JPWO2008081799A1 - Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas - Google Patents

Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas Download PDF

Info

Publication number
JPWO2008081799A1
JPWO2008081799A1 JP2008552114A JP2008552114A JPWO2008081799A1 JP WO2008081799 A1 JPWO2008081799 A1 JP WO2008081799A1 JP 2008552114 A JP2008552114 A JP 2008552114A JP 2008552114 A JP2008552114 A JP 2008552114A JP WO2008081799 A1 JPWO2008081799 A1 JP WO2008081799A1
Authority
JP
Japan
Prior art keywords
component
nitrous oxide
catalyst
oxide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008552114A
Other languages
Japanese (ja)
Other versions
JP5570122B2 (en
Inventor
北口 真也
真也 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2008552114A priority Critical patent/JP5570122B2/en
Publication of JPWO2008081799A1 publication Critical patent/JPWO2008081799A1/en
Application granted granted Critical
Publication of JP5570122B2 publication Critical patent/JP5570122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2045Calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

貴金属など高価な成分を含むことなく、亜酸化窒素を効率よく分解除去し得る新規な亜酸化窒素分解用触媒と、この触媒を用いた亜酸化窒素含有ガスの処理方法を提供する。本発明の亜酸化窒素分解用触媒は、2族元素から選ばれる少なくとも1種を含むA成分(例えば、CaCO3)と、3族、4族および14族元素から選ばれる少なくとも1種を含むB成分(例えば、CeO2)と、また、ニッケル元素を含有するC成分(NiO)とを触媒成分を含有する。A novel nitrous oxide decomposition catalyst capable of efficiently decomposing and removing nitrous oxide without containing expensive components such as noble metals and a method for treating a nitrous oxide-containing gas using the catalyst are provided. The nitrous oxide decomposition catalyst of the present invention includes an A component (for example, CaCO3) containing at least one selected from Group 2 elements and a B component containing at least one selected from Group 3, 4 and 14 elements (For example, CeO2) and a C component (NiO) containing a nickel element contain a catalyst component.

Description

本発明は、亜酸化窒素分解用触媒および亜酸化窒素含有ガスの処理方法に関する。   The present invention relates to a nitrous oxide decomposition catalyst and a method for treating a nitrous oxide-containing gas.

燃焼排ガスや化学プラントなどから排出される各種産業排ガス中に含まれる亜酸化窒素(NO)は、成層圏で分解して一酸化窒素を生成し、また高い温室効果を示すことから、その効率的な分解除去方法の開発が望まれている。例えば、アンモニアの接触酸化による硝酸製造プロセスにおいて亜酸化窒素が副生することが知られており、世界各地にある硝酸プラントから発生する亜酸化窒素を分解除去できれば地球温暖化の防止を促進することが可能となる。Nitrous oxide (N 2 O) contained in various industrial exhaust gas discharged from combustion exhaust gas and chemical plants decomposes in the stratosphere to produce nitric oxide and shows high greenhouse effect. Development of an efficient decomposition and removal method is desired. For example, it is known that nitrous oxide is by-produced in the nitric acid production process by catalytic oxidation of ammonia, and if it can decompose and remove nitrous oxide generated from nitric acid plants in various parts of the world, it will promote prevention of global warming. Is possible.

そこで、亜酸化窒素を触媒に接触させて分解除去する方法として、酸化アルミニウムや酸化ジルコニウムのような担体にパラジウム、ニッケル、コバルトなどを担持した触媒を用いる方法(特許文献1)、疎水性アルミナにルテニウムおよび/またはロジウムと酸化ジルコニウムなどとを担持した触媒を用いる方法(特許文献2)、また、酸化ロジウムや酸化コバルトと、マンガン化合物と、アルカリまたはアルカリ土類金属化合物とを含有する触媒を用いる方法(特許文献3)などが提案されている。
特開昭63−7826号公報 特開平6−142517号公報 特開平6−106027号公報
Therefore, as a method for decomposing and removing nitrous oxide by contacting it with a catalyst, a method using a catalyst in which palladium, nickel, cobalt or the like is supported on a carrier such as aluminum oxide or zirconium oxide (Patent Document 1), or hydrophobic alumina. A method using a catalyst supporting ruthenium and / or rhodium and zirconium oxide or the like (Patent Document 2), or a catalyst containing rhodium oxide or cobalt oxide, a manganese compound, and an alkali or alkaline earth metal compound. A method (Patent Document 3) and the like have been proposed.
JP-A-63-7826 JP-A-6-142517 JP-A-6-106027

本発明の目的は、亜酸化窒素を効率よく分解除去し得る新規な亜酸化窒素分解用触媒、およびこの触媒に亜酸化窒素を含むガスを接触させて亜酸化窒素を効率よく分解除去する亜酸化窒素含有ガスの処理方法を提供することにある。   An object of the present invention is to provide a novel nitrous oxide decomposition catalyst capable of efficiently decomposing and removing nitrous oxide, and nitrous oxide for efficiently decomposing and removing nitrous oxide by contacting the catalyst with a gas containing nitrous oxide. It is providing the processing method of nitrogen-containing gas.

本発明者らは上記目的を達成すべく鋭意研究を進めた結果、以下に示すA成分、B成分およびC成分を含有する亜酸化窒素分解用触媒を用いることにより、上記目的を達成できることを見出し、本発明を完成するに至った。
A成分:2族元素から選ばれる少なくとも1種の元素
B成分:3族、4族および14族元素から選ばれる少なくとも1種の元素
C成分:ニッケル元素よりなる
すなわち、本発明の亜酸化窒素分解用触媒は、2族元素から選ばれる少なくとも1種を含むA成分と、3族、4族および14族元素から選ばれる少なくとも1種を含むB成分と、また、ニッケル元素よりなるC成分とを触媒成分として含有するものである。
As a result of diligent research to achieve the above object, the present inventors have found that the above object can be achieved by using a nitrous oxide decomposition catalyst containing the following A component, B component and C component. The present invention has been completed.
A component: at least one element selected from group 2 elements B component: at least one element selected from group 3, 4 and 14 elements C component: nickel element That is, nitrous oxide decomposition according to the present invention The catalyst for use comprises an A component containing at least one selected from Group 2 elements, a B component containing at least one selected from Group 3, 4 and 14 elements, and a C component consisting of nickel elements. It is contained as a catalyst component.

本発明の亜酸化窒素含有ガスの処理方法は、上記亜酸化窒素分解用触媒を用いて亜酸化窒素含有ガスを処理することからなるものである。   The method for treating a nitrous oxide-containing gas according to the present invention comprises treating the nitrous oxide-containing gas using the above nitrous oxide decomposition catalyst.

本発明に係る亜酸化窒素分解用触媒(以下、単に「触媒」ということもある。)は、2族元素から選ばれる少なくとも1種を含むA成分と、3族、4族および14族元素から選択される少なくとも1種を含むB成分と、ニッケル元素よりなるC成分とを触媒成分として含有する。   The nitrous oxide decomposition catalyst according to the present invention (hereinafter sometimes simply referred to as “catalyst”) is composed of an A component containing at least one selected from Group 2 elements and Group 3, Group 4 and Group 14 elements. A B component containing at least one kind selected and a C component made of nickel element are contained as catalyst components.

これにより、本発明の亜酸化窒素分解用触媒は、高性能であって、亜酸化窒素を高い除去率をもって分解除去することができる。したがって、本発明の亜酸化窒素分解用触媒を用いることにより、亜酸化窒素含有ガスを効率よく浄化することができる。   Thus, the nitrous oxide decomposition catalyst of the present invention has high performance and can decompose and remove nitrous oxide with a high removal rate. Therefore, the nitrous oxide-containing gas can be efficiently purified by using the nitrous oxide decomposition catalyst of the present invention.

また、本発明の亜酸化窒素分解用触媒は、貴金属などの高価な金属成分を用いた従来の亜酸化窒素分解用触媒に匹敵する高い亜酸化窒素分解性能を示す。そのため本発明の亜酸化窒素分解用触媒は、貴金属などの高価な金属成分を用いないので、安価である。   Further, the nitrous oxide decomposition catalyst of the present invention exhibits high nitrous oxide decomposition performance comparable to conventional nitrous oxide decomposition catalysts using expensive metal components such as noble metals. Therefore, the nitrous oxide decomposition catalyst of the present invention is inexpensive because it does not use expensive metal components such as noble metals.

本発明の亜酸化窒素分解用触媒を構成するA成分は、2族元素から選ばれる少なくとも1種、好ましくはMg、Ca、SrおよびBaから選ばれる少なくとも1種、より好ましくはMgおよびCaから選ばれる少なくとも1種である。   The component A constituting the nitrous oxide decomposition catalyst of the present invention is at least one selected from group 2 elements, preferably at least one selected from Mg, Ca, Sr and Ba, more preferably selected from Mg and Ca. At least one kind.

また、本発明の2族元素から選ばれる少なくとも1種を含むA成分は、当該元素の少なくとも1種を含む単体、または化合物として本発明の触媒に含まれてもよい。これら2族元素から選ばれる少なくとも1種を本発明に係る触媒に含まれる態様、すなわちA成分は、特に限定されるものではないが、酸化物、炭酸塩、硫酸塩などとして本発明の触媒に含まれることがより好ましい。A成分の作用効果の一つとして、触媒の耐熱性を向上させる機能を有する。   Further, the component A containing at least one selected from the group 2 elements of the present invention may be contained in the catalyst of the present invention as a simple substance or a compound containing at least one of the elements. An embodiment in which at least one selected from these Group 2 elements is included in the catalyst according to the present invention, that is, the component A is not particularly limited, but is included in the catalyst of the present invention as an oxide, carbonate, sulfate or the like. More preferably it is included. As one of the effects of the A component, it has a function of improving the heat resistance of the catalyst.

上記A成分の具体例としては、酸化マグネシウム、炭酸マグネシウム、硫酸マグネシウム、酸化カルシウム、炭酸カルシウム、硫酸カルシウム、酸化ストロンチウム、炭酸ストロンチウム、硫酸ストロンチウム、酸化バリウム、炭酸バリウム、硫酸バリウムなどが挙げられる。これらのうち、酸化マグネシウム、酸化カルシウムおよび炭酸カルシウムがより好ましく、酸化マグネシウムおよび炭素カルシウムがさらにより好ましく、なかでも炭酸カルシウムは触媒の耐熱性改善に効果が高いため特に好ましい。炭酸カルシウムは、熱に対して比較的安定であり、600℃程度の比較的低温の反応条件で使用する場合は、触媒成分中に炭酸カルシウムの形態で存在する。   Specific examples of the component A include magnesium oxide, magnesium carbonate, magnesium sulfate, calcium oxide, calcium carbonate, calcium sulfate, strontium oxide, strontium carbonate, strontium sulfate, barium oxide, barium carbonate, and barium sulfate. Of these, magnesium oxide, calcium oxide and calcium carbonate are more preferred, magnesium oxide and carbon calcium are even more preferred, and calcium carbonate is particularly preferred because it is highly effective in improving the heat resistance of the catalyst. Calcium carbonate is relatively stable to heat and is used in the form of calcium carbonate in the catalyst component when used under reaction conditions at a relatively low temperature of about 600 ° C.

本発明の触媒中のA成分の含有量は、各元素の酸化物基準で、亜酸化窒素分解用触媒の全体の質量(100質量%)に対して10〜89.9質量%、好ましくは50〜79.5質量%である。10質量%未満では、耐熱性改善効果が十分でなく、一方、89.9質量%を超えると、C成分である酸化ニッケルの含有率が低下して高い亜酸化窒素分解効率が得られ難くなる。   The content of the component A in the catalyst of the present invention is 10 to 89.9% by mass, preferably 50%, based on the oxide of each element, with respect to the total mass (100% by mass) of the nitrous oxide decomposition catalyst. -79.5 mass%. If it is less than 10% by mass, the effect of improving the heat resistance is not sufficient. On the other hand, if it exceeds 89.9% by mass, the content of nickel oxide as the C component is lowered and it is difficult to obtain high nitrous oxide decomposition efficiency. .

なお、また本明細書における「酸化物基準」とは、一価の酸化物および二価の酸化物を含む酸化物換算であり、以下説明するB成分、およびC成分の酸化物基準も同様である。   In addition, the “oxide standard” in this specification is an oxide conversion including a monovalent oxide and a divalent oxide, and the same applies to the oxide standards of the B component and the C component described below. is there.

本発明に係るB成分は、3族、4族および14族元素から選ばれる少なくとも1種、好ましくはYやLa、Ce、Ndなどのランタノイド元素(3族)、Ti、Zr(4族)、それに、Si、Sn(14族)から選ばれる少なくとも1種、より好ましくはY、Ce、La、ZrおよびSiから選ばれる少なくとも1種である。   The B component according to the present invention is at least one selected from Group 3, Group 4 and Group 14 elements, preferably lanthanoid elements (Group 3) such as Y, La, Ce and Nd, Ti, Zr (Group 4), In addition, at least one selected from Si and Sn (group 14), more preferably at least one selected from Y, Ce, La, Zr and Si.

また、本発明の3族、4族および14族元素から選ばれる少なくとも1種を含むB成分は、当該元素を少なくとも1種含む単体、または化合物として本発明の触媒に含まれてもよい。これら3族、4族および14族元素から選ばれる少なくとも1種を含む態様、すなわちB成分は、特に限定されるものではないが、酸化物であるのが好ましい。B成分は、その作用効果と一つとして、C成分である酸化ニッケルの粒子成長を抑制する機能を有している。   Further, the B component containing at least one element selected from Group 3, Group 4 and Group 14 elements of the present invention may be included in the catalyst of the present invention as a simple substance or compound containing at least one of the elements. Although the aspect containing at least 1 sort (s) chosen from these 3 group, 4 group, and 14 group elements, ie, B component, is not specifically limited, It is preferable that it is an oxide. The B component has a function of suppressing particle growth of nickel oxide, which is the C component, as one of its effects.

上記B成分の具体例としては、酸化イットリウム、酸化セリウム、酸化ランタン、酸化ジルコニウムおよび酸化ケイ素を挙げることができる。   Specific examples of the component B include yttrium oxide, cerium oxide, lanthanum oxide, zirconium oxide, and silicon oxide.

本発明の触媒中のB成分の含有量は、各元素の酸化物基準で、亜酸化窒素分解用触媒の全体の質量(100質量%)に対して0.1〜30質量%、好ましくは0.5〜20質量%である。含有量が0.1質量%未満では、酸化ニッケルの粒子成長抑制効果が十分得られなくなる。また、30質量%を超えても、添加による効果はそれ以上得られない。   Content of B component in the catalyst of this invention is 0.1-30 mass% with respect to the total mass (100 mass%) of the nitrous oxide decomposition catalyst on the oxide basis of each element, preferably 0. .5 to 20% by mass. When the content is less than 0.1% by mass, the particle growth suppressing effect of nickel oxide cannot be obtained sufficiently. Moreover, even if it exceeds 30 mass%, the effect by addition will not be acquired any more.

本発明のニッケル元素を含むC成分は、ニッケル単体、またはニッケル化合物として本発明の触媒に含まれてもよい。また、具体的には、本発明のニッケル元素を含むC成分は、主成分に酸化ニッケル(NiO)が含まれていることが好ましく、酸化ニッケルがより好ましい。酸化ニッケルはNiOであるが、NiOの機能を損なわない範囲で、Ni、NiOやその他のニッケル酸化物が含まれていてもよい。さらに、酸化ニッケルは、他の金属酸化物との混合物として存在しても、あるいは、他の金属と固溶体または複合酸化物を形成してもよい。The C component containing the nickel element of the present invention may be contained in the catalyst of the present invention as nickel alone or as a nickel compound. Specifically, the C component containing the nickel element of the present invention preferably contains nickel oxide (NiO) as a main component, and more preferably nickel oxide. Nickel oxide is NiO, but Ni 3 O 4 , NiO 2 and other nickel oxides may be included as long as the function of NiO is not impaired. Furthermore, nickel oxide may exist as a mixture with other metal oxides, or may form a solid solution or composite oxide with other metals.

本発明において「主成分に酸化ニッケル(NiO)が含まれている」とは、主成分として酸化ニッケル(NiO)を含むことをいい、酸化ニッケル(NiO)のみからなる、実質的に酸化ニッケル(NiO)からなる、の双方を含む概念である。場合によっては、触媒の特性を向上させるために、酸化ニッケル(NiO)以外の元素が含まれていてもよい。なお、実質的に酸化ニッケル(NiO)からなるとは、0.1〜5質量%程度以下の不純物の混入が許容されることを意味する。例えば、電池材料向けのニッケル原料としてコバルトや亜鉛等を数%添加したものが販売されており、これらを使用することも可能である。   In the present invention, “the main component contains nickel oxide (NiO)” means that nickel oxide (NiO) is included as the main component, and is substantially composed of nickel oxide (NiO). This is a concept including both of NiO). In some cases, an element other than nickel oxide (NiO) may be included in order to improve the characteristics of the catalyst. In addition, being substantially made of nickel oxide (NiO) means that mixing of impurities of about 0.1 to 5% by mass or less is allowed. For example, nickel raw materials for battery materials to which several percent of cobalt, zinc or the like is added are sold, and these can also be used.

本発明の触媒中のC成分の含有量は、酸化ニッケルとして、亜酸化窒素分解用触媒の全体の質量(100質量%)に対して10〜89.9質量%、好ましくは20〜50質量%である。10質量%未満では、当該触媒の単位容積当りの性能が低くなり、所定の処理性能を得るためには、触媒の使用量が多くなって好ましくない。また、89.9質量%を超えると、A成分の含有量が少なくなり耐熱性改善の効果が十分得られなくなる。   Content of C component in the catalyst of this invention is 10-89.9 mass% with respect to the whole mass (100 mass%) of the catalyst for nitrous oxide decomposition | disassembly as nickel oxide, Preferably it is 20-50 mass% It is. If it is less than 10% by mass, the performance per unit volume of the catalyst will be low, and in order to obtain the prescribed treatment performance, the amount of catalyst used will be undesirably large. Moreover, when it exceeds 89.9 mass%, content of A component will decrease and the effect of heat resistance improvement will no longer be acquired sufficiently.

本発明の触媒中におけるA成分、B成分およびC成分の含有量は、上述のとおり、A成分:B成分(酸化物換算):C成分(酸化物換算)=10〜89.9%:0.1〜30%:10〜89.9%(質量)(合計100%)である。   Content of A component, B component, and C component in the catalyst of this invention is A component: B component (oxide conversion): C component (oxide conversion) = 10-89.9%: 0 as above-mentioned. 0.1-30%: 10-89.9% (mass) (100% in total).

本発明の触媒の形状は、特に制限されるものではなく公知の形状であれば特に制限されることはなく、例えば、ペレット状、粉末状、タブレット状など挙げられる。   The shape of the catalyst of the present invention is not particularly limited and is not particularly limited as long as it is a known shape, and examples thereof include a pellet shape, a powder shape, and a tablet shape.

本発明に係る触媒の全細孔容積は、0.1〜0.5cc/gが好ましく、0.15〜0.4cc/gがより好ましく、0.2〜0.35cc/gが特に好ましい。   The total pore volume of the catalyst according to the present invention is preferably 0.1 to 0.5 cc / g, more preferably 0.15 to 0.4 cc / g, and particularly preferably 0.2 to 0.35 cc / g.

本発明に係る触媒のBET比表面積は、3〜200m/gが好ましく、5〜150m/gがより好ましく、7〜50m/gが特に好ましい。BET specific surface area of the catalyst according to the present invention is preferably 3~200m 2 / g, more preferably 5~150m 2 / g, 7~50m 2 / g is particularly preferred.

上記のA成分、B成分およびC成分を含む本発明の触媒のなかでも、亜酸化窒素含有ガスを処理する際の温度範囲での熱履歴を経た後も、C成分である酸化ニッケル(NiO)の結晶粒子の凝集が少ない、すなわち、酸化ニッケル(NiO)の結晶子径が小さいものが、亜酸化窒素の分解性能などの点から好ましい。具体的には、550〜650℃で40〜60時間熱エージング処理後の前記触媒中の成分Cにおける酸化ニッケル(NiO)の結晶子径が1〜50nm以下であるものが好ましく、550〜600℃で40〜48時間熱エージング処理後の前記触媒中の成分Cにおける酸化ニッケル(NiO)の結晶子径が、15nm以上〜45nm以下のものがより好ましい。   Among the catalysts of the present invention containing the A component, B component, and C component, nickel oxide (NiO), which is the C component, even after undergoing a thermal history in the temperature range when treating the nitrous oxide-containing gas. From the standpoints of nitrous oxide decomposition performance and the like, it is preferable that the crystal particles have a small agglomeration, that is, a crystallite diameter of nickel oxide (NiO) is small. Specifically, it is preferable that the crystallite diameter of nickel oxide (NiO) in the component C in the catalyst after thermal aging treatment at 550 to 650 ° C. for 40 to 60 hours is 1 to 50 nm or less, 550 to 600 ° C. More preferably, the crystallite diameter of nickel oxide (NiO) in component C in the catalyst after thermal aging treatment for 40 to 48 hours is from 15 nm to 45 nm.

上記「600℃で48時間熱エージング処理」とは、触媒サンプルを電気炉内に置き、空気雰囲気下、600℃で48時間のエージング処理に供することを意味する。エージング処理後、サンプルを取り出し、粉末X線回折分析を行い、回折パターンから、酸化ニッケル(NiO)の結晶子径をシェラー(scherrer)の式にしたがって求める。   The above-mentioned “thermal aging treatment at 600 ° C. for 48 hours” means that the catalyst sample is placed in an electric furnace and subjected to an aging treatment at 600 ° C. for 48 hours in an air atmosphere. After the aging treatment, a sample is taken out, powder X-ray diffraction analysis is performed, and the crystallite diameter of nickel oxide (NiO) is obtained from the diffraction pattern in accordance with Scherrer's formula.

上記熱エージング処理後の酸化ニッケルの結晶子径が50nm以下となる触媒は、例えば、B成分とC成分との割合(酸化物の質量基準)を1/99〜50/50とすることにより得られる。したがって、本発明の触媒において、B成分/C成分の質量比(酸化物換算)は、好ましくは1/99〜50/50であり、より好ましくは10/90〜30/70である。B成分の割合が少ないと、使用条件下において酸化ニッケルの粒子成長を招き、その結果、触媒性能が低下しやすくなる。また、B成分の割合が多いと、A成分やC成分の含有比率が低下するため、本発明の効果が得られ難くなる。   The catalyst in which the crystallite diameter of nickel oxide after the heat aging treatment is 50 nm or less is obtained, for example, by setting the ratio of the B component and the C component (mass basis of oxide) to 1/99 to 50/50. It is done. Therefore, in the catalyst of the present invention, the mass ratio of B component / C component (as oxide) is preferably 1/99 to 50/50, more preferably 10/90 to 30/70. When the ratio of the B component is small, nickel oxide particle growth is caused under the use conditions, and as a result, the catalyst performance tends to deteriorate. On the other hand, when the proportion of the B component is large, the content ratio of the A component and the C component is reduced, so that the effect of the present invention is hardly obtained.

本発明の触媒の調製工程について下記に示すが、本発明の趣旨に反しない限り、下記調製方法に限定されるものではない。   Although the preparation process of the catalyst of the present invention is shown below, it is not limited to the following preparation method unless it is contrary to the gist of the present invention.

本発明に係るA成分、B成分およびC成分の原料の化合物(例えば粉末状の原料の化合物)に、適量の水と、さらに必要により成形助剤などを十分に混合し、所望形状に成形した後、0.1〜50時間、30〜150℃で乾燥し、300〜900℃、好ましくは400〜700℃の範囲で1〜10時間、空気中または酸素雰囲気中で焼成する。この際、原料の化合物の一部、例えば、B成分およびC成分の原料の化合物に水を所定量添加し(さらに必要により成形助剤などを)、所望の形状に成形した後、上記と同様の条件で乾燥、焼成することによってB成分およびC成分の各元素を含む複合体を調製した後に、A成分の原料の化合物と水とを当該複合物に所定量添加し、さらに必要により成形助剤などを添加して、所望形状に成形した後、上記と同様の条件で乾燥・焼成して本発明の触媒を調製してもよい。   A raw material compound (for example, a powdery raw material compound) of component A, component B and component C according to the present invention is mixed with an appropriate amount of water and, if necessary, a molding aid, etc., and molded into a desired shape. Thereafter, drying is performed at 30 to 150 ° C. for 0.1 to 50 hours, and baking is performed in air or in an oxygen atmosphere at 300 to 900 ° C., preferably 400 to 700 ° C. for 1 to 10 hours. At this time, a predetermined amount of water is added to a part of the raw material compounds, for example, the raw material compounds of the B component and the C component (further, if necessary, a molding aid or the like), and after molding into a desired shape, the same as above After preparing a composite containing each element of the B component and the C component by drying and firing under the conditions described above, a predetermined amount of the raw material compound of component A and water is added to the composite, and if necessary, molding aid is added. The catalyst of the present invention may be prepared by adding an agent or the like to form a desired shape and then drying and calcining under the same conditions as described above.

前述のとおり、B成分は、C成分の一例である酸化ニッケルの粒子成長を抑制する効果を有していることから、酸化ニッケルの近傍に存在させることが好ましい。したがって、B成分の原料の化合物およびC成分の原料の化合物を実質的に均一に混合するか、あるいは、両者の固溶体を作製した後に、A成分の原料と混合し、上記の方法と同様にして、所望の形状に成形し、乾燥して、300〜700℃、好ましくは400〜600℃の範囲で焼成して調製するのが好ましい。   As described above, since the B component has an effect of suppressing particle growth of nickel oxide, which is an example of the C component, the B component is preferably present in the vicinity of the nickel oxide. Therefore, the raw material compound of component B and the raw material compound of component C are mixed substantially uniformly, or after both solid solutions are prepared, they are mixed with the raw material of component A, and the same method as described above. It is preferably prepared by molding into a desired shape, drying, and firing in the range of 300 to 700 ° C, preferably 400 to 600 ° C.

上記のように、B成分の原料の化合物とC成分の原料の化合物とを、予め均一混合物や固溶体などとして複合させるのが好ましいが、このような複合体(例えば複合物粉末)の調製方法には特に制限はなく、一般に用いられている、物理混合法、含浸担持法、それに、噴霧熱分解法、共沈法、均一沈殿法、表面析出法、ゾルゲル法や固相反応法などを用いることができる。具体的には、以下の方法が例示される。
(1)B成分の原料の化合物およびC成分の原料の化合物を共に粉末状で十分混合し、700〜1000℃で焼成して複合体を調製する(方法1)。
(2)B成分の原料の化合物またはC成分の原料の化合物のどちらか一方を溶液として混合し、400〜800℃で焼成して複合体を調製する(方法2)。
(3)B成分の原料の化合物およびC成分の原料の化合物のどちらも溶液として混合し、アルカリまたは酸の添加などにより、pHが5〜9になるように調製し加水分解反応によって共沈させ、ろ過洗浄した後、400〜800℃で焼成し複合体を調製する(方法3)。
As described above, it is preferable to combine the raw material compound of the B component and the raw material compound of the C component in advance as a homogeneous mixture or a solid solution. However, in the preparation method of such a composite (for example, composite powder) There is no particular limitation, and generally used physical mixing method, impregnation support method, spray pyrolysis method, coprecipitation method, uniform precipitation method, surface precipitation method, sol-gel method, solid phase reaction method, etc. Can do. Specifically, the following method is exemplified.
(1) Both the raw material compound of component B and the raw material compound of component C are sufficiently mixed in powder form and fired at 700 to 1000 ° C. to prepare a composite (Method 1).
(2) Either a raw material compound of component B or a raw material compound of component C is mixed as a solution and fired at 400 to 800 ° C. to prepare a composite (Method 2).
(3) Both the raw material compound of component B and the raw material compound of component C are mixed as a solution, adjusted to pH 5-9 by addition of alkali or acid, and coprecipitated by hydrolysis reaction. After filtration and washing, the composite is prepared by firing at 400 to 800 ° C. (Method 3).

本明細書における「実質的に均一に混合する」は、複合酸化物、緻密な混合酸化物、または固溶体を形成させるためであり、具体的には上記(方法1)〜(方法3)の少なくとも一つの方法や、上記各成分を剪断混練できるもの例えば、押出機、バンバリーミキサー、ローラー、ニーダーなどを用いて混練する、または当該剪断混練の後に焼成する方法をいい、混練するための装置は、上記各成分を剪断混練できるものであれば上記例示に限らず特に制限はない。   The “substantially uniformly mixing” in the present specification is for forming a complex oxide, a dense mixed oxide, or a solid solution, specifically, at least one of the above (Method 1) to (Method 3). One method or a method capable of shear kneading each of the above components, for example, kneading using an extruder, a Banbury mixer, a roller, a kneader, or the like, or a method of firing after the shear kneading, an apparatus for kneading is As long as the above components can be shear kneaded, there is no particular limitation without being limited to the above examples.

これらのなかでも、方法(2)および方法(3)が好適に用いられる。B成分の原料としては、各元素の酸化物、水酸化物、炭酸塩などの固体粉末として添加するより、塩化物、硝酸塩、酢酸塩などの水溶性塩やゾル状物を用いてC成分と複合せしめて均一混合物や複合酸化物、あるいは固溶体を形成させるのがよい。   Among these, the method (2) and the method (3) are preferably used. As a raw material for the B component, a water-soluble salt such as chloride, nitrate, acetate, or a sol is used instead of adding as a solid powder such as an oxide, hydroxide, or carbonate of each element. It is preferable to form a uniform mixture, a complex oxide, or a solid solution by compounding.

上記方法(2)および方法(3)において、焼成温度は400〜800℃が好ましく、より好ましくは500〜700℃である。焼成温度が400℃未満では、粒子成長抑制効果が得られにくくなり、一方、焼成温度が800℃を超えると、得られる複合体の比表面積が小さくなり好ましくない。   In the said method (2) and method (3), 400-800 degreeC is preferable and baking temperature is 500-700 degreeC more preferably. When the firing temperature is less than 400 ° C., it is difficult to obtain the effect of suppressing particle growth. On the other hand, when the firing temperature exceeds 800 ° C., the specific surface area of the resulting composite is undesirably reduced.

上記アルカリは特に制限されることはなく、例えば、アンモニアなどを水に溶解させて使用することができる。   The alkali is not particularly limited, and for example, ammonia or the like can be dissolved in water and used.

本発明に係る成形助剤としては、特に制限が無く公知のものを使用することができ、例えば、ポリビニルアルコール、ポリエチレングリコール、メチルセルロース、グリセリン、澱粉等の有機結合剤等が挙げられる。   The molding aid according to the present invention is not particularly limited and known ones can be used, and examples thereof include organic binders such as polyvinyl alcohol, polyethylene glycol, methyl cellulose, glycerin, and starch.

本発明に係るA成分の原料の化合物は、上記触媒の調製工程において、各元素(すなわち、2族元素から選ばれる少なくとも1種の元素)の硝酸塩、塩化物、水酸化物、酢酸塩を形成し得るものであればいずれでもよく、当該各元素の硝酸塩、塩化物、水酸化物、酢酸塩などを用いることができる。例えば、硝酸塩や塩化物を加水分解して水酸化物を経たり、あるいは、そのまま添加して触媒成分調製工程で熱処理により酸化物となるものを用いてもよい。さらに、前駆体として触媒成分調製時に存在せしめ、触媒成分の使用環境において、例えば、酸化物となる化合物もA成分の原料の化合物として用いることができる。具体的には、酸化マグネシウム、炭酸マグネシウム、硫酸マグネシウム、酸化カルシウム、炭酸カルシウム、硫酸カルシウム、酸化ストロンチウム、炭酸ストロンチウム、硫酸ストロンチウム、酸化バリウム、炭酸バリウム、硫酸バリウムなどが挙げられ、市販のものでも合成して用いてもよい。また、本発明に係るA成分の原料の化合物は、A成分、B成分、およびC成分の原料の化合物の合計を100質量%とすると、10〜89.9質量%添加することが好ましく、50〜79.5質量%添加することがより好ましい。   The raw material compound of component A according to the present invention forms nitrates, chlorides, hydroxides, and acetates of each element (that is, at least one element selected from group 2 elements) in the catalyst preparation step. Any of these can be used, and nitrates, chlorides, hydroxides, acetates, and the like of the respective elements can be used. For example, nitrates and chlorides may be hydrolyzed to form hydroxides, or added as they are and converted to oxides by heat treatment in the catalyst component preparation step. Further, a compound that is present as a precursor at the time of preparation of the catalyst component and becomes an oxide in the environment in which the catalyst component is used, for example, can also be used as a raw material compound of the component A. Specific examples include magnesium oxide, magnesium carbonate, magnesium sulfate, calcium oxide, calcium carbonate, calcium sulfate, strontium oxide, strontium carbonate, strontium sulfate, barium oxide, barium carbonate, and barium sulfate. May be used. Further, the compound of the raw material of the component A according to the present invention is preferably added in an amount of 10 to 89.9% by weight, assuming that the total of the raw material compounds of the component A, the component B and the component C is 100% by weight. It is more preferable to add ~ 79.5 mass%.

本発明に係るB成分の原料の化合物は、上記触媒調製工程において、各元素(少なくとも3族、4族および14族元素から選ばれる少なくとも1種の元素)の酸化物以外に、炭酸塩、水酸化物、塩化物、硝酸塩、硫酸塩、酢酸塩や、ゾル状物などの酸化物の前駆体など、触媒調製工程において、酸化物となり得るものであればいずれも使用することができる。具体的には、酸化イットリウム、酸化セリウム、酸化ランタン、酸化ジルコニウムおよび酸化ケイ素、硝酸ランタン六水和物、オキシ硝酸ジルコニウム二水和物、シリカゾル(日産化学工業株式会社製スノーテックスS)、硝酸セリウム六水和物などが挙げられ、市販のものでも合成して用いてもよい。また、本発明に係るB成分の原料の化合物は、A成分、B成分、およびC成分の原料の化合物の合計を100質量%とすると、酸化物換算で0.1〜30質量%添加することが好ましく、0.5〜20質量%添加することがより好ましい。   In the catalyst preparation step, the compound of the raw material of the component B according to the present invention is carbonate, water, in addition to the oxide of each element (at least one element selected from group 3, group 4 and group 14 elements). Any of oxides, chlorides, nitrates, sulfates, acetates, and precursors of oxides such as sols can be used as long as they can become oxides in the catalyst preparation step. Specifically, yttrium oxide, cerium oxide, lanthanum oxide, zirconium oxide and silicon oxide, lanthanum nitrate hexahydrate, zirconium oxynitrate dihydrate, silica sol (Nissan Chemical Industry Co., Ltd. Snowtex S), cerium nitrate Hexahydrate may be mentioned, and a commercially available product may be used. Moreover, the compound of the raw material of B component which concerns on this invention shall add 0.1-30 mass% in conversion of an oxide, when the sum total of the compound of the raw material of A component, B component, and C component shall be 100 mass%. It is more preferable to add 0.5 to 20% by mass.

本発明に係るC成分の原料の化合物は、酸化ニッケルのほかに、触媒調製工程において、酸化ニッケルとなり得るものであればいずれも用いることができる。例えば、炭酸ニッケル、硝酸ニッケル、塩化ニッケル、水酸化ニッケル、酢酸ニッケルなどを用いることができ、市販のものでも合成して用いてもよい。   In addition to nickel oxide, any compound that can be converted to nickel oxide in the catalyst preparation step can be used as the raw material compound of component C according to the present invention. For example, nickel carbonate, nickel nitrate, nickel chloride, nickel hydroxide, nickel acetate, etc. can be used, and commercially available ones may be synthesized and used.

また、本発明に係るC成分の原料の化合物は、A成分、B成分、およびC成分の原料の化合物の合計を100質量%とすると、酸化物換算で10〜89.9質量%添加することが好ましく、20〜50質量%添加することがより好ましい。   Moreover, the compound of the raw material of C component which concerns on this invention shall add 10-89.9 mass% in conversion of an oxide, when the sum total of the compound of the raw material of A component, B component, and C component is 100 mass%. It is preferable to add 20 to 50% by mass.

また、本発明に係るA成分、B成分、およびC成分の原料の化合物の形状は特に制限されるものではなく、粉末状、粒子状、ペレット状、タブレット状など公知のものを使用することができる。   In addition, the shape of the raw material compounds of the A component, B component, and C component according to the present invention is not particularly limited, and it is possible to use known materials such as powder, particles, pellets, and tablets. it can.

本発明において使用される亜酸化窒素分解用触媒は、A成分と、B成分と、C成分とを触媒成分として含有するものであり、触媒成分をそのままペレット状やハニカム状に押し出し成形して三次元構造体としてもよく、耐火性三次元構造体上に前記触媒成分を塗布担持してもよい。すなわち、本願発明に係る触媒は、本発明に係るA成分とB成分とC成分とからなる触媒成分とを含有するものであり、他に耐火性三次元構造体や耐火性無機酸化物を含んでもよい。   The nitrous oxide decomposition catalyst used in the present invention contains an A component, a B component, and a C component as catalyst components, and the catalyst components are extruded into pellets and honeycombs as they are to form a tertiary. An original structure may be used, and the catalyst component may be applied and supported on a fire-resistant three-dimensional structure. That is, the catalyst according to the present invention contains the catalyst component composed of the A component, the B component, and the C component according to the present invention, and includes a refractory three-dimensional structure and a refractory inorganic oxide. But you can.

本発明の触媒および耐火性三次元構造体の形状については特に制限はなく、円柱状、リング状、球状、板状、ハニカム状、その他一体に成形されたものなど適宜選択することができる。この触媒および耐火性三次元構造体の成形は、一般的な成形方法、例えば、打錠成形法、押出成形法などによって行うことができる。球状触媒の場合、その平均粒径は、通常、1〜10mmである。ハニカム状触媒の場合は、いわゆるモノリス構造体と同様であり、押出成形法やシート状素子を巻き固める方法などにより製造される。そのガス通過口(セル形状)の形は6角形、4角形、3角形またはコルゲーション形のいずれであってもよい。セル密度(セル数/単位断面)は、通常、25〜800セル/平方インチ(×2.5cm)である。   The shapes of the catalyst and the fire-resistant three-dimensional structure of the present invention are not particularly limited, and can be appropriately selected from a cylindrical shape, a ring shape, a spherical shape, a plate shape, a honeycomb shape, and other integrally formed shapes. The catalyst and the fire-resistant three-dimensional structure can be molded by a general molding method such as a tableting molding method or an extrusion molding method. In the case of a spherical catalyst, the average particle diameter is usually 1 to 10 mm. In the case of a honeycomb-shaped catalyst, it is the same as a so-called monolith structure, and is manufactured by an extrusion molding method or a method of winding up a sheet-like element. The shape of the gas passage port (cell shape) may be hexagonal, quadrangular, triangular or corrugated. The cell density (number of cells / unit cross section) is usually 25 to 800 cells / in 2 (× 2.5 cm).

また、本発明の触媒は、上記のような形状から適宜選択した所定の形状を有する耐火性無機酸化物の上に担持して、使用してもよい。この耐火性無機酸化物としては、この種の触媒の調製に一般に用いられている、例えば、シリカ、アルミナ、ジルコニア、チタニアなどのほかに、Si、Ti、Zrなどの2種以上からなる複合酸化物などを使用することができる。   Further, the catalyst of the present invention may be used by being supported on a refractory inorganic oxide having a predetermined shape appropriately selected from the above shapes. As this refractory inorganic oxide, it is generally used for the preparation of this type of catalyst. For example, in addition to silica, alumina, zirconia, titania, etc., a composite oxidation composed of two or more of Si, Ti, Zr, etc. Things can be used.

上記触媒成分を被覆する耐火性三次元構造体としては、ハニカム構造体などの耐熱性三次元構造体が挙げられるが一体成型のハニカム構造体が好ましく、例えば、モノリスハニカム構造体、メタルハニカム構造体、プラグハニカム構造体等、また、三次元一体構造体ではなくても、ペレット構造体等も挙げることができる。   Examples of the fire-resistant three-dimensional structure covering the catalyst component include a heat-resistant three-dimensional structure such as a honeycomb structure, but an integrally formed honeycomb structure is preferable. For example, a monolith honeycomb structure, a metal honeycomb structure In addition, a plug honeycomb structure and the like, and a pellet structure and the like can also be used instead of a three-dimensional integrated structure.

モノリス構造体としては、通常、セラミックハニカム構造体と称されるものであればよく、特に、コージエライト、ムライト、α−アルミナ、ジルコニア、チタニア、リン酸チタン、アルミニウムチタネート、ベタライト、スポンジュメン、アルミノシリケート、マグネシムシリケートなどを材料とするハニカム構造体が好ましく、なかでもコージエライト質のものが特に好ましい。その他、ステンレス鋼、Fe−Cr−Al合金などの酸化抵抗性の耐熱性金属を用いて一体構造体としたものが用いられる。   As the monolith structure, what is usually referred to as a ceramic honeycomb structure may be used. A honeycomb structure made of magnesium silicate or the like is preferable, and cordierite is particularly preferable. In addition, an integrated structure using an oxidation-resistant heat-resistant metal such as stainless steel or Fe—Cr—Al alloy is used.

本発明の触媒は、250〜900℃、好ましくは350〜700℃、より好ましくは400〜600℃の範囲の反応温度で使用するのに適している。すなわち、本発明の亜酸化窒素分解用触媒は、250〜900℃の比較的低い温度範囲において、高い亜酸化窒素分解性能を示す。本発明の触媒を用いることにより、高価な白金族金属を用いなくても、500℃以下の比較的低温でも亜酸化窒素を効果的に分解することができる。また、通常の酸化ニッケル系触媒は耐熱性に問題があって、上記のような使用条件においては、粒子成長を起こして、著しい熱劣化を招くが、本発明の触媒においては、このような粒子成長を効果的に抑制することができる。   The catalyst of the present invention is suitable for use at a reaction temperature in the range of 250-900 ° C, preferably 350-700 ° C, more preferably 400-600 ° C. That is, the nitrous oxide decomposition catalyst of the present invention exhibits high nitrous oxide decomposition performance in a relatively low temperature range of 250 to 900 ° C. By using the catalyst of the present invention, nitrous oxide can be effectively decomposed even at a relatively low temperature of 500 ° C. or less without using an expensive platinum group metal. In addition, a normal nickel oxide catalyst has a problem in heat resistance, and under the use conditions as described above, particle growth occurs and causes significant thermal degradation. In the catalyst of the present invention, such particles Growth can be effectively suppressed.

本発明の「600℃で48時間熱エージング処理」は、例えば、特に350〜500℃の反応温度となる硝酸プラントのテールガス処理を想定した加速耐久条件を考慮しており、600℃で48時間熱エージング処理後における、酸化ニッケル(NiO)の結晶子径が50nm以下であれば、白金系触媒に匹敵する優れた低温活性を維持することができる。   The “48 ° C. thermal aging treatment at 600 ° C.” of the present invention takes into account accelerated endurance conditions assuming a tail gas treatment of a nitric acid plant, particularly at a reaction temperature of 350 to 500 ° C. If the crystallite diameter of nickel oxide (NiO) after the aging treatment is 50 nm or less, excellent low-temperature activity comparable to that of a platinum-based catalyst can be maintained.

本発明の亜酸化窒素含有ガスの処理方法とは、上記説明した本発明の亜酸化窒素分解用触媒を用いて亜酸化窒素含有ガス中の亜酸化窒素を分解除去するものである。   The method for treating a nitrous oxide-containing gas of the present invention is to decompose and remove nitrous oxide in the nitrous oxide-containing gas using the nitrous oxide decomposition catalyst of the present invention described above.

本発明に係る亜酸化窒素含有ガスとしては、流動層ボイラ、下水汚泥焼却炉等の固定燃焼装置、乗用車やトラック等の輸送機関、それに、アジピン酸、グリオキザール、硝酸等を製造する化学プラント等から排出される亜酸化窒素含有ガスが挙げられる。   As the nitrous oxide-containing gas according to the present invention, from a fixed combustion apparatus such as a fluidized bed boiler, a sewage sludge incinerator, a transportation vehicle such as a passenger car or a truck, and a chemical plant that produces adipic acid, glyoxal, nitric acid, etc. Examples include nitrous oxide-containing gas that is discharged.

本発明に係る亜酸化窒素含有ガス中の亜酸化窒素のガス濃度は、通常、0.01〜10容量%であり、好ましくは0.02〜0.5容量%である。亜酸化窒素含有ガス中には、亜酸化窒素以外の成分として、窒素、酸素、二酸化炭素、一酸化炭素、水、水素、アンモニア、NOx(NO、NO)、SOxなどが含まれていてもよい。The gas concentration of nitrous oxide in the nitrous oxide-containing gas according to the present invention is usually 0.01 to 10% by volume, preferably 0.02 to 0.5% by volume. The nitrous oxide-containing gas, as a component other than nitrous oxide, nitrogen, oxygen, carbon dioxide, carbon monoxide, water, hydrogen, ammonia, NOx (NO, NO 2) , also include such SOx Good.

本発明の亜酸化窒素含有ガスの処理方法は、亜酸化窒素を直接窒素と酸素とに分解するものであり、炭化水素、一酸化炭素、水素やアンモニアのような還元剤を添加しなくても亜酸化窒素含有ガスを処理することができる。反応温度は、250〜900℃、好ましくは350〜700℃、より好ましくは400〜600℃である。また、空間速度(SV)は、1,000〜50,000hr−1、好ましくは2,000〜20,000hr−1である。さらに、反応圧は1〜40bar、好ましくは1〜20barである。The method for treating a nitrous oxide-containing gas according to the present invention directly decomposes nitrous oxide into nitrogen and oxygen without adding a reducing agent such as hydrocarbon, carbon monoxide, hydrogen or ammonia. A nitrous oxide-containing gas can be treated. The reaction temperature is 250 to 900 ° C, preferably 350 to 700 ° C, more preferably 400 to 600 ° C. The space velocity (SV) is 1,000 to 50,000 hr −1 , preferably 2,000 to 20,000 hr −1 . Furthermore, the reaction pressure is 1 to 40 bar, preferably 1 to 20 bar.

本発明の亜酸化窒素分解用触媒は、NOx(NO、NO)の共存下でも、優れた亜酸化窒素分解性能を示す。したがって、本発明の処理方法によれば、亜酸化窒素と共にNOx(NO、NO)を含むガス中の亜酸化窒素を効率よく分解除去できる。従来の亜酸化窒素分解用触媒では、NOxが共存すると亜酸化窒素分解性能が低下することが知られており、通常、前処理でNOxを除去してから亜酸化窒素を処理する方法が選ばれていた。NOx存在下の亜酸化窒素分解性能の低下要因は明らかではないが、吸脱着速度の違いによる反応阻害やNOxから派生する亜酸化窒素の副生等が考えられる。The nitrous oxide decomposition catalyst of the present invention exhibits excellent nitrous oxide decomposition performance even in the presence of NOx (NO, NO 2 ). Therefore, according to the treatment method of the present invention, nitrous oxide in a gas containing NOx (NO, NO 2 ) together with nitrous oxide can be efficiently decomposed and removed. Conventional nitrous oxide decomposition catalysts are known to degrade nitrous oxide decomposition performance when NOx coexists, and usually a method of treating nitrous oxide after removing NOx in the pretreatment is selected. It was. Although the cause of the degradation of nitrous oxide decomposition performance in the presence of NOx is not clear, reaction inhibition due to the difference in adsorption / desorption rate, nitrous oxide byproduct derived from NOx, and the like are considered.

一般に亜酸化窒素分解反応は高温になるほど反応は促進されるのに対し、NOxのアンモニアによる選択的脱硝反応は温度が高くなるほど不利となるため、400℃以下、好ましくは300℃以下で処理される。したがって、従来の前段でNOxを除去してから亜酸化窒素を処理する方法は熱効率的に好ましくない。例えば、硝酸プラントのテールガスに適用する場合に500℃の排ガスを脱硝反応に適した温度に冷却してから再び昇温して亜酸化窒素分解反応に適した温度に昇温するというように非経済的な処理方法となっている。これに対し、本発明の触媒を用いると、亜酸化窒素を分解してからNOxを除去することができるため、亜酸化窒素とNOxとを含む排ガスを熱効率的に有利に処理することができる。   In general, the higher the temperature of the nitrous oxide decomposition reaction is, the more the reaction is promoted. On the other hand, the selective denitration reaction of NOx with ammonia becomes disadvantageous as the temperature increases, and therefore, the treatment is performed at 400 ° C. or lower, preferably 300 ° C. or lower. . Therefore, the conventional method of treating nitrous oxide after removing NOx in the previous stage is not preferable in terms of heat efficiency. For example, when applied to tail gas of a nitric acid plant, the temperature of the exhaust gas at 500 ° C. is cooled to a temperature suitable for the denitration reaction and then raised again to a temperature suitable for the nitrous oxide decomposition reaction. It is a typical processing method. On the other hand, when the catalyst of the present invention is used, NOx can be removed after nitrous oxide is decomposed, so that exhaust gas containing nitrous oxide and NOx can be treated efficiently and efficiently.

したがって、本発明の亜酸化窒素含有ガスの処理方法の一つは、亜酸化窒素とNOx(NO、NO)とを含む排ガスを、本発明の触媒成分または触媒に接触させて、排ガス中の亜酸化窒素を分解する工程、次に、処理後のガスにアンモニアまたは尿素を加えて、残存するNOx(NO、NO)を分解除去(脱硝処理)する工程を含むことが好ましい。亜酸化窒素分解工程での温度は、250〜900℃、好ましくは350〜700℃、より好ましくは400〜600℃であり、脱硝処理工程の温度は、150〜500℃、好ましくは200〜450℃、より好ましくは250〜350℃である。Accordingly, one of the methods for treating a nitrous oxide-containing gas of the present invention is to bring exhaust gas containing nitrous oxide and NOx (NO, NO 2 ) into contact with the catalyst component or catalyst of the present invention, It is preferable to include a step of decomposing nitrous oxide, and then a step of adding ammonia or urea to the treated gas to decompose and remove remaining NOx (NO, NO 2 ) (denitration treatment). The temperature in the nitrous oxide decomposition step is 250 to 900 ° C, preferably 350 to 700 ° C, more preferably 400 to 600 ° C, and the temperature of the denitration treatment step is 150 to 500 ° C, preferably 200 to 450 ° C. More preferably, it is 250-350 degreeC.

排ガス中のNOとNOとの濃度比は、特に限定されず、NOx濃度として0.0001〜0.5容量%であり、好ましくは0.3容量%以下である。The concentration ratio between NO and NO 2 in the exhaust gas is not particularly limited, and is a NOx concentration of 0.0001 to 0.5% by volume, preferably 0.3% by volume or less.

上記脱硝処理工程は、脱硝処理に一般に用いられている条件下に実施することができる。アンモニアの添加量は、アンモニア/NOxのモル比が0.3/1〜3/1、好ましくは0.5/1〜1.5/1の範囲内で適宜選択することができる。尿素の添加量はアンモニアのモル数の1/2であることが好ましい。脱硝触媒としては、チタニア、アルミナ、シリカ、ゼオライトなどの担体成分とV、Cu、W、Mo、Feなどの酸化物とを組み合わせたものを使用することができる。   The denitration treatment step can be performed under conditions generally used for denitration treatment. The amount of ammonia to be added can be appropriately selected within a molar ratio of ammonia / NOx of 0.3 / 1 to 3/1, preferably 0.5 / 1 to 1.5 / 1. The amount of urea added is preferably ½ of the number of moles of ammonia. As the denitration catalyst, a combination of a carrier component such as titania, alumina, silica, or zeolite and an oxide such as V, Cu, W, Mo, or Fe can be used.

本発明の亜酸化窒素含有ガスの処理方法は、例えば、硝酸製造プラントのテールガスの処理に好適である。硝酸の製造には、原料のアンモニアを850℃以上の高温で接触酸化してNOとし、さらに酸化してNO変換してから吸収塔で水に吸収させて硝酸を製造するプロセスが知られている。この硝酸プラントのテールガスとは、硝酸を吸収させた後のガスであり、テールガスは膨張タービンを経て外気に排出される。アンモニアを高温で酸化する際に亜酸化窒素が副生する。硝酸プラントのテールガスの代表的な組成は、亜酸化窒素が0.03〜0.35容量%、NOxが0.01〜0.35容量%、酸素が1〜4容量%、また、水が0.3〜2容量%である。なお、上記テールガスは、膨張タービンの手前でプロセス熱交換により、ガスの温度は350〜500℃、圧力は4〜11barとなっている。The method for treating a nitrous oxide-containing gas of the present invention is suitable for treating tail gas of a nitric acid production plant, for example. In the production of nitric acid, a process is known in which the raw material ammonia is contact oxidized at a high temperature of 850 ° C. or more to form NO, and further oxidized and converted to NO 2 , and then absorbed into water by an absorption tower to produce nitric acid. Yes. The tail gas of the nitric acid plant is a gas after the nitric acid is absorbed, and the tail gas is discharged to the outside air through the expansion turbine. Nitrous oxide is by-produced when ammonia is oxidized at high temperatures. The typical composition of the tail gas of the nitric acid plant is 0.03 to 0.35% by volume of nitrous oxide, 0.01 to 0.35% by volume of NOx, 1 to 4% by volume of oxygen, and 0% of water. 3 to 2% by volume. The tail gas has a gas temperature of 350 to 500 ° C. and a pressure of 4 to 11 bar by process heat exchange before the expansion turbine.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。
(実施例1)
硝酸ランタン六水和物64gを水150gに溶解した液を炭酸ニッケル400gに添加して混合し、150℃で10時間乾燥した後、600℃で5時間空気雰囲気下で焼成してB成分/C成分の質量比(酸化物換算)が10/90の粉末状の複合体(a)を得た。得られた複合体(a)200gと酸化マグネシウム800gとを、適量の水と成形助剤(澱粉)とを添加しつつ、ニーダーで混合した後、押出成形機で直径5mm、長さ5mmのペレット状に成形し、150℃で3時間乾燥してから500℃で2時間空気雰囲気下にて焼成して触媒(1)を得た。このペレット状触媒(1)の組成は、A成分/B成分/C成分(MgO/La/NiO)=80:2:18(質量%)であった。
(実施例2)
硝酸セリウム六水和物297gを水300gに溶解した液を水酸化ニッケル600gに添加して混合し150℃で10時間乾燥した後、600℃で5時間空気雰囲気下で焼成してB成分/C成分の質量比(酸化物換算)が20/80の粉末状の複合体(b)を得た。得られた複合体(b)500gと炭酸カルシウム500gとを、適量の水と成形助剤(澱粉)とを添加しつつ、ニーダーで○〜○時間混合した後、押出成形機で直径5mm、長さ5mmのペレット状に成形し150℃で3時間乾燥してから500℃で2時間空気雰囲気下にて焼成して触媒(2)を得た。このペレット状触媒(2)の組成は、A成分/B成分/C成分(CaCO/CeO/NiO)=50:10:40(質量%)であった。
(実施例3〜5)
実施例2において、各成分の配合比を変更した以外は実施例2と同様にして、表1に示す組成の触媒(3)〜(5)を得た。
(実施例6、7)
実施例2において、複合体(b)の焼成温度を400℃と700℃とに変更した以外は実施例2と同様にして、表1に示す組成の触媒(6)、(7)を得た。
(実施例8)
実施例4において、硝酸セリウム六水和物の代わりにシリカゾル(日産化学工業株式会社製スノーテックスS)を使用した以外は実施例4と同様にして、表1に示す組成の触媒(8)を得た。
(実施例9)
実施例2において、硝酸セリウム六水和物の代わりにオキシ硝酸ジルコニウム二水和物を使用した以外は実施例2と同様にして、表1に示す組成の触媒(9)を得た。
(実施例10)
硝酸ニッケル六水和物800gと硝酸セリウム六水和物58gとを水2000gに溶解して撹拌しながらアンモニア水を徐々に滴下してpH=8に調整して、そのまま一晩放置した。次に沈殿物をろ過洗浄し150℃で10時間乾燥し700℃で5時間焼成してB成分/C成分の質量比(酸化物換算)が10/90の粉末状の複合体(c)を得た。以下、実施例4と同様にして、表1に示す組成の触媒(10)を得た。
(実施例11、12)
実施例10において、B成分/C成分の質量比を変更して複合体を調製した以外は実施例10と同様にして、表1に示す組成の触媒(11)および触媒(12)を得た。
(比較例1)
硝酸ニッケル六水和物を水に溶解したものと酸化アルミニウム(α−Al)とを、適量の成形助剤(澱粉)とを添加しつつ、ニーダーでよく混合した後、押出成形機で直径5mm、長さ5mmのペレット状に成形し150℃で3時間乾燥してから500℃で2時間空気雰囲気下にて焼成して比較触媒(1)を得た。この比較触媒(1)の組成は、Al/NiO=80:20(質量%)であった。
(比較例2)
比較例1において、硝酸ニッケル六水和物の代わりに、炭酸ニッケルを450℃で焼成した粉体を用いた以外は比較例1と同様にして、表1に示す組成の比較触媒(2)を得た。
(比較例3)
比較例2において、酸化アルミニウムの代わりに炭酸カルシウムを用いた以外は比較例2と同様にして、表1に示す組成の比較触媒(3)を得た。この比較触媒(3)は、A成分とC成分とからなり、B成分を欠くものである。
(比較例4、5)
比較例1において、硝酸ニッケル六水和物の代わりに硝酸ロジウム水溶液または塩化パラジウム水溶液を用いた以外は比較例2と同様にして、表1に示す組成の比較触媒(4)、(5)を得た。
(結晶子径の測定)
触媒(1)〜(12)および比較触媒(1)〜(3)を、電気炉にて600℃で48時間空気雰囲気で熱エージング処理を実施した後、X線回折法にて酸化ニッケルの結晶子径を測定した。熱エージング前新品触媒の結晶子径についても同様に測定し結果を表1に示した。
(性能評価方法)
上記触媒(1)〜(12)120mlを内径30mmのガラス製反応管に充填した。この触媒層に下記組成の合成ガスを下記条件下に導入した。
<合成ガス組成>
亜酸化窒素(NO):1000ppm、酸素(O):3容量%、水(HO):1容量%、残り:窒素(N
<反応条件>
処理温度:500℃、反応圧:5bar、空間速度(SV):2,500hr−1
上記合成ガスを導入してから1時間経過後、上記触媒層の入口および出口における合成ガス中の亜酸化窒素(NO)濃度を非分散赤外線式NO計(日本サーモエレクトロン(株)製、Model 46C−HL)により測定し、次式に従ってNO除去率を算出した。結果を表1に示す。
The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention.
Example 1
A solution obtained by dissolving 64 g of lanthanum nitrate hexahydrate in 150 g of water was added to and mixed with 400 g of nickel carbonate, dried at 150 ° C. for 10 hours, and then calcined at 600 ° C. for 5 hours in an air atmosphere to prepare B component / C A powdery composite (a) having a component mass ratio (as oxide) of 10/90 was obtained. 200 g of the obtained composite (a) and 800 g of magnesium oxide were mixed with a kneader while adding an appropriate amount of water and a molding aid (starch), and then pellets having a diameter of 5 mm and a length of 5 mm by an extruder. And then dried at 150 ° C. for 3 hours and then calcined at 500 ° C. for 2 hours in an air atmosphere to obtain a catalyst (1). The composition of the pellet-shaped catalyst (1) was A component / B component / C component (MgO / La 2 O 3 / NiO) = 80: 2: 18 (mass%).
(Example 2)
A solution obtained by dissolving 297 g of cerium nitrate hexahydrate in 300 g of water was added to and mixed with 600 g of nickel hydroxide, dried at 150 ° C. for 10 hours, and then calcined at 600 ° C. for 5 hours in an air atmosphere. A powdery composite (b) having a component mass ratio (as oxide) of 20/80 was obtained. 500 g of the obtained composite (b) and 500 g of calcium carbonate were mixed with an appropriate amount of water and a molding aid (starch) and mixed for ○ to ○ hours with a kneader, and then 5 mm in diameter and long with an extruder. The catalyst was molded into a 5 mm thick pellet, dried at 150 ° C. for 3 hours, and calcined at 500 ° C. for 2 hours in an air atmosphere to obtain a catalyst (2). The composition of the pellet-shaped catalyst (2) was A component / B component / C component (CaCO 3 / CeO 2 / NiO) = 50: 10: 40 (mass%).
(Examples 3 to 5)
In Example 2, catalysts (3) to (5) having the compositions shown in Table 1 were obtained in the same manner as in Example 2 except that the mixing ratio of each component was changed.
(Examples 6 and 7)
In Example 2, catalysts (6) and (7) having the compositions shown in Table 1 were obtained in the same manner as in Example 2 except that the firing temperature of the composite (b) was changed to 400 ° C and 700 ° C. .
(Example 8)
In Example 4, a catalyst (8) having the composition shown in Table 1 was prepared in the same manner as in Example 4 except that silica sol (Snowtex S manufactured by Nissan Chemical Industries, Ltd.) was used instead of cerium nitrate hexahydrate. Obtained.
Example 9
In Example 2, a catalyst (9) having the composition shown in Table 1 was obtained in the same manner as in Example 2, except that zirconium oxynitrate dihydrate was used instead of cerium nitrate hexahydrate.
(Example 10)
800 g of nickel nitrate hexahydrate and 58 g of cerium nitrate hexahydrate were dissolved in 2000 g of water and ammonia water was gradually added dropwise with stirring to adjust pH = 8 and left as it was overnight. Next, the precipitate is filtered and washed, dried at 150 ° C. for 10 hours, and calcined at 700 ° C. for 5 hours to obtain a powdery composite (c) having a B component / C component mass ratio (as oxide) of 10/90. Obtained. Thereafter, a catalyst (10) having the composition shown in Table 1 was obtained in the same manner as in Example 4.
(Examples 11 and 12)
A catalyst (11) and a catalyst (12) having the compositions shown in Table 1 were obtained in the same manner as in Example 10 except that the composite was prepared by changing the mass ratio of the B component / C component in Example 10. .
(Comparative Example 1)
A mixture of nickel nitrate hexahydrate dissolved in water and aluminum oxide (α-Al 2 O 3 ) was mixed well with a kneader while adding an appropriate amount of molding aid (starch), and then an extruder. Were formed into pellets having a diameter of 5 mm and a length of 5 mm, dried at 150 ° C. for 3 hours, and then calcined at 500 ° C. for 2 hours in an air atmosphere to obtain a comparative catalyst (1). The composition of this comparative catalyst (1) was Al 2 O 3 / NiO = 80: 20 (mass%).
(Comparative Example 2)
In Comparative Example 1, a comparative catalyst (2) having the composition shown in Table 1 was prepared in the same manner as in Comparative Example 1 except that powder obtained by firing nickel carbonate at 450 ° C. was used instead of nickel nitrate hexahydrate. Obtained.
(Comparative Example 3)
In Comparative Example 2, a comparative catalyst (3) having the composition shown in Table 1 was obtained in the same manner as in Comparative Example 2 except that calcium carbonate was used instead of aluminum oxide. This comparative catalyst (3) consists of an A component and a C component, and lacks a B component.
(Comparative Examples 4 and 5)
In Comparative Example 1, comparative catalysts (4) and (5) having the compositions shown in Table 1 were prepared in the same manner as in Comparative Example 2, except that an aqueous rhodium nitrate solution or an aqueous palladium chloride solution was used instead of nickel nitrate hexahydrate. Obtained.
(Measurement of crystallite diameter)
The catalysts (1) to (12) and the comparative catalysts (1) to (3) were subjected to thermal aging treatment in an electric furnace at 600 ° C. for 48 hours in an air atmosphere, and then nickel oxide crystals were obtained by X-ray diffraction. The child diameter was measured. The crystallite size of the new catalyst before heat aging was measured in the same manner and the results are shown in Table 1.
(Performance evaluation method)
120 ml of the catalysts (1) to (12) were filled in a glass reaction tube having an inner diameter of 30 mm. A synthesis gas having the following composition was introduced into the catalyst layer under the following conditions.
<Syngas composition>
Nitrous oxide (N 2 O): 1000 ppm, oxygen (O 2 ): 3% by volume, water (H 2 O): 1% by volume, remaining: nitrogen (N 2 )
<Reaction conditions>
Treatment temperature: 500 ° C., reaction pressure: 5 bar, space velocity (SV): 2500 hr −1
One hour after the synthesis gas was introduced, the concentration of nitrous oxide (N 2 O) in the synthesis gas at the inlet and outlet of the catalyst layer was measured using a non-dispersive infrared N 2 O meter (Nippon Thermo Electron Co., Ltd.). Manufactured, Model 46C-HL), and the N 2 O removal rate was calculated according to the following formula. The results are shown in Table 1.

Figure 2008081799
Figure 2008081799

同様にして電気炉で600℃で48時間熱処理エージングした触媒についても前記反応条件で処理性能を測定し結果を表1に示した。   Similarly, for a catalyst heat-treated at 600 ° C. for 48 hours in an electric furnace, the treatment performance was measured under the above reaction conditions, and the results are shown in Table 1.

Figure 2008081799
Figure 2008081799

本発明の触媒(1)〜(12)は、比較触媒(1)〜(3)と比較して、新品および熱処理加速エージング後において優れた性能を有している。また、高価な白金族系触媒である比較触媒(4)、(5)と比較しても遜色ない性能である。   The catalysts (1) to (12) of the present invention have superior performance after a new product and after heat treatment accelerated aging, as compared with the comparative catalysts (1) to (3). In addition, the performance is comparable to the comparative catalysts (4) and (5), which are expensive platinum group catalysts.

次に、触媒(2)〜(4)および比較触媒(4)、(5)について前記反応条件で、合成ガスに窒素酸化物(NO)を500ppm添加した以外は同様にして、窒素酸化物共存下の亜酸化窒素分解性能を測定し、結果を表2に示した。本発明の触媒(2)〜(4)は、比較例触媒(4)、(5)と比較して、NOx共存下においても良好な亜酸化窒素分解性能を有している。   Next, the catalysts (2) to (4) and the comparative catalysts (4) and (5) coexist in the same manner except that 500 ppm of nitrogen oxide (NO) was added to the synthesis gas under the above reaction conditions. The lower nitrous oxide decomposition performance was measured and the results are shown in Table 2. The catalysts (2) to (4) of the present invention have better nitrous oxide decomposition performance even in the presence of NOx as compared with the comparative catalysts (4) and (5).

Figure 2008081799
Figure 2008081799

なお、本出願は、2006年12月26日に出願された日本国特許出願第2006‐349135号に基づいており、その開示内容は、参照により全体として引用されている。   Note that this application is based on Japanese Patent Application No. 2006-349135 filed on Dec. 26, 2006, the disclosure of which is incorporated by reference in its entirety.

本発明の亜酸化窒素分解用触媒および亜酸化窒素含有ガスの処理方法は、汚泥焼却炉等の燃焼排ガスや硝酸製造プロセス等の化学プラントから排出される亜酸化窒素を除去するのに用いることができる。   The catalyst for decomposing nitrous oxide and the method for treating a nitrous oxide-containing gas of the present invention can be used to remove nitrous oxide discharged from a combustion plant such as a sludge incinerator or a chemical plant such as a nitric acid production process. it can.

Claims (7)

2族元素から選ばれる少なくとも1種を含むA成分と、3族、4族および14族元素から選ばれる少なくとも1種を含むB成分と、また、ニッケル元素を含有するC成分とを触媒成分として含有する亜酸化窒素分解用触媒。   A catalyst component comprising an A component containing at least one selected from Group 2 elements, a B component containing at least one selected from Group 3, 4 and 14 elements, and a C component containing nickel elements Containing nitrous oxide decomposition catalyst. 前記亜酸化窒素分解用触媒を550〜650℃で40〜60時間熱エージング処理した後の前記触媒中の前記C成分における酸化ニッケル(NiO)の結晶子径は、1nm以上〜50nm以下である請求項1記載の亜酸化窒素分解用触媒。   The crystallite diameter of nickel oxide (NiO) in the component C in the catalyst after the nitrous oxide decomposition catalyst is thermally aged at 550 to 650 ° C. for 40 to 60 hours is 1 nm to 50 nm. Item 2. The catalyst for nitrous oxide decomposition according to Item 1. 前記B成分/前記C成分の質量比(酸化物基準)が1/99〜50/50である請求項1または2記載の亜酸化窒素分解用触媒。   3. The nitrous oxide decomposition catalyst according to claim 1, wherein a mass ratio (based on oxide) of the B component / the C component is 1/99 to 50/50. 前記B成分の原料の化合物と前記C成分の原料の化合物とを実質的に均一に混合した後、前記A成分の原料の化合物を加えて調製してなる請求項1、2または3記載の亜酸化窒素分解用触媒。   The sub-component according to claim 1, 2 or 3, wherein the B component raw material compound and the C component raw material compound are mixed substantially uniformly and then added to the A component raw material compound. Nitrogen oxide decomposition catalyst. 請求項1の亜酸化窒素分解用触媒を用いて亜酸化窒素含有ガスを処理することを特徴とする亜酸化窒素含有ガスの処理方法。   A method for treating a nitrous oxide-containing gas, wherein the nitrous oxide-containing gas is treated using the nitrous oxide decomposition catalyst according to claim 1. 前記亜酸化窒素含有ガスが、NOのほかに、NOとNOを含有するガスである請求項5記載の亜酸化窒素含有ガスの処理方法。The method for treating a nitrous oxide-containing gas according to claim 5, wherein the nitrous oxide-containing gas is a gas containing NO and NO 2 in addition to N 2 O. 前記亜酸化窒素含有ガスを処理するにあたり、該ガスを請求項1ないし4のいずれか1項に記載の亜酸化窒素分解用触媒で処理した後、処理後のガスにアンモニアまたは尿素を添加して脱硝処理を行うことを特徴とする、請求項5または6に記載の亜酸化窒素含有ガスの処理方法。   In treating the nitrous oxide-containing gas, the gas is treated with the nitrous oxide decomposition catalyst according to any one of claims 1 to 4, and then ammonia or urea is added to the treated gas. The method for treating a nitrous oxide-containing gas according to claim 5 or 6, wherein a denitration treatment is performed.
JP2008552114A 2006-12-26 2007-12-26 Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas Active JP5570122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008552114A JP5570122B2 (en) 2006-12-26 2007-12-26 Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006349135 2006-12-26
JP2006349135 2006-12-26
JP2008552114A JP5570122B2 (en) 2006-12-26 2007-12-26 Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas
PCT/JP2007/074904 WO2008081799A1 (en) 2006-12-26 2007-12-26 Catalyst for decomposition of dinitrogen monoxide and method for processing dinitrogen monoxide-containing gas

Publications (2)

Publication Number Publication Date
JPWO2008081799A1 true JPWO2008081799A1 (en) 2010-04-30
JP5570122B2 JP5570122B2 (en) 2014-08-13

Family

ID=39588482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008552114A Active JP5570122B2 (en) 2006-12-26 2007-12-26 Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas

Country Status (2)

Country Link
JP (1) JP5570122B2 (en)
WO (1) WO2008081799A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2723492A1 (en) * 2011-06-21 2014-04-30 Umicore AG & Co. KG Method for the deposition of metals on support oxides
CN111760434A (en) * 2020-06-10 2020-10-13 杭州富丽达热电有限公司 Flue gas desulfurization and denitrification process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49102591A (en) * 1973-02-05 1974-09-27
US5705136A (en) * 1995-11-13 1998-01-06 University Of Florida Research Foundation, Inc. Catalyzed decomposition of nitrogen oxides on metal oxide supports
US6379640B1 (en) * 1999-03-05 2002-04-30 E. I. Du Pont De Nemours And Company Process for the decomposition of nitrous oxide
JP2005262180A (en) * 2004-03-22 2005-09-29 Hukko:Kk Wet ordinary temperature treatment system and wet ordinary temperature treatment method for anesthetic gas
JP4672540B2 (en) * 2005-12-07 2011-04-20 株式会社日本触媒 Nitrous oxide decomposition catalyst and purification method of nitrous oxide-containing gas

Also Published As

Publication number Publication date
JP5570122B2 (en) 2014-08-13
WO2008081799A1 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
CA2696028C (en) Catalyst, production method therefor and use thereof for decomposing n2o
US7641875B1 (en) Mixed-phase ceramic oxide three-way catalyst formulations and methods for preparing the catalysts
JP5459927B2 (en) Exhaust gas purification catalyst
RU2698675C2 (en) Inorganic oxide material
EP2075065A1 (en) Exhaust gas purification catalyst, and catalytic honey-comb structure for exhaust gas purification
JP4672540B2 (en) Nitrous oxide decomposition catalyst and purification method of nitrous oxide-containing gas
WO2007122917A1 (en) Exhaust gas purifying catalyst and method for producing same
JP5570122B2 (en) Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas
JPWO2008142765A1 (en) Nitrous oxide decomposition catalyst and purification method of nitrous oxide-containing gas
JP2011092859A (en) Oxygen absorption/emission material and catalyst for cleaning exhaust gas containing the same
JP5196656B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4745271B2 (en) Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas
JP4810907B2 (en) Catalyst carrier, method for producing the same, and exhaust gas purification catalyst
CN109937088A (en) Exhaust gas purification catalyst and exhaust gas purifying method
JP5956496B2 (en) Exhaust gas purification catalyst, exhaust gas purification filter and exhaust gas purification method using the same
JP2011050855A (en) Exhaust gas purifying apparatus
JP4265445B2 (en) Exhaust gas purification catalyst
JP4192791B2 (en) Exhaust gas purification catalyst
WO2016132212A1 (en) Exhaust gas purifying catalyst, method of manufacturing the same, and method of purifying exhaust gas using the same
JP5812788B2 (en) Nitrous oxide decomposition catalyst, method for producing nitrous oxide decomposition catalyst, and method for treating nitrous oxide-containing gas
JP2013193051A (en) Catalyst for decomposing nitrous oxide and method of manufacturing catalyst for decomposing nitrous oxide
WO2013047484A1 (en) Catalyst for decomposition of nitrous oxide, method for producing catalyst for decomposition of nitrous oxide, and method for processing nitrous oxide-containing gas
JP5840068B2 (en) Nitrous oxide decomposition catalyst and method for producing nitrous oxide decomposition catalyst
JPH0490852A (en) Waste gas cleaning catalyst
JPH10235157A (en) Purification of nox in exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140624

R150 Certificate of patent or registration of utility model

Ref document number: 5570122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150