JPWO2009001853A1 - 受信機及び受信方法 - Google Patents

受信機及び受信方法 Download PDF

Info

Publication number
JPWO2009001853A1
JPWO2009001853A1 JP2009520612A JP2009520612A JPWO2009001853A1 JP WO2009001853 A1 JPWO2009001853 A1 JP WO2009001853A1 JP 2009520612 A JP2009520612 A JP 2009520612A JP 2009520612 A JP2009520612 A JP 2009520612A JP WO2009001853 A1 JPWO2009001853 A1 JP WO2009001853A1
Authority
JP
Japan
Prior art keywords
unit
signal
delayed wave
block division
division setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009520612A
Other languages
English (en)
Other versions
JP5030311B2 (ja
Inventor
寿之 示沢
寿之 示沢
貴司 吉本
貴司 吉本
良太 山田
良太 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009520612A priority Critical patent/JP5030311B2/ja
Publication of JPWO2009001853A1 publication Critical patent/JPWO2009001853A1/ja
Application granted granted Critical
Publication of JP5030311B2 publication Critical patent/JP5030311B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03171Arrangements involving maximum a posteriori probability [MAP] detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Power Engineering (AREA)
  • Noise Elimination (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)

Abstract

本発明の受信機は、到来した遅延波群に基づいてブロック分割設定値を設定するブロック分割設定部と、送信信号のレプリカであるレプリカ信号を受信信号に基づいて作成するレプリカ信号作成部と、ブロック分割設定部により設定されたブロック分割設定値と、レプリカ信号とを用いて受信信号から所定の時間帯ごとに遅延波を除去する遅延波除去部と、遅延波除去部が所定の時間帯ごとに遅延波を除去した信号を合成する合成部と、合成部が合成した信号に対して判定を行う判定部とを備える。

Description

本発明は、受信機及び受信方法、特に、マルチキャリア方式により信号を送受信する受信機及び受信方法に関する。
本願は、2007年6月26日に、日本に出願された特願2007−167406号に基づき優先権を主張し、その内容をここに援用する。
基地局装置と端末の間に中継器を用いたリレー通信や複数の端末を経由して通信を行うマルチホップ通信などのような複数の経路を通る通信では、端末において、図16に示すように複数の遅延波が固まって構成されている遅延波群が大きな遅延を伴って複数到来する。図16ではその一例として3つの遅延波群が到来した様子を示している。
図16において、横軸は時間、縦軸に端末が受信する受信波の瞬時電力を示す。図から分かるように、この端末には1番目の遅延波群、2番目の遅延波群、3番目の遅延波群がそれぞれ順次、時間間隔をおいて到来する。
そのような環境では、遅延波がガードインターバル(GI:Guard Interval)区間を越えて到来することになる。ガードインターバル区間とは、マルチキャリア方式でデータを伝送する際にデータの信号に付加する冗長部分のことである。
マルチキャリア伝送において、ガードインターバル区間を越える遅延波が存在すると、前のシンボルがFFT(高速フーリエ変換:Fast Fourier Transform)区間に入り込むことにより生じる、シンボル間干渉(ISI:Inter Symbol Interference)や、高速フーリエ変換区間にシンボルの切れ目、つまり信号の不連続区間が入ることによって生じるキャリア間干渉(ICI:Inter Carrier Interference)が生じる。
図17は、マルチパス環境を経て無線送信機から無線受信機に到達する信号を示す図である。ここでは、横軸に時間に取っている。シンボルs1〜s4はマルチパス環境を経て、無線送信機から無線受信機に到達する信号を示しており、4つのマルチパスを経由して到達している。シンボルの前には、シンボルの後半部分をコピーしたガードインターバルGIが付加されている。
上から1番目の信号s1は直達波、2番目の信号s2はガードインターバルGI以内の遅延t1が生じた遅延波を示している。また3番目、4番目の遅延波である信号s3、s4はガードインターバルGIを超える遅延t2、t3が生じた遅延波を示している。
3番目、4番目の遅延波の信号s3、s4の前にある斜線部は、所望シンボルの前のシンボルが所望シンボルのFFT区間に入った部分を示す。区間t4は所望シンボルのFFT区間を示しており、前記斜線部分が上記ISI成分となる。ISI成分は、干渉成分であるので、復調時の特性劣化の原因となる。また、3番目、4番目の遅延波の信号s3、s4では、区間t4にシンボルの切れ目Kが入ることになり、これが上記ICIの原因となる。
図18(a)及び図18(b)は、マルチキャリア方式による信号の送受信において、サブキャリア間が直交している様子と、ICIによりサブキャリア間で干渉が生じる様子を示す図である。図18(a)はICIが生ぜずサブキャリア間で干渉が生じない様子を示しており、図18(b)はICIによりサブキャリア間で干渉が生じている様子を示している。
ガードインターバルGIを超える遅延波が存在しない場合には、図18(a)のように、点線部分の周波数に注目すると、ある一つのサブキャリア成分のみが含まれ、他のサブキャリア成分が含まれない状態にある。このような状態は、サブキャリア間の直交性が保たれている状態である。通常のマルチキャリア通信ではこの状態で復調を行う。
これに対し、ガードインターバルGIを超える遅延波が存在する場合には、図18(b)のように、点線部分の周波数に注目すると、所望のサブキャリア成分以外にも隣接するサブキャリアの成分が含まれ、干渉していることになる。この様な状態は、サブキャリア間の直交性が保たれていない状態である。ICI成分は特性劣化の原因となる。
前記ガードインターバルGIを超える遅延波が存在する場合の、ISI、ICIによる特性劣化を改善するための一手法が以下の特許文献1で提案されている。この従来技術では、一度復調動作を行った後、誤り訂正結果(MAP復号器出力)を利用し、前記ISI成分、および前記ICI成分を含む所望以外のサブキャリアの複製信号(レプリカ信号)を作成した後、これを受信信号から除去したものに対し、再度復調動作を行うことにより、ISI、ICIによる特性改善を行っている。
一方、前記マルチキャリア伝送方式と、CDM(Code Division Multiplexing:符号分割多重)方式を組み合わせた方式として、MC−CDM(Multi Carrier−Code Division Multiplexing)方式が提案されている。
図19(a)及び図19(b)は、MC−CDMA方式におけるサブキャリアと各サブキャリアに対応する直交符号の関係を示す図である。これらの図では、横軸に周波数を取っている。図19(a)は、一例として、MC−CDM方式における8個のサブキャリアを示している。また、図19(b)は、各サブキャリアに対応する直交符号として、C8,1、C8,2、C8,7の3種類を示している。ここで、C8,1=(1,1,1,1,1,1,1,1)、C8,2=(1,1,1,1,−1,−1,−1,−1)、C8,7=(1,−1,−1,1,1,−1,−1,1)である。データに対しこの3種類の直交符号を掛けることにより、3つのデータ系列を同一時間、同一周波数を用いて、多重し通信を行うことができるのがMC−CDM方式の特徴の一つとなっている。
なお、C8,1、C8,2、C8,7の3種類の直交符号は全て周期が8の直交符号であり、一周期の間で加算を行うことにより直交符号間でデータの分離を行うことができる。なお、図19(a)中のSFfreqは前記直交符号の周期を示している。例えば、C8,1とC8,1の内積は1である。これに対して、C8,1とC8,2の内積は0である。
図20(a)及び図20(b)は、MC−CDMA方式の信号が空中を伝搬し、無線受信機において受信された際の符号C’8,1、C’8,2、C’8,7、C’’8,1、C’’8,2、C’’8,7の様子を示す図である。図20(a)は前記直交符号の周期中で周波数変動がない場合を示している。このとき、C’8,1で逆拡散(despreading)する。つまりC’8,1との内積をとる、すなわちSFfreq内の全ての値を足した場合、C’8,1は4となり、C’8,2、C’8,7は0となる。この様な状況を、符号間の直交性が保たれているという。
これに対し、図20(b)のように前記直交符号の周期中で周波数変動が存在する場合には、C’’8,1で逆拡散した場合、すなわちC’’8,1との内積をとった場合、C’’8,1は5、C’’8,2は3、C’’8,7は0となる。つまり、C’’8,1とC’’8,2の間で干渉成分が存在し、符号間の直交性が保たれていない状況となる。このように、伝搬路の周波数変動が早い(周波数方向に早く変動する)場合には、MC−CDMA方式においては、コード間干渉(Multi Code Interference)が特性劣化の原因となる。
前記符号間の直交性の崩れによる特性劣化を改善するための一手法が、特許文献2及び非特許文献1に記載されている。これらの従来技術では、下りリンク、上りリンクの違いはあるが、双方ともMC−CDMA通信時のコード多重によるコード間干渉を取り除くため、誤り訂正後、または逆拡散後のデータを用いて、所望コード以外の信号を除去することにより、特性の改善を図っている。
特開2004−221702号公報 特開2005−198223号公報 "Downlink Transmission of Broadband OFCDM Systems−Part I:Hybrid Detection"、Zhou、Y.;Wang、J.; Sawahashi、M.Page(s):718− 729、IEEE Transactions on Communication(Vol.53、Issue4)
しかしながら上述した技術においては、サブキャリア数の多いマルチキャリア信号及びMC−CDM信号を復調する際の演算量が増加するという問題があった。また、MC−CDM時のコード間干渉を取り除く際に、コード多重数分だけ演算量が増加するという問題があった。
本発明は、上記事情に鑑みてなされたものであり、その目的は、送信機から受信した信号を復調する際の演算量を減らすことができる受信機及び受信方法を提供することにある。
(1) 本発明は、上記課題を解決するためになされたもので、本発明の一態様による受信機は、到来した遅延波群に基づいてブロック分割設定値を設定するブロック分割設定部と、送信信号のレプリカであるレプリカ信号を受信信号に基づいて作成するレプリカ信号作成部と、前記ブロック分割設定部により設定された前記ブロック分割設定値と、前記レプリカ信号とを用いて受信信号から所定の時間帯ごとに遅延波を除去する遅延波除去部と、前記遅延波除去部が所定の時間帯ごとに遅延波を除去した信号を合成する合成部と、前記合成部が合成した信号に対して判定を行う判定部とを備える。
本発明では、到来した遅延波群に基づいてブロック分割を行い、ブロック分割により設定されたブロック分割設定値とレプリカ信号とを用いて受信信号から所定の時間帯ごとに遅延波を除去し、その所定の時間帯ごとに遅延波を除去した信号を合成し、その合成した信号に対して判定を行うようにした。これにより、遅延波を除去した信号に対してFFTの処理を行うことが可能となるとともに、遅延波を除去することにより周波数選択性を減らした信号に対して逆拡散の処理を行うことが可能となり、コード数に関係のない演算量で、コード間干渉の除去を行うことができるため、送信機から受信した信号を受信機で復調する際の演算量を減らすことができる。
(2) また、本発明の一態様による受信機の前記ブロック分割設定部は、各遅延波群の始点と終点に基づいてクラスタ化し、前記クラスタに基づいて、前記ブロック分割設定値を設定する。
(3) また、本発明の一態様による受信機の前記ブロック分割設定部は、電力、パス数、時間のいずれかが所定値よりも小さいクラスタをブロックから除く。
(4) また、本発明の一態様による受信機の前記ブロック分割設定部は、電力、パス数、時間のいずれかが所定値よりも小さいクラスタを他のクラスタと同じブロックとして用いる。
(5) また、本発明の一態様による受信機の前記ブロック分割設定部は、遅延波群の始点と終点を所定の電力に基づいて設定する。
(6) また、本発明の一態様による受信機の前記ブロック分割設定部は、遅延波群の始点と終点をチャネルインパルス応答推定値の極値に基づいて設定する。
(7) また、本発明の一態様による受信機の前記ブロック分割設定部は、遅延波群の始点と終点をチャネルインパルス応答推定値の接線角度又は傾きに基づいて設定する。
(8) また、本発明の一態様による受信機の前記ブロック分割設定部は、遅延波群の始点と終点を、所定の電力、チャネルインパルス応答推定値の極値、チャネルインパルス応答推定値の接線角度又は傾きを複合的に用いて設定する。
(9) また、本発明の一態様による受信方法は、到来した遅延波群に基づいてブロック分割設定値を設定するブロック分割設定過程と、送信信号のレプリカであるレプリカ信号を受信信号に基づいて作成するレプリカ信号作成過程と、前記ブロック分割設定過程により設定された前記ブロック分割設定値と、前記レプリカ信号とを用いて受信信号から所定の時間帯ごとに遅延波を除去する遅延波除去過程と、前記遅延波除去過程で所定の時間帯ごとに遅延波を除去した信号を合成する合成過程と、前記合成過程で合成した信号に対して判定を行う判定過程とを実行する。
本発明の受信機及び受信方法によれば、送信機から受信した信号を復調する際の演算量を減らすことができる。
本発明の第1の実施形態の無線受信機に対して信号を送信する無線送信機の構成を示す概略ブロック図である。 無線送信機から無線受信機に送信されたマルチキャリア信号のフレームフォーマットを示す図である。 本発明の第1の実施形態による無線受信機の構成を示す概略ブロック図である。 本発明の第1の実施形態によるMAP検出部の構成の一例を示す図である。 本発明の第1の実施形態による無線受信機の動作の一例を示すフローチャートである。 本発明の第1の実施形態によるチャネルインパルス応答推定値を示す図である。 本発明の第1の実施形態によるソフトキャンセラブロック部におけるチャネルインパルス応答推定値を示す図である。 本発明の第1の実施形態による伝搬路・雑音電力推定部の構成を示す図である。 本発明の第2の実施形態によるクラスタ化の説明に用いる図である。 本発明の第3の実施形態によるクラスタ化の説明に用いる図である。 本発明の第1の実施形態と第3の実施形態によるクラスタ化とを比較した説明図である。 本発明の第4の実施形態によるクラスタ化の説明に用いる図である。 本発明の第5の実施形態によるクラスタ化の説明に用いる図である。 本発明の第6の実施形態によるクラスタ化の説明に用いる図である。 本発明の第7の実施形態によるクラスタ化の説明に用いる図である。 遅延波群の説明に用いる図である。 マルチパス環境を経て無線送信機から無線受信機に到達する信号を示す図である。 マルチキャリア方式による信号の送受信において、サブキャリア間が直交している様子と、ICIによりサブキャリア間で干渉が生じる様子を示す図である。 MC−CDMA方式におけるサブキャリアと各サブキャリアに対応する直交符号の関係を示す図である。 MC−CDMA方式の信号が空中を伝搬し、無線受信機において受信された際の符号の様子を示す図である。
符号の説明
1・・・S/P変換部、2−1〜2−4・・・コード毎信号処理部、3・・・誤り訂正符号化部、4・・・ビットインタリーバ部、5・・・変調部、6・・・シンボルインタリーバ部、7・・・周波数−時間拡散部、8・・・DTCH多重部、9・・・PICH多重部、10・・・スクランブリング部、11・・・IFFT部、12・・・GI挿入部、21・・・シンボル同期部、22・・・伝送路・雑音電力推定部、23・・・MAP検出部、24−1〜24−4・・・コード毎MAP復号部、25・・・ビットデインタリーバ部、26・・・MAP復号部、27・・・加算部、28・・・レプリカ信号作成部、29−1〜29−4・・・コード毎シンボル生成部、30・・・ビットインタリーバ部、31・・・シンボル生成部、32・・・シンボルインタリーバ部、33・・・周波数−時間拡散部、34・・・DTCH多重部、35・・・PICH多重部、36・・・スクランブリング部、37・・・IFFT部、38・・・GI挿入部、39・・・P/S変換部、41・・・遅延波レプリカ生成部、42・・・加算部、43・・・GI除去部、44・・・FFT部、45−1〜45−3・・・ソフトキャンセラブロック部、46・・・MMSEフィルタ部、47−1〜47−4・・・コード毎対数尤度比出力部、48・・・逆拡散部、49・・・シンボルデインタリーバ部、50・・・軟判定出力部、61・・・伝搬路推定部、62・・・プリアンブルレプリカ生成部、63・・・雑音電力推定部、70・・・MAC部、71・・・フィルタリング部、72・・・D/A変換部、73・・・周波数変換部、74・・・送信アンテナ、75・・・受信アンテナ、76・・・周波数変換部、77・・・A/D変換部、79・・・ブロック分割設定部
(第1の実施形態)
本実施形態では、ガードインターバルを超える遅延波に起因するISIおよびICIや、伝搬路の周波数選択性に起因するコード間干渉が存在する場合においても良好な特性を得ることのできる無線受信機について説明する。
図1は、本発明の第1の実施形態の無線受信機に対して信号を送信する無線送信機の構成を示す概略ブロック図である。この無線送信機は、S/P(Serial / Parallel:シリアル/パラレル)変換部1、コード毎信号処理部2−1〜2−4、DTCH(Data Traffic Channel:データトラフィックチャネル)多重部8、PICH(Pilot Channel:パイロットチャネル)多重部9、スクランブリング部10、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)部11、GI挿入部12を備える。コード毎信号処理部2−1〜2−4は、それぞれ誤り訂正符号化部3、ビットインタリーバ部4、変調部5、シンボルインタリーバ部6、周波数−時間拡散部7を備える。
S/P変換部1には、MAC(Media Access Control:媒体アクセス制御)部70から出力された情報信号が入力され、S/P変換部1の直列−並列変換の出力がコード毎信号処理部2−1〜2−4に入力される。なお、コード毎信号処理部2−2〜2−4の構成は、コード毎信号処理部2−1と同じであるので、それらを代表して、以下にコード毎信号処理部2−1について説明する。
コード毎信号処理部2−1に入力された信号は、誤り訂正符号化部3においてターボ符号化、もしくはLDPC(Low Density Parity Check)符号化、畳み込み符号化などいずれかの誤り訂正符号化処理が行われ、誤り訂正符号化部3の出力はビットインタリーバ部4により、周波数選択性フェージングによる受信電力の落ち込みに基づいてバースト誤りが生ずるのを改善するために、ビット毎にその順番を適切な順序で入れ替えられて出力される。
ビットインタリーバ部4の出力は、変調部5において、BPSK(Binary Phase Shift Keying:2相位相偏移変調)、QPSK(Quadrature Phase Shift Keying:4相位相偏移変調)、16QAM(16 Quadrature Amplitude Modulation:16値直交振幅変調)、64QAM(64 Quadrature Amplitude Modulation:64値直交振幅変調)などのシンボル変調処理が行われる。変調部5の出力はシンボルインタリーバ部6によりバースト誤りの改善のためにシンボル毎にその順番を適切な順序で入れ替えられる。シンボルインタリーバ部6の出力は周波数−時間拡散部7により所定の拡散コード(チャネライゼーションコード)で拡散される。ここでは、拡散コードとしてOVSF(Orthogonal Variable Spread Factor)符号を用いているが、他の拡散コードを用いても良い。
なお、無線送信機はコード毎信号処理部2−2〜2−4を、コード多重数Cmux(Cmuxは1又は1よりも大きい自然数)備えている。ここではCmux=4の場合を示している。異なる拡散コードで拡散された信号が、コード毎信号処理部2−1の出力として出力され、DTCH多重部8にて多重(加算処理)される。続いて、PICH多重部9において、伝搬路推定などに使用するパイロットチャネルPICHが所定の位置に挿入(時間多重)される。
その後、スクランブリング部10において基地局装置に固有のスクランブリングコードにてスクランブルされた後、IFFT部11において周波数時間変換が行われる。次に、GI挿入部12においてガードインターバルGIの挿入が行われた後、フィルタリング部71によるフィルタリング処理、D/A(Digital / Analog:デジタル/アナログ)変換部72によるデジタルアナログ変換処理、周波数変換部73による無線周波数への周波数変換処理などが行われた後、送信アンテナ74から送信信号として無線受信機に送信される。
図1では、コード毎信号処理部2−2〜2−4にビットインタリーバ部4及びシンボルインタリーバ部6の双方が配置されているが、これはいずれか一方だけ配置しても良い。
更に、コード毎信号処理部2−2〜2−4にビットインタリーバ部4及びシンボルインタリーバ部6の双方を配置しなくても良い。
図2は、無線送信機から無線受信機に送信されたマルチキャリア信号のフレームフォーマットを示す図である。図2では、横軸に時間、縦軸に受信電力をとっている。図に示すように、パイロットチャネルPICHはフレームの前後及び中央に配置されている。データの伝送に用いられるデータトラフィックチャネルは、1つのフレームの前半と後半に配置されており、Cmux個の異なる拡散コードにて拡散された信号が、コード多重されている。ここでは、Cmux=4の場合をデータが4個積み重なった様子で模式的に示している。また、パイロットチャネルPICHの受信電力と、データトラフィックチャネルの1コードあたりの受信電力の比を、PPICH/DTCHで表して図示している。
図3は、本発明の第1の実施形態による無線受信機の構成を示す概略ブロック図である。この無線受信機は、シンボル同期部21、伝搬路・雑音電力推定部22、MAP検出部23、コード毎MAP復号部24−1〜24−4、レプリカ信号作成部28、P/S(Parallel / Serial:パラレル/シリアル)変換部39を備えている。
レプリカ信号作成部28は、コード毎シンボル生成部29−1〜29−4、DTCH多重部34、PICH多重部35、スクランブリング部36、IFFT部37、GI挿入部38を備えている。レプリカ信号作成部28は、送信信号のレプリカであるレプリカ信号を受信信号r(t)に基づいて作成する。より具体的には、レプリカ信号作成部28は、MAP復号部26が算出した対数尤度比を基に、送信信号のレプリカであるレプリカ信号を作成する。
また、コード毎シンボル生成部29−1〜29−4は、ビットインタリーバ部30、シンボル生成部31、シンボルインタリーバ部32、周波数−時間拡散部33を備えている。また、コード毎MAP復号部24−1〜24−4は、ビットデインタリーバ部25、MAP復号部26、加算部27を備えている。
受信アンテナ75で受信した受信信号は、周波数変換部76によるベースバンド信号への周波数変換処理、A/D(Analog / Digital)変換部77によるアナログデジタル変換処理を経た後、デジタル受信信号r(t)としてシンボル同期部21においてシンボル同期が行われる。シンボル同期部21では、ガードインターバルGIと有効信号区間との相関特性などを使用してシンボル同期が行われ、その結果に基づいて、以降の信号処理を行う。
続いて伝搬路推定・雑音電力推定部22は、パイロットチャネルPICHを利用し、チャネルインパルス応答の推定や雑音電力推定値を推定する。伝搬路推定方法としては、パイロットチャネルPICHのレプリカ信号を作成し、その絶対値の2乗誤差が最小になるようにRLS(Recursive Least Square)アルゴリズムを行ったり、受信信号とパイロットチャネルPICHのレプリカ信号との相互相関を時間軸又は周波数軸でとることにより取得したり、様々な方法があるが、これに限定されない。
また雑音電力推定方法に関しても、受信したパイロットチャネルPICHから、推定されたチャネルインパルス応答を利用し、パイロットチャネルPICHのレプリカを作成し、これらの差分より求める方法などが考えられるが、これに限るものではない。
前記伝搬路・雑音電力推定部22より出力されたチャネルインパルス応答および雑音電力推定値は、MAP検出部23(最大事後確率検出器、最大事後確率(MAP)復号法を用いる(後述))に入力され、ビット毎の対数尤度比の算出に利用される。
MAP検出部23では、初回には、受信信号およびチャネルインパルス応答、雑音電力推定値を用いて、ビット毎の対数尤度比を出力する。対数尤度比とは、受信されたビットが0であるのが最もらしいか、1であるのが最もらしいかを示す値であり、通信路のビット誤り率に基づいて算出される。図3では、4つの出力が、それぞれコード毎MAP復号部24−1〜24−4に出力されているが、これはそれぞれ異なる拡散コードに割り当てられたビットの対数尤度比を出力する。Cmux個の異なる拡散コードを用いてコード多重が行われた場合には、Cmux個の出力が、それぞれコード毎MAP復号部24−1〜24−Cmuxに出力される。
また、後述する繰り返し時には、受信信号と復調結果より得られるレプリカ信号、およびチャネルインパルス応答、雑音電力推定値を用いて、ビット毎の対数尤度比を出力する。
続いて、コード毎MAP復号部24−1〜24−4では、入力信号に対して、ビットデインタリーバ部25においてビット毎にデインタリーブ処理を行う。デインタリーブ処理は、インタリーブ処理と逆の処理であって、インタリーブの処理による順番の入れ替えを元に戻す。ビットデインタリーバ部25の出力に対し、MAP復号部26においてMAP復号処理を行う。具体的には、MAP復号部26はMAP検出部23の軟判定出力部50(図4、後述)が軟判定を行った結果を基に、誤り訂正復号を行い、ビット毎の対数尤度比を算出する。なお、MAP復号処理とは、ターボ復号、LDPC復号、ビタビ復号(Viterbi decoding)など通常の誤り訂正復号時に、硬判定を行わず、情報ビットおよびパリティビットも含めて対数尤度比などの軟判定結果を出力する方法である。すなわち、硬判定は受信信号を0、1のみに判定するのに対して、軟判定はどの程度確からしいかの情報(軟判定情報)を元に判定する。
続いて、MAP復号部26の入力とMAP復号部26の出力との差分λ2を加算部27で算出し、レプリカ信号作成部28に出力する。
レプリカ信号作成部28への入力はビットインタリーバ部30に入力され、ビットインタリーバ部30では、ビット毎にλ2を入れ替えて出力される。ビットインタリーバ部30の出力は、シンボル生成部31において、λ2の大きさを考慮し、無線送信機と同じ変調方式(BPSK、QPSK、16QAM、64QAMなど)でシンボル変調処理が行われる。シンボル生成部31の出力はシンボルインタリーバ部32によりシンボル毎に順番を入れ替えられ、シンボルインタリーバ部32の出力は周波数−時間拡散部33により所定の拡散コード(チャネライゼーションコード)で拡散されている。
なお、この無線受信機は、コード毎MAP復号部及びコード毎シンボル生成部を、コード多重数Cmux(Cmuxは1又は1よりも大きい自然数)だけ備えている。ここでは、Cmux=4としている。異なる拡散コードで拡散された信号が、コード毎シンボル生成部29−1〜29−4から出力され、DTCH多重部34にて多重(加算処理)される。続いて、PICH多重部35において、伝搬路推定などに使用するパイロットチャネルPICHが所定の位置に挿入(時間多重)される。その後、スクランブリング部36において基地局装置に固有のスクランブリングコードにてスクランブルされた後、IFFT部37において周波数時間変換が行われ、GI挿入部38においてガードインターバルGIの挿入が行われた後、MAP検出部23に出力され、繰り返し時の信号処理に利用される。
なお、上記繰り返し復号動作が所定回数行われた後、MAP復号部26出力が、P/S変換部39に入力され、パラレルシリアル変換された後、復調結果としてMAC部(図示しない)に出力される。
図4は、本発明の第1の実施形態によるMAP検出部23(図3)の構成の一例を示す図である。MAP検出部23は、ソフトキャンセラブロック部45−1〜45−3(遅延波除去部とも称する)、MMSE(Minimum−Mean Square−Error:最小二乗誤差)フィルタ部46(合成部とも称する)、コード毎対数尤度比出力部47−1〜47−4、ブロック分割設定部79を備えている。
ブロック分割設定部79は、到来した遅延波群に基づいてブロック分割設定値を設定する。具体的には、ブロック分割設定部79は、受信信号r(t)から推定される伝搬路推定値であるチャネルインパルス応答推定値を基に、ソフトキャンセラブロック部45−1〜45−3ごとの所定の時間帯であるブロック分割設定値を設定し、その設定されたソフトキャンセラブロック部45−1〜45−3ごとのブロック分割設定値を各ソフトキャンセラブロック部45−1〜45−3に出力する。
ソフトキャンセラブロック部45−1〜45−3は、遅延波レプリカ生成部41、加算部42、GI除去部43、FFT部44をそれぞれ備えている。ソフトキャンセラブロック部45−1〜45−3は、ブロック分割設定部79により設定されたブロック分割設定値と、レプリカ信号作成部28が作成したレプリカ信号とを用いて受信信号r(t)から所定の時間帯ごとに遅延波を除去し、MMSEフィルタ部46に出力する。
遅延波レプリカ生成部41は、受信信号r(t)から推定される伝搬路推定値であるチャネルインパルス応答推定値とレプリカ信号作成部28(図3)が生成するレプリカ信号s^(t)とブロック分割設定部79が設定したソフトキャンセラブロック部ごとの所定の時間帯とに基づいて、受信信号のうち前記所定の時間帯に含まれない遅延波成分(最初に到来する波を含む。前記非所望信号成分)のレプリカを作成する。加算部42は、受信信号r(t)から前記遅延波レプリカ生成部41が作成した遅延波のレプリカを減算する。
コード毎対数尤度比出力部47−1〜47−4は、逆拡散部48、シンボルデインタリーバ部49、軟判定出力部50(判定部とも称する)をそれぞれ備えている。
MAP検出部23に入力された受信信号r(t)は、遅延波レプリカ生成部41の出力との差分を加算部42で算出し、これがGI除去部43に出力される。GI除去部43においてガードインターバルGIが除去され、FFT部44に出力される。FFT部44では入力信号に対し時間周波数変換を行い、信号R 〜R を得る。なお、MAP検出部23には、ソフトキャンセラブロック部がB(Bは1よりも大きい自然数)ブロック設けられている。なお、iは自然数であり、1≦i≦Bとする。
続いて、MMSEフィルタ部46は、ソフトキャンセラブロック部45−1〜45−3が所定の時間帯ごとに遅延波を除去した信号を合成する。具体的には、MMSEフィルタ部46は、ソフトキャンセラブロック部の出力R 〜R 及び、チャネルインパルス応答推定値、雑音電力推定値を用いて、MMSEフィルタ部46において、MMSEフィルタリング処理が行われ、信号Y’が得られる。なお、MMSEフィルタリング処理のときに、レプリカ信号などに基づいて算出されたブロック分割誤差を考慮しても良い。
この信号Y’を用いて、Cmux個(ここでは、Cmux=4)のコード毎対数尤度比出力部47−1〜47−4では、各コードにおいてビット毎の対数尤度比の出力を行う。
逆拡散部48は、それぞれの拡散コードを用いて逆拡散処理を行う。シンボルデインタリーバ部49は、逆拡散部48の出力に対してシンボル毎に入れ替えを行う。
軟判定出力部50は、MMSEフィルタ部46が合成した信号に対して軟判定を行う。
軟判定出力部50は、シンボルデインタリーブ出力に対してビット毎の対数尤度比λ1を軟判定結果として出力する。
軟判定出力部50は、MMSEフィルタ部46が合成した信号に対して軟判定を行う。
具体的には、軟判定出力部50は、以下の式(1)〜式(3)を利用することにより、対数尤度比λ1を算出する。つまり、シンボルデインタリーバ部49のnシンボル目の出力をZnとすると、QPSK変調時の軟判定結果λ1は、以下の式(1)及び式(2)で表すことができる。
Figure 2009001853
Figure 2009001853
ここで、R[]はカッコ内の実部を、Im[]はカッコ内の虚部をとることを示し、μ(n)はnシンボルでの基準シンボル(パイロット信号の振幅)を示す。なお、上記出力Znは、以下の式(3)で表すことができる。
Figure 2009001853
なお、ここでは、QPSK変調の例を示したが、他の変調方式においても同様にビット毎の軟判定結果(対数尤度比)λ1を求めることができる。
図3及び図4では、ビットインタリーバ部30、ビットデインタリーバ部25、およびシンボルインタリーバ部32、シンボルデインタリーバ部49の双方が配置されているが、これはいずれか一方、つまりビットインタリーバ部30及びビットデインタリーバ部25のみでも良いし、シンボルインタリーバ部32及びシンボルデインタリーバ部49のみでも良い。更に、ビットインタリーバ部30、ビットデインタリーバ部25、及びシンボルインタリーバ部32、シンボルデインタリーバ部49の全てが配置されていなくても良い。
図5は、本発明の第1の実施形態による無線受信機の動作の一例を示すフローチャートである。MAP検出部23は初回動作か否かを判定する(ステップS1)。ステップS1で初回動作であると判定した場合には、GI除去部43は受信信号r(t)からガードインターバルGIを除去する(ステップS2)。そして、FFT部44はFFT処理(時間周波数変換処理)を行う(ステップS3)。次に、MMSEフィルタ部46は、通常のMMSEフィルタ処理を行う(ステップS4)。
そして、逆拡散部48は、逆拡散処理を行う(ステップS5)。次に、シンボルデインタリーバ部49は、シンボルデインタリーバ処理を行う(ステップS6)。そして、軟判定出力部50は、軟判定ビット出力処理を行う(ステップS7)。次に、ビットデインタリーバ部25は、ビットデインタリーバ処理を行う(ステップS8)。そして、MAP復号部26は、MAP復号処理を行う(ステップS9)。次に、上述したステップS5〜S9の処理をCmux回繰り返した後、復号処理を所定回数繰り返したか否か(コード毎MAP復号部が所定回数λ2を出力したいか否か)について判定する(ステップS10)。
なお、図3で説明したように、Cmux個の並列に配置された回路において処理を行っても良い。なお、初回のMMSEフィルタ処理については後述する。
ステップS10でステップS5〜S9の処理を、所定回数繰り返していないと判定した場合には、Cmuxコード分の復調結果λ2を用いて、ビットインタリーバ部30は、対数尤度比をビットインタリーブする(ステップS11)。そして、シンボル生成部31は、変調信号レプリカ作成を行う(ステップS12)。次に、シンボルインタリーバ部32は、シンボルインタリーバ処理を行う(ステップS13)。そして、周波数−時間拡散部33は、所定の拡散コードを用いて拡散処理を行う(ステップS14)。
上述したステップS11〜S14の処理をCmux回繰り返した後、DTCH多重部34は、DTCH多重を行う(ステップS15)。そして、PICH多重部35は、PICH多重を行う(ステップS16)。次に、スクランブリング部36は、スクランブリング処理を行う(ステップS17)。そして、IFFT部37は、IFFT処理を行う(ステップS18)。次に、GI挿入部38は、ガードインターバルGIを挿入する(ステップS19)。ステップS19でガードインターバルGIが挿入された信号をレプリカ信号とし、繰り返し復調時に使用する。
ステップS1で繰り返し時である、つまり初回動作ではないと判定した場合には、ソフトキャンセラブロック部45−1〜45−3は、ブロック毎に所定の遅延波(直接波を含む。)以外を除去する(ステップS20)。そして、GI除去部43は、GI除去処理を行う(ステップS21)。次に、FFT部44は、FFT処理を行う(ステップS22)。上述したステップS20〜S22の処理をB(Bは自然数)ブロック分行った後、MMSEフィルタ部46は、Bブロックからの出力信号をMMSEフィルタにより、最小平均二乗誤差規範に従い合成する。つまり、MMSEフィルタ処理を行う(ステップS23)。なお、ステップS23以降は、ステップS5に進み、初回処理と同様の処理を行う。
ステップS10で、上述した処理を所定回数繰り返したと判定するまで、ステップS1〜S9、S11〜S23の処理を繰り返す。
次に、ソフトキャンセラブロック部45−1〜45−3の処理について具体的に説明する。ここでは、i番目のソフトキャンセラブロック部45−iの遅延波レプリカ生成部41及び加算部42の動作について説明する。
まず、ソフトキャンセラブロック部45−iでは、遅延波レプリカ生成部41においてhを生成し、これとレプリカ信号s^(t)との畳み込み演算を行ったものを、受信信号r(t)から減算する。これが、加算部42の出力となる。
図6(a)は、本発明の第1の実施形態によるチャネルインパルス応答推定値を示す図である。ここでは、伝搬路・雑音電力推定部22から得られたチャネルインパルス応答推定値が得られた場合について説明する。図6(a)では、一例として、3つの遅延波群(1番目の遅延波群、2番目の遅延波群、3番目の遅延波群)が到来した場合を示している。なお、横軸に時間、縦軸に受信電力をとっている。
ブロック分割設定部79では、伝搬路・雑音電力推定部22から得られたチャネルインパルス応答推定値に基づいて、各ソフトキャンセラブロック部45−1〜45−3で用いられる所定の時間帯を設定する。具体的にはまず、図6(b)で示すように到来したそれぞれの遅延波群の始点と終点を選択する。そして、その選択された各遅延波群の始点と終点に基づいて、それぞれの遅延波群を1つのかたまりと識別し、クラスタ化する。最後に、クラスタ化されたそれぞれのクラスタを、図6(c)で示すように、各ソフトキャンセラブロック部45−1〜45−3で用いられる所定の時間帯(ブロック)として設定し、設定されたブロック分割設定値は各ソフトキャンセラブロック部45−1〜45−3に入力される。なお、クラスタとは、遅延波群の始点と終点を識別し、その始点と終点との間に含まれる遅延波をひとまとまりとしたものをいう。また、ブロックとは、認識したクラスタから、ブロック分割を行うための所定の時間帯を分割したものをいう。
図7(a)は、本発明の第1の実施形態によるソフトキャンセラブロック部45−1におけるチャネルインパルス応答推定値を示す図である。図7(a)に示すように、ソフトキャンセラブロック部45−1における所定の遅延波(直接波を含む所望波)をブロック1の実線で示したパス(到来波)とすると、まずソフトキャンセラブロック部45−1においては、ブロック2およびブロック3における点線で示されたパスにより構成されたチャネルインパルス応答推定値をh(t)と定義し、前記遅延波レプリカ生成部41で作成する。前記遅延波レプリカ生成部41の出力は、前記h(t)とレプリカ信号s^(t)との畳み込み演算したものであり、加算部42の出力は受信信号r(t)から、前記h(t)とs^(t)との畳み込み演算したものを減算したものとなる。つまり、レプリカが正しく生成された場合には、加算部42の出力は、(h(t)−h(t))で表される伝搬路を経て受信された信号であると考えることができる。これにより、図7(a)の実線で示された伝搬路を経て受信されたブロック1のパスが、前記加算部42の出力となる。
図7(b)は、本発明の第1の実施形態によるソフトキャンセラブロック部45−2におけるチャネルインパルス応答推定値を示す図である。図7(b)に示すように、ソフトキャンセラブロック部45−2における所定の遅延波(所望波)をブロック2の実線で示したパスとすると、まずソフトキャンセラブロック部45−2においては、ブロック1およびブロック3における点線で示されたパスにより構成されたチャネルインパルス応答推定値をh(t)と定義し、前記遅延波レプリカ生成部41で作成する。前記遅延波レプリカ生成部41の出力は、前記h(t)とレプリカ信号s^(t)との畳み込み演算したものであり、加算部42の出力は受信信号r(t)から、前記h(t)とs^(t)との畳み込み演算したものを減算したものとなる。つまり、レプリカが正しく生成された場合には、加算部42の出力は、(h(t)−h(t))で表される伝搬路を経て受信された信号であると考えることができる。これにより、図3の実線で示された伝搬路を経て受信されたブロック2のパスが、前記加算部42の出力となる。
図7(c)は、本発明の第1の実施形態によるソフトキャンセラブロック部45−3におけるチャネルインパルス応答推定値を示す図である。図7(b)に示すように、ソフトキャンセラブロック部45−3における所定の遅延波(所望波)をブロック3の実線で示したパスとすると、まずソフトキャンセラブロック部45−3においては、ブロック1およびブロック2における点線で示されたパスにより構成されたチャネルインパルス応答推定値をh(t)と定義し、前記遅延波レプリカ生成部41で作成する。前記遅延波レプリカ生成部41の出力は、前記h(t)とレプリカ信号s^(t)との畳み込み演算したものであり、加算部42の出力は受信信号r(t)から、前記h(t)とs^(t)との畳み込み演算したものを減算したものとなる。つまり、レプリカが正しく生成された場合には、加算部42の出力は、(h(t)−h(t))で表される伝搬路を経て受信された信号であると考えることができる。これにより、図4の実線で示された伝搬路を経て受信されたブロック3のパスが、前記加算部42の出力となる。
図7(a)〜図7(c)の説明では、ブロック分割設定部79が認識した遅延波群の始点と終点に基づいて、クラスタ化を行い、それぞれのクラスタをソフトキャンセラブロック部45−1〜45−3が用いる所定の時間帯として設定する場合について説明した。この方法の他に、それぞれのクラスタに対して、識別されたパスの数に基づいて、さらに小さなブロックにすることができる。
また、ソフトキャンセラブロック部45−1〜45−3が、それぞれのクラスタに対して、識別された遅延波の時間に基づいて所定の時間帯を設定する。つまり、遅延波の到達時間をB個に分割し、どの時間帯に到達した遅延波であるかによってどのソフトキャンセラブロック部で処理するかを決定する、つまり識別された遅延波の時間に基づいて、ソフトキャンセラブロック部毎に作成および減算を行うレプリカ信号を変えるようにしても良い。例えば、それぞれのクラスタに対して、ガードインターバル長に基づいて、ブロック分割をしても良い。
また、ソフトキャンセラブロック部45−1〜45−3が、それぞれのクラスタに対して、識別された遅延波の受信電力に基づいて所定の時間帯を設定するようにしても良い。
つまり、全受信信号を到達時間の順に遅延波に含まれる受信信号がほぼ一定になるようB個に分割し、これに基づいてどのソフトキャンセラブロック部で処理するかを決定する、つまり識別された遅延波の受信電力に基づいて、ソフトキャンセラブロック部毎に作成および減算を行うレプリカ信号を変えるようにしても良い。
次に、図4で示したMMSEフィルタ部46と、図5で示したステップS4及びステップS23の動作について以下に説明する。
まず、初回のMMSEフィルタ部46の動作について示す。受信信号を周波数領域で表現すると、受信信号Rは、以下の式(4)のように表すことができる。
Figure 2009001853
ここで、H^は推定された伝搬路の伝達関数を示しており、ガードインターバルGI内の遅延波のみが存在すると仮定すると、Nc*Ncの対角行列で表すことができる。なお、Ncはspread−OFCDMのサブキャリア数を示している。H^は、以下の式(5)のように表すことができる。
Figure 2009001853
Sは送信シンボルを表しており、以下の式(6)に示すように、Nc*1のベクトルで表すことができる。
Figure 2009001853
同様に、受信信号R、雑音成分Nは、以下の式(7)、式(8)に示すように、Nc*1のベクトルで表すことができる。
Figure 2009001853
Figure 2009001853
なお、式(6)〜式(8)において、添え字に用いたTは転置行列であることを表している。
このような受信信号を受信したとき、MMSEフィルタ部46の出力Yは、以下の式(9)に示すように、Nc*1のベクトルで表すことができる。
Figure 2009001853
MMSEフィルタ部46は、チャネルインパルス応答推定値及び雑音電力推定値を基にMMSEフィルタ係数Wを決定する。ここで、MMSEフィルタ係数Wは、以下の式(10)に示すように、Nc*Ncの対角行列で表すことができる。
Figure 2009001853
さらに、上記MMSEフィルタ係数Wの各要素は、周波数方向拡散時は以下の式(11)で表すことができる。
Figure 2009001853
なお、上式において
Figure 2009001853
はコード多重時の他コードからの干渉成分であり、
Figure 2009001853
は雑音電力の推定値を示している。また、添え字のHはハミルトニアン(共役転置)を示している。
また、上記のMMSEフィルタ係数Wの各要素は、時間方向拡散時はコード間の直交性が保たれていると仮定して以下の式(12)で表すことができる。
Figure 2009001853
次に、繰り返し時のMMSEフィルタ部の動作について説明する。まず繰り返し復調時に、i番目のソフトキャンセラブロック部45−iにおいて使用されるレプリカ信号r^を以下の式(13)のように表すことができる。
Figure 2009001853
ここで、h^は、i番目のソフトキャンセラブロック部45−iにおいて処理を行う遅延波のみを抽出した遅延プロファイルである。s^(t)は、前回のMAP復号によって得られた対数尤度比λ2を基に算出されたレプリカ信号である。
Figure 2009001853
は畳み込み演算を示している。従って、ソフトキャンセラブロック部45−iの出力、つまり、図4のi番目のソフトキャンセラブロック部45の出力R は、以下の式(14)のように表すことができる。
Figure 2009001853
ここでΔは、レプリカの不確定性による誤差信号と熱雑音成分を含むものとする。このとき、MMSEフィルタ部46の出力Y’は、以下の式(15)で表すことができる。
Figure 2009001853
ここで、レプリカ信号は精度よく生成されており、前記Δにはレプリカの誤差による成分は含まれず、熱雑音成分のみが含まれると仮定すると、MMSEフィルタ係数の部分行列は、以下の式(16)のように対角行列で表すことができる。
Figure 2009001853
さらに、MMSEフィルタ部46への入力信号は、後述するように周波数選択性が少なくなっており、フラットフェージングに近い状態になっていることからコード多重時のコード間干渉もないと仮定すると、各要素は以下の式(17)で表すことができる。
Figure 2009001853
なお、H^i’,mはi’番目のソフトキャンセラブロック部におけるm番目の伝搬路の伝達関数であり、H^i’,m はH^i’,mのハミルトニアンである。
なお、式(17)において、分母第1項にCmuxをかけても良い。つまり、繰返し処理時におけるMMSEフィルタ部46への入力信号に対して、以下の式(17’)を用いても良い。
Figure 2009001853
なお、式(17)および(17’)において、雑音電力の推定値σを図3に示すレプリカ信号作成部28が出力するレプリカ信号と伝搬路・雑音電力推定部22が推定するチャネルインパルス応答推定値と受信信号とに基づいて求めても良い。例えば、レプリカ信号とチャネルインパルス応答推定値との畳み込みした結果を受信信号から減算したものを雑音電力の推定値とする。
以上のように、繰り返し処理を行うことにより、ガードインターバルGIを超える遅延波を取り除くのと同時に、コード間干渉の影響も取り除くという効果を奏することができる。
図8は、本発明の第1の実施形態による伝搬路・雑音電力推定部22(図3)の構成を示す図である。伝搬路・雑音電力推定部22は、伝搬路推定部61、プリアンブルレプリカ生成部62、雑音電力推定部63を備えている。
伝搬路推定部61は、受信信号に含まれるパイロットチャネルPICHを用いてチャネルインパルス応答の推定を行う。プリアンブルレプリカ生成部62は、前記伝搬路推定部61によって求められたチャネルインパルス応答推定値と、既知情報であるパイロットチャネルPICHの信号波形とを用いてパイロットチャネルPICHのレプリカ信号を作成する。雑音電力推定部63は、受信信号に含まれるPICH部分と、前記プリアンブルレプリカ生成部62より出力されるパイロットチャネルPICHのレプリカ信号との差分をとることにより雑音電力の推定を行う。
なお、伝搬路推定部61における伝搬路推定方法としては、RLSアルゴリズムなどを用いて、最小二乗誤差規範に基づき導出を行う方法や、周波数相関を用いる方法など様々な方法を使用することができる。
本発明の第1の実施形態による無線受信機によれば、レプリカ信号作成部28が作成したレプリカ信号を用いて受信信号r(t)から所定の時間帯ごとに遅延波レプリカ生成部41が遅延波を除去し、その所定の時間帯ごとに遅延波を除去した信号をMMSEフィルタ部46が合成し、その合成した信号に対して軟判定出力部50が軟判定を行うようにしたので、遅延波を除去した信号に対してFFTの処理を行うことが可能となる。また、遅延波を除去することにより周波数選択性を減らした信号に対して逆拡散の処理を行うことが可能となり、コード数に関係のない演算量で、コード間干渉の除去を行うことができる。
本実施形態では、本発明の受信機の一例として、受信信号からの軟判定結果を用いたキャンセラ、レプリカ生成、復調処理、復号処理する場合を説明したが、硬判定結果を用いてキャンセラ、レプリカ生成、復調処理、復号処理を行うことも可能である。つまり、受信信号からQPSK、16QAMなどの変調信号を復調する(ビット分解する)復調処理部として軟判定を行い、対数尤度比を出力する軟判定出力部を備えるMAP検出部を用いているが、硬判定値を出力する検出部を用いても良い。また、硬判定値から送信信号のレプリカ信号を生成するレプリカ信号作成部を用いても良い。さらに、軟判定値生成したレプリカ信号に基づいて遅延波を除去しているソフトキャンセラブロック部を用いているが、受信信号から前記硬判定値から生成されたレプリカ信号に基づいて遅延波を除去するキャンセラ部を用いても良い。以降の実施形態においても同様である。
また、本実施形態では、各ソフトキャンセラブロック部出力を合成する際、線形合成の一手法であるMMSE合成部を用いているが、ZF(Zero Forcing)、MRC(Maximum Ratio Combining)の手法を用いても良い。また、非線形合成を用いても良い。
また、本実施形態では、各コードを誤り訂正符号化を行う単位としているが、誤り訂正符号化を複数のコードにわたってなされても良い。また、本実施形態では、MC−CDMに用いていたが、OFDM(Orthogonal Frequency Division Multiplexing)などのような拡散処理のされていないマルチキャリア信号に用いても良い。
本発明の第1の実施形態によれば、ガードインターバルを超える遅延波群に起因するISI及びICIや、伝搬路の周波数選択性に起因するコード間干渉が存在する場合においても良好な特性を得ることができる。
(第2の実施形態)
本実施形態では、各遅延波群の始点に基づいてクラスタ化を行い、ブロックを構成する場合について説明する。
本実施形態における、送信機構成や受信機構成は第1の実施形態とほぼ同様である。第1の実施形態と異なる点は、図4で示したMAP検出部23の中のブロック分割設定部79で行われる処理の一部が異なる。
第1の実施形態では、ブロック分割設定部79において、各遅延波群の始点と終点に基づいて、クラスタ化を行っている。本実施形態では、各遅延波群の始点に基づいて、クラスタ化を行う。例えば、図9(a)のような3つの遅延波群が到来した場合、図9(b)のように認識した遅延波群の始点に基づいて、順次、クラスタ化を行い、図9(c)のように所定の時間帯を設定する。このとき、最後のクラスタの終点を、そのクラスタに対して識別された終点としても良いし、他のクラスタと同等の長さを終点としても良い。
本実施形態を用いることによって、各遅延波群を構成する始点と終点の間に含まれないパスをクラスタに含めることができ、到来するパスの受信電力を十分に得ることができる。なお、第1の実施形態と同様に、それぞれのクラスタに対して、識別されたパスの数、時間、受信電力に基づいて、さらに小さなブロックにすることができる。
(第3の実施形態)
本実施形態では、あるクラスタの電力等が他のクラスタの電力等に比べて小さい場合について説明する。
本実施形態における、送信機構成や受信機構成は第1の実施形態とほぼ同様である。第1の実施形態と異なる点は、あるクラスタの電力等が他のクラスタの電力等に比べて小さい場合において、図4で示したMAP検出部23の中のブロック分割設定部79で行われる処理の一部が異なる。
図10(a)は、到来した3つの遅延波群の内、2番目の遅延波群が他の遅延波群に比べて、受信電力が小さい場合を示す。このとき、第1の実施形態と同様の処理により、遅延波群の始点と終点とを選択して、図10(b)で示すように、クラスタ化を行い、3つのクラスタが得られる。
次に、得られたクラスタに基づいて、ブロックを構成する所定の時間帯を設定するが、第1の実施形態では、図11(a)で示すように得られた全てのクラスタをブロックとして設定する。本実施形態では、図11(b)で示すように、所定の電力以下のクラスタはブロックとして用いない。
また、図11(c)で示すように所定の電力以下のクラスタを他のクラスタと同じブロックとして用いても良い。以上の説明では、ブロックとして用いない基準に各クラスタの電力を用いたが、クラスタに含まれるパスの数やクラスタの時間を基準にしても良い。なお、第1の実施形態と同様に、それぞれのクラスタに対して、識別されたパスの数、時間、受信電力に基づいて、さらに小さなブロックにすることができる。なお、本実施形態による構成は第2の実施形態における構成にも適用可能である。
本発明の第3の実施形態によれば、識別された電力等が所定値よりも小さいクラスタは他のクラスタに比べて精度が低いため、その影響を低減することができる。
(第4の実施形態)
本実施形態では、到来した遅延波群に対してクラスタ化を行うための始点と終点を識別する方法として、所定の電力を基準にする場合について説明する。
本実施形態における、送信機構成や受信機構成は第1の実施形態とほぼ同様である。第1の実施形態と異なる点は、図4で示したMAP検出部23の中のブロック分割設定部79で行われる処理の一部が異なる。
ブロック分割設定部79では、伝搬路・雑音電力推定部22から得られたチャネルインパルス応答推定値に基づいて、各ソフトキャンセラブロック部で用いられる所定の時間帯(ブロック)を設定する。そのブロックを設定するために、到来したそれぞれの遅延波群の始点と終点を選択する。本実施形態では、その遅延波群の始点と終点を選択する方法として、所定の電力を基準とする。
図12は本実施形態で用いる遅延波群の始点と終点を選択する方法を示している。伝搬路・雑音電力推定部22から得られたチャネルインパルス応答推定値が、図12で示すような波形である場合、所定の電力を閾値として、その交点に基づいて、各遅延波群の始点と終点を選択する。そして、選択された始点と終点に基づいて、クラスタ化を行う。
また、その所定の電力として、雑音電力を用いても良い。また、遅延波群の始点と終点を選択するために、伝搬路・雑音電力推定部22から得られたチャネルインパルス応答推定値を低域通過フィルタなどに通して高周波成分を取り除いても良い。なお、本実施形態による構成は第2または第3の実施形態における構成にも適用可能である。
本発明の第4の実施形態によれば、遅延波群の間に含まれる雑音等の影響を低減することができる。
(第5の実施形態)
本実施形態では、到来した遅延波群に対してクラスタ化を行うための始点と終点を識別する方法として、チャネルインパルス応答推定値の極小値を基準にする場合について説明する。
本実施形態における、送信機構成や受信機構成は第1の実施形態とほぼ同様である。第1の実施形態と異なる点は、図4で示したMAP検出部23の中のブロック分割設定部79で行われる処理の一部が異なる。
ブロック分割設定部79では、伝搬路・雑音電力推定部22から得られたチャネルインパルス応答推定値に基づいて、各ソフトキャンセラブロック部で用いられる所定の時間帯(ブロック)を設定する。そのブロックを設定するために、到来したそれぞれの遅延波群の始点と終点を選択する。本実施形態では、その遅延波群の始点と終点を選択する方法として、チャネルインパルス応答推定値の極小値を基準とする。
図13は本実施形態で用いる遅延波群の始点と終点を選択する方法を示している。伝搬路・雑音電力推定部22から得られたチャネルインパルス応答推定値が、図13で示すような波形である場合、その波形の極小値を選び、その極小値に基づいて、各遅延波群の始点と終点として選択する。極小値の選び方は、例えば、チャネルインパルス応答推定値の波形の接線の傾きがマイナスからプラスになる点を探す方法や、チャネルインパルス応答推定値の波形に対して水平な線を移動させ接する点を探す方法などが考えられるが、この限りではない。また、極小値に基づいた場合、あるクラスタの終点は次のクラスタの始点となる。そして、選択された始点と終点に基づいて、クラスタ化を行う。
以上の説明では、各遅延波群の始点と終点を極小値としているが、極小値だけでなく極大値も基準として用いても良い。例えば、極小値と次の極大値の間を始点とし、その極大値とその次の極小値を終点にする。この場合は、あるクラスタの終点と次のクラスタの始点は同じにはならない。また、極大値のみを基準としても良い。
また、遅延波群の始点と終点を選択するために、伝搬路・雑音電力推定部22から得られたチャネルインパルス応答推定値を低域通過フィルタなどに通して高周波成分を取り除いても良い。なお、本実施形態による構成は第2または第3の実施形態における構成にも適用可能である。
本発明の第5の実施形態によれば、受信信号電力を有効に利用しつつ、クラスタ化を行うことができる。
(第6の実施形態)
本実施形態では、到来した遅延波群に対してクラスタ化を行うための始点と終点を識別する方法として、チャネルインパルス応答推定値の接線角度を基準にする場合について説明する。
本実施形態における、送信機構成や受信機構成は第1の実施形態とほぼ同様である。第1の実施形態と異なる点は、図4で示したMAP検出部23の中のブロック分割設定部79で行われる処理の一部が異なる。
ブロック分割設定部79では、伝搬路・雑音電力推定部22から得られたチャネルインパルス応答推定値に基づいて、各ソフトキャンセラブロック部で用いられる所定の時間帯(ブロック)を設定する。そのブロックを設定するために、到来したそれぞれの遅延波群の始点と終点を選択する。本実施形態では、その遅延波群の始点と終点を選択する方法として、チャネルインパルス応答推定値の接線角度を基準とする。
図14は本実施形態で用いる遅延波群の始点と終点を選択する方法を示している。伝搬路・雑音電力推定部22から得られたチャネルインパルス応答推定値が、図14で示すような波形である場合、その波形に対して、一定のサンプリング間隔で、その波形の所定の接線角度を求め、その接線角度に基づいて、各遅延波群の始点と終点を選択する。図14の白丸および黒丸はサンプリング点を示している。例えば、一定のサンプリング間隔で得られた接線角度の中から、接線が右上がりで水平線との角度が小さいサンプリング点を遅延波群の始点とし、接線が右下がりで水平線との角度が小さい点を遅延波群の終点とすることなどが考えられるが、その限りではない。そして、選択された始点と終点に基づいて、クラスタ化を行う。
本実施形態を用いることにより、クラスタ化を行うための遅延波群の始点と終点を選択する時間と演算量を削減することができる。また、遅延波群の始点と終点を選択するために、伝搬路・雑音電力推定部22から得られたチャネルインパルス応答推定値を低域通過フィルタなどに通して高周波成分を取り除いても良い。また、遅延波群の始点と終点を選択する方法として、チャネルインパルス応答推定値の接線角度以外にも、接線の傾きに基づいても良い。なお、本実施形態による構成は第2または第3の実施形態における構成にも適用可能である。
本発明の第6の実施形態によれば、クラスタ化を行うための遅延波群の始点と終点を選択する時間と演算量を削減することができる。
(第7の実施形態)
本実施形態では、第4〜第6の実施形態で説明した、到来した遅延波群に対してクラスタ化を行うための始点と終点を識別するそれぞれの方法を複合的に用いる場合について説明する。
本実施形態における、送信機構成や受信機構成は第1の実施形態とほぼ同様である。第1の実施形態と異なる点は、図4で示したMAP検出部23の中のブロック分割設定部79で行われる処理の一部が異なる。
ブロック分割設定部79では、伝搬路・雑音電力推定部22から得られたチャネルインパルス応答推定値に基づいて、各ソフトキャンセラブロック部で用いられる所定の時間帯(ブロック)を設定する。そのブロックを設定するために、到来したそれぞれの遅延波群の始点と終点を選択する。本実施形態では、その遅延波群の始点と終点を選択する方法として、第4〜第6の実施形態で説明したそれぞれの基準を複合的に用いる。
図15はその一例として、各遅延波群の始点を第4の実施形態で説明した所定の電力との交点とし、終点を第5の実施形態で説明したチャネルインパルス応答推定値の極小値とした場合を示している。そして、選択された始点に基づいて、クラスタ化を行う。図15は一例であり、これに限るものではない。また、遅延波群の始点と終点を選択するために、伝搬路・雑音電力推定部22から得られたチャネルインパルス応答推定値を低域通過フィルタなどに通して高周波成分を取り除いても良い。なお、本実施形態による構成は第2または第3の実施形態における構成にも適用可能である。
本発明の第7の実施形態によれば、送受信機間の伝搬路特性に対して効果的にクラスタ化を行うことができる。
なお、以上説明した実施形態において、第1〜第7の実施形態の無線送信機又は無線受信機の各部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより無線送信機又は無線受信機の制御を行っても良い。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時刻の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時刻プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
本発明は、送信機から受信した信号を復調する際の演算量を減らすことができる受信機及び受信方法などに適用できる。

Claims (9)

  1. 到来した遅延波群に基づいてブロック分割設定値を設定するブロック分割設定部と、
    送信信号のレプリカであるレプリカ信号を受信信号に基づいて作成するレプリカ信号作成部と、
    前記ブロック分割設定部により設定された前記ブロック分割設定値と、前記レプリカ信号とを用いて受信信号から所定の時間帯ごとに遅延波を除去する遅延波除去部と、
    前記遅延波除去部が所定の時間帯ごとに遅延波を除去した信号を合成する合成部と、
    前記合成部が合成した信号に対して判定を行う判定部と、
    を備えることを特徴とする受信機。
  2. 前記ブロック分割設定部は、各遅延波群の始点と終点に基づいてクラスタ化し、前記クラスタに基づいて、前記ブロック分割設定値を設定することを特徴とする請求項1に記載の受信機。
  3. 前記ブロック分割設定部は、電力、パス数、時間のいずれかが所定値よりも小さいクラスタをブロックから除くことを特徴とする請求項2に記載の受信機。
  4. 前記ブロック分割設定部は、電力、パス数、時間のいずれかが所定値よりも小さいクラスタを他のクラスタと同じブロックとして用いることを特徴とする請求項2に記載の受信機。
  5. 前記ブロック分割設定部は、遅延波群の始点と終点を所定の電力に基づいて設定することを特徴とする請求項1に記載の受信機。
  6. 前記ブロック分割設定部は、遅延波群の始点と終点をチャネルインパルス応答推定値の極値に基づいて設定することを特徴とする請求項1に記載の受信機。
  7. 前記ブロック分割設定部は、遅延波群の始点と終点をチャネルインパルス応答推定値の接線角度又は傾きに基づいて設定することを特徴とする請求項1に記載の受信機。
  8. 前記ブロック分割設定部は、遅延波群の始点と終点を、所定の電力、チャネルインパルス応答推定値の極値、チャネルインパルス応答推定値の接線角度又は傾きを複合的に用いて設定することを特徴とする請求項1に記載の受信機。
  9. 到来した遅延波群に基づいてブロック分割設定値を設定するブロック分割設定過程と、
    送信信号のレプリカであるレプリカ信号を受信信号に基づいて作成するレプリカ信号作成過程と、
    前記ブロック分割設定過程により設定された前記ブロック分割設定値と、前記レプリカ信号とを用いて受信信号から所定の時間帯ごとに遅延波を除去する遅延波除去過程と、
    前記遅延波除去過程で所定の時間帯ごとに遅延波を除去した信号を合成する合成過程と、
    前記合成過程で合成した信号に対して判定を行う判定過程と、
    を実行することを特徴とする受信方法。
JP2009520612A 2007-06-26 2008-06-25 受信機、受信方法および集積回路 Active JP5030311B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009520612A JP5030311B2 (ja) 2007-06-26 2008-06-25 受信機、受信方法および集積回路

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007167406 2007-06-26
JP2007167406 2007-06-26
JP2009520612A JP5030311B2 (ja) 2007-06-26 2008-06-25 受信機、受信方法および集積回路
PCT/JP2008/061537 WO2009001853A1 (ja) 2007-06-26 2008-06-25 受信機及び受信方法

Publications (2)

Publication Number Publication Date
JPWO2009001853A1 true JPWO2009001853A1 (ja) 2010-08-26
JP5030311B2 JP5030311B2 (ja) 2012-09-19

Family

ID=40185666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009520612A Active JP5030311B2 (ja) 2007-06-26 2008-06-25 受信機、受信方法および集積回路

Country Status (6)

Country Link
US (1) US20100183094A1 (ja)
EP (1) EP2173046A4 (ja)
JP (1) JP5030311B2 (ja)
CN (1) CN101689954A (ja)
WO (1) WO2009001853A1 (ja)
ZA (1) ZA201000056B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272725A (ja) * 2008-04-30 2009-11-19 Sharp Corp 通信システム、受信装置及び通信方法
JP5394882B2 (ja) * 2009-10-27 2014-01-22 シャープ株式会社 受信機及び受信方法
CN102158332A (zh) * 2011-04-25 2011-08-17 王文星 一种微电网中的正交频分复用通信方法及装置
JP5837797B2 (ja) * 2011-10-25 2015-12-24 シャープ株式会社 受信装置、受信方法、通信システムおよび通信方法
US9124452B2 (en) * 2013-01-10 2015-09-01 Qualcomm Incorporated Apparatus and method for iterative interference cancellation in a wireless communication network
CA3073491A1 (en) 2017-10-19 2019-04-25 Mitsubishi Electric Corporation Communication apparatus, control circuit, storage medium, and communication method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079911A (ja) * 2003-08-29 2005-03-24 Fujitsu Ltd Ofdm伝送方式における受信装置
JP2005150839A (ja) * 2003-11-11 2005-06-09 Ntt Docomo Inc Ofdm受信機
JP2005328391A (ja) * 2004-05-14 2005-11-24 Japan Telecom Co Ltd マルチパス干渉キャンセラ及びその方法
JP2006325063A (ja) * 2005-05-20 2006-11-30 Fujitsu Ltd Ofdm受信方法及び受信装置
JP2007006067A (ja) * 2005-06-23 2007-01-11 Toshiba Corp デジタル変調信号受信装置及びその受信方法
JP2007013584A (ja) * 2005-06-30 2007-01-18 Nec Corp 等化装置および等化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4189477B2 (ja) 2003-01-10 2008-12-03 国立大学法人東京工業大学 Ofdm(直交周波数分割多重)適応等化受信方式及び受信機
JP4121407B2 (ja) * 2003-03-20 2008-07-23 富士通株式会社 Ofdmシンボルを復調する受信機
TWI256778B (en) * 2003-07-14 2006-06-11 Interdigital Tech Corp High performance wireless receiver with cluster multipath interference suppression circuit
JP2005198223A (ja) 2004-01-07 2005-07-21 Satoshi Suyama マルチキャリアにおけるパケット伝送用マルチユーザ検出受信機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079911A (ja) * 2003-08-29 2005-03-24 Fujitsu Ltd Ofdm伝送方式における受信装置
JP2005150839A (ja) * 2003-11-11 2005-06-09 Ntt Docomo Inc Ofdm受信機
JP2005328391A (ja) * 2004-05-14 2005-11-24 Japan Telecom Co Ltd マルチパス干渉キャンセラ及びその方法
JP2006325063A (ja) * 2005-05-20 2006-11-30 Fujitsu Ltd Ofdm受信方法及び受信装置
JP2007006067A (ja) * 2005-06-23 2007-01-11 Toshiba Corp デジタル変調信号受信装置及びその受信方法
JP2007013584A (ja) * 2005-06-30 2007-01-18 Nec Corp 等化装置および等化方法

Also Published As

Publication number Publication date
JP5030311B2 (ja) 2012-09-19
CN101689954A (zh) 2010-03-31
EP2173046A4 (en) 2012-08-01
EP2173046A1 (en) 2010-04-07
WO2009001853A1 (ja) 2008-12-31
US20100183094A1 (en) 2010-07-22
ZA201000056B (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP4963703B2 (ja) 受信機、受信方法および集積回路
US20120188994A1 (en) Pilot transmission and channel estimation for a communication system utilizing frequency division multiplexing
JP5320174B2 (ja) 受信装置及び受信方法
WO2010137231A1 (ja) 受信装置、受信方法、通信システムおよび通信方法
JP2006262039A (ja) 伝搬路推定方法及び伝搬路推定装置
WO2011111583A1 (ja) 受信装置、受信方法、受信プログラム、及びプロセッサ
JP2005198223A (ja) マルチキャリアにおけるパケット伝送用マルチユーザ検出受信機
JP5030311B2 (ja) 受信機、受信方法および集積回路
JP5428788B2 (ja) 受信装置、受信方法、及び受信プログラム
JP5254180B2 (ja) 受信装置、受信方法、通信システムおよび通信方法
US20070133393A1 (en) Multi-carrier receiving method and multi-carrier receiving apparatus
JP4963723B2 (ja) 受信機、受信方法および集積回路
JP4968968B2 (ja) 受信機及び受信方法
JP2009049491A (ja) 受信装置、受信方法及びプログラム
JP5030312B2 (ja) 受信機、受信方法および集積回路
JP2010178273A (ja) 受信装置及び受信方法
JP5371722B2 (ja) 受信装置、受信方法、及び受信プログラム
JP2009267450A (ja) 受信機及び受信方法
WO2008029704A1 (fr) Dispositif de transmission, dispositif de réception, système de communication, et procédé de communication
CN101421957A (zh) 接收机及接收方法
JP2010278850A (ja) 受信装置、受信方法、及び受信プログラム

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Ref document number: 5030311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3