JPS61168522A - Magnesium hydroxide and production thereof - Google Patents

Magnesium hydroxide and production thereof

Info

Publication number
JPS61168522A
JPS61168522A JP670785A JP670785A JPS61168522A JP S61168522 A JPS61168522 A JP S61168522A JP 670785 A JP670785 A JP 670785A JP 670785 A JP670785 A JP 670785A JP S61168522 A JPS61168522 A JP S61168522A
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
magnesium
particles
secondary particles
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP670785A
Other languages
Japanese (ja)
Other versions
JPH0329004B2 (en
Inventor
Keiichi Nakaya
圭一 中矢
Kunio Tanaka
田中 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP670785A priority Critical patent/JPS61168522A/en
Priority to EP86100428A priority patent/EP0189098B1/en
Priority to DE8686100428T priority patent/DE3685121D1/en
Priority to US06/819,409 priority patent/US4698379A/en
Priority to CA000499805A priority patent/CA1241180A/en
Publication of JPS61168522A publication Critical patent/JPS61168522A/en
Publication of JPH0329004B2 publication Critical patent/JPH0329004B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To produce dense magnesium hydroxide having large particle diameter and high sphericity, by reacting a water-soluble magnesium salt with ammonia under specific condition, agglomerating a part of the particles, and crystallizing the secondary particles having definite particle diameter and specific surface area. CONSTITUTION:Ammonia gas is introduced into an aqueous solution of a water- soluble magnesium salt such as magnesium chloride to crystallize the crystal of magnesium hydroxide. The crystallization load of the magnesium hydroxide in the above process is adjusted preferably to <=500kg/m<2>.h, and the concentra tion of the magnesium hydroxide slurry in the crystallizer is made to be 1-6wt%. The primary particles are agglomerated to form secondary particles of magnesium hydroxide in a nearly spherical form with an average particle diameter of 5-500mu and a specific surface area of 25-1m<2>/g. Since the particle is composed of a number of flaky primary particles collected along various directions orienting the flakes almost radially from the center toward the out side, the produced secondary particle takes a spherical form in appearance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は水酸化マグネシウム、特には粒径の大きく、球
形度のよい、緻密な水酸化マグネシウム粒子に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to magnesium hydroxide, particularly to dense magnesium hydroxide particles having a large particle size and good sphericity.

[従来の技術] 水酸化マグネシウムは従来、海水を脱炭酸した後、水酸
化カルシウム、苛性ソーダあるいはアンモニア等と反応
せしめて水酸化マグネシウムの沈澱物を得、これを分離
して製品(いわゆる海水水マグ)としていた。この海水
水マグは空隙率の大きい 粒状の球形度のよくないもの
で、粒子強度が小さいため、簡単に手でほぐれ、微細な
粒子になってしまうものであった。
[Prior Art] Conventionally, magnesium hydroxide is produced by decarboxylating seawater and reacting with calcium hydroxide, caustic soda, ammonia, etc. to obtain a precipitate of magnesium hydroxide, which is then separated to produce a product (so-called seawater mug). ). This seawater mug had large porosity, poor sphericity, and low particle strength, so it could easily be loosened by hand and become fine particles.

一方、高純度な水酸化マグネシウムを提供する方法とし
て塩基性塩化マグネシウムを水熱処理する方法も提案さ
れている。(特開昭52−115799号公報参照)こ
の方法による水酸化マグネシウムは確かに緻密性の点で
はある程度のものが得られるが、水酸化jグネシウム粒
子は1次粒子のみから形成せられ、従って1粒径も平均
でtp以下となる場合がほとんどであった。
On the other hand, a method of hydrothermally treating basic magnesium chloride has also been proposed as a method of providing highly pure magnesium hydroxide. (Refer to Japanese Unexamined Patent Publication No. 115799/1983) Magnesium hydroxide produced by this method does indeed have a certain degree of density, but the magnesium hydroxide particles are formed only from primary particles, and therefore In most cases, the average particle size was less than tp.

上述の如く、従来公知の水酸化マグネシウムは粒子内部
の空隙の大きい(即ち、緻密ではない) 粒状のもの、
ないしは緻密度はある程度高いものの、1次粒子のみか
ら形成された粒径の小さいものしかなかった。
As mentioned above, conventionally known magnesium hydroxide is granular with large voids inside the particles (that is, not dense),
In other words, although the density was high to some extent, the particles were formed only from primary particles and were small in size.

[発明の解決しようとする問題点] 本発明は、従来知られていなかったl&苗密度高い、球
形度のよい、粒径の大きな水酸化マグネシウム及びその
製法を提供するものである。
[Problems to be Solved by the Invention] The present invention provides a conventionally unknown magnesium hydroxide with high seedling density, good sphericity, and large particle size, and a method for producing the same.

[問題点を解決するための手段] 本発明は前記の問題点を解決すべくなされたものであり
、1次粒子が集合して形成されてなる。ほぼ球状の2次
粒子の平均粒径が5〜500pであり、その比表面積が
25〜1m’/gである水酸化マグネシウム及び水可溶
性マグネシウム塩を水溶液とアンモニアとを反応せしめ
て、水酸化マグネシウム粒子の晶析負荷が500kg/
rn’・h以下、かつ、晶析装置における水1ピマグネ
シウムスラリーの濃度を 1〜80wt%になるように
して、1次粒子が集合して形成されてなる2次粒子の平
均粒径が5〜500ルで、その比表面積が25〜lゴ/
gの水酸化マグネシウムを晶析させることを特徴とする
水酸化マグネシウムの製法を提供するものである。
[Means for Solving the Problems] The present invention has been made to solve the above problems, and is formed by aggregation of primary particles. Magnesium hydroxide and a water-soluble magnesium salt having approximately spherical secondary particles having an average particle diameter of 5 to 500p and a specific surface area of 25 to 1 m'/g are reacted with an aqueous solution and ammonia to produce magnesium hydroxide. Particle crystallization load is 500kg/
rn' h or less, and the concentration of the water-1-pimagnesium slurry in the crystallizer is 1 to 80 wt%, so that the average particle size of secondary particles formed by aggregation of primary particles is 5. ~500 liters, and its specific surface area is 25~1 go/
The present invention provides a method for producing magnesium hydroxide, which is characterized by crystallizing magnesium hydroxide of g.

第1図は本発明の水酸化マグネシウムの1例である平均
粒径17.3gの2次粒子の粒子構造を示す5000倍
の電子顕微鏡写真である。
FIG. 1 is a 5000x electron micrograph showing the particle structure of secondary particles having an average particle size of 17.3 g, which is an example of the magnesium hydroxide of the present invention.

第2図は本発明の水酸化マグネシウムの他の1例である
平均粒径13.8gの2次粒子の粒子構造を示す500
0倍の電子顕微鏡写真である。
Figure 2 shows the particle structure of secondary particles with an average particle size of 13.8 g, which is another example of magnesium hydroxide of the present invention.
This is a 0x electron micrograph.

第3図は本発明の水酸化マグネシウム(平均粒径35J
L)の断面における2次粒子の粒子構造を示す2000
倍の電子顕微鏡写真である。
Figure 3 shows the magnesium hydroxide of the present invention (average particle size 35J).
2000 showing the particle structure of secondary particles in the cross section of L)
This is a magnified electron micrograph.

第4図は実施例1による本発明水酸化マグネシウム(平
均粒径30ル)の2次粒子の粒子構造を示す5000倍
の電子顕微鏡写真である。
FIG. 4 is a 5000x electron micrograph showing the particle structure of secondary particles of magnesium hydroxide of the present invention (average particle size: 30 l) according to Example 1.

−)DtinMJt6klレ−wH4+j/r’yI、
I−)111iGmFメm2区に示されるようにほぼ球
状の大粒径のものであって平均粒径としては5〜500
ル、さらには10〜350トの範囲にわたるものである
。そして、本発明の水酸化マグネシウムは、第1図及び
第2図において2次粒子表面にひも状に見える鱗片状の
1次粒子が多数集合して形成された2次粒子であり、こ
の鱗片状1次粒子は相互に強力に付着されており、機械
的処理を施しても容易には、1次粒子に分解しないもの
である。
-) DtinMJt6kl-wH4+j/r'yI,
I-) As shown in the 111iGmF mem2 section, it has a large particle size that is almost spherical and has an average particle size of 5 to 500.
It ranges from 10 to 350 tons. The magnesium hydroxide of the present invention is a secondary particle formed by aggregation of many scale-like primary particles that appear string-like on the surface of the secondary particle in FIGS. The primary particles are strongly adhered to each other and do not easily decompose into primary particles even when subjected to mechanical treatment.

さらに、第3図に示すように、この1次粒子は、2次粒
子の中心部から外方に向い、ほぼ放射状に配向され、こ
の1次粒子は密に配列されており、前述のように強固に
からみあい、あるいは付着されている。従って2次粒子
内部の、1次粒子同志の間隙に生ずる空隙は非常に小さ
l/)。
Furthermore, as shown in FIG. 3, the primary particles are oriented outward from the center of the secondary particles, almost radially, and the primary particles are densely arranged, as described above. Tightly intertwined or attached. Therefore, the voids formed between the primary particles inside the secondary particles are very small (l/).

以上のような本発明水酸化マグネシウムの粒子構造から
その比表面積(BET法による)は25〜11Tf/g
、さらには20〜1rrIl/gと、従来の通常の海水
水マグの30〜1(lQrn’/gに比べて非常に小さ
いもαちある。
From the particle structure of the magnesium hydroxide of the present invention as described above, its specific surface area (according to the BET method) is 25 to 11 Tf/g.
Furthermore, it is 20 to 1 rrIl/g, which is very small compared to 30 to 1 (lQrn'/g) of a conventional normal seawater mug.

以上の結果として、本発明水酸化マグネシウム粒子の固
め見掛比重は0.8以上、更には0.9以上と、従来公
知の海水水マグの固め見掛比重0.6前後に比べ、非常
に大きなものとな・っている。
As a result of the above, the solidified apparent specific gravity of the magnesium hydroxide particles of the present invention is 0.8 or more, and even 0.9 or more, which is much higher than the solidified apparent specific gravity of around 0.6 of conventionally known seawater mugs. It is becoming a big thing.

ここで、固め見掛比重とは粒子を密に充填した状態での
見掛比重を意味し、具体的には開用ミクロン(株)製の
パウダーテスターにより測定されるものである。
Here, the hardened apparent specific gravity means the apparent specific gravity in a state in which particles are densely packed, and specifically, it is measured using a powder tester manufactured by Kaiyu Micron Co., Ltd.

さて、本発明水酸化マグネシウムを構成する1次粒子は
鱗片状であって、その鱗片の厚みは2次粒子径の大きさ
にもよるが100〜5000人の範囲にある。鱗片状1
次粒子は後述の製法において、2次粒子の成長に伴いそ
の厚みがわずかづつ増大しながら、鱗片の平面方向に粒
成長するものである。この鱗片状1次粒子は単結晶また
は多結晶からなり、結晶学的には<101>方向の歪が
4X 10−3以下のものである。なお、<101>方
向の歪の測定は特開昭52−1157913号公報に記
載の方法に量る。
The primary particles constituting the magnesium hydroxide of the present invention are scale-like, and the thickness of the scales is in the range of 100 to 5,000 particles, depending on the size of the secondary particles. scaly 1
In the manufacturing method described below, the secondary particles grow in the plane direction of the scales, with their thickness increasing slightly as the secondary particles grow. The scale-like primary particles are made of single crystal or polycrystal, and crystallographically, the strain in the <101> direction is 4X 10-3 or less. Note that the strain in the <101> direction is measured by the method described in Japanese Patent Application Laid-Open No. 1157913/1983.

さらに1本発明の水酸化マグネシウムは流動性がよいた
め、安息角が小さい。
Furthermore, since the magnesium hydroxide of the present invention has good fluidity, it has a small angle of repose.

また、本発明の水酸化マグネシウムは鱗片状の1次粒子
がほぼ放射状に配列されているため、光透過性が大きい
ものである。
Moreover, since the scale-like primary particles of the magnesium hydroxide of the present invention are arranged substantially radially, it has high light transmittance.

本発明の水酸化マグネシウム2次粒子は、上述の如く、
非常に緻密で、粒子内部の細孔が非常に小さく、また、
その細孔容積も小さなもので、具体的には、2次粒子内
部の細孔径が0.5ル以下の細孔の積算細孔容積がO,
Ice/g以下、更には0.07cc/g以下で、この
値は、通常の海水水マグの場合の0.3〜0.4cc/
gに比べて非常に小さいものである。
As mentioned above, the magnesium hydroxide secondary particles of the present invention are
Very dense, with very small pores inside the particles, and
The pore volume is also small; specifically, the cumulative pore volume of pores with a pore diameter of 0.5 l or less inside the secondary particle is O,
Ice/g or less, furthermore 0.07cc/g or less, this value is 0.3 to 0.4cc/g in the case of a normal seawater mug.
It is very small compared to g.

さらに、本発明の水酸化マグネシウムは吸油量の小さい
もので、樹脂等への充填剤として好適なものである。具
体的な吸油量としてはJISK5101による方法で7
0履立/100g以下、さらにはBO履交/100.以
下である。
Furthermore, the magnesium hydroxide of the present invention has a small oil absorption and is suitable as a filler for resins and the like. The specific oil absorption amount is 7 according to JISK5101.
0/100g or less, even BO/100. It is as follows.

かくして、本発明の水酸化マグネシウムは球形度がよく
、緻密な大粒径の一す拐で、強度が大きく、流動性がよ
いため、各種の樹脂に対する充填剤として好適なもので
、特に、エステル系、樹脂へ充填していわゆる人工大理
石を製造する際、好適なものである。
Thus, the magnesium hydroxide of the present invention has good sphericity, dense large particle size, high strength, and good fluidity, so it is suitable as a filler for various resins, and is particularly suitable for esters. It is suitable for producing so-called artificial marble by filling it into a system or resin.

また、本発明水酸化マグネシウムは仮焼して、耐水性の
よい(即ち、水和性の小さい)酸化マグネシウムを得る
のにも好適な原料となる。
Moreover, the magnesium hydroxide of the present invention becomes a suitable raw material for obtaining magnesium oxide having good water resistance (that is, low hydration) by calcining.

次に、上述の本発明の水酸化マグネシウムを製造する好
適な方法について説明する。
Next, a preferred method for producing the above-mentioned magnesium hydroxide of the present invention will be explained.

塩化マグネシウム、硝酸マグネシウム、硫酸マグネシウ
ム等の水可溶性マグネシウム塩とアンモニアを特定条件
下で反応せしめることにより、本発明の水酸化マグネシ
ウムが得られる。
The magnesium hydroxide of the present invention can be obtained by reacting a water-soluble magnesium salt such as magnesium chloride, magnesium nitrate, and magnesium sulfate with ammonia under specific conditions.

上述の水可溶性マグネシウム塩の内でも塩化マグネシウ
ムが最も好適である。
Among the water-soluble magnesium salts mentioned above, magnesium chloride is most preferred.

以下、水可溶性マグネシウム塩が塩化マグネシウムの場
合について、更に詳しく説明する。
Hereinafter, the case where the water-soluble magnesium salt is magnesium chloride will be explained in more detail.

塩化マグネシウム水溶液とアンモニアとの反応に′よる
水酸化マグネシウムの反応晶析装置の形式は特には問わ
ないが、反応晶析時の塩化マグネシウム水溶液中には1
〜80wt%、好ましくは3〜40wt%の水酸化マグ
ネシウム固体が浮遊していること、即ち、反応液は水酸
化マグネシウム固体を含む塩化マグネシウム水溶液のス
ラリーであることが必要であり、更に、反応晶析装置に
おける水酸化マグネシウムの晶析負荷が5〜500kg
/m3 −h以下、好ましくは30〜120kg/m’
・hであることが必要である。ここで、晶析負荷とは、
反応晶析装置内の水酸化マグネシウム固体を含む塩化マ
グネシウムスラリー1m当り、1時間に晶出する水酸化
マグネシウム固体の量(’kg)を意味し、この固体の
量は、該スラリー中の固型分重量の増量に該当する0本
発明において、上述の如き特定の晶析条件を採用する理
由は以下の通りである。
There is no particular restriction on the type of device for the reaction crystallization of magnesium hydroxide by the reaction between an aqueous magnesium chloride solution and ammonia, but there is
~80wt%, preferably 3~40wt% of solid magnesium hydroxide is suspended, that is, the reaction solution is a slurry of an aqueous magnesium chloride solution containing solid magnesium hydroxide; The crystallization load of magnesium hydroxide in the analyzer is 5 to 500 kg.
/m3 -h or less, preferably 30 to 120 kg/m'
- Must be h. Here, the crystallization load is
It means the amount ('kg) of solid magnesium hydroxide crystallized in 1 hour per 1 m of magnesium chloride slurry containing solid magnesium hydroxide in the reaction crystallizer, and the amount of solid solid in the slurry is The reason for adopting the specific crystallization conditions as described above in the present invention, which corresponds to increasing the weight of the components, is as follows.

即ち、反応晶析装置における該スラリー濃度が1wt%
未満である場合には晶析される水酸化マグネシウムはス
ラリー中の既存の水酸化マグネ91Σ蓮、固体上に析出
するよりも、新たな微細な粒径(例えば、平均粒径lJ
L以下)の水酸化マグネシウムとして析出するものが多
くなる。
That is, the slurry concentration in the reaction crystallizer is 1 wt%.
If the magnesium hydroxide to be crystallized is smaller than the existing magnesium hydroxide in the slurry, the new finer particle size (e.g., average particle size lJ
L or less) is precipitated as magnesium hydroxide.

また、スラリー濃度が80wt%を越える場合には、ス
ラリー粘度が増しすぎ、反応晶析装置に供給されるアン
モニアの分散が均一に行なわれず、得られる水酸化マグ
ネシウムの粒径が広い範囲にわたるものとなる。
Furthermore, if the slurry concentration exceeds 80 wt%, the viscosity of the slurry increases too much, and the ammonia supplied to the reaction crystallizer is not uniformly dispersed, resulting in the resulting magnesium hydroxide having a wide range of particle sizes. Become.

一方、晶析負荷については、500kg/rn’・hを
越える場合には析出する粒子が5ル以下の微細なものが
多くなることから、晶析負荷の上限は必要である。一方
、晶析負荷の下限については限定を要しないが、5kg
/rn′・h未満となると、装置を大型化する必要があ
るため、5kg/m″・h以上とすることが好ましい。
On the other hand, regarding the crystallization load, if it exceeds 500 kg/rn'·h, many of the precipitated particles will be fine particles of 5 l or less, so an upper limit for the crystallization load is necessary. On the other hand, the lower limit of the crystallization load does not need to be limited, but it is 5 kg.
If it is less than /rn'·h, it is necessary to increase the size of the device, so it is preferable to set it to 5 kg/m″·h or more.

反応晶析装置でのスラリー濃度1〜60wt%の維持は
、該反応晶析装置から抜き出す固型分を含まない清澄液
の量と、固型分を含むスラリーの量との比をコントロー
ルすることにより達成される。その具体的手段としては
、例えば、該装置から直接、」澄液とスラリーを一定の
割合で抜き出してもよいし、そのようにした後、あるい
はスラリーとして抜き出した後、固液分離器でスラリー
から固体を分離するか、固型分濃度の高いスラリーを得
、この固体ないしはスラリーと、固液分離器からの清澄
液のいずれか一方あるいは、その両方を還流量をコント
ロールしながら、反応晶析槽ヘフィードバックする方法
等が工業的に採用しうるちのである。
To maintain a slurry concentration of 1 to 60 wt% in the reaction crystallizer, control the ratio of the amount of clarified liquid containing no solids extracted from the reaction crystallizer to the amount of slurry containing solids. This is achieved by Specific means for this include, for example, directly extracting the clear liquid and slurry from the device at a fixed ratio, or after extracting the clear liquid and slurry in this manner or as a slurry, using a solid-liquid separator to separate the slurry from the slurry. Separate the solid or obtain a slurry with a high solid content concentration, and transfer this solid or slurry and/or the clarified liquid from the solid-liquid separator to a reaction crystallization tank while controlling the reflux rate. The method of feedback is the one that can be adopted industrially.

また、反応晶析装置に供給される塩化マグネシウム濃度
は2〜30wt%程度が望ましい、また、反応温度とし
ては20〜80℃が好ましい。
Further, the concentration of magnesium chloride supplied to the reaction crystallizer is preferably about 2 to 30 wt%, and the reaction temperature is preferably 20 to 80°C.

なお、本発明においては、水酸化マグネシウムを生成さ
せる段階で、塩化アンモニウムが副生じ、若干の未反応
塩化マグネシウムとともに回収されるが、これらを含む
、水酸化マグネシウムの分離母液は、消石灰及び/又は
生石灰を用いる公知の塩安蒸留法により塩化アンモニウ
ムはアンモニアとして回収され循環使用しうるし、塩安
蒸留の際副生ずる塩化カルシウムは、海水水マグと反応
せしか一原料の塩化マグネシウム製造に用いることもで
きる。
In the present invention, in the step of producing magnesium hydroxide, ammonium chloride is produced as a by-product and is recovered together with some unreacted magnesium chloride. Ammonium chloride can be recovered as ammonia and recycled using the known ammonium chloride distillation method using quicklime, and calcium chloride, which is a by-product during ammonium chloride distillation, can be reacted with seawater and used to produce magnesium chloride, which is a raw material. can.

以下、実施例により、本発明を更に詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 常法により海水を脱炭酸処理したのち、石灰乳を用いて
公知の手段により水酸化マグネシウムスラリーを得た。
Example 1 After decarboxylating seawater by a conventional method, a magnesium hydroxide slurry was obtained by a known method using milk of lime.

かかるスラリーは減圧濾過機により分離され、得られた
水酸化マグネシウムはMgO濃度34.Ovt%の湿ケ
ーキで不純物としテCa0=0.41 +  !l;+
02 = 0.12 +  A I203 璽0−12
 +Fe203= 0.03. B203−0.09.
 SO3−1,0(単位:wt%)を含んでいた。
This slurry is separated by a vacuum filter, and the obtained magnesium hydroxide has an MgO concentration of 34. Ovt% wet cake as an impurity Ca0 = 0.41 +! l;+
02 = 0.12 + A I203 Seal 0-12
+Fe203=0.03. B203-0.09.
It contained SO3-1,0 (unit: wt%).

かかる水酸化マグネシウム湿ケーキ1kgに対して濃度
2G、0wt%の塩化カルシウム及び2.Owt%の塩
化マグネシウムを含む水溶液を8.55kgの割合で加
えてレバルプ後、濃度100%の炭酸ガスを温度60℃
にて反応吸収せしめた0反応生成物を濾過機で濾別し、
濃度12.7wt%の塩化マグネシウムを含む水溶液を
得た。かかる塩化マグネシウム水溶液を塩酸酸性となし
≠jアーレーションにより、脱炭酸処理を行なった後、
撹拌装置により充分な撹拌状態を維持し、水酸化マグネ
シウム結晶を種晶として存在させた内容積35J1の反
応槽内に、かかる水溶液21kg八とアンモニアガス2
.2Nm’/bを連続的に供給し、温度を40℃に維持
しながら水酸化マグネシウムの結晶を析出せしめた。こ
の時の水酸化マグネシウムの晶析負荷は40kg/rf
・h、スラリー濃度は6wt%であった。水酸化マグネ
シウムの沈澱は濾過機により分離し、水洗後 140℃
で乾燥した。得られた水酸化マグネシウムは、MgO寥
 88.7.CaO−0,06,Si0?−0,04,
Al20311O,01,Fe2O2−0,001,B
203− 0.09,503− 0.01(単位:wt
%)であった。
Calcium chloride at a concentration of 2G and 0 wt% per kg of such magnesium hydroxide wet cake; and 2. After revalping by adding 8.55 kg of an aqueous solution containing Owt% magnesium chloride, 100% carbon dioxide gas was heated at a temperature of 60°C.
The 0 reaction product reacted and absorbed in the filter is filtered out using a filter,
An aqueous solution containing magnesium chloride at a concentration of 12.7 wt% was obtained. After decarboxylating the magnesium chloride aqueous solution by acidifying it with hydrochloric acid,
21 kg of this aqueous solution and 2 ml of ammonia gas were placed in a reaction tank with an internal volume of 35 J1 in which a sufficient stirring state was maintained using a stirring device and magnesium hydroxide crystals were present as seed crystals.
.. 2Nm'/b was continuously supplied to precipitate magnesium hydroxide crystals while maintaining the temperature at 40°C. The crystallization load of magnesium hydroxide at this time is 40 kg/rf
- h, slurry concentration was 6 wt%. The precipitate of magnesium hydroxide is separated by a filter and washed with water at 140°C.
It was dried. The obtained magnesium hydroxide was MgO 88.7. CaO-0,06,Si0? -0,04,
Al20311O,01,Fe2O2-0,001,B
203- 0.09,503- 0.01 (unit: wt
%)Met.

得られた水酸化マグネシウムを電子顕微鏡により、倍率
5000倍にて観察した所、第4図の写真に示した如く
、鱗片状の1次粒子が多方向に多数集合し、鱗片は中心
から外方に向ってほぼ放射状に配向されており、#i片
の厚みは200〜1000人、平均粒径30用の見掛上
球状体をなしていた。
When the obtained magnesium hydroxide was observed with an electron microscope at a magnification of 5,000 times, as shown in the photograph in Figure 4, a large number of scale-shaped primary particles aggregated in multiple directions, and the scales were distributed outward from the center. The #i pieces had a thickness of 200 to 1,000 particles and an average particle size of 30, forming an apparent spherical body.

また、鱗片状1次粒子の<101>方向の歪は1.8X
 10−3であった。窒素ガスを用いたBET法による
比表面積は3rrf/gであり、JIS 28807の
方法による粒子の比重は2.27であった。
In addition, the strain in the <101> direction of the scaly primary particles is 1.8X
It was 10-3. The specific surface area determined by the BET method using nitrogen gas was 3rrf/g, and the specific gravity of the particles determined by the JIS 28807 method was 2.27.

また、この2次粒子の固め見掛比重は1.4、安息角は
37度、JIS K5101による吸油量は35 m文
/100gであった。
Further, the solidified apparent specific gravity of the secondary particles was 1.4, the angle of repose was 37 degrees, and the oil absorption amount according to JIS K5101 was 35 mb/100g.

2次粒子内部の0.5JL以下の細孔が占める積算の細
孔容積は0.03cc/gであった。
The cumulative pore volume occupied by pores of 0.5 JL or less inside the secondary particles was 0.03 cc/g.

実施例2 にがりより得られた濃度12.7wt%の塩化マグネシ
ウム水溶液を55kg/b、アンモニアの供給量を5.
8Xm″/h、晶析負荷を105kg/ln” −h 
、水酸化マグネシウムのスラリー濃度を30wt%とす
る以外は実施例1と同様に処理して、水酸化マグネシウ
ムを得た。得られた水酸化マグネシウムは第1図及び第
2図と同様な構造を有する平均粒径300川のものであ
った・ まt、@片状1次粒子の厚さは約300〜1500人で
<101>方向の歪は 1.8X 10−3であった。
Example 2 55 kg/b of an aqueous magnesium chloride solution with a concentration of 12.7 wt% obtained from bittern and the amount of ammonia supplied were 5.5 kg/b.
8Xm''/h, crystallization load 105kg/ln''-h
Magnesium hydroxide was obtained in the same manner as in Example 1 except that the slurry concentration of magnesium hydroxide was 30 wt%. The obtained magnesium hydroxide had a structure similar to that shown in Figures 1 and 2 and had an average particle size of 300 mm. The strain in the <101> direction was 1.8X 10-3.

実施例1と同様にして測定した他の特性は以下の通りで
あった。
Other properties measured in the same manner as in Example 1 were as follows.

比表面積    1.1 rrI′/g粒子の比重  
 2.28 固め見掛比重  1.37 吸油量     30諺文/100g 細孔容積    0.02cc/g 実施例3 実施例2において、晶析負荷を350kg/rn’・h
、スラリー濃度を45wt%に変えた以外は実施例2と
同様にして本発明の水酸化マグネシウムを得た。
Specific surface area 1.1 rrI'/g particle specific gravity
2.28 Solidified apparent specific gravity 1.37 Oil absorption 30 g/100 g Pore volume 0.02 cc/g Example 3 In Example 2, the crystallization load was set to 350 kg/rn'・h
Magnesium hydroxide of the present invention was obtained in the same manner as in Example 2 except that the slurry concentration was changed to 45 wt%.

この水酸化マグネシウムの諸特性は以下の通りであった
The properties of this magnesium hydroxide were as follows.

平均粒径    11終 比表面積    7ml/g 鱗片状1次粒子の厚さ  150〜800人鯖堅状1次
粒子の<101>方向の歪 1.68X 10−3 粒子の3重    2.28 固め見掛比重   0.85 吸油量     46諷交八〇〇g 細孔容積     0.05cc/g 比較例1 常法で得られた平均粒径1.5鉢の海水水マグについて
実施例1と同様にして、諸特性を測定した所、以下のよ
うであった。
Average particle size 11 Final specific surface area 7 ml/g Thickness of scale-like primary particles 150-800 people Strain of hard primary particles in the <101> direction 1.68X 10-3 Triple layer of particles 2.28 Takumi Specific gravity: 0.85 Oil absorption: 46 min. 800 g Pore volume: 0.05 cc/g Comparative Example 1 A seawater mug with an average particle size of 1.5 pots obtained by a conventional method was prepared in the same manner as in Example 1. When various characteristics were measured, they were as follows.

比表面積      41rn’/g <101>方向の歪  3.7X 10−3粒子の比重
     2.13 粉体の固め見掛比重 0.61 吸油量       75ral /100g細孔容積
      (1,32cc/g比較例2 特開昭52−115799号公報の実施例1に従って水
酸化マグネシウムを製造した。
Specific surface area 41rn'/g Strain in the <101> direction 3.7X Specific gravity of 10-3 particles 2.13 Apparent solidified specific gravity of powder 0.61 Oil absorption 75ral/100g Pore volume (1,32cc/g Comparative example) 2 Magnesium hydroxide was produced according to Example 1 of JP-A-52-115799.

得られた水酸化マグネシウムの諸特性は以下の通りであ
った。
The properties of the obtained magnesium hydroxide were as follows.

平均粒径      0.9終 比表面積      4.2rn’/g<101>方向
の歪  1.2X 10−3粒子の比重     2.
31 粒子の固め見掛比重 0.70 比較例3 実施例2において、晶析負荷を800kg/m″・hス
ラリー濃度を0.5wt%にする以外は実施例2と同様
にして水酸化マグネシウムな晶析せしめた。得られた水
酸化マグネシウムの諸特性は以下の通りであった。
Average particle size 0.9 Final specific surface area 4.2 rn'/g Strain in <101> direction 1.2X Specific gravity of 10-3 particles 2.
31 Solidification of particles Apparent specific gravity 0.70 Comparative Example 3 In Example 2, magnesium hydroxide was used in the same manner as in Example 2 except that the crystallization load was 800 kg/m''·h and the slurry concentration was 0.5 wt%. The properties of the obtained magnesium hydroxide were as follows.

平均粒径       2.Iμ比 表面積      33rn’/g1 次粒子の厚さ   110〜330人<101>方向の
歪  2.IX 10−3粒子の歪      2.2
9 粒子の固め見掛比重 0.75 吸油量       80履文/100g細孔容積  
    0.20cc/g
Average particle size 2. Iμ Specific surface area 33rn'/g Primary particle thickness 110-330 Strain in <101> direction 2. IX 10-3 particle strain 2.2
9 Hardened apparent specific gravity of particles 0.75 Oil absorption amount 80 cm/100 g Pore volume
0.20cc/g

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の水酸化マグネシウム(平均粒径17
.3用)の粒子構造を示す5000倍の電子顕微鏡写真
である。 第2図は1本発明の水酸化マグネシウム(平均粒径13
.6ル)の粒子構造を示す5000倍の電子顕微鏡写真
である。 第3図は本発明の水酸化マグネシウム(平均粒径35K
)の断面の粒子構造を示す2000倍の電子顕微鏡写真
である。 第4図は実施例1による本発明の水酸化マグネシウム(
平均粒径30終)の粒子構造を示す5(100倍の電子
顕微鏡写真である。 〜 、#1 ■ 手続補正書(方式) 昭和60年5月、23日
Figure 1 shows the magnesium hydroxide of the present invention (average particle size 17
.. 3) is an electron micrograph at a magnification of 5000 times showing the particle structure of the sample. Figure 2 shows magnesium hydroxide of the present invention (average particle size 13).
.. This is an electron micrograph with a magnification of 5,000 times showing the grain structure of 6 ml. Figure 3 shows the magnesium hydroxide of the present invention (average particle size 35K).
) is an electron micrograph at 2000 times magnification showing the grain structure of a cross section. FIG. 4 shows the magnesium hydroxide of the present invention according to Example 1 (
5 (100 times magnified electron micrograph) showing the particle structure with an average particle size of 30.

Claims (1)

【特許請求の範囲】 (1)1次粒子が集合して形成されてなる、ほぼ球状の
2次粒子の平均粒径が5〜500μであり、その比表面
積が25〜1m^2/gである水酸化マグネシウム。 (2)1次粒子の〈101〉方向の歪が4×10^−^
3以下である特許請求の範囲第1項の氷酸化マグネシウ
ム。 (3)2次粒子の固め見掛比重が0.8以上である特許
請求範囲第1項の水酸化マグネシウム。 (4)1次粒子は鱗片状で鱗片の厚みが100〜500
0Åである特許請求の範囲第1項の水酸化マグネシウム
。 (5)2次粒子の吸油量が70ml/100g以下であ
る特許請求の範囲第1項の水酸化マグネシウム。 (8)鱗片状の1次粒子が2次粒子の中心部より外方に
向ってほぼ放射状に配向されたものである特許請求の範
囲第4項の水酸化マグネシウム。 (7)2次粒子内部の0.5μ以下の細孔の積算細孔容
積が0.1cc/g以下である特許請求の範囲第1項の
水酸化マグネシウム。 (8)水可溶性マグネシウム塩を含む水溶液とアンモニ
アとを反応せしめて、氷酸化マグネシウムの晶析負荷が
500kg/m^3・h以下、かつ、晶析装置における
水酸化マグネシウムスラ リー濃度を1〜60wt%になるようにして、1次粒子
が集合して形成されてなる2次粒子の平均粒径が5〜5
00μで、その比表面積が25〜1m^2/gの水酸化
マグネシウムを晶析させることを特徴とする水酸化マグ
ネシウムの製法。 (9)水可溶性マグネシウム塩が塩化マグネシウム、硝
酸マグネシウム、硫酸マグネシウムから選ばれたもので
ある特許請求の範囲第7項の水酸化マグネシウムの製法
[Claims] (1) The average particle size of the approximately spherical secondary particles formed by aggregation of primary particles is 5 to 500 μ, and the specific surface area is 25 to 1 m^2/g. Some magnesium hydroxide. (2) The strain in the <101> direction of the primary particle is 4×10^-^
The glacial magnesium oxide according to claim 1, wherein the glacial magnesium oxide is 3 or less. (3) Magnesium hydroxide according to claim 1, wherein the solidified apparent specific gravity of the secondary particles is 0.8 or more. (4) The primary particles are scaly and the thickness of the scales is 100 to 500.
Magnesium hydroxide according to claim 1, which has a particle diameter of 0 Å. (5) The magnesium hydroxide according to claim 1, wherein the oil absorption amount of the secondary particles is 70 ml/100 g or less. (8) The magnesium hydroxide according to claim 4, wherein the scale-like primary particles are oriented substantially radially outward from the center of the secondary particles. (7) The magnesium hydroxide according to claim 1, wherein the cumulative pore volume of pores of 0.5 μ or less inside the secondary particles is 0.1 cc/g or less. (8) React an aqueous solution containing a water-soluble magnesium salt with ammonia so that the crystallization load of magnesium oxide is 500 kg/m^3・h or less and the concentration of magnesium hydroxide slurry in the crystallizer is 1 to 60 wt. %, and the average particle size of secondary particles formed by aggregation of primary particles is 5 to 5.
A method for producing magnesium hydroxide, which comprises crystallizing magnesium hydroxide with a specific surface area of 00μ and a specific surface area of 25 to 1 m^2/g. (9) The method for producing magnesium hydroxide according to claim 7, wherein the water-soluble magnesium salt is selected from magnesium chloride, magnesium nitrate, and magnesium sulfate.
JP670785A 1985-01-19 1985-01-19 Magnesium hydroxide and production thereof Granted JPS61168522A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP670785A JPS61168522A (en) 1985-01-19 1985-01-19 Magnesium hydroxide and production thereof
EP86100428A EP0189098B1 (en) 1985-01-19 1986-01-14 Magnesium hydroxide, process for its production and resin composition containing it
DE8686100428T DE3685121D1 (en) 1985-01-19 1986-01-14 MAGNESIUM HYDROXYD, METHOD FOR THE PRODUCTION THEREOF AND A RESIN COMPOSITION CONTAINING THE SAME.
US06/819,409 US4698379A (en) 1985-01-19 1986-01-16 Magnesium hydroxide, process for its production and resin composition containing it
CA000499805A CA1241180A (en) 1985-01-19 1986-01-17 Magnesium hydroxide, process for its production and resin composition containing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP670785A JPS61168522A (en) 1985-01-19 1985-01-19 Magnesium hydroxide and production thereof

Publications (2)

Publication Number Publication Date
JPS61168522A true JPS61168522A (en) 1986-07-30
JPH0329004B2 JPH0329004B2 (en) 1991-04-22

Family

ID=11645769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP670785A Granted JPS61168522A (en) 1985-01-19 1985-01-19 Magnesium hydroxide and production thereof

Country Status (1)

Country Link
JP (1) JPS61168522A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120746A1 (en) * 2007-03-30 2008-10-09 Ube Material Industries, Ltd. Magnesium hydroxide powder and method for producing the same
CN102502725A (en) * 2011-10-28 2012-06-20 中国科学院过程工程研究所 Method for producing flame-retardant magnesium hydroxide
WO2012127889A1 (en) * 2011-03-23 2012-09-27 タテホ化学工業株式会社 Spherical magnesium hydroxide particle, spherical magnesium oxide particle, and method for producing same
DE112010003875T5 (en) 2009-09-30 2012-12-27 Mitsubishi Electric Corporation Switch lock fitting and control device
WO2014126075A1 (en) * 2013-02-13 2014-08-21 タテホ化学工業株式会社 Rod-like magnesium hydroxide particle and rod-like magnesium oxide particle each having high specific surface area, and methods respectively for producing said particles
JP2015137185A (en) * 2014-01-20 2015-07-30 神島化学工業株式会社 Compression granule of magnesium hydroxide and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182334A (en) * 1975-01-17 1976-07-19 Mitsubishi Petrochemical Co JISHOSEIJUSHISOSEIBUTSU
JPS52115799A (en) * 1976-03-25 1977-09-28 Kyowa Kagaku Kougiyou Kk Magnesiumhydroxide having novel structure intermediate thereof and process for preparing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182334A (en) * 1975-01-17 1976-07-19 Mitsubishi Petrochemical Co JISHOSEIJUSHISOSEIBUTSU
JPS52115799A (en) * 1976-03-25 1977-09-28 Kyowa Kagaku Kougiyou Kk Magnesiumhydroxide having novel structure intermediate thereof and process for preparing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120746A1 (en) * 2007-03-30 2008-10-09 Ube Material Industries, Ltd. Magnesium hydroxide powder and method for producing the same
JP5172824B2 (en) * 2007-03-30 2013-03-27 宇部マテリアルズ株式会社 Magnesium hydroxide powder and method for producing the same
DE112010003875T5 (en) 2009-09-30 2012-12-27 Mitsubishi Electric Corporation Switch lock fitting and control device
DE112010003875B4 (en) 2009-09-30 2019-10-24 Mitsubishi Electric Corporation Switch lock fitting and control device so as well as methods for producing a switch lock fitting and use of the produced switch lock fitting
WO2012127889A1 (en) * 2011-03-23 2012-09-27 タテホ化学工業株式会社 Spherical magnesium hydroxide particle, spherical magnesium oxide particle, and method for producing same
JP2012201511A (en) * 2011-03-23 2012-10-22 Tateho Chemical Industries Co Ltd Spherical magnesium hydroxide particle, spherical magnesium oxide particle, and method for producing them
CN102502725A (en) * 2011-10-28 2012-06-20 中国科学院过程工程研究所 Method for producing flame-retardant magnesium hydroxide
WO2014126075A1 (en) * 2013-02-13 2014-08-21 タテホ化学工業株式会社 Rod-like magnesium hydroxide particle and rod-like magnesium oxide particle each having high specific surface area, and methods respectively for producing said particles
JP2014152094A (en) * 2013-02-13 2014-08-25 Tateho Chemical Industries Co Ltd Rod-shaped magnesium hydroxide particle and rod-shaped magnesium oxide particle having high specific surface area, and their production method
JP2015137185A (en) * 2014-01-20 2015-07-30 神島化学工業株式会社 Compression granule of magnesium hydroxide and manufacturing method therefor

Also Published As

Publication number Publication date
JPH0329004B2 (en) 1991-04-22

Similar Documents

Publication Publication Date Title
Dupont et al. Synthesis and study of a well crystallized CaCO 3 vaterite showing a new habitus
JP5201455B2 (en) Phosphorus recovery material, its manufacturing method and phosphorus recovery method
JPS61168522A (en) Magnesium hydroxide and production thereof
US4693872A (en) Process for producing highly pure magnesium hydroxide
JP2000247625A (en) High purity silica sol and its production
CA2099496C (en) Process of preparing sulfate-containing basic solutions of polyaluminumchloride
JPH0249247B2 (en)
US3676067A (en) Production of fresh water,brine and magnesium hydroxide
US5112584A (en) Method for production of magnesium chloride
CA2195649C (en) Magnesium hydroxide slurries
EP0075354B1 (en) Process for the preparation of magnesium nitrate hexahydrate
EP0107870B1 (en) Production of magnesium nitrate solutions
CN113120943A (en) Synthesis method of basic cerium carbonate
US4019872A (en) Producing sodium carbonate monohydrate from carbonate solution including addition of aluminum ions
JP2549857B2 (en) Method for producing calcium carbonate with controlled particle size
JP2675465B2 (en) Hydrous calcium carbonate and method for producing the same
JPH11322342A (en) Production of ferrous sulfate monohydrate
CN114314618B (en) Magnesium carbonate double salt crystal, amorphous carbonate containing magnesium and preparation method of active magnesium oxide
JPH04231310A (en) Manufacture of aluminum nitride
JPH0513919B2 (en)
JP2934826B2 (en) Method for producing acid-resistant calcium silicate filter aid
JPS60176918A (en) Magnesium hydroxide having high purity and dispersibility and production thereof
JP2602444B2 (en) Spherical basic magnesium carbonate and method for producing the same
JPH03122011A (en) Production of magnesium hydroxide
JP2555643B2 (en) Mordenite-type zeolite having a unique crystal morphology and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees