は熱板52に設けられ、剥離手段55(55A,55B)は熱板52から樹脂製基板20を剥離するよう配設される。   Further, the resin substrate 10 of the microchip 1 has been described as being attached to the hot plate 51 (51A, 51B), but the resin substrate 20 may be attached to the hot plate 52. In this case, the through hole 510 (air injection port 510A) is provided in the hot plate 52, and the peeling means 55 (55A, 55B) is arranged to peel the resin substrate 20 from the hot plate 52.

1 マイクロチップ
5、5A、5B 製造装置(マイクロチップの製造装置)
10、20、40 樹脂製基板(基板)
51、51A、51B 熱板(一方の熱板)
52 熱板(他方の熱板)
53 移動手段
55 剥離手段
500 係合部材
501 駆動手段
510 貫通孔
510A 空気噴射口(貫通孔)
511 突き出しピン
550 噴射手段
1 Microchip 5, 5A, 5B Manufacturing equipment (Microchip manufacturing equipment)
10, 20, 40 Resin substrate (substrate)
51, 51A, 51B Hot plate (one hot plate)
52 Hot plate (other hot plate)
53 Moving means 55 Peeling means 500 Engaging member 501 Driving means 510 Through hole 510A Air injection port (through hole)
511 Extrusion pin 550 Injection means

Claims (11)

積層されて内側に流路を形成した2つの基板を、互いに対向する2枚の熱板の間に挟んで加熱接合するマイクロチップの製造方法であって、
前記2枚の熱板によって前記2つの基板を加熱接合する接合工程と、
前記接合工程の後に、前記2枚の熱板を離間させる離間工程と、
前記離間工程の後に、前記2枚の熱板における一方の熱板に貼り付いた前記基板を、当該一方の熱板から剥離する剥離工程と有し、
前記剥離工程は、
前記一方の熱板の厚さ方向に形成された貫通孔を通して前記基板に外力を与えることにより、当該一方の熱板から前記基板を剥離する工程を含むことを特徴とするマイクロチップの製造方法。
A method of manufacturing a microchip, in which two substrates that are stacked and have a flow path formed inside are sandwiched between two hot plates facing each other and heat bonded,
A bonding step of heat-bonding the two substrates with the two hot plates;
A separation step of separating the two hot plates after the joining step;
After the separating step, the substrate attached to one hot plate of the two hot plates, and a peeling step to peel from the one hot plate,
The peeling step includes
A method of manufacturing a microchip, comprising a step of peeling the substrate from the one hot plate by applying an external force to the substrate through a through hole formed in the thickness direction of the one hot plate.
請求項1記載のマイクロチップの製造方法において、
前記剥離工程は、
棒状の突き出しピンを前記貫通孔に挿通させて他方の前記熱板の側に突出させることにより、前記一方の熱板から前記基板を剥離する工程を含むことを特徴とするマイクロチップの製造方法。
In the manufacturing method of the microchip of Claim 1,
The peeling step includes
A method of manufacturing a microchip, comprising a step of peeling the substrate from the one hot plate by inserting a rod-like protruding pin through the through hole and projecting it toward the other hot plate.
請求項1記載のマイクロチップの製造方法において、
前記剥離工程は、
前記貫通孔を通して外部から前記基板に対して空気を噴射することにより、前記一方の熱板から前記基板を剥離する工程を含むことを特徴とするマイクロチップの製造方法。
In the manufacturing method of the microchip of Claim 1,
The peeling step includes
A method of manufacturing a microchip, comprising a step of peeling the substrate from the one hot plate by injecting air from the outside to the substrate through the through hole.
積層されて内側に流路を形成した2つの基板を、互いに対向する2枚の熱板の間に挟んで加熱接合するマイクロチップの製造方法であって、
前記2枚の熱板によって前記2つの基板を加熱接合する接合工程と、
前記接合工程の後に、前記2枚の熱板を離間させる離間工程と、
前記離間工程の後に、前記2枚の熱板における一方の熱板に貼り付いた前記基板を、当該一方の熱板から剥離する剥離工程とを有し、
前記剥離工程は、
前記基板の側部に係合する係合部材を用いて当該基板の側部を前記一方の熱板から引き剥がすことにより、当該一方の熱板から前記基板を剥離する工程を含むことを特徴とするマイクロチップの製造方法。
A method of manufacturing a microchip, in which two substrates that are stacked and have a flow path formed inside are sandwiched between two hot plates facing each other and heat bonded,
A bonding step of heat-bonding the two substrates with the two hot plates;
A separation step of separating the two hot plates after the joining step;
A peeling step of peeling the substrate attached to one of the two hot plates from the one hot plate after the separating step;
The peeling step includes
Including a step of peeling the substrate from the one hot plate by peeling off the side portion of the substrate from the one hot plate using an engaging member that engages with the side portion of the substrate. A method for manufacturing a microchip.
請求項1〜4の何れか一項に記載のマイクロチップの製造方法において、
前記接合工程の前に、前記2枚の熱板に対し、前記基板の貼り付きを防止する剥離剤を塗布する塗布工程を有することを特徴とするマイクロチップの製造方法。
In the manufacturing method of the microchip as described in any one of Claims 1-4,
A method of manufacturing a microchip, comprising a coating step of applying a release agent for preventing the substrate from sticking to the two hot plates before the bonding step.
請求項1〜5の何れか一項に記載のマイクロチップの製造方法によって製造されたことを特徴とするマイクロチップ。   A microchip manufactured by the method for manufacturing a microchip according to claim 1. 積層されて内側に流路を形成した2つの基板を加熱接合するマイクロチップの製造装置であって、
互いに対向して間に前記2つの基板を挟んで加熱接合する2枚の熱板と、
前記2枚の熱板を互いに接離させる移動手段と、
前記2枚の熱板における一方の熱板に貼り付いた前記基板を、当該熱板から剥離する剥離手段とを有し、
前記剥離手段は、
前記一方の熱板の厚さ方向に形成された貫通孔を通して前記基板に外力を与えることにより、当該一方の熱板から前記基板を剥離することを特徴とするマイクロチップの製造装置。
A microchip manufacturing apparatus that heat-bonds two substrates that are stacked and have a flow path formed inside,
Two hot plates that are heated and bonded to each other with the two substrates sandwiched therebetween,
Moving means for bringing the two hot plates into contact with and away from each other;
A peeling means for peeling off the substrate attached to one of the two hot plates from the hot plate;
The peeling means includes
An apparatus for manufacturing a microchip, wherein an external force is applied to the substrate through a through-hole formed in a thickness direction of the one hot plate to peel the substrate from the one hot plate.
請求項7記載のマイクロチップの製造装置において、
前記剥離手段は、
前記貫通孔に挿通されて他方の前記熱板の側に突出することで前記一方の熱板から前記基板を剥離する棒状の突き出しピンを有することを特徴とするマイクロチップの製造装置。
The microchip manufacturing apparatus according to claim 7,
The peeling means includes
An apparatus for manufacturing a microchip, comprising: a rod-like protruding pin that is inserted into the through hole and protrudes toward the other hot plate to peel the substrate from the one hot plate.
請求項7記載のマイクロチップの製造装置において、
前記剥離手段は、
前記貫通孔を通して外部から前記基板に対して空気を噴射することで前記一方の熱板から前記基板を剥離する噴射手段を有することを特徴とするマイクロチップの製造装置。
The microchip manufacturing apparatus according to claim 7,
The peeling means includes
An apparatus for manufacturing a microchip, comprising spraying means for peeling the substrate from the one hot plate by spraying air from the outside to the substrate through the through hole.
積層されて内側に流路を形成した2つの基板を加熱接合するマイクロチップの製造装置であって、
互いに対向して間に前記2つの基板を挟んで加熱接合する2枚の熱板と、
前記2枚の熱板を互いに接離させる移動手段と、
前記2枚の熱板における一方の熱板に貼り付いた前記基板を、当該熱板から剥離する剥離手段とを有し、
前記剥離手段は、
前記基板の側部に係合する係合部材と、
前記係合部材を前記基板の側部に係合させた状態で前記一方の熱板から離間させる駆動手段とを含み、
前記係合部材によって当該基板の側部を前記一方の熱板から引き剥がすことにより、当該一方の熱板から前記基板を剥離することを特徴とするマイクロチップの製造装置。
A microchip manufacturing apparatus that heat-bonds two substrates that are stacked and have a flow path formed inside,
Two hot plates that are heated and bonded to each other with the two substrates sandwiched therebetween,
Moving means for bringing the two hot plates into contact with and away from each other;
A peeling means for peeling off the substrate attached to one of the two hot plates from the hot plate;
The peeling means includes
An engaging member that engages a side of the substrate;
Drive means for separating the engagement member from the one heat plate in a state of being engaged with the side portion of the substrate;
The microchip manufacturing apparatus, wherein the substrate is peeled off from the one hot plate by peeling the side portion of the substrate from the one hot plate by the engaging member.
請求項7〜10の何れか一項に記載のマイクロチップの製造装置において、
前記2枚の熱板には、前記基板の貼り付きを防止する剥離剤が塗布されていることを特徴とするマイクロチップの製造装置。
In the microchip manufacturing apparatus according to any one of claims 7 to 10,
The microchip manufacturing apparatus, wherein a release agent for preventing the substrate from sticking is applied to the two hot plates.
JP2010523820A 2008-08-08 2009-07-16 Microchip, microchip manufacturing method, and microchip manufacturing apparatus Pending JPWO2010016371A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008205917 2008-08-08
JP2008205917 2008-08-08
PCT/JP2009/062880 WO2010016371A1 (en) 2008-08-08 2009-07-16 Microchip, microchip manufacturing method and microchip manufacturing device

Publications (1)

Publication Number Publication Date
JPWO2010016371A1 true JPWO2010016371A1 (en) 2012-01-19

Family

ID=41663594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010523820A Pending JPWO2010016371A1 (en) 2008-08-08 2009-07-16 Microchip, microchip manufacturing method, and microchip manufacturing apparatus

Country Status (2)

Country Link
JP (1) JPWO2010016371A1 (en)
WO (1) WO2010016371A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6291275B2 (en) * 2014-02-13 2018-03-14 東京応化工業株式会社 Pasting method
FR3071763B1 (en) * 2017-09-29 2020-12-18 Commissariat Energie Atomique METHOD FOR MANUFACTURING A MICROFLUIDIC CARD

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3322746B2 (en) * 1994-02-24 2002-09-09 ダイハツ工業株式会社 Method of bonding asphalt sheet to work
JP2000302489A (en) * 1999-04-09 2000-10-31 Canon Inc Hot assembly apparatus
JP2001038811A (en) * 1999-07-30 2001-02-13 Shimadzu Corp Bonding method for resin-made member, and resin-made structure
JP4110696B2 (en) * 1999-09-27 2008-07-02 松下電工株式会社 Polarization processing method and apparatus
JP4312675B2 (en) * 2004-07-26 2009-08-12 株式会社日本製鋼所 Method and apparatus for producing molded body
JP2006106229A (en) * 2004-10-04 2006-04-20 Nippon Sheet Glass Co Ltd Method for manufacturing transmission type optical element and transmission type optical element
JP2006159805A (en) * 2004-12-10 2006-06-22 Takei Jushi Seisakusho:Kk Welding apparatus
JP4993243B2 (en) * 2005-01-06 2012-08-08 日本フイルコン株式会社 Manufacturing method of resin microchannel chemical device and resin microchannel chemical device structure manufactured by the manufacturing method

Also Published As

Publication number Publication date
WO2010016371A1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
KR100572207B1 (en) Bonding method of plastic microchip
WO2013118447A1 (en) Fluid handling apparatus and method for manufacturing same
WO2009119441A1 (en) Injection molding method and injection molding die
US10099218B2 (en) Method for manufacturing and/or packaging a chip
JP5948248B2 (en) Microchip and method for manufacturing microchip
WO2010131514A1 (en) Microchip
JP2006234600A (en) Plastic microchip and its manufacturing method
JP2008175795A (en) Microchip made of plastic, and manufacturing method thereof, biochip or microanalysis chip using the same
JP2009166416A (en) Method for manufacturing microchip, and microchip
JP2007240461A (en) Plastic microchip, joining method therefor, and biochip or micro analytical chip using the same
WO2010016371A1 (en) Microchip, microchip manufacturing method and microchip manufacturing device
JP2011214838A (en) Resin microchannel chip
JP2008157644A (en) Plastic microchip, and biochip or micro analysis chip using the same
JP5251983B2 (en) Microchip manufacturing method
JP2008216121A (en) Method for manufacturing microchip
WO2009101845A1 (en) Microchip and method for manufacturing the same
JP4752364B2 (en) Plastic bonding method, and biochip or microanalysis chip manufactured using the method
JP2008076208A (en) Plastic microchip, biochip using it or microanalyzing chip
WO2009101850A1 (en) Method for manufacturing microchip and microchip
KR20110075448A (en) A method for manufacturing a microfluidic device and a microfluidic divice manufactured using the same method
WO2010016399A1 (en) Microchip, method for fabricating microchip and apparatus for fabricating microchip
WO2009125757A1 (en) Microchip and method for manufacturing microchip
JP2008304352A (en) Channel device and method for bonding channel device-use board
JP2009192421A (en) Method of manufacturing microchip and microchip
JP5303976B2 (en) Microchip substrate bonding method and microchip