KR101115372B1 - Method for manufacturing concentrated magnesium from natural seawater - Google Patents

Method for manufacturing concentrated magnesium from natural seawater Download PDF

Info

Publication number
KR101115372B1
KR101115372B1 KR1020110106660A KR20110106660A KR101115372B1 KR 101115372 B1 KR101115372 B1 KR 101115372B1 KR 1020110106660 A KR1020110106660 A KR 1020110106660A KR 20110106660 A KR20110106660 A KR 20110106660A KR 101115372 B1 KR101115372 B1 KR 101115372B1
Authority
KR
South Korea
Prior art keywords
concentration
magnesium
coal
naoh
natural
Prior art date
Application number
KR1020110106660A
Other languages
Korean (ko)
Inventor
강도형
아판 아부
허수진
오철홍
박흥식
Original Assignee
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양연구원 filed Critical 한국해양연구원
Priority to KR1020110106660A priority Critical patent/KR101115372B1/en
Priority to PCT/KR2011/009036 priority patent/WO2013058430A1/en
Application granted granted Critical
Publication of KR101115372B1 publication Critical patent/KR101115372B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/22Magnesium hydroxide from magnesium compounds with alkali hydroxides or alkaline- earth oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D36/00Filter circuits or combinations of filters with other separating devices
    • B01D36/04Combinations of filters with settling tanks
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE: A method for generating magnesium of high concentration from natural seawater is provided to precipitate magnesium ions contained in natural seawater and collecting magnesium hydroxide by adding coal and NaOH into the natural seawater. CONSTITUTION: A method for generating magnesium of high concentration from natural seawater includes the following: coal and NaOH are added into natural seawater to precipitate magnesium into magnesium hydroxide; the natural seawater of precipitated magnesium hydroxide is filtered; and the magnesium is collected in the form of the magnesium hydroxide. The coal is selected from bituminous coal, lignite, anthracite, and slack coal. The concentration of the coal is in a range between 26.3 and 30.2g/l based on 31psu of salinity. The concentration of NaOH is in a range between 7.75 and 8.25g/l based on 31psu of salinity.

Description

자연해수로부터 고농도 마그네슘 생산 방법 {METHOD FOR MANUFACTURING CONCENTRATED MAGNESIUM FROM NATURAL SEAWATER}Method of producing high concentration magnesium from natural seawater {METHOD FOR MANUFACTURING CONCENTRATED MAGNESIUM FROM NATURAL SEAWATER}

본 발명은 마그네슘(Mg) 생산 방법에 관한 것으로, 보다 상세하게는 자연해수의 전처리를 통하여 저비용으로 고농도 마그네슘을 생산할 수 있는 방법에 관한 것이다.
The present invention relates to a method of producing magnesium (Mg), and more particularly to a method capable of producing high concentration magnesium at low cost through pretreatment of natural sea water.

마그네슘(Mg)은 치약, 의약품, 잉크, 각종합금제조용 등 다양한 분야에 활용되고 있다. 마그네슘은 자연해수 중에 대략 850~900mg/L정도의 농도로 함유되어 있다. Magnesium (Mg) is used in various fields such as toothpaste, pharmaceuticals, inks, and various alloys. Magnesium is present in natural seawater at concentrations of approximately 850-900 mg / L.

자연해수로부터 마그네슘을 제조하는 대표적인 방법은 다음과 같다. 우선, 자연해수를 알칼리성으로 만들어 수산화마그네슘 형태로 침전시킨다. 이후, 해수를 여과하여 수산화마그네슘을 채취하는 형태로 제조된다. Representative methods for producing magnesium from natural sea water are as follows. First, natural seawater is made alkaline and precipitated in the form of magnesium hydroxide. Thereafter, seawater is manufactured in the form of collecting magnesium hydroxide by filtration.

본 발명과 관련된 문헌으로는 대한민국 공개특허공보 제10-2000-0040772(2000.07.05. 공개)가 있다. 상기 문헌에는, 해수에 포함된 마그네슘 이온을 NaOH와 석회유를 이용하여 침전시켜 수산화마그네슘을 제조하는 방법이 제시되어 있다. Literature related to the present invention is Republic of Korea Patent Publication No. 10-2000-0040772 (2000.07.05. Publication). In this document, a method of producing magnesium hydroxide is disclosed by precipitating magnesium ions contained in seawater using NaOH and lime oil.

그러나, 상기 문헌에 제시된 방법의 경우, 해수에 포함된 마그네슘의 회수 효율이 그리 높지 못한 문제점이 있다.
However, in the case of the method disclosed in the document, there is a problem that the recovery efficiency of magnesium contained in seawater is not so high.

본 발명의 목적은 자연해수에 포함된 마그네슘의 회수 효율을 향상시킬 수 있는 고농도 마그네슘 생산 방법을 제공하는 것이다.
An object of the present invention is to provide a high concentration magnesium production method that can improve the recovery efficiency of magnesium contained in natural sea water.

상기 하나의 목적을 달성하기 위한 본 발명의 실시예에 따른 고농도 마그네슘 생산 방법은 자연해수에 석탄 및 NaOH를 첨가하여, 상기 자연해수에 포함된 마그네슘을 수산화마그네슘의 형태로 침전시키는 단계; 및 상기 수산화마그네슘이 침전된 자연해수를 여과하는 단계;를 포함하여, 자연해수에 포함된 마그네슘을 수산화마그네슘의 형태로 회수하는 것을 특징으로 한다. Method for producing high concentration magnesium according to an embodiment of the present invention for achieving the above object comprises the steps of precipitating magnesium contained in the natural sea water in the form of magnesium hydroxide by adding coal and NaOH; And filtering the natural seawater in which the magnesium hydroxide is precipitated, and recovering magnesium contained in the natural seawater in the form of magnesium hydroxide.

이때, 상기 석탄은 상기 자연해수의 염분 농도 31psu를 기준으로, 26.3~30.2 g/L의 농도로 첨가되는 것이 바람직하다. At this time, the coal is preferably added at a concentration of 26.3 ~ 30.2 g / L based on the salt concentration of 31psu of the natural sea water.

또한, 상기 석탄은 상기 자연해수의 염분 농도(psu)에 따라 하기 식 1에 의해 정해지는 농도로 첨가될 수 있다. In addition, the coal may be added at a concentration determined by Equation 1 according to the salt concentration (psu) of the natural sea water.

[식 1][Equation 1]

RAC (g/L)= 자연해수 염분 농도 X μc RA C (g / L) = natural sea salt concentration X μ c

(식 1에서, μc는 상수로서, 특정한 염분 농도를 갖는 자연해수 1L에 석탄을 첨가한 후, 담수로 희석하여 염분 농도 15.0psu로 하였을 때 백색 침전물이 존재하지 않는 석탄의 농도를 상기 특정한 염분 농도로 나눈 값)
(Equation 1, μ c is a constant, the concentration of coal in which white precipitate does not exist when coal is added to 1 L of natural seawater having a specific salinity concentration and then diluted with fresh water to a salinity concentration of 15.0 psu. Divided by concentration)

또한, 상기 NaOH는 상기 자연해수의 염분 농도 31psu를 기준으로, 7.75~8.25 g/L의 농도로 첨가되는 것이 바람직하다. In addition, the NaOH is preferably added at a concentration of 7.75 ~ 8.25 g / L based on the salt concentration of 31psu of the natural sea water.

또한, 상기 NaOH는 상기 자연해수의 염분 농도(psu)에 따라 하기 식 2에 의해 정해지는 농도로 첨가될 수 있다. In addition, the NaOH may be added at a concentration determined by the following formula 2 according to the salt concentration (psu) of the natural sea water.

[식 2][Equation 2]

RANaOH (g/L)= 자연해수 염분 농도 X μNaOH RA NaOH (g / L) = natural sea salt concentration X μ NaOH

(식 2에서, μNaOH는 상수로서, 특정한 염분 농도를 갖는 자연해수 1L에 NaOH를 첨가한 후, 담수로 희석하여 염분 농도 15.0psu로 하였을 때 백색 침전물이 존재하지 않는 NaOH의 농도를 상기 특정한 염분 농도로 나눈 값)
(In Formula 2, μ NaOH is a constant, and when NaOH is added to 1 L of natural sea water having a specific salinity concentration, and then diluted with fresh water to a salinity concentration of 15.0 psu, the concentration of NaOH where no white precipitate is present is determined. Divided by concentration)

본 발명에 따른 자연해수로부터 고농도 마그네슘 생산 방법은 역청탄과 같은 석탄 및 NaOH를 적절히 첨가함으로써, 자연해수에 포함된 마그네슘 이온을 수산화마그네슘으로 최대한 침전시켜 수산화마그네슘 형태로 자연해수에 포함된 마그네슘을 회수할 수 있다. 이에 따라 자연해수에 포함된 마그네슘의 회수 효율을 99% 이상 달성할 수 있다. In the method of producing high concentration magnesium from natural seawater according to the present invention, by appropriately adding coal such as bituminous coal and NaOH, magnesium ions contained in natural seawater can be precipitated to magnesium hydroxide to recover magnesium contained in natural seawater in the form of magnesium hydroxide. Can be. Accordingly, the recovery efficiency of magnesium contained in the natural sea water can be achieved 99% or more.

또한, 본 발명에 따른 마그네슘 생산 방법은 저비용으로도 상기의 높은 마그네슘의 회수 효율을 나타낼 수 있다.
In addition, the magnesium production method according to the present invention can exhibit the high recovery efficiency of magnesium even at a low cost.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail.

그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.However, it is to be understood that the present invention is not limited to the disclosed embodiments, but may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. It is intended that the disclosure of the present invention be limited only by the terms of the appended claims.

이하, 본 발명에 따른 자연해수로부터 마그네슘 생산 방법에 대하여 상세히 설명하기로 한다.
Hereinafter, a method of producing magnesium from natural seawater according to the present invention will be described in detail.

본 발명에 따른 고농도 마그네슘 생산 방법은 자연해수 전처리 단계 및 수산화마그네슘 회수 단계를 포함한다.The high concentration magnesium production method according to the present invention includes a natural seawater pretreatment step and a magnesium hydroxide recovery step.

먼저, 자연해수 전처리 단계에서는 자연해수를 전처리하여 자연해수에 포함된 마그네슘을 수산화마그네슘 형태로 침전시킨다. 자연해수의 전처리를 위하여, 본 발명에서는 석탄 및 NaOH를 자연해수에 첨가한다. 그 결과, 자연해수에 포함된 거의 모든 마그네슘 이온(Mg2+)이 수산화마그네슘(Mg(OH)2)의 형태로 침전되었다. First, in the natural seawater pretreatment step, the natural seawater is pretreated to precipitate magnesium contained in the natural seawater in the form of magnesium hydroxide. For pretreatment of natural seawater, coal and NaOH are added to the natural seawater in the present invention. As a result, almost all magnesium ions (Mg 2+ ) contained in natural seawater precipitated in the form of magnesium hydroxide (Mg (OH) 2 ).

석탄은 갈탄, 무연탄, 분탄, 역청탄 등을 이용할 수 있다. 또한, 석탄 이외에 숯과 같은 목탄을 이용할 수 있다. 다만, 목탄의 경우 산림 자원을 고갈시키는 요인이 될 수 있으므로, 역청탄을 이용하는 것이 장기적인 환경적 측면에서 더 바람직하다. Coal may use lignite, anthracite, powdered coal, bituminous coal and the like. In addition to coal, charcoal such as charcoal may be used. However, charcoal can be a depletion of forest resources, so the use of bituminous coal is more desirable in the long-term environmental aspects.

석탄에 함유된 이산화탄소(CO2) 또는 일산화탄소(CO)가 NaOH와 반응하여 Na2CO3 또는 NaHCO3 를 형성할 수 있고, 그리고 Na2CO3는 높은 pH에서 해수로부터 마그네슘 이온을 침전시킬 수 있다.
Carbon dioxide (CO 2 ) or carbon monoxide (CO) contained in coal may react with NaOH to form Na 2 CO 3 or NaHCO 3 , and Na 2 CO 3 may precipitate magnesium ions from seawater at high pH. .

한편, 자연해수의 염분 농도에 따라 석탄 및 NaOH 첨가량을 최적화할 필요성이 있다. On the other hand, there is a need to optimize the amount of coal and NaOH added according to the salt concentration of natural sea water.

표 1은 염분 농도가 31 psu인 자연해수에 대하여, 석탄 및 NaOH 첨가량에 따라서 제조되는 전처리 해수의 투명도와 전처리 해수가 희석되어 염분 농도가 15.00 psu인 희석액 내의 백색 침전물 형성 양을 나타낸 것이다. 관찰은 육안으로 하였다. Table 1 shows the amount of white precipitate formed in the diluent having a salinity of 15.00 psu due to the dilution of the pretreatment seawater and the pretreatment seawater diluted according to the amount of coal and NaOH. Observation was made with the naked eye.

[표 1][Table 1]

Figure 112011081504846-pat00001
Figure 112011081504846-pat00001

표 1을 참조하면, 자연해수의 일반적 염분 농도에 해당하는 31 psu의 염분 농도를 갖는 자연해수에 역청탄과 NaOH를 첨가하는 경우, 역청탄의 농도가 25g/L 이상이고 NaOH 농도가 7.50 이상일 경우, 해수의 투명성이 유지되었다. 또한, 역청탄의 농도가 27.60 g/L 이상이고, NaOH의 농도가 7.75g/L 이상인 경우에는 희석액 내 백색 침전물이 형성되지 않았다. Referring to Table 1, when bituminous coal and NaOH are added to natural seawater having a salt concentration of 31 psu corresponding to the general salt concentration of natural seawater, when the bituminous coal concentration is 25 g / L or more and the NaOH concentration is 7.50 or more, The transparency of was maintained. In addition, when the concentration of bituminous coal was 27.60 g / L or more and the NaOH concentration was 7.75 g / L or more, no white precipitate was formed in the diluent.

상기 표 1에서 NaOH가 농도가 8.25g/L일 경우, 역청탄의 농도가 26.3g/L인 경우에도 희석액 내 백색 침전물이 형성되지 않았다. 따라서, 상기 표 1에 의할 때, 석탄은 자연해수의 염분 농도 31 psu를 기준으로, 26.3~30.2 g/L의 농도로 첨가되는 것이 바람직하고, 이 경우 NaOH 사용이 증가한 후, 상층 해수의 재사용을 위한 중화를 위하여 HCl이 사용되어야 하므로, 석탄의 사용은 27.60g/L로 첨가되는 것이 가장 바람직하다. In Table 1, when the NaOH concentration was 8.25 g / L, even when the concentration of bituminous coal was 26.3 g / L, no white precipitate was formed in the diluent. Therefore, according to Table 1, the coal is preferably added at a concentration of 26.3 ~ 30.2 g / L, based on the salt concentration of 31 psu of natural seawater, in this case, after increasing the use of NaOH, reuse of the upper seawater Since HCl should be used for neutralization, the use of coal is most preferably added at 27.60 g / L.

또한, 상기 표 1을 참조하면, 상기 NaOH는 자연해수의 염분 농도 31psu를 기준으로, 희석액 내에서 백색 침전물이 형성되지 않도록 7.75~8.25 g/L의 농도로 첨가되는 것이 바람직하고, 7.75 g/L이 가장 바람직하다.
In addition, referring to Table 1, the NaOH is preferably added at a concentration of 7.75 ~ 8.25 g / L, so that white precipitate is not formed in the diluent based on the salt concentration of 31 psu of natural sea water, 7.75 g / L Is most preferred.

한편, 석탄 및 NaOH의 사용량은 자연해수의 염분 농도(psu)에 따라 달라진다.On the other hand, the amount of coal and NaOH used depends on the salt concentration (psu) of the natural seawater.

우선, 석탄의 사용량은 하기 식 1에 의해 정해지는 농도로 첨가되는 것이 바람직하다. First, it is preferable that the usage-amount of coal is added in the density | concentration determined by following formula (1).

[식 1][Equation 1]

RAC (g/L)= 자연해수 염분 농도 X μc RA C (g / L) = natural sea salt concentration X μ c

(식 1에서, μc는 상수로서, 특정한 염분 농도를 갖는 자연해수 1L에 석탄을 첨가한 후, 담수로 희석하여 염분 농도 15.0psu로 하였을 때 백색 침전물이 존재하지 않는 석탄의 농도를 상기 특정한 염분 농도로 나눈 값)(Equation 1, μ c is a constant, the concentration of coal in which white precipitate does not exist when coal is added to 1 L of natural seawater having a specific salinity concentration and then diluted with fresh water to a salinity concentration of 15.0 psu. Divided by concentration)

예를 들어, 염분 농도 31 psu에서 27.60g/L의 석탄을 필요로 하는 것을 알고 있다면, μc는 27.6 / 31로서, 대략 0.89가 된다. 따라서, 이를 기초로, 염분 농도 20psu의 자연해수에서는 전처리를 위하여 대략 17.8g/L의 석탄이 요구된다. For example, if we know that we need 27.60 g / L of coal at a salt concentration of 31 psu, μ c is 27.6 / 31, which is approximately 0.89. Thus, on the basis of this, approximately 17.8 g / L of coal is required for pretreatment in natural seawater with a salt concentration of 20 psu.

다음으로, NaOH는 하기 식 2에 의해 정해지는 농도로 첨가되는 것이 바람직하다. Next, NaOH is preferably added at a concentration determined by the following formula (2).

[식 2][Equation 2]

RANaOH (g/L)= 자연해수 염분 농도 X μNaOH RA NaOH (g / L) = natural sea salt concentration X μ NaOH

(식 2에서, μNaOH는 상수로서, 특정한 염분 농도를 갖는 자연해수 1L에 NaOH를 첨가한 후, 담수로 희석하여 염분 농도 15.0psu로 하였을 때 백색 침전물이 존재하지 않는 NaOH의 농도를 상기 특정한 염분 농도로 나눈 값)(In Formula 2, μ NaOH is a constant, and when NaOH is added to 1 L of natural sea water having a specific salinity concentration, and diluted with fresh water to a salinity concentration of 15.0 psu, the concentration of NaOH where no white precipitate is present is determined. Divided by concentration)

예를 들어, 염분 농도 31 psu에서 7.75g/L의 NaOH를 필요로 하는 것을 알고 있다면, μNaOH는 7.75 / 31로서, 대략 0.25가 된다. 따라서, 이를 기초로, 염분 농도 20psu의 자연해수에서는 전처리를 위하여 대략 5g/L의 NaOH가 요구된다. For example, if you know that you need 7.75 g / L of NaOH at a salt concentration of 31 psu, μ NaOH is 7.75 / 31, which is approximately 0.25. Thus, based on this, approximately 5 g / L of NaOH is required for pretreatment in natural seawater with a salt concentration of 20 psu.

실제, 상기 식 1 및 식 2에 따른 역청탄 및 NaOH 농도를 10.00~50.00 psu인 자연해수에 적용한 결과, 모든 경우에서 마그네슘 회수 효율이 비슷하게 나타났다. In fact, when the bituminous coal and NaOH concentrations according to Equations 1 and 2 were applied to natural seawater having 10.00 to 50.00 psu, magnesium recovery efficiency was similar in all cases.

자연해수의 전처리는 마그네슘 이온이 수산화마그네슘으로 충분히 침전될 수 있도록, 대략 28~30℃의 온도에서 7일 정도 수행될 수 있다.
Pretreatment of natural seawater may be performed for about 7 days at a temperature of approximately 28 to 30 ° C. so that magnesium ions can be sufficiently precipitated with magnesium hydroxide.

다음으로, 수산화마그네슘이 침전된 자연해수를 여과한다. 여과후에는 세척 등 후처리 공정이 더 포함될 수 있다. Next, natural seawater in which magnesium hydroxide is precipitated is filtered. After filtration may further include a post-treatment process such as washing.

상기의 자연해수 전처리 공정 및 여과 공정을 통하여, 자연해수에 포함된 마그네슘을 수산화마그네슘의 형태로 회수할 수 있다.
Through the natural seawater pretreatment and filtration, magnesium contained in natural seawater can be recovered in the form of magnesium hydroxide.

실시예Example

이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.

여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.

본 발명에 따른 마그네슘 제조방법에 의할 경우, 마그네슘 회수율을 평가하기 위하여 pH 8.20 및 염분 농도가 31.00 psu인 자연해수에 27.60 g/L 역청탄 및 7.75g/L NaOH를 첨가한 후, 29℃의 온도에서 일주일간 유지하여 전처리 해수를 제조하였다. According to the magnesium production method according to the present invention, after the addition of 27.60 g / L bituminous coal and 7.75 g / L NaOH to natural seawater having a pH 8.20 and salt concentration of 31.00 psu to evaluate the magnesium recovery rate, the temperature of 29 ℃ Pretreated seawater was prepared by maintaining for 1 week.

그 결과, 전처리 해수의 경우, 대략 92% 정도가 상등액(Supernatant)이었고, 나머지는 백색 침전물이었다. 또한, 자연해수의 전처리 결과, pH가 8.20에서 13.14으로 증가하였으며, 염분 농도가 31.00 psu 에서 45.00 psu로 증가되었다.As a result, about 92% of the pretreated seawater was a supernatant and the rest was a white precipitate. In addition, as a result of pretreatment of natural seawater, the pH increased from 8.20 to 13.14, and the salt concentration increased from 31.00 psu to 45.00 psu.

표 2는 자연해수와 전처리 해수의 상등액(Supernatant)에 포함된 유기 탄소(Organic Carbon) 및 각종 성분들의 함량을 나타낸 것이다. Table 2 shows the contents of organic carbon and various components contained in the supernatant of natural seawater and pretreated seawater.

표 2에서, 자연해수 내의 마그네슘 이온의 농도를 측정하고, 전처리 후 상등액 내의 마그네슘 이온 및 침전물 중 (Mg(OH2)의 농도를 한국고분자시험연구소에 의뢰하여 측정하였다.In Table 2, the concentration of magnesium ions in the natural seawater was measured, and the concentration of (Mg (OH 2 ) in magnesium ions and precipitates in the supernatant after pretreatment was measured by requesting from the Korea Institute of Polymer Testing.

[표 2]TABLE 2

Figure 112011081504846-pat00002
Figure 112011081504846-pat00002

표 2를 참조하면, 자연해수 내의 Mg 는 874.40 mg/L 인데 반하여, 전처리된 해수의 상등액 내에서 0.80 mg/L로 크게 감소되었다. 즉, 본 발명에 의할 경우, 자연해수에 포함된 마그네슘 회수 효율은 99.45%라 볼 수 있다. Referring to Table 2, the Mg in natural seawater was significantly reduced to 0.80 mg / L in the supernatant of the pretreated seawater, compared to 874.40 mg / L. That is, according to the present invention, the recovery efficiency of magnesium contained in natural seawater can be seen as 99.45%.

한편, Mg(OH)2의 경우, 침전물 내에서 22.82 g/L의 농도를 나타내었다.
On the other hand, in the case of Mg (OH) 2 , the concentration was 22.82 g / L in the precipitate.

상술한 바와 같이, 본 발명에 따른 자연해수로부터 마그네슘 생산 방법은 석탄 및 NaOH의 적절한 첨가를 통하여, 자연해수에 포함된 마그네슘 회수율을 극대화할 수 있다. As described above, the magnesium production method from the natural seawater according to the present invention can maximize the recovery of magnesium contained in the natural seawater through the appropriate addition of coal and NaOH.

또한, 본 발명에 따른 마그네슘 생산 방법은 그 제조 비용 역시 매우 낮은 장점이 있다.
In addition, the magnesium production method according to the present invention has the advantage that the manufacturing cost is also very low.

본 발명은 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.Although the present invention has been described with reference to the embodiments, these are merely exemplary, and those skilled in the art will appreciate that various modifications and equivalent other embodiments are possible therefrom.

따라서, 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다. Therefore, the true technical protection scope of the present invention will be defined by the claims below.

Claims (6)

자연해수에 석탄 및 NaOH를 첨가하여, 상기 자연해수에 포함된 마그네슘을 수산화마그네슘의 형태로 침전시키는 단계; 및
상기 수산화마그네슘이 침전된 자연해수를 여과하는 단계;를 포함하여,
자연해수에 포함된 마그네슘을 수산화마그네슘의 형태로 회수하는 것을 특징으로 하는 마그네슘 생산 방법.
Adding coal and NaOH to the natural sea water to precipitate magnesium contained in the natural sea water in the form of magnesium hydroxide; And
Including filtering the natural seawater in which the magnesium hydroxide is precipitated;
Magnesium production method characterized in that the magnesium contained in the natural sea water recovered in the form of magnesium hydroxide.
제1항에 있어서,
상기 석탄은
역청탄, 갈탄, 무연탄 및 분탄 중에서 선택되는 것을 특징으로 하는 마그네슘 생산 방법.
The method of claim 1,
The coal is
Magnesium production method characterized in that it is selected from bituminous coal, lignite, anthracite and powdered coal.
제1항에 있어서,
상기 석탄은
상기 자연해수의 염분 농도 31psu를 기준으로, 26.3~30.2 g/L의 농도로 첨가되는 것을 특징으로 하는 마그네슘 생산 방법.
The method of claim 1,
The coal is
Magnesium production method, characterized in that added to a concentration of 26.3 ~ 30.2 g / L, based on the salt concentration of 31psu of the natural sea water.
제1항에 있어서,
상기 석탄은
상기 자연해수의 염분 농도(psu)에 따라 하기 식 1에 의해 정해지는 농도로 첨가되는 것을 특징으로 하는 마그네슘 생산 방법.
[식 1]
RAC (g/L)= 자연해수 염분 농도 X μc
(식 1에서, μc는 상수로서, 특정한 염분 농도를 갖는 자연해수 1L에 석탄을 첨가한 후, 담수로 희석하여 염분 농도 15.0psu로 하였을 때 백색 침전물이 존재하지 않는 석탄의 농도를 상기 특정한 염분 농도로 나눈 값)
The method of claim 1,
The coal is
Magnesium production method characterized in that it is added at a concentration determined by the following formula 1 according to the salt concentration (psu) of the natural sea water.
[Formula 1]
RA C (g / L) = natural sea salt concentration X μ c
(Equation 1, μ c is a constant, the concentration of coal in which white precipitate does not exist when coal is added to 1 L of natural seawater having a specific salinity concentration and then diluted with fresh water to a salinity concentration of 15.0 psu. Divided by concentration)
제1항에 있어서,
상기 NaOH는
상기 자연해수의 염분 농도 31psu를 기준으로, 7.75~8.25 g/L의 농도로 첨가되는 것을 특징으로 하는 마그네슘 생산 방법.
The method of claim 1,
NaOH is
Magnesium production method, characterized in that added to a concentration of 7.75 ~ 8.25 g / L, based on the salt concentration of 31psu of the natural sea water.
제1항에 있어서,
상기 NaOH는
상기 자연해수의 염분 농도(psu)에 따라 하기 식 2에 의해 정해지는 농도로 첨가되는 것을 특징으로 하는 마그네슘 생산 방법.
[식 2]
RANaOH (g/L)= 자연해수 염분 농도 X μNaOH
(식 2에서, μNaOH는 상수로서, 특정한 염분 농도를 갖는 자연해수 1L에 NaOH를 첨가한 후, 담수로 희석하여 염분 농도 15.0psu로 하였을 때 백색 침전물이 존재하지 않는 NaOH의 농도를 상기 특정한 염분 농도로 나눈 값)
The method of claim 1,
NaOH is
Magnesium production method, characterized in that added in accordance with the concentration according to the salt concentration (psu) of the natural sea water.
[Formula 2]
RA NaOH (g / L) = natural sea salt concentration X μ NaOH
(In Formula 2, μ NaOH is a constant, and when NaOH is added to 1 L of natural sea water having a specific salinity concentration, and diluted with fresh water to a salinity concentration of 15.0 psu, the concentration of NaOH where no white precipitate is present is determined. Divided by concentration)
KR1020110106660A 2011-10-18 2011-10-18 Method for manufacturing concentrated magnesium from natural seawater KR101115372B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020110106660A KR101115372B1 (en) 2011-10-18 2011-10-18 Method for manufacturing concentrated magnesium from natural seawater
PCT/KR2011/009036 WO2013058430A1 (en) 2011-10-18 2011-11-24 Method for manufacturing concentrated magnesium from natural seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110106660A KR101115372B1 (en) 2011-10-18 2011-10-18 Method for manufacturing concentrated magnesium from natural seawater

Publications (1)

Publication Number Publication Date
KR101115372B1 true KR101115372B1 (en) 2012-02-15

Family

ID=45840442

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110106660A KR101115372B1 (en) 2011-10-18 2011-10-18 Method for manufacturing concentrated magnesium from natural seawater

Country Status (2)

Country Link
KR (1) KR101115372B1 (en)
WO (1) WO2013058430A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101501656B1 (en) * 2013-09-11 2015-03-12 재단법인 포항산업과학연구원 The method for utilizing concentrated-water produced from desalination by reverse osmosis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499880B2 (en) 2015-03-06 2016-11-22 Battelle Memorial Institute System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292371A (en) 2001-01-23 2002-10-08 Goshu Yakuhin Kk Fresh water obtained from deep sea water, concentrated deep sea water, mineral concentrate, concentrated salt water, bittern, and specifyed salt
JP2002306118A (en) 2001-04-16 2002-10-22 Hitachi Ltd Method for producing health salt from ocean deep water and device therefor
JP2003212537A (en) 2002-01-21 2003-07-30 Ichinoshio Kk Method and apparatus for manufacturing salt from seawater
KR100732066B1 (en) 2006-07-25 2007-06-25 (주)블루오션월드 Method for extracting minerals of high purity from deep ocean water by using low temperature vacuum crystallization

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649114B1 (en) * 2005-04-25 2006-11-27 주식회사 포스렉 A method for manufacturing high purity magnesium hydroxide having excellent dispersibility
KR100670474B1 (en) * 2005-05-13 2007-01-16 한국수자원공사 A Concentrate Method of Minerals from Sea Water, the Mineral Concentrate and its Use
CN101679058B (en) * 2007-03-30 2012-11-14 宇部材料工业株式会社 Magnesium hydroxide powder and method for producing the same
KR100899012B1 (en) * 2008-07-07 2009-05-21 김문수 Preparation method of magnesium, calcium and potassium mineral water from deep ocean water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292371A (en) 2001-01-23 2002-10-08 Goshu Yakuhin Kk Fresh water obtained from deep sea water, concentrated deep sea water, mineral concentrate, concentrated salt water, bittern, and specifyed salt
JP2002306118A (en) 2001-04-16 2002-10-22 Hitachi Ltd Method for producing health salt from ocean deep water and device therefor
JP2003212537A (en) 2002-01-21 2003-07-30 Ichinoshio Kk Method and apparatus for manufacturing salt from seawater
KR100732066B1 (en) 2006-07-25 2007-06-25 (주)블루오션월드 Method for extracting minerals of high purity from deep ocean water by using low temperature vacuum crystallization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101501656B1 (en) * 2013-09-11 2015-03-12 재단법인 포항산업과학연구원 The method for utilizing concentrated-water produced from desalination by reverse osmosis

Also Published As

Publication number Publication date
WO2013058430A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
AU2007101174A4 (en) Improved method of capturing carbon dioxide and converting to carbonate anions and then combining with calcium cations to form calcium carbonate
US7198722B2 (en) Process for pre-treating and desalinating sea water
EA200701909A1 (en) METHOD FOR PRODUCING SODIUM CARBONATE CRYSTALS
JP5648871B2 (en) Carbon dioxide treatment method
KR102004690B1 (en) Method for carbon dioxide fixation using inorganic waste
KR101115372B1 (en) Method for manufacturing concentrated magnesium from natural seawater
KR101936809B1 (en) A method for producing high purity calcium carbonate using indirect carbonation of alkaline industrial by-products and seawater
US9643858B2 (en) Method for manufacturing carbonate
TR201821160T4 (en) Method for recovering metals.
JP2017104802A (en) Method for treating cyanide-containing wastewater
CN113677813A (en) Lithium recovery and purification
JP5685456B2 (en) Method for producing polyferric sulfate
DE60310971D1 (en) METHOD FOR REMOVING AMMONIA FROM A CYANINE HYDROGEN, AMMONIA AND WATER CONTAINING GAS
DE502007006218D1 (en) METHOD FOR OBTAINING DISINTERATED WATER FROM ZIRCONIUM-CONTAINING WASTE WATER
CN104003435B (en) A kind of method reducing iron ion content in zinc sulphide
JP2012006000A (en) Heavy metal treating agent, method of treating heavy-metal-containing liquid, and method of recovering heavy metal
JP4660703B2 (en) Method for separating polyvalent mineral and method for producing organic acid mineral
JP5266451B2 (en) A method for separating iodine from a plant ash extract, and a method for producing a plant ash extract with reduced iodine obtained thereby.
PE20071261A1 (en) AQUEOUS SOLUTION INCLUDING METALLIC CYANIDE FOR EXTRACTION OF NOBLE METALS AND PROCESS FOR THEIR PREPARATION
RU2015106345A (en) METHOD FOR PROCESSING SOLUTIONS CONTAINING NON-FERROUS METALS
JP2001097711A (en) Production process for high-purity silica from organism- originating diatom earth
JP2008200599A (en) Method for cleaning waste water containing ammonia nitrogen
Nadeem et al. Production of physically and chemically modified biomass of corncob and its applications for the removal of Co (II) ion from its aqueous solution: optimum conditions determination
Lee Lithium recovery by solvent extraction: strategies to improve recovery from produced/flowback water containing impurities
KAWANO et al. Biochemical Effects of the Unicellular Green Alga Chlorella vulgaris on the Precipitation Rates and Polymorphism of Calcium Carbonate Minerals

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150129

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160201

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170201

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180201

Year of fee payment: 7