JPWO2008120746A1 - Magnesium hydroxide powder and method for producing the same - Google Patents

Magnesium hydroxide powder and method for producing the same Download PDF

Info

Publication number
JPWO2008120746A1
JPWO2008120746A1 JP2009507535A JP2009507535A JPWO2008120746A1 JP WO2008120746 A1 JPWO2008120746 A1 JP WO2008120746A1 JP 2009507535 A JP2009507535 A JP 2009507535A JP 2009507535 A JP2009507535 A JP 2009507535A JP WO2008120746 A1 JPWO2008120746 A1 JP WO2008120746A1
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
hydroxide powder
mass
water content
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009507535A
Other languages
Japanese (ja)
Other versions
JP5172824B2 (en
Inventor
吉田 彰
彰 吉田
徹 梅田
徹 梅田
竹内 克己
克己 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2009507535A priority Critical patent/JP5172824B2/en
Publication of JPWO2008120746A1 publication Critical patent/JPWO2008120746A1/en
Application granted granted Critical
Publication of JP5172824B2 publication Critical patent/JP5172824B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/22Magnesium hydroxide from magnesium compounds with alkali hydroxides or alkaline- earth oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

鱗片状の一次粒子から形成された、平均粒子径が1.0〜4.8μmの範囲にある球状二次粒子からなり、BET比表面積が1〜10m2/gの範囲にある水酸化マグネシウム粉末は、吸湿性が低く、樹脂の難燃剤としての使用に適している。Magnesium hydroxide powder composed of spherical secondary particles formed from scale-like primary particles and having an average particle diameter in the range of 1.0 to 4.8 μm and a BET specific surface area in the range of 1 to 10 m 2 / g is It has low hygroscopicity and is suitable for use as a flame retardant for resins.

Description

本発明は、低BET比表面積の水酸化マグネシウム粉末及びその製造方法に関する。   The present invention relates to a magnesium hydroxide powder having a low BET specific surface area and a method for producing the same.

水酸化マグネシウム粉末は、種々の用途に用いられているが、その用途の一つに樹脂、特に電線やケーブルの被覆材として用いる樹脂組成物の難燃剤としての用途がある。難燃化対象の樹脂としては、ポリエチレン、ポリプロピレン、エチレン−プロピレンゴム(EPM)、エチレン−プロピレン−ジエン三元共重合体配合物(EPDM)、エチレン−アクリル酸エチル共重合体(EEA)、エチレン−酢酸ビニル共重合体などのポリオレフィンがある。   Magnesium hydroxide powder is used in various applications, and one of its uses is as a flame retardant for resins, particularly resin compositions used as coating materials for electric wires and cables. Examples of flame retardant resins include polyethylene, polypropylene, ethylene-propylene rubber (EPM), ethylene-propylene-diene terpolymer blend (EPDM), ethylene-ethyl acrylate copolymer (EEA), ethylene -Polyolefins such as vinyl acetate copolymers.

水酸化マグネシウム粉末の工業的な製造方法としては、海水に石灰乳などのアルカリ源を投入して、海水中のマグネシウムイオンとアルカリ源とを反応させることにより、鱗片状の一次粒子から形成された球状二次粒子が分散されている水酸化マグネシウムスラリーを得て、次いで、該水酸化マグネシウムスラリーを洗浄、脱水などの処理を行なった後、乾燥して粉末とする方法が一般的である。このマグネシウム源に海水を用いた水酸化マグネシウム粉末の製造方法(以下、海水法と云うことがある。)は、製造コストの面で云えば有利な方法である。しかしながら、この海水法で得られる水酸化マグネシウム粉末は、一般に鱗片状の一次粒子から形成された、平均粒子径が1.0〜4.8μmの範囲にある球状二次粒子からなり、BET比表面積が11〜50m2/gと高いため、吸湿性が高い傾向にある。吸湿した水酸化マグネシウム粉末を電線やケーブルの被覆材などの樹脂組成物の難燃剤に用いると、樹脂との混練時の熱で水酸化マグネシウム粉末に吸湿した水分が蒸発し、発泡して、得られる樹脂組成物の外観を損なう要因となることがある。このため、吸湿性が低い、すなわち比表面積が低い水酸化マグネシウム粉末の開発が進められている。As an industrial production method of magnesium hydroxide powder, it was formed from scaly primary particles by introducing an alkali source such as lime milk into seawater and reacting magnesium ions in the seawater with an alkali source. In general, a magnesium hydroxide slurry in which spherical secondary particles are dispersed is obtained, and then the magnesium hydroxide slurry is subjected to treatments such as washing and dehydration, and then dried to obtain a powder. This method for producing magnesium hydroxide powder using seawater as the magnesium source (hereinafter sometimes referred to as the seawater method) is an advantageous method in terms of production cost. However, the magnesium hydroxide powder obtained by the seawater method is generally composed of spherical secondary particles formed from scale-like primary particles and having an average particle diameter in the range of 1.0 to 4.8 μm, and has a BET specific surface area. Is as high as 11 to 50 m 2 / g, so that the hygroscopicity tends to be high. When moisture-absorbed magnesium hydroxide powder is used as a flame retardant for resin compositions such as wire and cable coating materials, moisture absorbed in magnesium hydroxide powder is evaporated and foamed by heat during kneading with resin. It may become a factor which impairs the external appearance of the resin composition obtained. For this reason, the development of magnesium hydroxide powder having low hygroscopicity, that is, low specific surface area is underway.

特許文献1には、鱗片状水酸化マグネシウム一次粒子が凝集して形成された、平均粒径が5〜500μmの球状二次粒子からなる、比表面積が10m2/g以下の水酸化マグネシウム粉末が開示されている。この特許文献1によれば、上記の水酸化マグネシウム粉末は、水可溶性マグネシウム塩を含む水溶液とアンモニアとを、水酸化マグネシウムの晶析負荷が500kg/m3・h以下、かつ、晶析装置における水酸化マグネシウムスラリー濃度が1〜60wt%となる条件下で反応させることによって製造できるとされている。Patent Document 1 discloses a magnesium hydroxide powder having a specific surface area of 10 m 2 / g or less, comprising spherical secondary particles having an average particle diameter of 5 to 500 μm formed by agglomeration of flaky magnesium hydroxide primary particles. It is disclosed. According to this Patent Document 1, the magnesium hydroxide powder comprises an aqueous solution containing a water-soluble magnesium salt and ammonia, a crystallization load of magnesium hydroxide of 500 kg / m 3 · h or less, and a crystallization apparatus. It is said that it can be produced by reacting under a condition that the magnesium hydroxide slurry concentration is 1 to 60 wt%.

特許文献2には、BET比表面積が約10m2/g未満、平均粒子径が約0.5〜10.0ミクロンで、10ミクロンを超す粒子が約0.5%未満であり、多数の結晶がほぼ卵型の断面を有する難燃性水酸化マグネシウム粉末が開示されている。この特許文献2によれば、上記の水酸化マグネシウム粉末は、塩化マグネシウム溶液に、分子量的に過剰のアンモニア原料を添加して、水酸化マグネシウムの沈殿を形成し、水酸化マグネシウムを熱水再結晶させる工程を含む方法により製造できるとされている。
特開昭61−168522号公報 特表2001−508015号公報
In Patent Document 2, the BET specific surface area is less than about 10 m 2 / g, the average particle size is about 0.5 to 10.0 microns, and the number of particles exceeding 10 microns is less than about 0.5%. Discloses a flame retardant magnesium hydroxide powder having an approximately oval cross section. According to Patent Document 2, the above magnesium hydroxide powder is obtained by adding an excess ammonia raw material in terms of molecular weight to a magnesium chloride solution to form a magnesium hydroxide precipitate. It is said that it can manufacture by the method including the process to make.
JP-A 61-168522 Special table 2001-508015 gazette

粒子形状が球状もしくは卵形で、BET比表面積が10m2/g以下の水酸化マグネシウム粉末は、前記の特許文献1及び特許文献2に開示されている。この内、特許文献1に記載の水酸化マグネシウム粉末は、二次粒子の平均粒子径が大きいため、難燃剤として用いた場合、得られる樹脂組成物は、外観が粗くなる他、応力が集中し易く、強度が弱くなる傾向にある。また、特許文献2に記載の水酸化マグネシウム粉末は、微細であるが、球状でないため、樹脂中での分散性に問題があり、またその製造に際して熱水処理を必要とし、製造工程が煩雑で製造コストが高くなる傾向にある。
従って、本発明の目的は、特に、樹脂の難燃剤としての使用に適した、低BET比表面積で微細な球状粒子からなる水酸化マグネシウム粉末を提供することにある。
Magnesium hydroxide powder having a spherical or oval particle shape and a BET specific surface area of 10 m 2 / g or less is disclosed in Patent Document 1 and Patent Document 2 described above. Among these, since the magnesium hydroxide powder described in Patent Document 1 has a large average particle diameter of secondary particles, when used as a flame retardant, the resulting resin composition has a rough appearance and stress is concentrated. It tends to be weak and weak. Further, the magnesium hydroxide powder described in Patent Document 2 is fine but not spherical, so there is a problem in dispersibility in the resin, and it requires hot water treatment for its production, and the production process is complicated. Manufacturing costs tend to be high.
Accordingly, an object of the present invention is to provide a magnesium hydroxide powder comprising fine spherical particles having a low BET specific surface area, which is particularly suitable for use as a flame retardant for resins.

本発明者は、海水法において中間生成物として得られる水酸化マグネシウムスラリー、又は該水酸化マグネシウムスラリーを脱水処理して得られた含水率10〜50質量%の含水水酸化マグネシウム固形物を、含水率が5質量%となるまで2時間以上の時間を要する乾燥条件で緩やかに乾燥して含水率1〜5質量%の含水水酸化マグネシウム粉末としたのち、含水率0.5質量%以下になるまで乾燥することにより、BET比表面積が1〜10m2/gと低く、かつ形状が球状の水酸化マグネシウム粉末が得られることを見出した。また、本発明者は、海水法により得られたBET比表面積が11〜50m2/gの水酸化マグネシウム粉末(含水率:0.5質量%以下)を含水率が1質量%となるまで30分以上の時間を要する吸湿条件で水蒸気と接触させて、緩やかに水酸化マグネシウム粉末の含水率を1質量%以上としたのち、含水率0.5質量%以下になるまで乾燥することによっても、BET比表面積が1〜10m2/gと低く、かつ形状が球状の水酸化マグネシウム粉末が得られることを見出した。The present inventor has prepared a magnesium hydroxide slurry obtained as an intermediate product in a seawater method, or a hydrous magnesium hydroxide solid having a water content of 10 to 50% by mass obtained by dehydrating the magnesium hydroxide slurry. After drying gently under drying conditions that require a time of 2 hours or more until the rate becomes 5% by mass to obtain a hydrous magnesium hydroxide powder having a moisture content of 1 to 5% by mass, the moisture content becomes 0.5% by mass or less. It was found that a magnesium hydroxide powder having a BET specific surface area as low as 1 to 10 m 2 / g and a spherical shape can be obtained by drying to a low temperature. In addition, the present inventor used magnesium hydroxide powder (water content: 0.5% by mass or less) having a BET specific surface area of 11 to 50 m 2 / g obtained by the seawater method until the water content became 1% by mass. By contacting with water vapor under moisture absorption conditions that require more than a minute, and gradually setting the moisture content of the magnesium hydroxide powder to 1% by mass or more, and then drying until the moisture content is 0.5% by mass or less, It has been found that magnesium hydroxide powder having a BET specific surface area as low as 1 to 10 m 2 / g and having a spherical shape can be obtained.

従って、本発明は、鱗片状の一次粒子から形成された、平均粒子径が1.0〜4.8μmの範囲にある球状二次粒子からなり、BET比表面積が1〜10m2/gの範囲にある水酸化マグネシウム粉末にある。Therefore, the present invention comprises spherical secondary particles formed from scale-like primary particles and having an average particle diameter in the range of 1.0 to 4.8 μm, and a BET specific surface area in the range of 1 to 10 m 2 / g. In the magnesium hydroxide powder.

本発明の水酸化マグネシウム粉末の好ましい態様は、次の通りである。
(1)球状二次粒子が、互いに直交する三方向における径のうち、最も長い径の長さを1としたとき、他の二つの径の長さがそれぞれ0.6〜1の範囲にある。
(2)細孔径が3〜5nmの範囲にある細孔におけるログ微分細孔容積の最大値が0.001〜0.14cm3/gの範囲にある。
(3)表面が、脂肪酸、脂肪酸せっけん又はシランカップリング剤により処理されている。
(4)上記の脂肪酸、脂肪酸せっけん又はシランカップリング剤を水酸化マグネシウム100質量部に対して0.1〜10質量部の範囲にて含有する。
Preferred embodiments of the magnesium hydroxide powder of the present invention are as follows.
(1) When the length of the longest diameter among the diameters of the spherical secondary particles in three directions orthogonal to each other is 1, the lengths of the other two diameters are in the range of 0.6 to 1, respectively. .
(2) The maximum value of the log differential pore volume in pores having a pore diameter in the range of 3 to 5 nm is in the range of 0.001 to 0.14 cm 3 / g.
(3) The surface is treated with a fatty acid, a fatty acid soap, or a silane coupling agent.
(4) The above fatty acid, fatty acid soap or silane coupling agent is contained in a range of 0.1 to 10 parts by mass with respect to 100 parts by mass of magnesium hydroxide.

本発明の水酸化マグネシウム粉末は、樹脂の難燃剤として特に有利に使用できる。従って、本発明は、上記本発明の水酸化マグネシウム粉末を練り込んだ樹脂組成物にもある。   The magnesium hydroxide powder of the present invention can be used particularly advantageously as a flame retardant for resins. Therefore, the present invention also resides in a resin composition in which the magnesium hydroxide powder of the present invention is kneaded.

本発明はまた、海水中のマグネシウムイオンとアルカリ源とを反応させることにより得られた、鱗片状の一次粒子から形成された球状二次粒子が分散されている水酸化マグネシウムスラリー、又は該水酸化マグネシウムスラリーを脱水処理して得られた含水率10〜50質量%の含水水酸化マグネシウム固形物を、含水率が5質量%となるまで2時間以上の時間を要する乾燥条件にて乾燥して、含水率1〜5質量%の含水水酸化マグネシウム粉末を得て、次いで該含水水酸化マグネシウム粉末を含水率が0.5質量%以下になるまで乾燥することからなる上記本発明の水酸化マグネシウム粉末の製造方法にもある。   The present invention also provides a magnesium hydroxide slurry in which spherical secondary particles formed from scale-like primary particles obtained by reacting magnesium ions in seawater with an alkali source are dispersed, or the hydroxide A water-containing magnesium hydroxide solid substance having a water content of 10 to 50% by mass obtained by dehydrating the magnesium slurry is dried under a drying condition that requires 2 hours or more until the water content becomes 5% by mass, The magnesium hydroxide powder of the present invention, comprising obtaining a water-containing magnesium hydroxide powder having a water content of 1 to 5% by mass, and then drying the water-containing magnesium hydroxide powder until the water content becomes 0.5% by mass or less. There is also a manufacturing method.

上記本発明の水酸化マグネシウム粉末の製造方法において、水酸化マグネシウムスラリー又は含水水酸化マグネシウム固形物の乾燥条件は、温度が50〜100℃、相対湿度が50〜85%RHの条件であることが好ましい。   In the manufacturing method of the magnesium hydroxide powder of the present invention, the drying conditions of the magnesium hydroxide slurry or the hydrated magnesium hydroxide solid are that the temperature is 50 to 100 ° C. and the relative humidity is 50 to 85% RH. preferable.

本発明はさらに、海水中のマグネシウムイオンとアルカリ源とを反応させることにより得られた、鱗片状の一次粒子から形成された球状二次粒子が分散されている水酸化マグネシウムスラリーから製造された、鱗片状の一次粒子から形成された、平均粒子径が1.0〜4.8μmの範囲にある球状二次粒子からなり、BET比表面積が11〜50m2/gの範囲にあって、含水率が0.5質量%以下である水酸化マグネシウム粉末を、含水率が1質量%となるまで30分以上の時間を要する吸湿条件にて水蒸気と接触させて、含水率1質量%以上(特に5質量%以下)の含水水酸化マグネシウム粉末を得て、次いで該含水水酸化マグネシウム粉末を含水率が0.5質量%以下になるまで乾燥することからなる上記本発明の水酸化マグネシウム粉末の製造方法にもある。The present invention is further produced from a magnesium hydroxide slurry obtained by reacting magnesium ions in seawater with an alkali source, in which spherical secondary particles formed from scaly primary particles are dispersed, It consists of spherical secondary particles formed from scale-like primary particles and having an average particle diameter in the range of 1.0 to 4.8 μm, and has a BET specific surface area in the range of 11 to 50 m 2 / g, and has a water content The magnesium hydroxide powder having a water content of 0.5% by mass or less is brought into contact with water vapor under moisture absorption conditions that require a time of 30 minutes or more until the water content becomes 1% by mass. The magnesium hydroxide of the present invention is obtained by drying a hydrous magnesium hydroxide powder until the water content becomes 0.5% by mass or less. There is also the end of the manufacturing method.

上記本発明の水酸化マグネシウム粉末の製造方法において、水酸化マグネシウム粉末の吸湿条件は、温度が10〜100℃、相対湿度が50〜98%RHの条件であることが好ましい。   In the manufacturing method of the magnesium hydroxide powder of the said invention, it is preferable that the moisture absorption conditions of a magnesium hydroxide powder are conditions whose temperature is 10-100 degreeC and relative humidity is 50-98% RH.

本発明の水酸化マグネシウム粉末は、BET比表面積が低く、吸湿性が低いため、長期間にわたって吸湿が少なく安定であり、また微細な球状の二次粒子から構成されているので樹脂への分散性が高い。従って、本発明の水酸化マグネシウム粉末は、樹脂の難燃剤として特に適したものである。
また、本発明の製造方法を利用することによって、工業的に安価な海水法により製造される水酸化マグネシウム粉末、あるいは海水法において中間生成物として得られる水酸化マグネシウムスラリー又は含水水酸化マグネシウム固形物を原料として用いて、樹脂の難燃剤としての使用に適した、BET比表面積が低く、微細な球状二次粒子からなる水酸化マグネシウム粉末を製造することが可能となる。
Since the magnesium hydroxide powder of the present invention has a low BET specific surface area and low hygroscopicity, it is stable with little hygroscopicity over a long period of time, and is composed of fine spherical secondary particles, so that it can be dispersed in a resin. Is expensive. Therefore, the magnesium hydroxide powder of the present invention is particularly suitable as a flame retardant for resins.
Further, by using the production method of the present invention, magnesium hydroxide powder produced by an industrially inexpensive seawater method, or magnesium hydroxide slurry or hydrous magnesium hydroxide solid product obtained as an intermediate product in the seawater method As a raw material, it is possible to produce a magnesium hydroxide powder composed of fine spherical secondary particles having a low BET specific surface area and suitable for use as a flame retardant for resins.

本発明の水酸化マグネシウム粉末は、鱗片状の一次粒子から形成された、平均粒子径が1.0〜4.8μmの範囲にある球状二次粒子からなり、BET比表面積が1〜10m2/gの範囲にある。球状二次粒子の平均粒子径は、1.0〜4.5μmの範囲にあることが好ましく、1.2〜4.0μmの範囲にあることが特に好ましい。BET比表面積は、2〜9m2/gの範囲あることが好ましい。The magnesium hydroxide powder of the present invention comprises spherical secondary particles formed from scale-like primary particles and having an average particle diameter in the range of 1.0 to 4.8 μm, and has a BET specific surface area of 1 to 10 m 2 / It is in the range of g. The average particle diameter of the spherical secondary particles is preferably in the range of 1.0 to 4.5 μm, and particularly preferably in the range of 1.2 to 4.0 μm. The BET specific surface area is preferably in the range of 2-9 m 2 / g.

本発明の水酸化マグネシウム粉末において、水酸化マグネシウムの二次粒子が球状であるとは、二次粒子の互いに直交する三方向における径のうち、最も長い径の長さを1としたとき、他の二つの径の長さがそれぞれ0.6〜1の範囲、好ましくは0.8〜1にあることを意味する。   In the magnesium hydroxide powder of the present invention, the secondary particles of magnesium hydroxide are spherical when the length of the longest diameter among the diameters of the secondary particles in three directions orthogonal to each other is set to 1. The lengths of the two diameters are in the range of 0.6 to 1, preferably 0.8 to 1.

本発明の水酸化マグネシウム粉末は、例えば、下記の(1)又は(2)の方法より製造することができる。
(1)海水法において中間生成物として得られる、鱗片状の一次粒子から形成された球状二次粒子が分散されている水酸化マグネシウムスラリー、又は該水酸化マグネシウムスラリーを脱水処理して得られた含水率10〜50質量%の含水水酸化マグネシウム固形物を、含水率が5質量%となるまで2時間以上の時間を要する乾燥条件で乾燥して、含水率1〜5質量%の含水水酸化マグネシウム粉末を得て、次いで該含水水酸化マグネシウム粉末を含水率が0.5質量%以下になるまで乾燥することからなる方法。
(2)海水法により製造された、鱗片状の一次粒子から形成された、平均粒子径が1.0〜4.8μmの範囲にある球状二次粒子からなり、BET比表面積が11〜50m2/g以下であって、含水率が0.5質量%以下である水酸化マグネシウム粉末を、含水率が1質量%となるまで30分以上の時間を要する吸湿条件で水蒸気と接触させて、含水率1質量%以上(特に、5質量%以下)の含水水酸化マグネシウム粉末を得て、次いで該含水水酸化マグネシウム粉末を含水率が0.5質量%以下になるまで乾燥することからなる方法。
The magnesium hydroxide powder of the present invention can be produced, for example, by the following method (1) or (2).
(1) Magnesium hydroxide slurry obtained by dispersing spherical secondary particles formed from scaly primary particles obtained as an intermediate product in the seawater method, or obtained by dehydrating the magnesium hydroxide slurry A water-containing magnesium hydroxide solid having a water content of 10 to 50% by mass is dried under drying conditions that require 2 hours or more until the water content reaches 5% by mass, and a water-containing hydroxide having a water content of 1 to 5% by mass. A method comprising obtaining a magnesium powder and then drying the hydrated magnesium hydroxide powder until the moisture content is 0.5% by mass or less.
(2) It consists of spherical secondary particles having an average particle diameter in the range of 1.0 to 4.8 μm, formed from scale-like primary particles produced by the seawater method, and a BET specific surface area of 11 to 50 m 2. / G or less and a moisture content of 0.5% by mass or less is brought into contact with water vapor under moisture absorption conditions that require 30 minutes or more until the moisture content becomes 1% by mass. A method comprising obtaining a hydrous magnesium hydroxide powder having a rate of 1% by mass or more (particularly, 5% by mass or less) and then drying the hydrous magnesium hydroxide powder until the water content becomes 0.5% by mass or less.

上記(1)の方法においては、まず、海水とアルカリ源との混合液を調製し、海水中のマグネシウムイオンとアルカリ源とを反応させて、水酸化マグネシウムの鱗片状一次粒子を析出させる。析出した鱗片状一次粒子を、混合液中にて循環させて、鱗片状一次粒子を球状の二次粒子として凝集、成長させることによって、球状二次粒子が分散されている水酸化マグネシウムスラリーを得ることができる。   In the method (1), first, a mixed solution of seawater and an alkali source is prepared, and magnesium ions in the seawater and an alkali source are reacted to precipitate magnesium hydroxide scaly primary particles. The precipitated flaky primary particles are circulated in the mixed solution, and the flaky primary particles are aggregated and grown as spherical secondary particles, thereby obtaining a magnesium hydroxide slurry in which spherical secondary particles are dispersed. be able to.

マグネシウム源として用いる海水は、予め脱炭酸処理して、溶存炭酸イオン濃度が20質量ppm以下(二酸化炭素換算)とすることが好ましい。脱炭酸処理法としては、海水に石灰乳(水酸化カルシウムスラリー)を加えて、炭酸イオンを炭酸カルシウムとして固定する方法、又は塩酸や硫酸などの酸性溶液を海水に添加して、海水のpHを4以下としたのち、海水を曝気処理することにより炭酸イオンを二酸化炭素ガスとして除去する方法を用いることができる。なお、前者の石灰乳を使用した脱炭酸処理法は、生成する炭酸カルシウムに海水中のケイ素やアルミニウム成分が吸着し、その含有量が低減するのでより好ましい方法である。   The seawater used as the magnesium source is preferably decarboxylated in advance so that the dissolved carbonate ion concentration is 20 mass ppm or less (in terms of carbon dioxide). As the decarboxylation method, lime milk (calcium hydroxide slurry) is added to seawater to fix carbonate ions as calcium carbonate, or an acidic solution such as hydrochloric acid or sulfuric acid is added to seawater to adjust the pH of the seawater. After setting to 4 or less, a method of removing carbonate ions as carbon dioxide gas by aeration treatment of seawater can be used. Note that the former decarboxylation method using lime milk is a more preferable method because silicon and aluminum components in seawater are adsorbed on the generated calcium carbonate and the content thereof is reduced.

海水と混合するアルカリ源としては、石灰乳を用いることができる。
海水とアルカリ源との混合割合は、海水中のマグネシウムイオンの反応率(アルカリ源と反応して水酸化マグネシウム粒子として析出する海水中のマグネシウムイオンのモル百分率)が50〜110%となる割合であることが好ましく、70〜90%となる割合であることが特に好ましい。反応率が低すぎると、水酸化マグネシウム粉末の収率の観点から経済的に不利となる。
Lime milk can be used as an alkali source mixed with seawater.
The mixing ratio of the seawater and the alkali source is such that the reaction rate of magnesium ions in the seawater (molar percentage of magnesium ions in the seawater that reacts with the alkali source and precipitates as magnesium hydroxide particles) is 50 to 110%. It is preferable that the ratio is 70 to 90%. If the reaction rate is too low, it is economically disadvantageous from the viewpoint of the yield of magnesium hydroxide powder.

前記(1)の方法においては、上記のようにして製造された水酸化マグネシウムスラリーをそのまま、あるいはろ過などの通常の脱水処理を行なって含水率10〜50質量%の含水水酸化マグネシウム固形物としたのち、乾燥装置に入れて、含水率が5質量%となるまで2時間以上、好ましくは4時間以上、より好ましくは24時間以上、200時間以下の時間を要する乾燥条件で乾燥して、含水率1〜5質量%の含水水酸化マグネシウム粉末を得る。含水率が5質量%となるまでの時間は、乾燥装置内の温度及び相対湿度によって調整することができる。乾燥装置内の温度は一般に50〜100℃の範囲、好ましくは60〜90℃の範囲であり、相対湿度は一般に50〜85%RHの範囲である。乾燥前の水酸化マグネシウムスラリーの濃度は、一般に10〜45質量%の範囲である。水酸化マグネシウムスラリーをそのまま乾燥するよりも、含水水酸化マグネシウム固形物としたのち乾燥する方が好ましい。   In the method (1), the magnesium hydroxide slurry produced as described above is used as it is, or by subjecting it to normal dehydration treatment such as filtration, Then, it is put in a drying apparatus and dried under a drying condition that requires 2 hours or more, preferably 4 hours or more, more preferably 24 hours or more and 200 hours or less until the water content becomes 5% by mass. A hydrous magnesium hydroxide powder having a rate of 1 to 5% by mass is obtained. The time until the moisture content reaches 5% by mass can be adjusted by the temperature and relative humidity in the drying apparatus. The temperature in the drying apparatus is generally in the range of 50-100 ° C, preferably in the range of 60-90 ° C, and the relative humidity is generally in the range of 50-85% RH. The concentration of the magnesium hydroxide slurry before drying is generally in the range of 10 to 45 mass%. Rather than drying the magnesium hydroxide slurry as it is, it is preferable to dry it after making it into a hydrous magnesium hydroxide solid.

上記のようにして得られた含水率が1〜5質量%の含水水酸化マグネシウム粉末は、次いで熱風乾燥器(例えば、箱形乾燥器、気流乾燥器、バンド型通気乾燥器、流動層乾燥器、回転乾燥器)及び伝導伝熱乾燥器(例えば、円筒乾燥器、円盤乾燥器)などの通常の乾燥装置に入れて、含水率を0.5質量%以下になるまで乾燥する。乾燥温度は、一般に100℃以上、好ましくは110〜150℃の範囲である。乾燥時間には特に制限はないが、一般に0.01〜2時間である。   The water-containing magnesium hydroxide powder having a water content of 1 to 5% by mass obtained as described above is then heated in a hot air dryer (for example, a box dryer, a flash dryer, a band-type aeration dryer, a fluidized bed dryer). , Rotary drier) and conduction heat transfer drier (for example, cylindrical drier, disk drier) and the like, and dried until the water content is 0.5 mass% or less. The drying temperature is generally 100 ° C. or higher, preferably 110 to 150 ° C. Although there is no restriction | limiting in particular in drying time, Generally it is 0.01 to 2 hours.

前記(2)の方法においては、海水法により製造された水酸化マグネシウム粉末、すなわち鱗片状の一次粒子から形成された、平均粒子径が1.0〜4.8μmの範囲にある球状二次粒子からなり、BET比表面積が11〜50m2/gの範囲であって、含水率が0.5質量%以下である水酸化マグネシウム粉末を出発原料として用いる。In the method (2), spherical secondary particles having an average particle diameter in the range of 1.0 to 4.8 μm formed from magnesium hydroxide powder produced by the seawater method, that is, scaly primary particles. A magnesium hydroxide powder having a BET specific surface area of 11 to 50 m 2 / g and a water content of 0.5% by mass or less is used as a starting material.

原料となる水酸化マグネシウム粉末としては、前記(1)の方法と同様に、海水中のマグネシウムイオンとアルカリ源とを反応させることにより析出させた水酸化マグネシウムの鱗片状一次粒子を、球状二次粒子にして凝集、成長させて水酸化マグネシウムスラリーを得て、これに洗浄、脱水などの処理を行なって含水率10〜50質量%の含水水酸化マグネシウム固形物としたのち、熱風乾燥器及び伝導伝熱乾燥器などの通常の乾燥装置に入れて、100℃以上、好ましくは110〜150℃の温度で0.01〜2時間乾燥することによって含水率を0.5質量%以下にしたものを好ましく用いることができる。   As the magnesium hydroxide powder used as a raw material, the scale-like primary particles of magnesium hydroxide precipitated by reacting magnesium ions in seawater with an alkali source in the same manner as in the above method (1), spherical secondary After agglomerating and growing into particles to obtain a magnesium hydroxide slurry, this is treated with washing, dehydration, etc. to obtain a hydrous magnesium hydroxide solid having a water content of 10 to 50% by mass, and then a hot air dryer and a conductive What put water content into 0.5 mass% or less by putting in normal drying equipments, such as a heat transfer drier, and drying for 0.01 to 2 hours at the temperature of 100 ° C or more, preferably 110 to 150 ° C. It can be preferably used.

前記(2)の方法においては、原料の水酸化マグネシウム粉末(含水率:0.5質量%以下)を、含水率が1質量%となるまで30分以上、好ましくは2時間以上、より好ましくは24時間以上、200時間以下の時間を要する吸湿条件で水蒸気と接触させて、含水率1質量%以上、好ましくは2質量%以上、より好ましくは5質量%以下の含水水酸化マグネシウム粉末を得る。具体的には、原料の水酸化マグネシウム粉末を、気流に浮遊させた状態や、流動層あるいは静置状態で水蒸気を含む気体に接触させることにより、含水率1質量%以上の含水水酸化マグネシウム粉末を得る。含水率1質量%以上となるまでの時間は、水酸化マグネシウムに接触させる水蒸気含有気体(通常は、空気)の相対湿度や温度によって調整することができる。水酸化マグネシウム粉末を吸湿させる際の条件は、温度は、一般に10〜100℃、好ましくは50〜90℃、相対湿度は一般に50〜98%RHである。   In the method (2), the raw material magnesium hydroxide powder (water content: 0.5% by mass or less) is used for 30 minutes or more, preferably 2 hours or more, more preferably, until the water content becomes 1% by mass. By contact with water vapor under moisture absorption conditions requiring a time of 24 hours or more and 200 hours or less, a water-containing magnesium hydroxide powder having a water content of 1% by mass or more, preferably 2% by mass or more, more preferably 5% by mass or less is obtained. Specifically, a raw magnesium hydroxide powder having a water content of 1% by mass or more is brought into contact with a gas containing water vapor in a state suspended in an air stream or in a fluidized bed or in a stationary state. Get. The time until the water content becomes 1% by mass or more can be adjusted by the relative humidity or temperature of the water vapor-containing gas (usually air) brought into contact with magnesium hydroxide. The conditions for absorbing the magnesium hydroxide powder are as follows. The temperature is generally 10 to 100 ° C., preferably 50 to 90 ° C., and the relative humidity is generally 50 to 98% RH.

上記のようにして得られた含水率が1質量%以上の含水水酸化マグネシウム粉末は、次いで、熱風乾燥器及び伝導伝熱乾燥器などの通常の乾燥装置に入れて、含水率を0.5質量%以下になるまで乾燥する。乾燥温度は、一般に100℃以上、好ましくは110〜150℃の範囲である。乾燥時間には特に制限はないが、一般に0.01〜2時間である。   The water-containing magnesium hydroxide powder having a water content of 1% by mass or more obtained as described above is then placed in a normal drying apparatus such as a hot air dryer or a conductive heat transfer dryer, so that the water content is 0.5. Dry until mass% or less. The drying temperature is generally 100 ° C. or higher, preferably 110 to 150 ° C. Although there is no restriction | limiting in particular in drying time, Generally it is 0.01 to 2 hours.

上記の方法により得られる本発明の水酸化マグネシウム粉末は、通常の海水法により製造された水酸化マグネシウム粉末と比較して、細孔径が3〜5nmの範囲にある細孔におけるログ微分細孔容積の最大値が低い値を示す。細孔径が3〜5nmの範囲にある細孔は、水酸化マグネシウムの一次粒子間に形成された細孔に相当することから、本発明の水酸化マグネシウム粉末は、通常の海水法により製造された水酸化マグネシウム粉末と比較して、一次粒子間の微細な細孔容積が少ないことより、BET比表面積が低く、吸湿性が低いと考えられる。本発明の水酸化マグネシウム粉末は、細孔径が3〜5nmの範囲にある細孔におけるログ微分細孔容積の最大値が、一般に0.001〜0.14cm3/gの範囲、好ましくは0.005〜0.10cm3/gの範囲にある。The magnesium hydroxide powder of the present invention obtained by the above method has a log differential pore volume in pores having a pore diameter in the range of 3 to 5 nm as compared with magnesium hydroxide powder produced by a normal seawater method. The maximum value of is low. Since the pores having a pore diameter in the range of 3 to 5 nm correspond to pores formed between the primary particles of magnesium hydroxide, the magnesium hydroxide powder of the present invention was produced by a normal seawater method. Compared to magnesium hydroxide powder, the BET specific surface area is low and the hygroscopicity is low because the fine pore volume between primary particles is small. In the magnesium hydroxide powder of the present invention, the maximum value of the log differential pore volume in the pores having a pore diameter in the range of 3 to 5 nm is generally in the range of 0.001 to 0.14 cm 3 / g, preferably 0.00. It is in the range of 005 to 0.10 cm 3 / g.

本発明の水酸化マグネシウム粉末は、それ自体単独で、通常の海水法により製造された水酸化マグネシウム粉末と比較して、吸湿性が低いという特性を有するが、さらにその吸湿性を低減させるために、表面を脂肪酸、脂肪酸せっけん又はシランカップリング剤により処理してもよい。脂肪酸、脂肪酸せっけん及びシランカップリング剤は、水酸化マグネシウム100質量部に対して0.1〜10質量部の範囲にて含有することが好ましい。脂肪酸の例としては、ステアリン酸及びオレイン酸を挙げることができる。脂肪酸せっけんは、ナトリウム塩又はカリウム塩であることが好ましい。   The magnesium hydroxide powder of the present invention itself has a characteristic of low hygroscopicity compared to magnesium hydroxide powder produced by a normal seawater method, but in order to further reduce the hygroscopicity The surface may be treated with a fatty acid, a fatty acid soap or a silane coupling agent. The fatty acid, the fatty acid soap and the silane coupling agent are preferably contained in a range of 0.1 to 10 parts by mass with respect to 100 parts by mass of magnesium hydroxide. Examples of fatty acids include stearic acid and oleic acid. The fatty acid soap is preferably a sodium salt or a potassium salt.

本発明の水酸化マグネシウム粉末は、樹脂、特に電線やケーブルの被覆材として用いる樹脂組成物の難燃剤として有利に使用することができる。難燃化の対象となる樹脂としては、ポリエチレン、ポリプロピレン、エチレン−プロピレンゴム(EPM)、エチレン−プロピレン−ジエン三元共重合体配合物(EPDM)、エチレン−アクリル酸エチル共重合体(EEA)、エチレン−酢酸ビニル共重合体などのポリオレフィンがある。これらの樹脂への水酸化マグネシウム粉末の配合量は、樹脂100質量部に対して、一般に10〜150質量部の範囲、好ましくは30〜100質量部の範囲にある。   The magnesium hydroxide powder of the present invention can be advantageously used as a flame retardant for a resin composition used as a coating material for resins, particularly electric wires and cables. Examples of flame retardant resins include polyethylene, polypropylene, ethylene-propylene rubber (EPM), ethylene-propylene-diene terpolymer blend (EPDM), and ethylene-ethyl acrylate copolymer (EEA). And polyolefins such as ethylene-vinyl acetate copolymer. The compounding quantity of the magnesium hydroxide powder to these resins is generally in the range of 10 to 150 parts by mass, preferably in the range of 30 to 100 parts by mass with respect to 100 parts by mass of the resin.

本発明の水酸化マグネシウム粉末を含む樹脂組成物は、バンバリーミキサー、タンブラー、加圧ニーダ、混練押出機、二軸押出機などの通常の混練機を用いて、樹脂と水酸化マグネシウム粉末とを混練することにより製造することができる。本発明の水酸化マグネシウム粉末を含む樹脂組成物は、所望により、タルクなどの無機充填材、シリコーンオイルや脂肪酸などの滑剤、シランカップリング剤や脂肪酸せっけんなどの界面活性剤、さらに可塑剤、軟化剤、老化防止剤、着色剤、酸化防止剤、紫外線吸収剤、安定化剤、架橋剤などの通常の樹脂組成物に用いられる各種添加剤を含むことができる。   The resin composition containing magnesium hydroxide powder of the present invention kneads the resin and magnesium hydroxide powder using a conventional kneader such as a Banbury mixer, tumbler, pressure kneader, kneading extruder, twin screw extruder or the like. Can be manufactured. The resin composition containing the magnesium hydroxide powder of the present invention may optionally contain an inorganic filler such as talc, a lubricant such as silicone oil or fatty acid, a surfactant such as silane coupling agent or fatty acid soap, a plasticizer, and a softening agent. Various additives used for usual resin compositions such as an agent, an antioxidant, a colorant, an antioxidant, an ultraviolet absorber, a stabilizer, and a crosslinking agent can be included.

本実施例において、含水率、平均二次粒子径、二次粒子の球形度、細孔径が3〜5nmの範囲にある細孔におけるログ微分細孔容積の最大値及び吸湿特性は以下の方法により測定した。   In this example, the moisture content, the average secondary particle diameter, the sphericity of the secondary particles, the maximum value of the log differential pore volume and the moisture absorption characteristics in the pores having a pore diameter in the range of 3 to 5 nm are as follows. It was measured.

[含水率]
試料5gを水分計(MX−50、(株)エー・アンド・ディ製)に入れて、温度180℃で加熱し、質量減少が平衡に達したたときの質量減少率を含水率として算出する。
[Moisture content]
5 g of a sample is put into a moisture meter (MX-50, manufactured by A & D Co., Ltd.), heated at a temperature of 180 ° C., and the mass reduction rate when the mass reduction reaches equilibrium is calculated as the moisture content. .

[平均二次粒子径]
試料0.5gをエタノール50mLに投入し、超音波ホモジナイザーを用いて出力200μAの条件で2分間分散処理を行なって水酸化マグネシウム懸濁液を調製する。次いで該水酸化マグネシウム懸濁液に含まれる水酸化マグネシウム粒子の体積基準の平均粒子径を、レーザー回折散乱法粒度分布計(マイクロトラック粒度分布測定装置9320HRA(X−100)、日機装(株)製)を用いて測定する。
[Average secondary particle size]
0.5 g of a sample is put into 50 mL of ethanol, and a dispersion treatment is performed for 2 minutes under the condition of an output of 200 μA using an ultrasonic homogenizer to prepare a magnesium hydroxide suspension. Next, the volume-based average particle diameter of the magnesium hydroxide particles contained in the magnesium hydroxide suspension is determined by a laser diffraction scattering method particle size distribution analyzer (Microtrac particle size distribution measuring device 9320HRA (X-100), manufactured by Nikkiso Co., Ltd.). ) To measure.

[二次粒子の球形度]
走査型電子顕微鏡(SEM)の試料台角度を0度(水平)にして、水酸化マグネシウム二次粒子を撮影し、二次粒子の径を定めて、その長さを測定する。この径を測定した方向を回転軸として、試料台角度を水平位置から+45度傾けて水酸化マグネシウム二次粒子を撮影し、回転軸に直交する方向における二次粒子の径を測定する。次いで試料台角度を水平位置から−45度傾けて水酸化マグネシウム二次粒子を撮影し、回転軸に直交する方向における二次粒子の径を測定する。試料台角度0度、+45度、−45度で測定した水酸化マグネシウム二次粒子の径のうち最も長い径の長さをX=1として、次に長い径の長さY、そして最も短い径の長さZを相対値として算出する。
[Sphericality of secondary particles]
The sample stage angle of the scanning electron microscope (SEM) is set to 0 degree (horizontal), the magnesium hydroxide secondary particles are photographed, the diameter of the secondary particles is determined, and the length thereof is measured. Taking the direction in which the diameter is measured as the rotation axis, the sample stage angle is inclined +45 degrees from the horizontal position, and the magnesium hydroxide secondary particles are photographed, and the diameter of the secondary particles in the direction perpendicular to the rotation axis is measured. Next, the sample stage angle is tilted by −45 degrees from the horizontal position, the magnesium hydroxide secondary particles are photographed, and the diameter of the secondary particles in the direction perpendicular to the rotation axis is measured. Among the diameters of the magnesium hydroxide secondary particles measured at sample stage angles of 0 °, + 45 °, and −45 °, the longest diameter is X = 1, the next longest length Y, and the shortest diameter. Is calculated as a relative value.

[ログ微分細孔容積の最大値]
Quantachrome(株)製、全自動ガス吸着量測定装置(Autosorb−3B)を用いて、窒素ガス吸着法により、脱離等温線を測定し、その脱離等温線のデータからBJH法により、比表面積を基準とした細孔径が3〜5nmの範囲にある細孔のログ微分細孔容積を算出し、その最大値を求める。
[Maximum log differential pore volume]
A desorption isotherm was measured by a nitrogen gas adsorption method using a fully automatic gas adsorption amount measuring device (Autosorb-3B) manufactured by Quantachrome Co., Ltd. The log differential pore volume of pores having a pore diameter in the range of 3 to 5 nm based on the above is calculated, and the maximum value is obtained.

[吸湿特性]
水酸化マグネシウム粉末を温度30℃、相対湿度80%RHに設定した恒湿恒温器に投入し、投入直後から180分間までは30分毎に、その後は60分毎に水酸化マグネシウム粉末の質量を測定し、その質量増加率を水分吸湿率として算出する。
[Hygroscopic properties]
Magnesium hydroxide powder is put into a thermo-hygrostat set at a temperature of 30 ° C. and a relative humidity of 80% RH. The mass of the magnesium hydroxide powder is measured every 30 minutes until 180 minutes immediately after the addition and every 60 minutes thereafter. Measure and calculate the mass increase rate as the moisture absorption rate.

[実施例1]
(1)含水水酸化マグネシウム固形物の製造
溶存炭酸イオン濃度が二酸化炭素換算で80質量ppmの海水に石灰乳を添加し、溶存炭酸イオンを炭酸カルシウムとして析出させて、溶存炭酸イオン濃度を二酸化炭素換算で10質量ppmとなるまで低減させた後、砂ろ過器にてろ過して、炭酸カルシウムを除去した。溶存炭酸イオンの含有量を低減させた海水に、該海水に含まれている水酸化マグネシウムイオンの反応率が80%となる割合にて石灰乳を加えて混合液を調製し、その混合液をシックナーに投入した。シックナーにて、析出した水酸化マグネシウムの鱗片状一次粒子を循環させ、鱗片状一次粒子を球状二次粒子に凝集、成長させて、球状二次粒子が分散されている水酸化マグネシウムスラリーを得た。この水酸化マグネシウムスラリーをシックナー下部より抜き取り、水で洗浄して残留塩分を取り除いたのち、ヌッチェで吸引ろ過して、含水率が33.5質量%の含水水酸化マグネシウム固形物を得た。
[Example 1]
(1) Production of hydrous magnesium hydroxide solid matter Lime milk is added to seawater having a dissolved carbonate ion concentration of 80 mass ppm in terms of carbon dioxide, and the dissolved carbonate ions are precipitated as calcium carbonate. After reducing to 10 mass ppm in terms of conversion, it was filtered with a sand filter to remove calcium carbonate. Lime milk is added to seawater in which the content of dissolved carbonate ions is reduced to a rate at which the reaction rate of magnesium hydroxide ions contained in the seawater is 80% to prepare a mixed solution. I put it in thickener. In the thickener, the precipitated magnesium hydroxide scaly primary particles were circulated, and the scaly primary particles were agglomerated and grown into spherical secondary particles to obtain a magnesium hydroxide slurry in which the spherical secondary particles were dispersed. . This magnesium hydroxide slurry was extracted from the bottom of the thickener, washed with water to remove residual salt, and then suction filtered with Nutsche to obtain a hydrous magnesium hydroxide solid having a water content of 33.5% by mass.

(2)水酸化マグネシウム粉末の製造
含水水酸化マグネシウム固形物を、温度85℃、相対湿度65%RHに設定した恒湿恒温器に入れて48時間静置して、含水率が1.1質量%の含水水酸化マグネシウム粉末を得た(含水率が5質量%となるまでの時間は約30時間であった)。次いで、含水水酸化マグネシウム粉末を温度120℃に設定した箱形乾燥器に入れて2時間乾燥した。得られた水酸化マグネシウム粉末は含水率が0.5質量%以下であった。
(2) Production of magnesium hydroxide powder The hydrous magnesium hydroxide solid was placed in a thermo-hygrostat set at a temperature of 85 ° C. and a relative humidity of 65% RH and allowed to stand for 48 hours. % Hydrous magnesium hydroxide powder was obtained (the time until the water content became 5% by mass was about 30 hours). Next, the hydrous magnesium hydroxide powder was placed in a box dryer set at a temperature of 120 ° C. and dried for 2 hours. The obtained magnesium hydroxide powder had a water content of 0.5% by mass or less.

得られた水酸化マグネシウム粉末の粒子形状を走査型電子顕微鏡(SEM)を用いて観察した。図1に、SEM写真を示す。図1の写真から、水酸化マグネシウム粉末は、鱗片状の一次粒子が凝集して形成された、球状の二次粒子から構成されていることが確認された。   The particle shape of the obtained magnesium hydroxide powder was observed using a scanning electron microscope (SEM). FIG. 1 shows an SEM photograph. From the photograph in FIG. 1, it was confirmed that the magnesium hydroxide powder was composed of spherical secondary particles formed by agglomeration of scaly primary particles.

得られた水酸化マグネシウム粉末の化学成分、BET比表面積、平均二次粒子径、細孔径が3〜5nmの範囲にある細孔におけるログ微分細孔容積の最大値及び二次粒子の球形度を表1に示す。水酸化マグネシウム粉末の吸湿特性の測定結果を図2に示す。   The chemical component of the obtained magnesium hydroxide powder, the BET specific surface area, the average secondary particle diameter, the maximum value of the log differential pore volume in the pores having a pore diameter in the range of 3 to 5 nm, and the sphericity of the secondary particles Table 1 shows. The measurement result of the hygroscopic property of the magnesium hydroxide powder is shown in FIG.

[実施例2]
実施例1(1)と同様の方法で製造した含水率33.5質量%の含水水酸化マグネシウム固形物を、温度120℃に設定した箱形乾燥器に入れて1時間乾燥して、含水率を0.5質量%以下の水酸化マグネシウム粉末とした。この水酸化マグネシウム粉末を、温度80℃、相対湿度80%RHに設定した恒湿恒温器に入れて、24時間静置した。静置後の水酸化マグネシウム粉末は、含水率が2.1質量%の含水水酸化マグネシウム粉末であった。次いで、含水水酸化マグネシウム粉末を温度120℃に設定した箱形乾燥器に入れて2時間乾燥した。得られた水酸化マグネシウム粉末は含水率が0.5質量%以下であった。
[Example 2]
A water-containing magnesium hydroxide solid product having a water content of 33.5% by mass produced in the same manner as in Example 1 (1) was placed in a box-type dryer set at a temperature of 120 ° C. and dried for 1 hour to obtain a water content. Was made into magnesium hydroxide powder of 0.5 mass% or less. This magnesium hydroxide powder was placed in a thermo-hygrostat set at a temperature of 80 ° C. and a relative humidity of 80% RH, and allowed to stand for 24 hours. The magnesium hydroxide powder after standing was a water-containing magnesium hydroxide powder having a water content of 2.1% by mass. Next, the hydrous magnesium hydroxide powder was placed in a box dryer set at a temperature of 120 ° C. and dried for 2 hours. The obtained magnesium hydroxide powder had a water content of 0.5% by mass or less.

得られた水酸化マグネシウム粉末の粒子形状を走査型電子顕微鏡(SEM)を用いて観察した結果、鱗片状の一次粒子が凝集した球状の二次粒子を形成していることが確認された。   As a result of observing the particle shape of the obtained magnesium hydroxide powder using a scanning electron microscope (SEM), it was confirmed that spherical secondary particles formed by aggregation of scaly primary particles were formed.

得られた水酸化マグネシウム粉末の化学成分、BET比表面積、平均二次粒子径、細孔径が3〜5nmの範囲にある細孔におけるログ微分細孔容積の最大値及び二次粒子の球形度を表1に示す。また、水酸化マグネシウム粉末の吸湿特性の測定結果を図2に示す。   The chemical component of the obtained magnesium hydroxide powder, the BET specific surface area, the average secondary particle diameter, the maximum value of the log differential pore volume in the pores having a pore diameter in the range of 3 to 5 nm, and the sphericity of the secondary particles Table 1 shows. Moreover, the measurement result of the moisture absorption characteristic of magnesium hydroxide powder is shown in FIG.

[比較例1]
(1)含水水酸化マグネシウム固形物の製造
実施例1(1)と同様にして溶存炭酸イオン濃度を二酸化炭素換算で10質量ppmとなるまで低減させた海水に、該海水に含まれている水酸化マグネシウムイオンの反応率が90%となる割合にて石灰乳を加えて混合液を調製し、その混合液をシックナーに投入した。シックナーにて、析出した水酸化マグネシウムの鱗片状一次粒子を循環させ、鱗片状一次粒子を球状二次粒子に凝集、成長させて、球状二次粒子が分散されている水酸化マグネシウムスラリーを得た。この水酸化マグネシウムスラリーをシックナー下部より抜き取り、水で洗浄して残留塩分を取り除いたのち、ヌッチェで吸引ろ過して、含水率が38.5質量%の含水水酸化マグネシウム固形物を得た。
[Comparative Example 1]
(1) Manufacture of hydrous magnesium hydroxide solids Water contained in seawater in which the dissolved carbonate ion concentration was reduced to 10 mass ppm in terms of carbon dioxide in the same manner as in Example 1 (1) Lime milk was added at a rate that the reaction rate of magnesium oxide ions was 90% to prepare a mixed solution, and the mixed solution was put into a thickener. In the thickener, the precipitated magnesium hydroxide scaly primary particles were circulated, and the scaly primary particles were agglomerated and grown into spherical secondary particles to obtain a magnesium hydroxide slurry in which the spherical secondary particles were dispersed. . The magnesium hydroxide slurry was extracted from the bottom of the thickener, washed with water to remove residual salt, and then suction filtered with Nutsche to obtain a water-containing magnesium hydroxide solid having a water content of 38.5% by mass.

(2)水酸化マグネシウム粉末の製造
含水水酸化マグネシウム固形物を、温度120℃に設定した箱形乾燥器に入れて1時間乾燥した。得られた水酸化マグネシウム粉末は含水率が0.5質量%以下であった。
(2) Production of Magnesium Hydroxide Powder The hydrous magnesium hydroxide solid was placed in a box dryer set at a temperature of 120 ° C. and dried for 1 hour. The obtained magnesium hydroxide powder had a water content of 0.5% by mass or less.

得られた水酸化マグネシウム粉末の粒子形状を走査型電子顕微鏡(SEM)を用いて観察した結果、鱗片状の一次粒子が凝集した球状の二次粒子を形成していることが確認された。   As a result of observing the particle shape of the obtained magnesium hydroxide powder using a scanning electron microscope (SEM), it was confirmed that spherical secondary particles formed by aggregation of scaly primary particles were formed.

得られた水酸化マグネシウム粉末の化学成分、BET比表面積、平均二次粒子径、細孔径が3〜5nmの範囲にある細孔におけるログ微分細孔容積の最大値及び二次粒子の球形度を表1に示す。また、水酸化マグネシウム粉末の吸湿特性の測定結果を図2に示す。   The chemical component of the obtained magnesium hydroxide powder, the BET specific surface area, the average secondary particle diameter, the maximum value of the log differential pore volume in the pores having a pore diameter in the range of 3 to 5 nm, and the sphericity of the secondary particles Table 1 shows. Moreover, the measurement result of the moisture absorption characteristic of magnesium hydroxide powder is shown in FIG.

Figure 2008120746
Figure 2008120746

図2の結果から明らかなように、BET比表面積が本発明の範囲にある水酸化マグネシウム粉末は、吸湿性が低いことが分かる。   As can be seen from the results of FIG. 2, the magnesium hydroxide powder having a BET specific surface area within the range of the present invention has low hygroscopicity.

[実施例3]
容量3Lのガラスビーカーに、純水2000gを入れ、70℃に加熱した後、表面処理材としてステアリン酸ナトリウム(日本油脂(株)製、ノンサールSN−15)を固形分として2.5gを加えたのち、撹拌して溶解した。このステアリン酸ナトリウム水溶液中に実施例2で製造した水酸化マグネシウム粉末100gを投入し、70℃の温度に維持しながら1時間撹拌して、ステアリン酸ナトリウム水溶液中に水酸化マグネシウム粉末を分散させて、水酸化マグネシウム粉末の表面をステアリン酸で処理した。
水酸化マグネシウム分散液をヌッチェで吸引ろ過し、得られた水酸化マグネシウム含有固形分を、固形分に対して20倍の水で洗浄した。次いで、洗浄後の固形分を箱形乾燥機にて120℃の温度で12時間乾燥を行なった後、サンプルミルで解砕した。得られた水酸化マグネシウム粉末には、水酸化マグネシウム100質量部に対して、表面処理剤が2.3質量部付着していた。
表面処理した水酸化マグネシウム粉末の吸湿特性を図2に示す。360分後の吸湿率は0.5質量%で表面処理前の水酸化マグネシウム粉末(実施例2)の約40%であった。
[Example 3]
In a 3 L glass beaker, 2000 g of pure water was added and heated to 70 ° C., and then 2.5 g of sodium stearate (Non-Sal SN-15, manufactured by NOF Corporation) was added as a surface treatment material. After that, it was dissolved by stirring. Into this sodium stearate aqueous solution, 100 g of the magnesium hydroxide powder produced in Example 2 was added and stirred for 1 hour while maintaining the temperature at 70 ° C. to disperse the magnesium hydroxide powder in the sodium stearate aqueous solution. The surface of the magnesium hydroxide powder was treated with stearic acid.
The magnesium hydroxide dispersion was suction filtered with a Nutsche, and the obtained magnesium hydroxide-containing solid content was washed with 20 times the water of the solid content. Next, the solid content after washing was dried for 12 hours at a temperature of 120 ° C. in a box dryer, and then crushed by a sample mill. In the obtained magnesium hydroxide powder, 2.3 parts by mass of the surface treatment agent was adhered to 100 parts by mass of magnesium hydroxide.
The moisture absorption characteristics of the surface treated magnesium hydroxide powder are shown in FIG. The moisture absorption after 360 minutes was 0.5% by mass, which was about 40% of the magnesium hydroxide powder before the surface treatment (Example 2).

[実施例4]
上記実施例3で得た表面処理した水酸化マグネシウム100質量とエチレン−アクリル酸エチル共重合体(EEA)100質量部とを170℃の温度に加熱したブラベンダープラストグラフにて回転数60rpmの条件で15分間混練し、次いで150℃の温度に加熱したロールにて5分間混練した後、更に160℃の温度で混練機にて混練して樹脂組成物を得た。得られた樹脂組成物を160℃の温度で加圧成形して、厚さ1mmと3mmの樹脂組成物シートとした。
[Example 4]
The condition of a rotation speed of 60 rpm in a Brabender plastograph in which 100 parts by mass of the surface-treated magnesium hydroxide obtained in Example 3 and 100 parts by mass of an ethylene-ethyl acrylate copolymer (EEA) were heated to a temperature of 170 ° C. And kneading for 5 minutes with a roll heated to a temperature of 150 ° C., and further kneading with a kneader at a temperature of 160 ° C. to obtain a resin composition. The obtained resin composition was pressure-molded at a temperature of 160 ° C. to obtain resin composition sheets having a thickness of 1 mm and 3 mm.

上記のようにして得られた樹脂組成物シートについて、メルトフローインデックス(MFI)、破断引張応力、伸び及び酸素指数の測定を行なった。その結果、MFIは0.25g/10分(測定温度190℃、測定荷重2.16kg)、破断引張応力は9.0MPa、伸びは850%、酸素指数は26.0であった。   The resin composition sheet obtained as described above was measured for melt flow index (MFI), tensile stress at break, elongation and oxygen index. As a result, MFI was 0.25 g / 10 min (measurement temperature 190 ° C., measurement load 2.16 kg), breaking tensile stress was 9.0 MPa, elongation was 850%, and oxygen index was 26.0.

なお、MFI、破断引張応力及び伸びの測定には厚さ1mmの樹脂組成物シートを用い、酸素指数の測定には厚さ3mmの樹脂組成物シートを用いた。破断引張応力及び伸びは、JIS−K−7113に準拠した方法で測定した(試験片1号ダンベルを使用)。酸素指数は、JIS−K−7201に準拠した方法で測定した。   A 1 mm thick resin composition sheet was used for measurement of MFI, breaking tensile stress and elongation, and a 3 mm thick resin composition sheet was used for measurement of oxygen index. The breaking tensile stress and elongation were measured by a method based on JIS-K-7113 (using test piece No. 1 dumbbell). The oxygen index was measured by a method based on JIS-K-7201.

実施例1にて製造した水酸化マグネシウム粉末の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of magnesium hydroxide powder produced in Example 1. FIG. 実施例1〜3及び比較例1にて製造した水酸化マグネシウム粉末の吸湿特性の測定結果を示すグラフである。It is a graph which shows the measurement result of the moisture absorption characteristic of the magnesium hydroxide powder manufactured in Examples 1-3 and Comparative Example 1.

Claims (12)

鱗片状の一次粒子から形成された、平均粒子径が1.0〜4.8μmの範囲にある球状二次粒子からなり、BET比表面積が1〜10m2/gの範囲にある水酸化マグネシウム粉末。Magnesium hydroxide powder comprising spherical secondary particles having an average particle diameter in the range of 1.0 to 4.8 μm and a BET specific surface area in the range of 1 to 10 m 2 / g, formed from scale-like primary particles. . 球状二次粒子が、互いに直交する三方向における径のうち、最も長い径の長さを1としたとき、他の二つの径の長さがそれぞれ0.6〜1の範囲にある請求項1に記載の水酸化マグネシウム粉末。   2. The spherical secondary particles have a length of the other two diameters in the range of 0.6 to 1, respectively, when the length of the longest diameter among the diameters in three directions orthogonal to each other is 1. 2. Magnesium hydroxide powder described in 1. 細孔径が3〜5nmの範囲にある細孔におけるログ微分細孔容積の最大値が0.001〜0.14cm3/gの範囲にある請求項1に記載の水酸化マグネシウム粉末。2. The magnesium hydroxide powder according to claim 1, wherein the maximum value of the log differential pore volume in pores having a pore diameter in the range of 3 to 5 nm is in the range of 0.001 to 0.14 cm 3 / g. 表面が、脂肪酸、脂肪酸せっけん又はシランカップリング剤により処理されている請求項1乃至3のうちのいずれかの項に記載の水酸化マグネシウム粉末。   The magnesium hydroxide powder according to any one of claims 1 to 3, wherein the surface is treated with a fatty acid, a fatty acid soap, or a silane coupling agent. 脂肪酸、脂肪酸せっけん又はシランカップリング剤を水酸化マグネシウム100質量部に対して0.1〜10質量部の範囲にて含有する請求項4に記載の水酸化マグネシウム粉末。   The magnesium hydroxide powder of Claim 4 which contains a fatty acid, fatty acid soap, or a silane coupling agent in the range of 0.1-10 mass parts with respect to 100 mass parts of magnesium hydroxide. 樹脂の難燃剤用である請求項1乃至5のうちのいずれかの項に記載の水酸化マグネシウム粉末。   The magnesium hydroxide powder according to any one of claims 1 to 5, which is used for a flame retardant for a resin. 請求項1乃至5のうちのいずれかの項に記載の水酸化マグネシウム粉末が練り込まれた樹脂組成物。   A resin composition in which the magnesium hydroxide powder according to claim 1 is kneaded. 海水中のマグネシウムイオンとアルカリ源とを反応させることにより得られた、鱗片状の一次粒子から形成された球状二次粒子が分散されている水酸化マグネシウムスラリー、又は該水酸化マグネシウムスラリーを脱水処理して得られた含水率10〜50質量%の含水水酸化マグネシウム固形物を、含水率が5質量%となるまで2時間以上の時間を要する乾燥条件にて乾燥して、含水率1〜5質量%の含水水酸化マグネシウム粉末を得て、次いで該含水水酸化マグネシウム粉末を含水率が0.5質量%以下になるまで乾燥することからなる請求項1に記載の水酸化マグネシウム粉末の製造方法。   Magnesium hydroxide slurry in which spherical secondary particles formed from scaly primary particles obtained by reacting magnesium ions in seawater with an alkali source are dispersed, or the magnesium hydroxide slurry is dehydrated The water-containing magnesium hydroxide solid substance having a water content of 10 to 50% by mass obtained by drying under a drying condition requiring 2 hours or more until the water content becomes 5% by mass is obtained. The method for producing a magnesium hydroxide powder according to claim 1, comprising obtaining a magnesium hydroxide powder containing 5% by mass, and then drying the magnesium hydroxide powder until the moisture content becomes 0.5% by mass or less. . 水酸化マグネシウムスラリー又は含水水酸化マグネシウム固形物の乾燥条件が、温度が50〜100℃、相対湿度が50〜85%RHの条件である請求項8に記載の水酸化マグネシウム粉末の製造方法。   The method for producing a magnesium hydroxide powder according to claim 8, wherein the drying conditions of the magnesium hydroxide slurry or the hydrated magnesium hydroxide solid are a temperature of 50 to 100 ° C and a relative humidity of 50 to 85% RH. 海水中のマグネシウムイオンとアルカリ源とを反応させることにより得られた、鱗片状の一次粒子から形成された球状二次粒子が分散されている水酸化マグネシウムスラリーから製造された、鱗片状の一次粒子から形成された、平均粒子径が1.0〜4.8μmの範囲にある球状二次粒子からなり、BET比表面積が11〜50m2/gの範囲にあって、含水率が0.5質量%以下である水酸化マグネシウム粉末を、含水率が1質量%となるまで30分以上の時間を要する吸湿条件にて水蒸気と接触させて、含水率1質量%以上の含水水酸化マグネシウム粉末を得て、次いで該含水水酸化マグネシウム粉末を含水率が0.5質量%以下になるまで乾燥することからなる請求項1に記載の水酸化マグネシウム粉末の製造方法。Scale-like primary particles produced from magnesium hydroxide slurry in which spherical secondary particles formed from scale-like primary particles obtained by reacting magnesium ions in seawater with an alkali source are dispersed. Formed from spherical secondary particles having an average particle diameter of 1.0 to 4.8 μm, a BET specific surface area of 11 to 50 m 2 / g, and a water content of 0.5 mass. % Of the magnesium hydroxide powder is brought into contact with water vapor under moisture absorption conditions that require a time of 30 minutes or more until the water content becomes 1% by mass to obtain a hydrous magnesium hydroxide powder having a water content of 1% by mass or more. The method for producing magnesium hydroxide powder according to claim 1, wherein the water-containing magnesium hydroxide powder is then dried until the water content becomes 0.5 mass% or less. 含水水酸化マグネシウム粉末の含水率が5質量%以下である請求項10に記載の水酸化マグネシウム粉末の製造方法。   The method for producing a magnesium hydroxide powder according to claim 10, wherein the water content of the hydrous magnesium hydroxide powder is 5% by mass or less. 水酸化マグネシウム粉末の吸湿条件が、温度が10〜100℃、相対湿度が50〜98%RHの条件である請求項10に記載の水酸化マグネシウム粉末の製造方法。   The method for producing a magnesium hydroxide powder according to claim 10, wherein the moisture absorption conditions of the magnesium hydroxide powder are a temperature of 10 to 100 ° C and a relative humidity of 50 to 98% RH.
JP2009507535A 2007-03-30 2008-03-28 Magnesium hydroxide powder and method for producing the same Active JP5172824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009507535A JP5172824B2 (en) 2007-03-30 2008-03-28 Magnesium hydroxide powder and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007092113 2007-03-30
JP2007092113 2007-03-30
JP2009507535A JP5172824B2 (en) 2007-03-30 2008-03-28 Magnesium hydroxide powder and method for producing the same
PCT/JP2008/056178 WO2008120746A1 (en) 2007-03-30 2008-03-28 Magnesium hydroxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPWO2008120746A1 true JPWO2008120746A1 (en) 2010-07-15
JP5172824B2 JP5172824B2 (en) 2013-03-27

Family

ID=39808326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009507535A Active JP5172824B2 (en) 2007-03-30 2008-03-28 Magnesium hydroxide powder and method for producing the same

Country Status (4)

Country Link
JP (1) JP5172824B2 (en)
KR (1) KR101369121B1 (en)
CN (1) CN101679058B (en)
WO (1) WO2008120746A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1009805A2 (en) * 2009-03-27 2016-11-22 Council Scient Ind Res process for the simultaneous production of potassium sulphate, ammonium sulphate, magnesium hydroxide and / or magnesium oxide from a mixed salt of cainite and ammonia
JP5564850B2 (en) * 2009-08-04 2014-08-06 株式会社オートネットワーク技術研究所 Flame retardant, flame retardant composition and insulated wire
JP5568930B2 (en) * 2009-09-24 2014-08-13 株式会社オートネットワーク技術研究所 Flame retardant, flame retardant composition and insulated wire
JP5628063B2 (en) * 2010-03-26 2014-11-19 富士フイルム株式会社 Method for producing metal hydroxide fine particles for flame retardant
JP5773695B2 (en) * 2011-03-23 2015-09-02 タテホ化学工業株式会社 Spherical magnesium hydroxide particles, spherical magnesium oxide particles, and methods for producing them
JP5864178B2 (en) * 2011-09-16 2016-02-17 タテホ化学工業株式会社 Spherical magnesium hydroxide particles having a high specific surface area, spherical magnesium oxide particles, and methods for producing them
KR101115372B1 (en) * 2011-10-18 2012-02-15 한국해양연구원 Method for manufacturing concentrated magnesium from natural seawater
JP5992846B2 (en) * 2013-02-13 2016-09-14 タテホ化学工業株式会社 Rod-shaped magnesium hydroxide particles having a high specific surface area, rod-shaped magnesium oxide particles, and methods for producing them
CN103819935A (en) * 2014-01-31 2014-05-28 许营春 Method for preparing magnesium hydrate fire retardant through surface modification treatment by using composite wet method
KR101965716B1 (en) * 2014-06-30 2019-04-04 재단법인 포항산업과학연구원 Method for manufacturing magnesium carbonate, with high purity using magnesium hydroxide
JP6031177B2 (en) * 2015-11-17 2016-11-24 タテホ化学工業株式会社 Spherical magnesium hydroxide particles having a high specific surface area and method for producing the same
CN106854312A (en) * 2015-12-08 2017-06-16 江苏达胜高聚物股份有限公司 A kind of insulating materials for nuclear grade cable and preparation method thereof
EP3575267A1 (en) * 2018-06-01 2019-12-04 Omya International AG Development of surface-treated magnesium hydroxide-comprising material
JP7384375B2 (en) * 2019-03-28 2023-11-21 日本ソリッド株式会社 Production method of low boron containing magnesium hydroxide
CN111793248B (en) * 2020-07-22 2021-10-08 江西广源化工有限责任公司 Talcum powder-magnesium hydroxide composite inorganic flame-retardant filler and preparation method thereof
CN113307290B (en) * 2021-05-20 2023-03-21 青海盐湖工业股份有限公司 Agglomerated magnesium hydroxide with large particle size and preparation method thereof
CN113980490A (en) * 2021-11-16 2022-01-28 江西广源化工有限责任公司 Magnesium hydroxide with high specific surface area, and preparation method and application thereof
CN114410010B (en) * 2021-11-23 2023-12-01 天津金发新材料有限公司 Flame-retardant polypropylene material and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136119A (en) * 1984-07-27 1986-02-20 Asahi Glass Co Ltd Production of highly water-resistant magnesium oxide
JPS61168522A (en) * 1985-01-19 1986-07-30 Asahi Glass Co Ltd Magnesium hydroxide and production thereof
JP2731854B2 (en) * 1989-02-10 1998-03-25 協和化学工業株式会社 Method for producing high hydration resistant and high fluidity magnesium oxide
JP2736545B2 (en) * 1989-04-27 1998-04-02 宇部マテリアルズ株式会社 Magnesium hydroxide particles
AT392774B (en) * 1989-05-05 1991-06-10 Veitscher Magnesitwerke Ag FINE POWDERED MAGNESIUM HYDROXIDE AND METHOD FOR THE PRODUCTION THEREOF
JPH03122011A (en) * 1989-10-02 1991-05-24 Nippon Chem Ind Co Ltd Production of magnesium hydroxide
AUPM985294A0 (en) * 1994-12-02 1995-01-05 Flamemag International Gie Magnesium process
MY113181A (en) * 1994-07-23 2001-12-31 Orica Australia Pty Ltd Magnesium hydroxide slurries
US5854411A (en) 1997-01-09 1998-12-29 Incyte Pharmaceuticals, Inc. Human chloride channel
JP3847504B2 (en) * 1999-11-29 2006-11-22 宇部マテリアルズ株式会社 Magnesium hydroxide slurry and method for producing the same
JP4168361B2 (en) 1999-11-30 2008-10-22 パラマウント硝子工業株式会社 Inorganic fiber mat standard plate for measuring thermal conductivity and method for producing the same
JP3965270B2 (en) * 2000-04-19 2007-08-29 宇部マテリアルズ株式会社 Highly dispersible high purity magnesium hydroxide powder, method for producing the same, and magnesium hydroxide slurry
JP4336148B2 (en) * 2003-06-12 2009-09-30 宇部マテリアルズ株式会社 Magnesium oxide powder and method for producing the same

Also Published As

Publication number Publication date
JP5172824B2 (en) 2013-03-27
KR101369121B1 (en) 2014-03-04
WO2008120746A1 (en) 2008-10-09
CN101679058A (en) 2010-03-24
KR20090125212A (en) 2009-12-03
CN101679058B (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5172824B2 (en) Magnesium hydroxide powder and method for producing the same
AU708040B2 (en) New process for the preparation of precipitated silica, new precipitated silicas containing aluminium and their use for the reinforcement of elastomers
US6146454A (en) Process for the precipitated silica new precipitated silicas containing zinc and their use for the reinforcement of elastomers
US6143066A (en) Process for the preparation of precipitated silica, new precipitated silicas containing zinc and their use for the reinforcement of elastomers
KR20070093902A (en) Method for the production of a finely crystalline boehmite and application of said boehmite as flame retardant in plastics
JP5128882B2 (en) Magnesium hydroxide fine particles and method for producing the same
JP6008642B2 (en) Flat crystalline alumina composite oxide fine particle aggregate, crystalline alumina composite oxide particle comprising flat crystalline alumina composite oxide fine particle aggregate, flat crystalline alumina composite oxide fine particle aggregate, and crystalline alumina Method for producing composite oxide particles
JP2645086B2 (en) Silica-coated magnesium hydroxide and method for producing the same
TW201437347A (en) Flame retardant, flame retardant composition and compact
JP2021507863A (en) Preparation of silica-coated calcium carbonate with increased surface area and mesoporous properties
JP3910503B2 (en) Method for producing basic magnesium carbonate
JP2008001756A (en) Acid acceptor having improved electrical insulating property, composition containing the same and its molded article
US5935543A (en) Amorphous precipitated silica
KR102573218B1 (en) Precipitated calcium carbonate to reduce emissions of volatile organic compounds
EP3110758A1 (en) Process for the preparation of precipitated silicas, precipitated silicas and their uses, in particular for the reinforcement of polymers
JP5766635B2 (en) Fibrous basic magnesium sulfate powder and method for producing the same
WO2018159484A1 (en) Calcium carbonate and production method therefor
JP3499716B2 (en) Acid resistant magnesium hydroxide particle flame retardant and flame retardant resin composition
Klapiszewski et al. Magnesium silicate conjugated with calcium lignosulfonate: In situ synthesis and comprehensive physicochemical evaluations
Klapiszewski et al. Lignosulfonate and silica as precursors of advanced composites
JPS6348809B2 (en)
KR102398816B1 (en) Process for the preparation of precipitated silicas, precipitated silicas and their uses, in particular for the reinforcement of polymers
CN115975398B (en) Preparation method of special nano calcium carbonate for breathable film
Xu et al. One-step wet synthesis and characterisation of hydrophobic magnesium hydroxide
JPH11193336A (en) Hydrogen halide trapping agent for use in halogen-containing resin and halogen-containing resin composition containing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R150 Certificate of patent or registration of utility model

Ref document number: 5172824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250