JPWO2008117355A1 - 半導体基板製造装置、半導体基板製造方法及び半導体基板 - Google Patents

半導体基板製造装置、半導体基板製造方法及び半導体基板 Download PDF

Info

Publication number
JPWO2008117355A1
JPWO2008117355A1 JP2009506068A JP2009506068A JPWO2008117355A1 JP WO2008117355 A1 JPWO2008117355 A1 JP WO2008117355A1 JP 2009506068 A JP2009506068 A JP 2009506068A JP 2009506068 A JP2009506068 A JP 2009506068A JP WO2008117355 A1 JPWO2008117355 A1 JP WO2008117355A1
Authority
JP
Japan
Prior art keywords
semiconductor
substrate
semiconductor substrate
light
formation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009506068A
Other languages
English (en)
Inventor
越智 英夫
英夫 越智
吉澤 淳志
淳志 吉澤
佐藤 英夫
英夫 佐藤
中馬 隆
隆 中馬
大田 悟
悟 大田
千寛 原田
千寛 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Publication of JPWO2008117355A1 publication Critical patent/JPWO2008117355A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】プラスチック基板などの伸縮性を有する基板の表面に広範囲に亘って形成される多数の半導体形成領域に対して、基板が伸縮しても、アニール処理や半導体材料の塗布などの所定の処理を高精度に行うこと【解決手段】トラッキングしながら基板表面に光を照射する発光部(34)と、この発光部(34)から照射されて前記基板表面に反射した光を受光する受光部(35)と、受光した光のスペクトルまたは強度に基づいて前記基板上の半導体形成領域の位置を検出する位置検出部(36)と、を有するトラッキング手段(33)と、前記トラッキング手段(33)からの位置情報に基づき、前記半導体形成領域のそれぞれに対して所定の処理を行う半導体処理手段として、例えばアニール光照射手段(37)やインクジェットノズル(41)を備えた構成とする。【選択図】図2

Description

本発明は、例えばプラスチック基板などの伸縮性を有する基板上に広範囲に亘って形成された多数の半導体形成領域に対して所定の処理をする半導体基板製造装置、半導体基板製造方法及び半導体基板に関する。
基板上に半導体部を形成して半導体基板を製造する場合、洗浄工程、電極線配線工程、絶縁膜形成工程、半導体焼成工程などの種々の工程が行われるのが一般的である。基板の材質がガラス基板やシリコンウエハなど場合は特に問題にならないが、プラスチック基板の場合には工程毎に基板が伸縮するという問題がある。基板材料にもよるが、伸縮が大きい場合には基板の辺の長さに対して約0.1%の割合で変化することがあり、数十センチ角以上の大型基板では全体の歪みが約100μmにまで達することがある。
半導体材料は、通常は、焼成することによって半導体としての機能が発現する。半導体を焼成する方法としては、基板を加熱する方法と、半導体にレーザー光を照射する方法がある。しかしながら、プラスチック基板に用いられる材料の多くは融点が200℃以下であり、基板を加熱する方法では加熱温度が制限されてしまい、半導体の機能が充分に発現しない場合がある。一方、レーザーを照射する方法の場合、図9に示すように、基板1上に多数形成された各半導体形成領域11にそれぞれ対応する多数の開口部12を有するマスク13を製作し、このマスク13を介してレーザー照射手段からレーザー光を照射するのが一般的である。マスク13としては、フォトマスクを使用する。しかしながら、基板1がプラスチック基板の場合、熱伸縮などによって基板に伸縮や歪みが発生し、半導体形成領域11に位置ずれが生じ、レーザー光が照射されない場合がある。基板1の隅部に位置合わせ用のマーク14を形成し、このマーク14を検出してマスク13の位置合わせを行ったとしても、基板自体に伸縮や歪みが発生している場合には、マスク13の開口部12同士の間隔と半導体形成領域11同士の間隔に差が生じているので、有効な解決手段となり得ない。
本発明が解決しようとする課題には、上述した問題が一例として挙げられる。そこで、本発明の目的としては、プラスチック基板などの伸縮性を有する基板の表面に広範囲に亘って形成される多数の半導体形成領域に対して、基板が伸縮しても、アニール処理や半導体材料の塗布などの所定の処理を高精度に行うことのできる半導体基板製造装置、半導体基板製造方法及び半導体基板を提供することが一例として挙げられる。
また、本発明の他の目的は、伸縮を起こした基板上の半導体形成領域に対して、短時間で所定の処理を行うことができ、工程の短縮化を図ることが可能な半導体基板製造装置、半導体基板製造方法及び半導体基板を提供することが一例として挙げられる。
本発明の半導体基板製造装置は、請求項1に記載されているように、基板上に広範囲に亘って配列された多数の半導体形成領域に対して所定の処理を行う半導体基板製造装置であって、トラッキングしながら基板表面に光を照射する発光部と、この発光部から照射されて前記基板表面に反射した光を受光する受光部と、受光した光のスペクトルまたは強度に基づいて前記基板上の半導体形成領域の位置を検出する位置検出部と、を有するトラッキング手段と、前記トラッキング手段からの位置情報に基づき、前記半導体形成領域のそれぞれに対して所定の処理を行う半導体処理手段と、を備えたことを特徴とする。
また、本発明の他の半導体基板製造装置は、請求項17に記載されているように、基板上に広範囲に亘って配列された多数の半導体形成領域に対して所定の処理を行う半導体基板製造装置であって、半導体形成領域が配列された基板表面を撮像する撮像手段と、前記撮像手段で撮像した基板表面の情報に基づいて前記基板上の半導体形成領域の位置を検出する位置検出部と、前記位置検出部からの位置情報に基づき、前記半導体形成領域のそれぞれに対して所定の処理を行う半導体処理手段と、を備えたことを特徴とする。
本発明の半導体基板製造方法は、請求項22に記載されているように、基板上に広範囲に亘って配列された多数の半導体形成領域に対して所定の処理を行う半導体基板製造方法であって、基板表面にトラッキング用の光を照射し、受光した光のスペクトルまたは強度に基づいて前記基板上の半導体形成領域の位置を検出する工程と、前記半導体形成領域の位置情報に基づき、前記半導体形成領域のそれぞれに対して所定の処理を行う工程と、を有することを特徴とする。
また、本発明の他の半導体製造方法は、請求項32に記載されているように、基板上に広範囲に亘って配列された多数の半導体形成領域に対して所定の処理を行う半導体基板製造方法であって、半導体形成領域が配列された基板表面を撮像する工程と、前記撮像した基板表面の情報に基づいて前記基板上の半導体形成領域の位置を検出する工程と、前記検出された位置情報に基づき、前記半導体形成領域のそれぞれに対して所定の処理を行う工程と、を有することを特徴とする。
本発明の半導体基板は、請求項37に記載されているように、表面に広範囲に亘って多数の半導体形成領域が配列された基板であって、前記半導体形成領域に対して一定の離間距離を有し、前記半導体形成領域の配列方向に沿って連続するトラッキング用の目標物が形成されていることを特徴とする。
本発明の実施形態による半導体基板製造装置で処理される基板の一例を示す図である。 本発明の実施形態による半導体基板製造装置の概略構成を示す図である。 上記半導体基板製造装置で上記基板を処理する様子を模式的に示す図である。 上記半導体基板製造装置で処理される基板の他の例を示す図である。 上記半導体基板製造装置で処理される基板のさらに他の例を示す図である。 上記半導体基板製造装置で上記基板を処理する様子を模式的に示す図である。 本発明の他の実施形態による半導体基板製造装置の概略構成を示す図である。 本発明の他の実施形態による半導体基板製造装置の概略構成を示す図である。 従来技術によるアニール処理の様子を模式的に示す図である。
符号の説明
2 基板
21 有機EL部
22 半導体形成領域
23 電極ライン
3 半導体基板製造装置
33 トラッキング手段
34 発光部
35 受光部
36 位置検出部
37 アニール光照射手段
39 記憶手段
4 半導体基板製造装置
41 インクジェットノズル
42 吐出孔
5 撮像手段
以下、本発明の好ましい実施形態に従う半導体基板製造装置について、添付図面を参照しながら詳しく説明する。但し、以下に説明する実施形態によって本発明が限定されることはない。
(第1実施形態)
まず、本実施形態の半導体基板製造装置で処理される基板の一例について、図1を参照しながら説明する。基板2は、例えば長さ680mm、幅880mm、厚み0.2mmの矩形平板状のプラスチック基板であり、その表面には、図1に模式的に示すように、一対の有機EL部21及び半導体形成領域22の多数が、基板2の表面に広範囲に亘ってマトリックス状に整列配置されている。当該基板2は、例えば有機ELパネル用の基板として用いることができ、有機EL素子によって形成される有機EL部21が一画素を構成する。この場合、前記半導体形成領域22は、有機EL部21をアクティブ駆動させるための有機トランジスタのチャネル部を形成する有機半導体層である。なお、図1では図示を省略してあるが、実際には、基板2の表面に数千(行)×数千(列)個の多数組の有機EL部21及び半導体形成領域22が配置されている。但し、本実施形態で処理される基板2は、その表面に広範囲に亘って多数の半導体形成領域21が形成されていればよく、材質、基板形状、基板上のパターン形状などが限定されることはない。
半導体形成領域22は、例えば基板2に成膜した感光性有機材料をパターニングして凹部を形成し、この凹部内に半導体材料を充填した構成である。半導体材料は、有機半導体材料または無機半導体材料のいずれであってもよい。さらに、凹部内に半導体材料を充填する方法としては、例えば蒸着法や塗布法などを用いることができる。なお、図1の例では、楕円形状の半導体形成領域22を一例として示しているが、これに限定されることはなく、矩形状、線状、円形状、パターン状などの任意の形状にすることができる。
さらに、基板2には、多数組の有機EL部21及び半導体形成領域22のそれぞれを区画するようにして網目状に電極ライン23が形成されている。これら電極ライン23は、電源ライン,データライン,走査ラインなどであり、例えば電極線配線工程にて基板2に形成される。具体的には、スパッタ法などによって基板2に例えば反射率の高いアルミニウムなどの導電性材料で薄膜を形成し、フォトリソグラフィー法及びエッチングによってパターニングしてまずX方向に延びる電極ラインを形成し、Y方向に延びる電極ラインとの交差部で電気的ショートが発生しないように絶縁膜を形成し、最後にY方向に延びる電極ラインを例えば反射率の低いクロムなどの導電性材料を用いて形成する。図1の例では、基板2の長さ方向(X方向)に延びる電極ラインが電源ライン23aであり、基板2の幅方向(Y方向)に延びる電極ラインがデータライン23bである。但し、これに限定されるものではない。
ここで、詳しくは後述するように、本実施形態では、基板2の長さ方向(X方向)に延びる電極ライン(例えば電源ライン23a)をトラッキングの目標物に設定している。この場合、電極ライン23aの両端部は、他の部位と異なる形状とし、光の反射特性を他の部位と異なるようにするのが好ましい。このように構成すれば、電極ライン23aの始端及び終端を確実にトラッキングにより検出することが可能となる。一例として、図1に示すように、順次間隔が小さくなるスリット23cを形成することができる。さらに、トラッキングを容易にするために、目標物である電極ライン23aの表面に、反射膜を形成したり、ピットなどの凹凸を形成したりして反射率を調整するようにしてもよい。
上記の基板2を処理する半導体基板製造装置3の一例としては、図2に概略構成を示すように、処理空間を形成する筐体31を備え、この筐体31の内部に基板保持部32を備えている。そして、基板保持部32に保持された基板2の表面に対して所定の隙間を介して対向するようにトラッキング手段33が配置されている。トラッキング手段33は、例えば波長635nmのトラッキング用の半導体レーザー光を、予め設定した所定の進入角θ1で照射する発光部34と、発光部34から照射され基板2の表面に反射した光を受光する受光部35と、受光した光のスペクトルまたは強度に基づいて基板2上の目標物を検出し、半導体形成領域22の位置情報を取得する位置検出部36と、を有している。発光部34としては半導体レーザーを用いることができ、受光部35としてはフォトダイオードを用いることができる。また、位置検出部36としては、例えばCPUを備えたコンピュータ装置を用いることができる。但し、発光部34、受光部35及び位置検出部36が、これらに限定されることはない。
発光部34及び受光部35は、駆動機構(不図示)によって、基板2の表面に対して所定の間隔を介して対向するように上下方向(Z方向)に移動可能であると共に、基板2の長さ方向(X方向)及び幅方向(Y方向)に走査自在なように構成されている。そして、例えばリニアスケールなどを用いてX方向とY方向の相対的移動量を検出し、基板2との離間距離及び進入角θ1に基づいて、基板2の表面に照射されるトラッキング用のレーザー光の座標(X,Y)を演算によって算出する。
さらに、半導体基板製造装置3には、基板2の半導体形成領域22に対して所定の処理を行う半導体処理手段が設けられている。本実施形態では、半導体処理手段として、半導体形成領域22に形成された半導体に対して、例えば波長308nmのアニール用のレーザー光を、予め設定した所定の進入角θ2で照射するアニール光照射手段37が設けられている。アニール光照射手段37としては、例えばエキシマレーザーなどを用いることができるが、これに限定されることはない。アニール光照射手段37は、駆動機構(不図示)によって、基板2の表面に対して所定の間隔を介して対向するように上下方向(Z方向)に移動可能であると共に、基板2の長さ方向(X方向)及び幅方向(Y方向)に走査自在なように構成されている。そして、例えばリニアスケールなどを用いてX方向とY方向の相対的移動量を検出し、基板2との離間距離及び進入角θ2に基づき、基板2の表面の任意の座標(X,Y)に対してレーザー光を照射可能な構成である。
上記発光部34、受光部35、位置検出部36及びアニール光照射手段の動作は、制御部38により制御される。制御部38としては、例えばCPUを備えたコンピュータ装置を用いることができるが、これに限定されることはない。
ここで、同一の基板2に対してトラッキングによる半導体形成領域22の位置検出を行いながらアニール処理を行う場合、受光部35がアニール光を受光することで検出誤差が生じるのを防止するために、トラッキング用の光の照射領域(照射スポット)とアニール光の照射領域(照射スポット)が重ならないようにするのが好ましい。さらに、より確実に検出誤差を小さくするためには、トラッキング用の光の波長とアニール光の波長が少なくとも100nm以上離れるように設定するのが好ましい。また、トラッキング用の光の進入角θ1とアニール光の進入角θ2を少なくとも10度以上異なるように設定するのが好ましい。さらにまた、アニール光を遮断する遮断機構として、例えば光フィルタを受光部35に設けるようにするのが好ましい。
さらに、位置検出部36は、各半導体形成領域22の位置を記憶する記憶手段39として例えばメモリなどを有しており、トラッキングによって検出した半導体形成領域22の位置情報を当該記憶手段39に順次記憶し、この記憶手段39から読み出した位置情報に基づいてアニール光を照射するように制御することができる。
続いて、図2に示す半導体基板製造装置3を用いて、図1に示す基板2を処理する動作について説明する。
まず、洗浄工程、電極線配線工程、絶縁膜形成工程などの前工程を通じて図1のように構成された基板2を、基板搬入口(不図示)を介して筐体31の内部に搬入し、基板保持部32に載置する。このとき、例えば基板保持部32の表面に吸引機構を設けておき、基板2を吸着保持するようにしてもよい。
続いて、発光部34及び受光部35を基板2の表面に向かって移動させ、基板2の表面から例えば5mmの離間距離を介して対向するように設定する。そして、トラッキング用の光を照射しながら発光部34及び受光部35を水平方向(X方向及びY方向)に走査させ、受光した光のスペクトルまたは強度に基づいて目標物である電極ライン(23a)を検出する。目標物であるか否かの判定としては、例えば、目標物に反射したときの光のスペクトルまたは強度を予め測定して位置検出部36の記憶手段39に記憶しておき、トラッキングしたときに受光される光のスペクトルまたは強度と比較して目標物であるか否かを判定することができる。さらに、図1に示したように、電極ライン(23a)の端部にスリット23cを形成している場合には、光のスペクトルまたは強度が変化するのに基づいてトラッキングの始端及び終端を検出することができる。
図3を参照しながら、トラッキングの一例について詳しく説明すると、まず、トラッキング用の光の照射位置を基板2の隅部(位置A)に設定し、この照射領域を基板2の幅方向(Y方向)に走査すると、位置Bにて目標物を検出するので、今度は基板2の長さ方向(X方向)に走査して目標物をトラッキングしていく。そして、位置Cで目標物の終端が検出されると、今度は基板2の幅方向(Y方向)に走査することにより、位置Dで次の目標物を検出するので、基板2の長さ方向(X方向)に走査して目標物をトラッキングしていく。以後、同様の動作を継続する。
ここで、目標物である電極ライン(23a)は、半導体形成領域22とは離間距離L1の分だけ離れているが、離間距離L1は予め設計によって決められているので、検出した目標物の座標を距離L1の分だけ補正することにより、半導体形成領域22の位置を演算によって求めることができる。さらに、X方向およびY方向の電極ライン23a,23bの交差する位置で光のスペクトルまたは強度が変化するのを検出し、この検出位置を基準にして離間距離L2を補正することにより、半導体形成領域22のX方向の位置情報を演算によって求めることもできる。既述したように、プラスチック基板を用いると伸縮する場合があるが、離間距離L1,L2は100μm程度と極めて短い距離であるため、基板2に伸縮または歪みが発生したとしても、離間距離L1,L2の変化は極めて小さい。そのため、離間距離L1,L2で補正することによる誤差の発生はないか、あったとしても極めて少ない。
上記のようにして半導体形成領域22の位置を検出する一方で、検出された位置情報に基づいてアニール光照射手段37を走査し、半導体形成領域22にアニール光を照射する。より詳しくは、例えば図3に示すように、目標物を検出した位置Bから離間距離L1を補正した位置Eに対してアニール光を照射可能なように、アニール光照射手段37を移動させ、半導体形成領域22が間隔をおいて配列されている基板の長さ方向(X方向)にアニール光照射手段37を走査しながら、これら半導体形成領域22に対して順次アニール光を照射していく。このようにアニール処理することで半導体の特性が充分に発現される。
なお、上記のようにトラッキング手段33の後方からアニール光照射手段37を追従させながらアニール処理すれば、処理時間の短縮化を図ることができるが、これに限定されることはなく、すべての半導体形成領域22の位置を検出した後に、記憶手段39から位置情報を読み出してアニール処理を行うようにしてもよい。
さらには、複数のアニール光照射手段37を備えた構成とし、これら複数のアニール光照射手段37を同時またはタイミングを異ならしめて一斉に走査してアニール光を照射するようにしてもよい。このようにすれば、アニール処理に要する時間を短縮することができるという利点がある。一例として、例えば図4に示すように、第1の行に配列された半導体形成領域22A、第2の行に配列された半導体形成領域22B、第3の行に配列された半導体形成領域22Cのそれぞれに対して、アニール光照射手段37A,37B,37Cを配置し、これらアニール光照射手段37A,37B,37Cを基板2の長さ方向(X方向)に走査して各行ごとにアニール処理することができる。なお、図4には3本のアニール照射手段37A,37B,37Cを設けた例を示しているが、これに限定されることはなく、それ以上のアニール照射手段を設けるようにすることもできる。
上述の実施形態によれば、基板2の表面に広範囲に亘って形成されている電極ライン23を目標物に設定し、この目標物をトラッキングして半導体形成領域22の位置情報を取得しているので、たとえ基板2に伸縮や歪みが発生していても、基板2に形成された多数の半導体形成領域22の位置を高精度に検出することができる。そして、取得した位置情報に基づいてアニール光を照射することによって、これら多数の半導体形成領域22に対して高精度にアニール処理を行うことが可能となる。
さらに本実施形態によれば、基板全体にアニール光を照射しないで、アニール処理を必要とする半導体形成領域22に対してのみアニール光を照射するので、基板2に供給される熱エネルギー量を必要最小限に抑えることができる。その結果、基板2に与えるダメージを少なくして、半導体の機能を発現させることが可能となる。
さらに、本実施形態によれば、例えば有機半導体材料を用いた場合に、半導体形成プロセスの簡便化を図ることができるという利点がある。すなわち、有機半導体材料は、焼成しなければ半導体としての機能が発現せず、絶縁物として機能する。そこで、基板表面の全体に有機半導体材料の薄膜を形成し、必要な部位のみアニール光を照射して、半導体としての機能を発現させるようにする。これにより、蒸着法や印刷法のように選択的部位に半導体を形成する場合に比べて、半導体形成プロセスを簡便化させることが可能となる。しかも、絶縁膜を同時に形成することが可能である、
さらに本実施形態によれば、トラッキング手段33によって目標物の検出を行う一方で、トラッキング手段33の後方からアニール光照射手段37を追従させてアニール処理を行うことにより、一つの基板2に対し、トラッキングを開始してからアニール処理を終了するまでの工程を短時間に行うことが可能となる。このとき、トラッキング用の光の波長とアニール光の波長が少なくとも100nm以上離れるように設定するか、または、トラッキング用の光の進入角θ1とアニール光の進入角θ2を少なくとも10度以上異なるように設定するか、あるいは、アニール光を遮断する遮断機構を受光部35に設けるようにすれば、受光部35がアニール光を検出してしまうことが抑えられ、目標物の誤検出を防止することができる。その結果、半導体形成領域22の位置検出に誤差が生じるのを防止することが可能となる。
さらに本実施形態において、基板2に広範囲に形成された半導体形成領域(目標物)の中の一部を検出し、検出位置を短時間(例えば1秒以内の頻度)のうちに順次切り替えて、アニール光照射手段37がアニール光を照射する位置をその都度決定するようにすれば、目標物の検出位置と照射位置との距離が遠くならないうちに、換言すればトラッキングした後の基板2の伸縮によって検出した位置のずれが大きくならないうちに、照射位置の近くにある別の新たな目標物に切り替えることができる。つまり、上記のように切り替えを短時間に行ってアニール光の照射位置をその都度決定することにより、目標物と照射位置との関係が基板全体の大きさに対して比較的近距離を保つことができ、アニール光の照射ずれを小さくすることが可能となる。
なお、上記の実施形態では、基板2の長さ方向(X方向)に延びる電極ライン(23a)を目標物に設定しているが、これに限定されることはなく、基板の幅方向(Y方向)に延びる電極ライン23bを目標物に設定してもよく、また別の部材を目標物に設定してもよく、あるいは新たに目標物を形成するようにしてもよい。さらには、半導体形成領域22自体を目標物に設定するようにしてもよい。具体的な変形例としては、例えば図5に示すように、第1の行に配列された有機EL部21Aのそれぞれに対応する半導体形成領域22Dと、第2の行に配列された有機EL部21Bのそれぞれに対応する半導体形成領域22Eを、基板2の長さ方向(X方向)に一列に配列することができる。このように構成することにより、アニール光照射手段37の走査回数を少なくすることができ、より確実にアニール処理に要する時間を短縮することが可能となる。
さらに他の変形例としては、例えば図6に示すように、目標物としてのみ機能する半導体形成領域22Fを基板2の長さ方向端部(紙面上側)に形成することができる。この場合、目標物である半導体形成領域22Fをトラッキングし、離間距離L3を補正して第1の行の半導体形成領域22Aの位置を算出する。続いて、当該第1の行の半導体形成領域22Aをトラッキングし、同じく離間距離L3を補正して第2の行の半導体形成領域22Bの位置を算出する。なお、図6では電極ラインの図示を省略している。
(第2実施形態)
続いて、本発明の第2実施形態について図7を参照しながら説明する。
図7に模式的に示すように、本実施形態による半導体基板製造装置4は、半導体処理手段として、半導体材料塗布手段であるインクジェットノズル41を備え、半導体形成領域22のそれぞれに対して液状の半導体材料を塗布する処理を行うことを除けば、第1実施形態の半導体基板製造装置3と同じ構成である。従って、第1実施形態の半導体基板製造装置3と同じ構成については同じ符号を付すことによって詳しい説明を省略する。
図7に示すように、インクジェットノズル41は、その下面に多数の吐出孔42が一列に並んで形成され、各吐出孔42ごとに吐出動作を制御可能なように構成されている。そして、駆動機構(不図示)により、基板2の長さ方向(X方向)にノズル41を連続的または間欠的に走査しながら、半導体形成領域22の上方を通過する吐出孔42から液状の半導体材料を吐出する。
上記構成の半導体基板製造装置4により基板2を処理する動作について説明すると、まず、既述したようにしてトラッキング手段33を動作させて基板2のすべての半導体形成領域22の位置情報を取得して記憶手段39に記憶する。続いて、基板2の長さ方向(X方向)にノズル41を走査し、前記位置情報に基づき、所定の走査位置にて所定の吐出孔42から液状の半導体材料を吐出し、半導体形成領域22のそれぞれに半導体材料を塗布する。なお、ノズル41を基板2の幅方向(Y方向)に対して水平方向に傾斜(傾斜角θ3)させることによりY方向に並ぶ半導体形成領域22の間隔に吐出孔42のピッチを合わせ、すべての半導体形成領域22の上方を吐出孔42が通過するようにするか、あるいは通過する吐出孔42の数が最大数となるように設定するようにしてもよい。この場合、吐出孔42の間隔は予め設計によって決まっているので、取得した位置情報に基づいて傾斜角θ3の角度を調整することができる。
上述の実施形態においても、基板2の表面に広範囲に亘って形成されている目標物をトラッキングして半導体形成領域22の位置情報を取得しているので、たとえ基板2の伸縮や歪みが発生していたとしても、基板2のすべての半導体形成領域22の位置を高精度に検出することができる。そして、取得した位置情報に基づいてノズル41から液状半導体材料を吐出することによって、これら多数の半導体形成領域22に対して高精度に液状半導体材料を塗布することが可能となる。なお、多数の吐出孔42を有するノズル41に代えて、一つの吐出孔を有するノズルを用いて塗布するようにしても同様の効果を得ることができる。
さらには、半導体処理手段として、半導体材料塗布手段であるインクジェットノズル41とアニール照射手段37の両方を備えた構成とし、インクジェットノズル41で半導体材料を塗布した後、アニール照射手段37でアニール処理することもできる。このような構成とすれば、第1及び第2実施形態の両方の効果を得ることが可能となる。
(第3実施形態)
上述の実施形態では、トラッキング手段33を用いて目標物を検出し、半導体形成領域22の位置情報を取得していたが、これに限定されることはなく、例えば図8に模式的に示すように、CCDカメラなどの撮像手段5を用いて基板2の表面を撮像し、撮像した基板表面のデータ解析を行って半導体形成領域22の位置情報を取得することができる。この場合、半導体処理手段として、アニール光照射手段37及びインクジェットノズル41の一方、または両方を備えた構成とすることができる。このような構成であっても、基板2に広範囲に亘って形成された半導体形成領域22の位置を高精度に検出することができ、上述の実施形態と同様の効果を得ることができる。さらに、撮像手段5を用いて位置を検出する構成とすることにより、位置情報の取得時間を短縮化することが可能となる。
以上説明したように、本発明によれば、基板上に広範囲に亘って配列された多数の半導体形成領域に対して所定の処理を行う半導体基板製造装置であって、トラッキングしながら基板表面に光を照射する発光部と、この発光部から照射されて前記基板表面に反射した光を受光する受光部と、受光した光のスペクトルまたは強度に基づいて前記基板上の半導体形成領域の位置を検出する位置検出部と、を有するトラッキング手段と、前記トラッキング手段からの位置情報に基づき、前記半導体形成領域のそれぞれに対して所定の処理を行う半導体処理手段と、を備えた構成とすることにより、たとえ基板に伸縮や歪みが発生していても、基板の表面に広範囲に亘って形成されている多数の半導体形成領域の位置を高精度に検出することができる。そして、取得した位置情報に基づいて半導体処理手段が処理することによって、これら多数の半導体形成領域に対して高精度に処理を行うことが可能となる。
また、本発明によれば、基板上に広範囲に亘って配列された多数の半導体形成領域に対して所定の処理を行う半導体基板製造装置であって、半導体形成領域が配列された基板表面を撮像する撮像手段と、前記撮像手段で撮像した基板表面の情報に基づいて前記基板上の半導体形成領域の位置を検出する位置検出部と、前記位置検出部からの位置情報に基づき、前記半導体形成領域のそれぞれに対して所定の処理を行う半導体処理手段と、を備えた構成とすることにより、上記発明と同様の効果を得ることができると共に、位置検出に要する時間の短縮化を図ることができる。
本発明の半導体基板製造装置は、請求項1に記載されているように、基板上に広範囲に亘って配列された多数の半導体形成領域に対して所定の処理を行う半導体基板製造装置であって、前記半導体形成領域に対して一定の離間距離を有し、前記半導体形成領域の配列方向に沿って連続すると共にその終端部が他の部位とは異なる形状を有している基板上に形成された目標物をトラッキングしながら基板表面に光を照射する発光部と、この発光部から照射されて前記基板表面に反射した光を受光する受光部と、受光した光のスペクトルまたは強度に基づいて前記基板上の半導体形成領域の位置を検出する位置検出部と、を有するトラッキング手段と、前記トラッキング手段からの位置情報に基づき、前記半導体形成領域のそれぞれに対して所定の処理を行う半導体処理手段と、を備えたことを特徴とする。
本発明の半導体基板製造装置は、請求項15に記載されているように、 基板上に広範囲に亘って配列された多数の半導体形成領域に対して所定の処理を行う半導体基板製造方法であって、前記半導体形成領域に対して一定の離間距離を有し、前記半導体形成領域の配列方向に沿って連続すると共にその終端部が他の部位とは異なる形状を有している基板上に形成された目標物にトラッキング用の光を照射し、受光した光のスペクトルまたは強度に基づいて前記基板上の半導体形成領域の位置を検出し、受光する光のスペクトルまたは強度の変化に従って目標物の終端部を検出すると、別の目標物に移行してトラッキングする工程と、前記半導体形成領域の位置情報に基づき、前記半導体形成領域のそれぞれに対して所定の処理を行う工程と、を有することを特徴とする。
本発明の半導体基板は、請求項23に記載されているように、表面に広範囲に亘って多数の半導体形成領域が配列された基板であって、前記半導体形成領域に対して一定の離間距離を有し、前記半導体形成領域の配列方向に沿って連続すると共にその終端部が他の部位とは異なる形状を有しているトラッキング用の目標物が形成されていることを特徴とする。

Claims (39)

  1. 基板上に広範囲に亘って配列された多数の半導体形成領域に対して所定の処理を行う半導体基板製造装置であって、
    トラッキングしながら基板表面に光を照射する発光部と、この発光部から照射されて前記基板表面に反射した光を受光する受光部と、受光した光のスペクトルまたは強度に基づいて前記基板上の半導体形成領域の位置を検出する位置検出部と、を有するトラッキング手段と、
    前記トラッキング手段からの位置情報に基づき、前記半導体形成領域のそれぞれに対して所定の処理を行う半導体処理手段と、を備えたことを特徴とする半導体基板製造装置。
  2. 前記基板は、プラスチック基板であることを特徴とする請求項1に記載の半導体基板製造装置。
  3. 前記半導体形成領域に対して一定の離間距離を有し、前記半導体形成領域の配列方向に沿って連続する目標物が前記基板上に形成されており、この目標物をトラッキングして前記半導体形成領域の位置を前記位置検出部が算出することを特徴とする請求項1または2に記載の半導体基板製造装置。
  4. 前記連続する目標物をトラッキングして、このトラッキング方向に対して直交する方向に配列された複数の半導体形成領域の位置を同時に算出することを特徴とする請求項3に記載の半導体基板製造装置。
  5. 基板上に形成された電源ライン,データライン,走査ラインの少なくとも一つの電極ラインを前記目標物にすることを特徴とする請求項3または4に記載の半導体基板製造装置。
  6. 前記半導体形成領域に沿って連続する目標物の終端部が、当該目標物の他の部位とは異なる形状を有していることを特徴とする請求項3〜5のいずれか1項に記載の半導体基板製造装置。
  7. 前記半導体形成領域のそれぞれの位置情報を記憶する記憶手段を有し、この記憶手段から位置情報を読み出して前記半導体処理手段が処理を行うことを特徴とする請求項1〜6のいずれか1項に記載の半導体基板製造装置。
  8. 基板上に広範囲に形成された半導体形成領域または目標物の中の一部を検出し、検出位置を短時間のうちに順次切り替えて、半導体処理手段が処理する位置をその都度決定することを特徴とする請求項1〜7のいずれか1項に記載の半導体基板製造装置。
  9. 検出位置の切り替え頻度が1秒以内であることを特徴とする請求項8に記載の半導体基板製造装置。
  10. 一つのトラッキング手段に対して、複数の半導体処理手段を備えたことを特徴とする請求項1〜9のいずれか1項に記載の半導体基板製造装置。
  11. 前記半導体処理手段は、半導体形成領域に形成された半導体に対してアニール光を照射するアニール光照射手段であることを特徴とする請求項1〜10のいずれか1項に記載の半導体基板製造装置。
  12. 前記トラッキング手段を後方から追従しながら、前記アニール光照射手段がアニール光を照射することを特徴とする請求項11に記載の半導体基板製造装置。
  13. 前記発光部から照射されるトラッキング用の光の波長と、前記アニール光照射手段から照射されるアニール光の波長とが少なくとも100nm以上離れていることを特徴とする請求項12に記載の半導体基板製造装置。
  14. 前記トラッキング用の光の進入角度と、前記アニール光の進入角度を少なくとも10度以上異ならしめたことを特徴とする請求項12または13に記載の半導体基板製造装置。
  15. 前記トラッキング手段の受光部がアニール光を遮断する遮断機構を有することを特徴とする請求項12〜14のいずれか1項に記載の半導体基板製造装置。
  16. 前記半導体処理手段は、前記半導体形成領域に液状の半導体材料を塗布するインクジェットノズルであることを特徴とする請求項1〜15のいずれか1項に記載の半導体基板製造装置。
  17. 基板上に広範囲に亘って配列された多数の半導体形成領域に対して所定の処理を行う半導体基板製造装置であって、
    半導体形成領域が配列された基板表面を撮像する撮像手段と、
    前記撮像手段で撮像した基板表面の情報に基づいて前記基板上の半導体形成領域の位置を検出する位置検出部と、
    前記位置検出部からの位置情報に基づき、前記半導体形成領域のそれぞれに対して所定の処理を行う半導体処理手段と、を備えたことを特徴とする半導体基板製造装置。
  18. 前記基板は、プラスチック基板であることを特徴とする請求項17に記載の半導体基板製造装置。
  19. 前記半導体形成領域のそれぞれの位置情報を記憶する記憶手段を有し、この記憶手段から位置情報を読み出して前記半導体処理手段が処理を行うことを特徴とする請求項17または18に記載の半導体基板製造装置。
  20. 前記半導体処理手段は、半導体形成領域に形成された半導体に対してアニール光を照射するアニール光照射手段であることを特徴とする請求項17〜19のいずれか1項に記載の半導体基板製造装置。
  21. 前記半導体処理手段は、前記半導体形成領域に液状の半導体材料を塗布するインクジェットノズルであることを特徴とする請求項17〜20のいずれか1項に記載の半導体基板製造装置。
  22. 基板上に広範囲に亘って配列された多数の半導体形成領域に対して所定の処理を行う半導体基板製造方法であって、
    基板表面にトラッキング用の光を照射し、受光した光のスペクトルまたは強度に基づいて前記基板上の半導体形成領域の位置を検出する工程と、
    前記半導体形成領域の位置情報に基づき、前記半導体形成領域のそれぞれに対して所定の処理を行う工程と、を有することを特徴とする半導体基板製造方法。
  23. 前記基板は、プラスチック基板であることを特徴とする請求項22に記載の半導体基板製造方法。
  24. 前記半導体形成領域に対して一定の離間距離を有し、前記半導体形成領域の配列方向に沿って連続する目標物が前記基板上に形成されており、当該目標物をトラッキングして前記半導体形成領域の位置を算出することを特徴とする請求項22または23に記載の半導体基板製造方法。
  25. 前記連続する目標物をトラッキングして、このトラッキング方向に対して直交する方向に配列された複数の半導体形成領域の位置を同時に算出することを特徴とする請求項24に記載の半導体基板製造方法。
  26. 基板上に形成された電源ライン,データライン,走査ラインの少なくとも一つの電極ラインを前記目標物にしてトラッキングすることを特徴とする請求項24または25に記載の半導体基板製造方法。
  27. 前記半導体形成領域に沿って連続する目標物の終端部が、当該目標物の他の部位とは異なる形状を有しており、受光する光のスペクトルまたは強度の変化に従って終端部を検出すると、別の目標物に移行してトラッキングすることを特徴とする請求項24〜26のいずれか1項に記載の半導体基板製造方法。
  28. 基板上に広範囲に形成された半導体形成領域または目標物の中の一部を検出し、検出位置を短時間のうちに順次切り替えて、半導体処理手段が処理する位置をその都度決定することを特徴とする請求項22〜27のいずれか1項に記載の半導体基板製造方法。
  29. 検出位置の切り替え頻度を1秒以内にしたことを特徴とする請求項28に記載の半導体基板製造方法。
  30. 前記所定の処理を行う工程は、前記半導体形成領域のそれぞれに形成された半導体に対してアニール光を照射するアニール処理工程であることを特徴とする請求項22〜29のいずれか1項に記載の半導体基板製造方法。
  31. 前記所定の処理は、インクジェットノズルを用いて前記半導体形成領域のそれぞれに液状の半導体材料を塗布する工程であることを特徴とする請求項22〜30のいずれか1項に記載の半導体基板製造方法。
  32. 基板上に広範囲に亘って配列された多数の半導体形成領域に対して所定の処理を行う半導体基板製造方法であって、
    半導体形成領域が配列された基板表面を撮像する工程と、
    前記撮像した基板表面の情報に基づいて前記基板上の半導体形成領域の位置を検出する工程と、
    前記検出された位置情報に基づき、前記半導体形成領域のそれぞれに対して所定の処理を行う工程と、を有することを特徴とする半導体基板製造方法。
  33. 前記基板は、プラスチック基板であることを特徴とする請求項32に記載の半導体基板製造方法。
  34. 前記半導体形成領域のそれぞれの位置情報を記憶し、記憶した位置情報に従って前記所定の処理を行うことを特徴とする請求項32または33に記載の半導体基板製造方法。
  35. 前記所定の処理を行う工程は、前記半導体形成領域のそれぞれに形成された半導体に対してアニール光を照射するアニール処理工程であることを特徴とする請求項32〜34のいずれか1項に記載の半導体基板製造方法。
  36. 前記所定の処理は、インクジェットノズルを用いて前記半導体形成領域のそれぞれに液状の半導体材料を塗布する工程であることを特徴とする請求項32〜35のいずれか1項に記載の半導体基板製造方法。
  37. 表面に広範囲に亘って多数の半導体形成領域が配列された基板であって、
    前記半導体形成領域に対して一定の離間距離を有し、前記半導体形成領域の配列方向に沿って連続するトラッキング用の目標物が形成されていることを特徴とする半導体基板。
  38. 前記基板上に形成される電源ライン,データライン,走査ラインの少なくとも一つの電極ラインが前記目標物を兼用することを特徴とする請求項37に記載の半導体基板。
  39. 前記半導体形成領域に沿って連続する目標物の終端部が、当該目標物の他の部位とは異なる形状を有していることを特徴とする請求項37または38に記載の半導体基板。
JP2009506068A 2007-03-22 2007-03-22 半導体基板製造装置、半導体基板製造方法及び半導体基板 Pending JPWO2008117355A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/055877 WO2008117355A1 (ja) 2007-03-22 2007-03-22 半導体基板製造装置、半導体基板製造方法及び半導体基板

Publications (1)

Publication Number Publication Date
JPWO2008117355A1 true JPWO2008117355A1 (ja) 2010-07-08

Family

ID=39788100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009506068A Pending JPWO2008117355A1 (ja) 2007-03-22 2007-03-22 半導体基板製造装置、半導体基板製造方法及び半導体基板

Country Status (3)

Country Link
US (1) US20100044890A1 (ja)
JP (1) JPWO2008117355A1 (ja)
WO (1) WO2008117355A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100154870A1 (en) * 2008-06-20 2010-06-24 Nicholas Bateman Use of Pattern Recognition to Align Patterns in a Downstream Process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137238A (ja) * 1987-11-25 1989-05-30 Matsushita Electric Ind Co Ltd アクティブマトリックスアレイ
JPH02234116A (ja) * 1989-03-08 1990-09-17 Hitachi Ltd フラットディスプレイ装置の製造方法
JPH04186725A (ja) * 1990-11-21 1992-07-03 Hitachi Ltd レーザアニール装置及びアライメント法
JP2000277451A (ja) * 1999-03-26 2000-10-06 Seiko Epson Corp 半導体製造装置
JP2003243304A (ja) * 2001-12-11 2003-08-29 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2004295121A (ja) * 2003-03-13 2004-10-21 Konica Minolta Holdings Inc Tftシートおよびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3241251B2 (ja) * 1994-12-16 2001-12-25 キヤノン株式会社 電子放出素子の製造方法及び電子源基板の製造方法
JP3970546B2 (ja) * 2001-04-13 2007-09-05 沖電気工業株式会社 半導体装置及び半導体装置の製造方法
US7214573B2 (en) * 2001-12-11 2007-05-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device that includes patterning sub-islands
JP4956987B2 (ja) * 2005-12-16 2012-06-20 株式会社島津製作所 レーザー結晶化装置及び結晶化方法
TWI294185B (en) * 2006-04-14 2008-03-01 Au Optronics Corp Manufacturing method of a pixel structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137238A (ja) * 1987-11-25 1989-05-30 Matsushita Electric Ind Co Ltd アクティブマトリックスアレイ
JPH02234116A (ja) * 1989-03-08 1990-09-17 Hitachi Ltd フラットディスプレイ装置の製造方法
JPH04186725A (ja) * 1990-11-21 1992-07-03 Hitachi Ltd レーザアニール装置及びアライメント法
JP2000277451A (ja) * 1999-03-26 2000-10-06 Seiko Epson Corp 半導体製造装置
JP2003243304A (ja) * 2001-12-11 2003-08-29 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2004295121A (ja) * 2003-03-13 2004-10-21 Konica Minolta Holdings Inc Tftシートおよびその製造方法

Also Published As

Publication number Publication date
US20100044890A1 (en) 2010-02-25
WO2008117355A1 (ja) 2008-10-02

Similar Documents

Publication Publication Date Title
TWI397681B (zh) 使用處理靶做為度量靶以相對於半導體積體電路來定位雷射光束點的方法和系統
US8599358B2 (en) Maskless exposure apparatuses and frame data processing methods thereof
KR20090064511A (ko) 레이저 스크라이빙 방법
JP5890139B2 (ja) 描画装置およびその焦点調整方法
US20210323087A1 (en) Automatic calibration of a laser processing system using an integrated telecentric optical detector with limited degrees of freedom
US9086514B2 (en) Scanning exposure apparatus using microlens array
US20100208222A1 (en) Exposure apparatus and method to measure beam position and assign address using the same
US8154572B2 (en) Adjusting the calibration of an imaging system
US20100060878A1 (en) Exposure appartus, exposure method and method of manufacturing display panel substrate
KR102047224B1 (ko) 마스크리스 노광장비 및 이의 왜곡차 측정 및 매칭방법
JPWO2008117355A1 (ja) 半導体基板製造装置、半導体基板製造方法及び半導体基板
JP2012242630A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法、並びに露光装置の検査方法
WO2005106591A1 (ja) 露光パターン形成方法
JP2007132857A (ja) 画像処理装置、画像処理方法、描画装置、電気光学装置の製造方法、電気光学装置、電子機器
JP5793248B2 (ja) リソグラフィシステム
US11679602B2 (en) Substrate positioning for deposition machine
US20100103397A1 (en) Exposure apparatus, exposure method, and method of manufacturing display panel substrate
US11780242B2 (en) Substrate positioning for deposition machine
JP4235584B2 (ja) 露光装置及びパターン形成方法
JP4195413B2 (ja) 露光装置及びパターン形成方法
JP2010191059A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
US20100040964A1 (en) Exposure apparatus, exposure method and method of manufacturing display panel substrate
JP2011107569A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
KR100788164B1 (ko) 잉크젯 헤드 피치 조절방법 및 장치
JP2013197568A (ja) 露光装置及び露光方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305