JPWO2008041327A1 - Total heat exchange element and total heat exchanger - Google Patents

Total heat exchange element and total heat exchanger Download PDF

Info

Publication number
JPWO2008041327A1
JPWO2008041327A1 JP2007503143A JP2007503143A JPWO2008041327A1 JP WO2008041327 A1 JPWO2008041327 A1 JP WO2008041327A1 JP 2007503143 A JP2007503143 A JP 2007503143A JP 2007503143 A JP2007503143 A JP 2007503143A JP WO2008041327 A1 JPWO2008041327 A1 JP WO2008041327A1
Authority
JP
Japan
Prior art keywords
water
total heat
heat exchange
adhesive
exchange element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007503143A
Other languages
Japanese (ja)
Other versions
JP4855386B2 (en
Inventor
勝 高田
勝 高田
秀元 荒井
秀元 荒井
今井 孝典
孝典 今井
陽一 杉山
陽一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2008041327A1 publication Critical patent/JPWO2008041327A1/en
Application granted granted Critical
Publication of JP4855386B2 publication Critical patent/JP4855386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • B60H1/039Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from air leaving the interior of the vehicle, i.e. heat recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0015Heat and mass exchangers, e.g. with permeable walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1435Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification comprising semi-permeable membrane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • F28F2275/025Fastening; Joining by using bonding materials; by embedding elements in particular materials by using adhesives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

積層した第1、第2の層状空気流路4、5間を仕切る部材であって水溶性吸湿剤を添加した仕切部材1、1と、前記第1、第2の層状空気流路4、5を形成し、前記仕切部材1、1間の間隔を保持する間隔保持部材2、2と、前記仕切部材1、1と間隔保持部材2、2とを接着する接着剤3と、を備える全熱交換素子10において、前記接着剤3が、水溶性吸湿剤を含浸した水溶媒系接着剤であることを特徴とする。また、前記仕切部材1、1及び間隔保持部材2、2が、水分とその溶質を吸収する吸液性素材により形成されている。The partition members 1 and 1 to which the first and second laminar air flow paths 4 and 5 are laminated and which are added with a water-soluble hygroscopic agent, and the first and second laminar air flow paths 4 and 5. And a gap holding member 2, 2 that holds the gap between the partition members 1, 1, and an adhesive 3 that bonds the partition member 1, 1 and the gap holding member 2, 2. The exchange element 10 is characterized in that the adhesive 3 is a water solvent type adhesive impregnated with a water-soluble moisture absorbent. The partition members 1 and 1 and the spacing members 2 and 2 are formed of a liquid-absorbing material that absorbs moisture and its solute.

Description

本発明は、空気調和機や換気装置等に備えられ、温度及び湿度の異なる二つの空気間で潜熱及び顕熱の全熱交換を行う全熱交換素子及び全熱交換器に関するものである。   The present invention relates to a total heat exchange element and a total heat exchanger that are provided in an air conditioner, a ventilator, or the like and perform total heat exchange of latent heat and sensible heat between two airs having different temperatures and humidity.

従来、図1に示すような、第1の層状空気流路4と、第1の層状空気流路4に積層され第1の層状空気流路4と直交する第2の層状空気流路5と、第1、第2の空気流路4、5間を仕切る仕切部材1と、第1、第2の空気流路を形成し、仕切部材1、1間の間隔を保持する間隔保持部材2と、仕切部材1と間隔保持部材2とを接着する接着剤3と、を備え、第1の層状空気流路4を流れる第1の空気6と、第2の空気流路5を流れる第2の空気7との間で仕切部材1を媒体として潜熱及び顕熱を交換する全熱交換素子10がある。   Conventionally, as shown in FIG. 1, a first layered air channel 4 and a second layered air channel 5 stacked on the first layered air channel 4 and orthogonal to the first layered air channel 4 , A partition member 1 that partitions the first and second air flow paths 4 and 5, and a spacing member 2 that forms the first and second air flow paths and holds the spacing between the partition members 1 and 1. And an adhesive 3 for bonding the partition member 1 and the spacing member 2, and a first air 6 that flows through the first layered air flow path 4 and a second air that flows through the second air flow path 5. There is a total heat exchange element 10 that exchanges latent heat and sensible heat with the air 7 using the partition member 1 as a medium.

仕切部材1は、第1、第2の空気6、7間で潜熱及び顕熱を交換する媒体となるので、仕切部材1の伝熱性能及び透湿性能は、顕熱及び潜熱の交換効率に大きな影響を及ぼす。また、間隔保持部材2の素材としては、コストの面から、通常、セルロース繊維(パルプ)を素材とする紙が用いられている。   Since the partition member 1 serves as a medium for exchanging latent heat and sensible heat between the first and second airs 6 and 7, the heat transfer performance and moisture permeability performance of the partition member 1 are improved in sensible heat and latent heat exchange efficiency. It has a big effect. Further, as a material for the spacing member 2, paper made of cellulose fiber (pulp) is usually used from the viewpoint of cost.

仕切部材1には、透湿性を付与するため、通常、吸湿剤(透湿剤)が添加されている。吸湿剤としては、水溶性吸湿剤である、塩化リチウム、塩化カルシウム等で代表されるアルカリ金属塩、アルカリ土類金属塩が用いられている。また、非水溶性吸湿剤としては、シリカゲル、強酸・強塩基性のイオン交換樹脂等の粉体状の吸湿剤が用いられている(例えば、特許文献1、2、3参照)。   In order to impart moisture permeability to the partition member 1, a hygroscopic agent (moisture permeable agent) is usually added. As the hygroscopic agent, water-soluble hygroscopic agents such as alkali metal salts and alkaline earth metal salts represented by lithium chloride, calcium chloride and the like are used. As the water-insoluble moisture absorbent, powdery moisture absorbents such as silica gel and strong acid / strong basic ion exchange resins are used (for example, see Patent Documents 1, 2, and 3).

また、全熱交換素子10には、特に、第1、第2の空気6、7間でのCO2等の気体の透過量を少なくすることが要求されるため、仕切部材1には、前述の透湿(吸湿)性能のほか、高い気体遮蔽性も要求される。Further, since the total heat exchange element 10 is particularly required to reduce the permeation amount of gas such as CO 2 between the first and second air 6 and 7, the partition member 1 includes In addition to the moisture permeability (moisture absorption) performance, high gas shielding properties are also required.

気体遮蔽性を高めた仕切部材用素材として、パルプ繊維を細かく叩解したもの(例えば、特許文献4参照)、ミクロフィブリル化セルロースを充填剤として添加して抄紙したもの(例えば、特許文献5参照)、ポリビニルアルコール等の水溶性樹脂を仕切部材(紙)表面に塗布して孔を塞いだもの(例えば、特許文献6参照)等が提案されている。   As a partition member material with improved gas shielding properties, finely beaten pulp fibers (for example, see Patent Document 4), paper made by adding microfibrillated cellulose as a filler (for example, see Patent Document 5) In addition, a material in which a water-soluble resin such as polyvinyl alcohol is applied to the surface of a partition member (paper) to close the hole (for example, see Patent Document 6) has been proposed.

また、全熱交換素子10端部の仕切部材1と間隔保持部材2との接着部において、接着剤の塗布が不十分で両シート間に隙間が存在するような場合、隙間から空気が漏れ、他の流路の空気と混合してCO2等も漏れてしまうので、隙間が生じないようにすることも要求される。また、仕切部材1及び間隔保持部材2には、火災安全性の確保のため、難燃剤等が添加されることもある。In addition, in the adhesive portion between the partition member 1 and the spacing member 2 at the end of the total heat exchange element 10, when the adhesive is insufficiently applied and there is a gap between both sheets, air leaks from the gap, Since CO 2 and the like leak when mixed with the air in other flow paths, it is also required that no gap be formed. Moreover, a flame retardant etc. may be added to the partition member 1 and the space | interval holding member 2 in order to ensure fire safety.

仕切部材1と間隔保持部材2の接着に用いる接着剤には、主に、水溶媒系接着剤が用いられている。この理由は、有機溶媒系接着剤を用いると、接着剤に残留した有機溶媒自体の放散や、放散に伴なう臭気等が発生し、空気調和機用の全熱交換素子として好ましくないこと、また、全熱交換素子10の生産設備に、有機溶媒回収のための装置等の複雑かつ高価な補機が必要になり、コストアップを招くことである。   As the adhesive used for bonding the partition member 1 and the spacing member 2, a water solvent type adhesive is mainly used. The reason for this is that when an organic solvent-based adhesive is used, the organic solvent itself remaining in the adhesive is diffused, odors accompanying the radiation, etc. are generated, which is not preferable as a total heat exchange element for an air conditioner, In addition, the production facility of the total heat exchange element 10 requires a complicated and expensive auxiliary machine such as an apparatus for recovering the organic solvent, resulting in an increase in cost.

特許第2829356号公報Japanese Patent No. 2829356 特開平10−153398号公報JP-A-10-153398 特開2003−251133号公報JP 2003-251133 A 国際公開第2002/099193号パンフレットInternational Publication No. 2002/099193 Pamphlet 特許第3791726号公報Japanese Patent No. 3791726 特開2001−027489号公報JP 2001-0247489 A

しかしながら、仕切部材1に水溶性吸湿剤を添加した全熱交換素子10は、その仕切部材1単体の透湿性能の測定結果から予想される湿度交換効率に比べ、全熱交換素子10として製作された後に測定された実際の湿度交換効率が低くなってしまう。この現象は、樹脂シート等で製作された仕切部材では起こらず、水溶性吸湿剤を添加したセルロース繊維を素材とする紙製の仕切部材1を用いたときの固有の現象である。   However, the total heat exchange element 10 in which the water-soluble moisture absorbent is added to the partition member 1 is manufactured as the total heat exchange element 10 as compared with the humidity exchange efficiency expected from the measurement result of the moisture permeability of the partition member 1 alone. The actual humidity exchange efficiency measured after a long time will be reduced. This phenomenon does not occur in a partition member made of a resin sheet or the like, but is an inherent phenomenon when using a paper partition member 1 made of cellulose fiber to which a water-soluble moisture absorbent is added.

この現象の原因を考察すると、実際の湿度交換効率の低下の原因として、次のようなメカニズムが考えられる。すなわち、仕切部材1や間隔保持部材2が吸液性(本明細書においては、「吸液性」とは、水分子のみを選択的に吸収するものと区別するため、水分子と共に、水分子間に溶け込んでいる溶質を同時に吸収する性質のことをいう。物質が吸水する場合には、例えば、官能基等により化学的に水分子のみが選択され物質表面に吸着されてから内部へ取り込まれる場合、多孔質の物質の毛細管現象による吸水のように溶質ごと物理的に吸水していく場合、また、アクリル酸ナトリウム共重合体等の一部の高吸水性樹脂のように溶け込んでいる溶質ごと水溶液を吸収する場合、等があるが、本明細書においては、毛細管現象による吸水や水溶液の吸水を「吸液」というものとする。)のある素材で製作され、かつ、吸湿剤が水溶性吸湿剤である場合、水溶媒系接着剤を塗布して仕切部材1と間隔保持部材2とを張り合わせるとき、水溶媒系接着剤の水分を被接着部材である仕切部材1と間隔保持部材2が吸収しながら接着が進行していく。   Considering the cause of this phenomenon, the following mechanism can be considered as the cause of the actual decrease in humidity exchange efficiency. That is, the partition member 1 and the spacing member 2 are liquid-absorbing (in this specification, “liquid-absorbing” is distinguished from those that selectively absorb only water molecules. This is the property of simultaneously absorbing the solute dissolved in between.When a substance absorbs water, for example, only water molecules are chemically selected by a functional group etc. and adsorbed on the surface of the substance and then taken into the interior. In the case of physically absorbing water with each solute, such as water absorption due to capillary action of a porous substance, or with each solute dissolved in some superabsorbent resin such as sodium acrylate copolymer However, in this specification, water absorption by capillary action or water absorption of aqueous solution is referred to as “liquid absorption”), and the hygroscopic agent is water-soluble. If it is a hygroscopic agent When the water-solvent adhesive is applied and the partition member 1 and the spacing member 2 are bonded together, the partitioning member 1 and the spacing member 2 as the adherends absorb the moisture of the aqueous solvent-based adhesive while adhering. Progress.

このとき、仕切部材1に添加されていた水溶性吸湿剤が水溶媒系接着剤の水分に触れて溶解し、同時に水分中で拡散し、仕切部材1から水溶媒系接着剤や間隔保持部材2の水分が浸透している部分へ流失してしまう。この流失により、仕切部材1内の水溶性吸湿剤の量が減少し、仕切部材1単体の湿度交換効率よりも実際の全熱交換素子10の湿度交換効率が低下する。   At this time, the water-soluble hygroscopic agent added to the partition member 1 is dissolved by touching the moisture of the aqueous solvent adhesive, and at the same time diffuses in the moisture, and the aqueous solvent adhesive and the spacing member 2 from the partition member 1. It will be washed away to the part where the moisture is permeated. Due to this loss, the amount of the water-soluble hygroscopic agent in the partition member 1 is reduced, and the actual humidity exchange efficiency of the total heat exchange element 10 is lower than the humidity exchange efficiency of the partition member 1 alone.

湿度交換効率は、水溶性吸湿剤の添加による透湿性能向上効果が特に大きい低湿度環境下において大きく影響を受け、低湿度環境下で湿度交換効率の低下が著しい。結果として、湿度交換効率や全熱交換効率の低下だけではなく、高湿度環境下と低湿度環境下における湿度交換効率及び全熱交換効率に差が生じてしまう。このことは、全熱交換器の全熱交換効率が空気の環境条件によって変化してしまうことを示しており、全熱交換器のユーザーにとって、年間の回収熱量計算や、それに伴なう省エネルギー量試算等の際に、計算が難しくなって好ましくない。   Humidity exchange efficiency is greatly influenced in a low humidity environment where the effect of improving the moisture permeability by adding a water-soluble hygroscopic agent is particularly large, and the humidity exchange efficiency is significantly reduced in a low humidity environment. As a result, not only the humidity exchange efficiency and the total heat exchange efficiency are lowered, but also the humidity exchange efficiency and the total heat exchange efficiency are different in a high humidity environment and a low humidity environment. This indicates that the total heat exchange efficiency of the total heat exchanger varies depending on the environmental conditions of the air. For the total heat exchanger user, the annual heat recovery calculation and the energy savings associated with it are calculated. In the case of trial calculation etc., calculation becomes difficult and is not preferable.

上記の現象が実際に起こっていることを確認するため、水溶性吸湿材としての塩化リチウムを添加した仕切部材1と、難燃剤としてスルファミン酸グアニジンを添加した間隔保持部材2とを、水溶媒系接着剤としての酢酸ビニル樹脂エマルジョン接着剤により接着し、蛍光X線分析により、接着部断面の塩化物イオンの分布状態を観察した。   In order to confirm that the above phenomenon actually occurs, a partition member 1 to which lithium chloride as a water-soluble moisture absorbent is added and a spacing member 2 to which guanidine sulfamate is added as a flame retardant are combined in an aqueous solvent system. It adhered with the vinyl acetate resin emulsion adhesive as an adhesive agent, and the distribution state of the chloride ion of the adhesive part cross section was observed by the fluorescent X ray analysis.

図2及び図3に観察結果を示す。図中の発光点が水溶性吸湿剤の分布する部位であるが、仕切部材内だけでなく、間隔保持部材の隅々まで水溶性吸湿剤が分布している。従って、上記のような現象が実際に起こっており、それが原因で湿度交換効率が低下していると考えられる。   The observation results are shown in FIGS. The light emitting points in the figure are the parts where the water-soluble hygroscopic agent is distributed, but the water-soluble hygroscopic agent is distributed not only in the partition member but also every corner of the spacing member. Therefore, the phenomenon as described above actually occurs, and it is considered that the humidity exchange efficiency is lowered due to this phenomenon.

この現象の対策として、当初、予め仕切部材1に、水溶性吸湿剤の流失量分を増加して添加することにより性能低下を防止しようと試みた。しかしながら、仕切部材1に添加できる水溶性吸湿剤の量には限界があり、性能向上のため既に可能な限り水溶性吸湿剤を添加しているので、流失量分を増加することは難しい。   As a countermeasure against this phenomenon, an attempt was first made to prevent performance degradation by adding to the partition member 1 in advance an increased amount of water-soluble moisture absorbent. However, there is a limit to the amount of the water-soluble hygroscopic agent that can be added to the partition member 1, and since the water-soluble hygroscopic agent has already been added as much as possible to improve the performance, it is difficult to increase the amount of runoff.

また、仕切部材1に多量の水溶性吸湿剤を添加すると、仕切部材1の強度を低下させることになり、全熱交換素子10の製作途中で仕切部材1が吸湿、軟化し、製作途中の取扱い性が非常に悪化し、全熱交換素子10を製作することができなくなる場合もあった。   Moreover, if a large amount of water-soluble moisture absorbent is added to the partition member 1, the strength of the partition member 1 is reduced, and the partition member 1 absorbs and softens during the production of the total heat exchange element 10, and is handled during the production. In some cases, the performance deteriorates so that the total heat exchange element 10 cannot be manufactured.

仕切部材1に添加する吸湿剤として非水溶性吸湿剤を用いることも考えられるが、非水溶性吸湿剤は、水溶性吸湿剤に比べて仕切部材1への添加加工がし難く、加工コストが上がるという問題がある。また、仕切部材1と間隔保持部材2との接着に、水溶性吸湿剤が溶解しない有機溶媒系接着剤を用いると、前述のように揮発性有機化合物(VOC)や臭気、生産設備上の問題が発生する。   Although it is conceivable to use a water-insoluble moisture absorbent as the moisture absorbent to be added to the partition member 1, the water-insoluble moisture absorbent is difficult to add to the partition member 1 compared to the water-soluble moisture absorbent, and the processing cost is low. There is a problem of going up. In addition, when an organic solvent-based adhesive that does not dissolve the water-soluble hygroscopic agent is used for bonding the partition member 1 and the spacing member 2, as described above, problems with volatile organic compounds (VOC), odors, and production equipment Occurs.

本発明は、上記に鑑みてなされたものであって、有機溶剤や臭気を放散せず、生産設備が小規模で済み、素子製作途中における仕切部材からの水溶性吸湿剤の流失の少ない全熱交換素子及び全熱交換器を得ることを目的とする。   The present invention has been made in view of the above, does not dissipate organic solvents and odors, requires only a small amount of production equipment, and has a total heat with little loss of water-soluble hygroscopic agent from the partition member during the production of the element. The object is to obtain an exchange element and a total heat exchanger.

上述した課題を解決し、目的を達成するために、本発明は、積層した第1、第2の層状空気流路間を仕切る部材であって水溶性吸湿剤が添加された仕切部材と、前記第1、第2の層状空気流路を形成し、前記仕切部材間の間隔を保持する間隔保持部材と、前記仕切部材と間隔保持部材とを接着する接着剤と、を備える全熱交換素子において、前記接着剤が、水溶性吸湿剤を含浸させた水溶媒系接着剤であることを特徴とする。   In order to solve the above-mentioned problems and achieve the object, the present invention is a member for partitioning the laminated first and second layered air flow paths to which a water-soluble moisture absorbent is added, In a total heat exchange element that includes first and second laminar air flow paths, an interval holding member that holds an interval between the partition members, and an adhesive that adheres the partition member and the interval holding member. The adhesive is a water solvent type adhesive impregnated with a water-soluble hygroscopic agent.

本発明にかかる全熱交換素子は、製作過程で仕切部材に水溶媒系接着剤が接着したとき、仕切部材から水溶媒系接着剤へ水溶性吸湿剤が流失するが、水溶媒系接着剤に水溶性吸湿剤が含浸されているので、水溶媒系接着剤から仕切部材へ水溶性吸湿剤が逆浸透され、仕切部材からの水溶性吸湿剤の流失を相殺し、全熱交換素子の吸湿性能が低下することはない。   In the total heat exchange element according to the present invention, when the aqueous solvent adhesive is adhered to the partition member in the manufacturing process, the water-soluble moisture absorbent flows away from the partition member to the aqueous solvent adhesive. Since it is impregnated with a water-soluble moisture absorbent, the water-soluble moisture absorbent reversely permeates from the aqueous solvent-based adhesive to the partition member, offsetting the water-soluble moisture absorbent flowing from the partition member, and the moisture absorption performance of the total heat exchange element Will not drop.

また、水溶媒系接着剤に水溶性吸湿剤を含浸させてあり、仕切部材と間隔保持部材との接着部(接着剤)が透湿性(吸湿性)を有するので、仕切部材の湿度交換面積が増加したと同じことになり、湿度交換効率や全熱交換効率が向上する。   Moreover, since the water-solvent adhesive is impregnated with a water-soluble moisture absorbent, and the adhesive portion (adhesive) between the partition member and the spacing member has moisture permeability (hygroscopicity), the humidity exchange area of the partition member is It becomes the same as increasing, and humidity exchange efficiency and total heat exchange efficiency improve.

さらに、接着剤自体が透湿性を有するので、接着剤の塗布量を増やしても全熱交換素子の透湿性能が低下することはなく、接着剤の塗布量を増やすことにより、仕切部材と間隔保持部材の接着信頼性が向上し、素子自体の耐久性が向上し、また、接着部の隙間が塞がれ、CO2透過量が低減する。Furthermore, since the adhesive itself has moisture permeability, even if the application amount of the adhesive is increased, the moisture transmission performance of the total heat exchange element is not deteriorated. The adhesion reliability of the holding member is improved, the durability of the element itself is improved, the gap between the adhesion portions is closed, and the CO 2 permeation amount is reduced.

図1は、従来及び本発明の全熱交換素子の構造を示す斜視図である。FIG. 1 is a perspective view showing the structure of a conventional and total heat exchange element of the present invention. 図2は、従来の仕切部材と間隔保持部材の接着部断面の電子顕微鏡(SEM)写真を示す図である。FIG. 2 is a view showing an electron microscope (SEM) photograph of a cross section of a bonded portion of a conventional partition member and a spacing member. 図3は、従来の仕切部材と間隔保持部材の接着部断面の蛍光X線分析による吸湿剤分布を示す図である。FIG. 3 is a view showing a hygroscopic agent distribution by fluorescent X-ray analysis of a cross section of an adhesive portion of a conventional partition member and a spacing member. 図4は、実施の形態1の仕切部材と間隔保持部材の接着部の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of the bonding portion between the partition member and the spacing member of the first embodiment. 図5は、本発明の全熱交換素子の単位構造部材を示す斜視図である。FIG. 5 is a perspective view showing a unit structural member of the total heat exchange element of the present invention. 図6は、実施の形態2の仕切部材と間隔保持部材の接着部の拡大断面図である。FIG. 6 is an enlarged cross-sectional view of the bonding portion between the partition member and the spacing member of the second embodiment. 図7は、本発明の全熱交換素子を組込んだ全熱交換器の天板を取外した状態の斜視図である。FIG. 7 is a perspective view of the total heat exchanger incorporating the total heat exchange element of the present invention with the top plate removed.

符号の説明Explanation of symbols

1,21 仕切部材
2 間隔保持部材
3,23 接着剤(接着部)
4 第1の層状空気流路
5 第2の層状空気流路
6 第1の空気
7 第2の空気
10,20 全熱交換素子
10a 単位構造部材
100 全熱交換器
1,21 Partition member 2 Spacing member 3,23 Adhesive (bonding part)
4 1st layered air flow path 5 2nd layered air flow path 6 1st air 7 2nd air 10,20 Total heat exchange element 10a Unit structural member 100 Total heat exchanger

以下に、本発明にかかる全熱交換素子及び全熱交換器の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a total heat exchange element and a total heat exchanger according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明の全熱交換素子の構造を示す斜視図である。図1に示すように、全熱交換素子10は、第1の層状空気流路4、4と、第1の層状空気流路4、4間に積層され、該第1の層状空気流路4、4と直交する第2の層状空気流路5、5と、第1、第2の空気流路4、5間を仕切るシート状の仕切部材1と、第1、第2の空気流路を形成し、仕切部材1、1間の間隔を保持するコルゲートシート状の間隔保持部材2と、仕切部材1と間隔保持部材2とを接着する接着剤3と、を備え、第1の層状空気流路4を流れる第1の空気6と、第2の空気流路5を流れる第2の空気7との間で仕切部材1を媒体として潜熱及び顕熱を交換する。実施の形態では、間隔保持部材2をコルゲートシート状としたが、間隔保持部材2は、仕切部材1、1間を所定の間隔に保持できるものであれば、例えば、矩形波状や三角波状に折り曲げたシートや、複数枚の板片等であってもよい。
Embodiment 1 FIG.
FIG. 1 is a perspective view showing the structure of the total heat exchange element of the present invention. As shown in FIG. 1, the total heat exchange element 10 is laminated between the first layered air flow paths 4, 4 and the first layered air flow paths 4, 4, and the first layered air flow path 4. 4, second laminar air channels 5, 5 orthogonal to sheet 4, sheet-like partition member 1 that partitions between first and second air channels 4, 5, and first and second air channels. A first corrugated sheet-like interval holding member 2 that holds the interval between the partition members 1 and 1 and an adhesive 3 that bonds the partition member 1 and the interval holding member 2 to each other. The latent heat and sensible heat are exchanged between the first air 6 flowing through the path 4 and the second air 7 flowing through the second air flow path 5 by using the partition member 1 as a medium. In the embodiment, the interval holding member 2 has a corrugated sheet shape, but the interval holding member 2 can be bent into, for example, a rectangular wave shape or a triangular wave shape as long as it can hold the partition members 1 and 1 at a predetermined interval. It may be a sheet or a plurality of plate pieces.

図4は、実施の形態1の仕切部材1と間隔保持部材2の接着部の拡大断面図である。仕切部材1は、セルロース繊維(パルプ)を叩解加工して、200秒/100cc以上の透気度が確保されるようにした、秤量約20g/m2の多孔質・吸液性素材としての特殊加工紙に、吸湿剤として水溶性で潮解性のある塩化リチウムを約4g/m2添加したものである。仕切部材1を、多孔質・吸液性素材としての不織布としてもよい。また、仕切部材1に難燃剤を添加しておいてもよい。FIG. 4 is an enlarged cross-sectional view of the bonding portion between the partition member 1 and the spacing member 2 according to the first embodiment. The partition member 1 is a special porous and liquid-absorbing material having a weight of about 20 g / m 2 , which is obtained by beating cellulose fibers (pulp) to ensure air permeability of 200 seconds / 100 cc or more. About 4 g / m 2 of water-soluble and deliquescent lithium chloride as a moisture absorbent is added to the processed paper. The partition member 1 may be a nonwoven fabric as a porous and liquid-absorbing material. Further, a flame retardant may be added to the partition member 1.

間隔保持部材2は、坪量約40g/m2の多孔質・吸液性素材としての白色の片艶上質紙である。仕切部材1及び間隔保持部材2としては、接着時に接着剤中の水分とその水分中に含浸させた吸湿剤を共に吸収することができる吸液性のある素材であれば、難燃剤を添加した難燃紙を用いてもよい。また、間隔保持部材2に上記の水溶性吸湿剤を予め添加しておいてもよい。The spacing member 2 is white glossy high-quality paper as a porous and liquid-absorbing material having a basis weight of about 40 g / m 2 . As the partition member 1 and the spacing member 2, a flame retardant is added as long as it is a liquid-absorbing material that can absorb both the moisture in the adhesive and the moisture absorbent impregnated in the moisture during bonding. Flame retardant paper may be used. Further, the water-soluble hygroscopic agent may be added to the spacing member 2 in advance.

仕切部材1及び間隔保持部材2の素材としては、部材内へ吸収した水溶液を広く拡散できるものが好ましい。例えば、非吸液性の素材と吸液性の素材とを張り合わせた片面のみが吸液性を有する素材であっても、両面が吸液性を有する素材であってもよいが、両面が吸液性を有するほうが、速やかな吸液と部材内部への拡散が行なわれるので、好ましい。素材として難燃紙を用いる場合、部材中で吸湿剤と難燃剤が接触するので、添加する吸湿剤と難燃剤とが反応し、それぞれの機能が低下してしまうようなことがないことを確認する必要がある。   As a raw material of the partition member 1 and the space | interval holding member 2, what can diffuse the aqueous solution absorbed into the member widely is preferable. For example, only one side where a non-liquid-absorbing material and a liquid-absorbing material are bonded may be a material having liquid-absorbing properties, or both surfaces may be materials having liquid-absorbing properties, but both surfaces may absorb It is preferable to have liquidity because quick liquid absorption and diffusion into the member are performed. When flame retardant paper is used as the material, the moisture absorbent and the flame retardant come into contact with each other in the member, so it is confirmed that the added moisture absorbent and the flame retardant react with each other and their functions do not deteriorate. There is a need to.

仕切部材1と間隔保持部材2とを接着する接着剤には、水を主溶媒とする水溶媒系接着剤としての酢酸ビニル樹脂エマルジョン接着剤(固形分40%)を用いた。   A vinyl acetate resin emulsion adhesive (solid content: 40%) as a water-solvent adhesive using water as a main solvent was used as an adhesive for bonding the partition member 1 and the spacing member 2.

本発明においては、水溶媒系接着剤に予め水溶性吸湿剤を含浸させておく。水溶媒系接着剤に予め含浸させる水溶性吸湿剤としては、アルカリ金属塩である塩化リチウムのほかに、アルカリ土類金属塩である塩化カルシウム、尿素、海草等から生成されるアルギン酸、アルギン酸塩、カラギーナン等の増粘多糖類、等があるが、実施の形態1では、仕切部材1に添加した水溶性吸湿剤と同一の吸湿剤である塩化リチウムを用いた。   In the present invention, a water-soluble adhesive is impregnated in advance with a water-soluble adhesive. As a water-soluble hygroscopic agent that is pre-impregnated into an aqueous solvent-based adhesive, in addition to lithium chloride, which is an alkali metal salt, alginic acid, alginates, which are produced from alkaline earth metal salts, such as calcium chloride, urea, seaweed, Although there are thickening polysaccharides such as carrageenan, in Embodiment 1, lithium chloride, which is the same moisture absorbent as the water-soluble moisture absorbent added to the partition member 1, was used.

仕切部材1へ添加した水溶性吸湿剤と、水溶媒系接着剤に含浸させた水溶性吸湿剤とを同一のものとした場合には、仕切部材1に水溶媒系接着剤が接着すると、互いに同一の水溶性吸湿剤を溶解した水溶液になる。さらに、接着剤に水溶性吸湿剤を含浸させているため、それら水溶液の濃度差が小さく、その効果によって仕切部材1からの水溶性吸湿剤の流失を防ぐことができる。その結果、流失現象によって失われていた透湿性が回復され、湿度交換効率及び全熱交換効率を向上させ、高湿度環境下と低湿度環境下における両効率の差を小さくすることができる。   When the water-soluble hygroscopic agent added to the partition member 1 and the water-soluble hygroscopic agent impregnated in the water-solvent adhesive are the same, when the water-solvent adhesive adheres to the partition member 1, It becomes an aqueous solution in which the same water-soluble hygroscopic agent is dissolved. Furthermore, since the adhesive is impregnated with the water-soluble hygroscopic agent, the concentration difference between the aqueous solutions is small, and the effect of the water-soluble hygroscopic agent from the partition member 1 can be prevented. As a result, the moisture permeability lost due to the loss phenomenon is recovered, the humidity exchange efficiency and the total heat exchange efficiency are improved, and the difference between the two efficiencies in the high humidity environment and the low humidity environment can be reduced.

酢酸ビニル樹脂エマルジョン接着剤への添加は、塩化リチウムが水溶性であるので、酢酸ビニル樹脂エマルジョン接着剤へ塩化リチウムを直接投入して溶解するまでよく攪拌することにより行なった。   The addition to the vinyl acetate resin emulsion adhesive was carried out by adding lithium chloride directly to the vinyl acetate resin emulsion adhesive and stirring well until it was dissolved because lithium chloride is water-soluble.

接着剤としては、他の樹脂系(酢酸ビニル系、酢酸ビニル−アクリル酸エステル共重合体系、エチレン−酢酸ビニル共重合体(EVA)系、アクリル−酢酸ビニル系等)のエマルジョン分散型接着剤を用いても、ポリビニルアルコール(PVA)やポリアクリル酸(PAA)等の水溶性高分子樹脂を用いてもよい。   As the adhesive, other resin-based emulsion dispersion type adhesives (vinyl acetate, vinyl acetate-acrylate copolymer, ethylene-vinyl acetate copolymer (EVA), acrylic-vinyl acetate, etc.) are used. Alternatively, a water-soluble polymer resin such as polyvinyl alcohol (PVA) or polyacrylic acid (PAA) may be used.

ただし、水溶液の溶媒、即ち接着剤成分が、塩化リチウムを添加すると凝析(塩析)して沈殿物が生じる場合がある。沈殿物が生じると、接着剤の塗布の障害となり、吸湿作用が期待通り発現されない可能性がある。また、接着剤自体が吸湿し、接着剤樹脂と水とが常時接触することになるので、例えば、接着が完了した時点で架橋反応が起こる接着剤や、水による再乳化が少ない耐水性を有するグレードのエマルジョン接着剤を使用するのがよい。   However, when the solvent of the aqueous solution, that is, the adhesive component, is added with lithium chloride, it may coagulate (salt out) to produce a precipitate. If the precipitate is formed, it may hinder the application of the adhesive, and the hygroscopic action may not be exhibited as expected. In addition, since the adhesive itself absorbs moisture and the adhesive resin and water are always in contact with each other, for example, an adhesive that undergoes a cross-linking reaction at the time of completion of adhesion, or water resistance that is less likely to be re-emulsified with water. Grade emulsion adhesives should be used.

また、高分子樹脂の場合も、接着完了後に耐水性を有する架橋反応が起こるようにするか、又は、できるだけ分子量を大きなものにして水への再溶解を防ぐようにする。さらに、塩化リチウムを接着剤へ直接溶解させると、塩化リチウムの溶解熱により接着剤の温度が高くなることがあるので、樹脂接着剤の高温安定性に不安がある場合には、接着剤を冷却しながら塩化リチウムを少しずつ溶解する。また、先に塩化リチウムの粉末を水に溶解して飽和溶液とし、飽和溶液の温度を低下させてから接着剤と混合してもよい。   Also in the case of a polymer resin, a crosslinking reaction having water resistance occurs after completion of adhesion, or the molecular weight is made as large as possible to prevent re-dissolution in water. Furthermore, if lithium chloride is dissolved directly in the adhesive, the adhesive temperature may increase due to the heat of lithium chloride dissolution. If there is a concern about the high temperature stability of the resin adhesive, the adhesive should be cooled. While dissolving lithium chloride little by little. Alternatively, lithium chloride powder may be dissolved in water to form a saturated solution, and the temperature of the saturated solution may be lowered before mixing with the adhesive.

仕切部材1と間隔保持部材2とを、上記の水溶媒系接着剤3を用いて接着し、全熱交換素子10を製作する。全熱交換素子10の製作は、まず、片段のダンボール等を加工するコルゲート加工機により、図5に示すような仕切部材1枚と間隔保持部材1枚の単位構造部材10aを製作し、単位構造部材10aの間隔保持部材2の稜部にロールコーターを用いて水溶媒系接着剤3を塗布した後、次の単位構造部材10aを90°回転させて重ねて接着し、その上に、次の単位構造部材10aを重ねて接着するようにして、図1に示すような全熱交換素子10を製作する。   The partition member 1 and the spacing member 2 are bonded using the aqueous solvent-based adhesive 3 to manufacture the total heat exchange element 10. The total heat exchange element 10 is manufactured by first manufacturing a unit structural member 10a having one partition member and one spacing member as shown in FIG. 5 by a corrugating machine for processing a single-stage cardboard or the like. After applying the aqueous solvent-based adhesive 3 to the ridges of the spacing member 2 of the member 10a using a roll coater, the next unit structure member 10a is rotated 90 ° to be overlapped and bonded, The total heat exchange element 10 as shown in FIG. 1 is manufactured by overlapping the unit structural members 10a and bonding them.

実施の形態2.
図6は、実施の形態2の仕切部材21と間隔保持部材2の接着部の拡大断面図である。仕切部材21は、200秒/100cc以上の透気度が確保されるようにした秤量約20g/m2の特殊加工紙を、水溶性吸湿剤を添加せずにそのまま用いている。
Embodiment 2. FIG.
FIG. 6 is an enlarged cross-sectional view of an adhesive portion between the partition member 21 and the spacing member 2 according to the second embodiment. As the partition member 21, a specially processed paper having a weight of about 20 g / m 2 in which an air permeability of 200 seconds / 100 cc or more is secured is used without adding a water-soluble moisture absorbent.

間隔保持部材2は、実施の形態1と同一の、坪量約40g/m2の白色の片艶上質紙である。接着剤23は、酢酸ビニル樹脂エマルジョン接着剤に塩化リチウムを含浸させたものである。その際、含浸させる塩化リチウムの量が、実施の形態1の仕切部材1に添加した塩化リチウムの量と実施の形態1の接着剤3に含浸させた塩化リチウムの量の合計量となるように添加量を調節した。全熱交換素子20に用いる部材(素材)、添加剤(薬剤)、組立方法その他は、実施の形態1と同様に種々変更することができる。The spacing member 2 is the same white glossy high-quality paper having the basis weight of about 40 g / m 2 as in the first embodiment. The adhesive 23 is a vinyl acetate resin emulsion adhesive impregnated with lithium chloride. At that time, the amount of lithium chloride to be impregnated is a total amount of the amount of lithium chloride added to the partition member 1 of the first embodiment and the amount of lithium chloride impregnated in the adhesive 3 of the first embodiment. The amount added was adjusted. The member (material), additive (medicine), assembling method and the like used for the total heat exchange element 20 can be variously changed as in the first embodiment.

水溶媒系接着剤23から仕切部材21への水溶性吸湿剤の逆浸透効果を利用して、仕切部材21に水溶性吸湿剤を予め添加せずに、仕切部材21の分まで水溶性吸湿剤を含浸させた水溶媒系接着剤を仕切部材21に塗布し、間隔保持部材2を接着して全熱交換素子20を製作すれば、仕切部材21に予め水溶性吸湿剤を添加したときと同じ吸湿性能を有する全熱交換素子20を製作することができる。このようにすれば、仕切部材21に水溶性吸湿剤を添加する工程を省略することができる。それ故、仕切部材21が組立途中に軟化してしまうような作業性の悪化を防止し、全熱交換素子の生産効率を向上させることができる。   By utilizing the reverse osmosis effect of the water-soluble moisture absorbent from the water-solvent adhesive 23 to the partition member 21, the water-soluble moisture absorbent up to the partition member 21 is not added to the partition member 21 in advance. If the total heat exchange element 20 is manufactured by applying the aqueous solvent-based adhesive impregnated with the partition member 21 and adhering the spacing member 2, the same as when the water-soluble moisture absorbent is added to the partition member 21 in advance. The total heat exchange element 20 having moisture absorption performance can be manufactured. If it does in this way, the process of adding a water-soluble moisture absorbent to the partition member 21 can be omitted. Therefore, it is possible to prevent deterioration of workability such that the partition member 21 is softened during the assembly, and to improve the production efficiency of the total heat exchange element.

なお、水溶性吸湿剤以外の薬剤、例えば、難燃剤等も、水溶性であって、かつ、水溶性吸湿剤や水溶媒系接着剤との反応性が無ければ、水溶性吸湿剤とともに水溶媒系接着剤に含浸させておき、仕切部材21及び間隔保持部材2に拡散させることができる。このようにすれば、仕切部材21や間隔保持部材2に難燃剤を添加する工程が不要となる。このように、水溶性吸湿剤以外でも、仕切部材21や間隔保持部材2へ含浸させて何らかの効果を得ることを目的とする水溶性の薬剤を、水溶媒系接着剤へ含浸させて全熱交換素子20を製作すれば、大幅な省力化を行なうことができる。   It should be noted that a drug other than the water-soluble hygroscopic agent, such as a flame retardant, is also water-soluble and has no reactivity with the water-soluble hygroscopic agent or the water-based adhesive. It can be impregnated with a system adhesive and diffused into the partition member 21 and the spacing member 2. If it does in this way, the process of adding a flame retardant to the partition member 21 and the space | interval holding member 2 will become unnecessary. Thus, in addition to the water-soluble hygroscopic agent, the water-soluble adhesive is impregnated in the aqueous solvent adhesive for the purpose of obtaining some effect by impregnating the partition member 21 and the spacing member 2 to perform total heat exchange. If the element 20 is manufactured, significant labor saving can be achieved.

〔全熱交換器〕
図7は、本発明の全熱交換素子10、20を組込んだ全熱交換器100の天板101aを取外した斜視図である。本発明の全熱交換器100は、取外し可能な天板101aを備える直方体状の筐体101内に収容されている。筐体101の対向する側面の一方には、室内側の吸込口104及び吹出口106が設けられ、他方には、室外側の吸込口105及び吹出口107が設けられている。吸込口104と吹出口107との間、吸込口105と吹出口106との間は、それぞれ、筐体101内に着脱可能に収容される排気流路108、給気流路109により連通される。
[Total heat exchanger]
FIG. 7 is a perspective view in which the top plate 101a of the total heat exchanger 100 incorporating the total heat exchange elements 10 and 20 of the present invention is removed. The total heat exchanger 100 of the present invention is housed in a rectangular parallelepiped casing 101 having a removable top plate 101a. An air inlet 104 and an air outlet 106 on the indoor side are provided on one of the opposing side surfaces of the housing 101, and an air inlet 105 and an air outlet 107 on the outdoor side are provided on the other side. The suction port 104 and the air outlet 107 and the air inlet 105 and the air outlet 106 are communicated with each other by an exhaust passage 108 and an air supply passage 109 that are detachably accommodated in the housing 101.

排気流路108内には、羽根車121、電動機126及びケーシング211から成る送風機110が設置され、室内の空気を吹出口107から室外に排気する。給気流路109内には、羽根車121、電動機126及びケーシング211から成る送風機111が設置され、室外の空気を吹出口106から室内に給気する。   A blower 110 including an impeller 121, an electric motor 126, and a casing 211 is installed in the exhaust passage 108, and the indoor air is exhausted from the blowout port 107 to the outside. A blower 111 including an impeller 121, an electric motor 126, and a casing 211 is installed in the air supply passage 109, and outdoor air is supplied into the room through the air outlet 106.

本発明の全熱交換素子10、20は、筐体101の他の側面に設けられた挿入口115から挿入され、第1の層状空気路4(図1参照)を排気流路108に連通させ、第2の層状空気路5(図1参照)を吸気流路109に連通させるように、排気流路108及び給気流路109の中間部に設置される。全熱交換素子10、20の挿入後に、挿入口115を、蓋115aにより塞ぐ。   The total heat exchange elements 10 and 20 of the present invention are inserted from an insertion port 115 provided on the other side surface of the casing 101, and the first layered air passage 4 (see FIG. 1) is communicated with the exhaust passage 108. The second laminar air passage 5 (see FIG. 1) is installed at an intermediate portion between the exhaust passage 108 and the air supply passage 109 so as to communicate with the intake passage 109. After insertion of the total heat exchange elements 10, 20, the insertion port 115 is closed with a lid 115a.

それぞれの送風機110、111を運転すると、室内空気は、図示しないダクトを介して室内側の吸込口104から矢印Aのように吸込まれ、排気流路108及び全熱交換素子10、20の第1の層状空気路4を矢印Bのように通り、排気用の送風機110により室外側の吹出口107から矢印Cのように室外へ排気される。   When each of the blowers 110 and 111 is operated, the indoor air is sucked in from the indoor suction port 104 as shown by an arrow A through a duct (not shown), and the exhaust flow path 108 and the first heat exchange elements 10 and 20 are the first. The air is passed through the laminar air passage 4 as shown by an arrow B, and is exhausted from the outdoor blower outlet 107 to the outside of the room as indicated by an arrow C by an exhaust fan 110.

また、図示しないダクトを介して室外側の吸込口105から矢印Dのように吸込まれ、給気通路109及び全熱交換素子10、20の第2の層状空気路5を矢印Eのように通り、給気用の送風機111により室内側の吹出口106から矢印Fのよう吹出され、図示しないダクトを介して室内に給気される。このとき、全熱交換素子10、20では、排気流B(第1の空気6;図1、図7参照)と給気流E(第2の空気7;図1、図7参照)との間で仕切部材1を介して全熱交換が行なわれ、排気熱を回収して冷暖房負荷を軽減する。   Further, the air is sucked from the outdoor suction port 105 through an unillustrated duct 105 as indicated by an arrow D, and passes through the air supply passage 109 and the second layered air passage 5 of the total heat exchange elements 10 and 20 as indicated by an arrow E. The air blower 111 for air supply blows out the air outlet 106 on the indoor side as indicated by an arrow F and supplies the air into the room through a duct (not shown). At this time, in the total heat exchange elements 10 and 20, between the exhaust flow B (first air 6; see FIGS. 1 and 7) and the supply air flow E (second air 7; see FIGS. 1 and 7). Thus, the total heat exchange is performed through the partition member 1, and the exhaust heat is recovered to reduce the cooling / heating load.

〔従来例〕
実施の形態1と同一の仕切部材1及び間隔保持部材2を用い、水溶媒系接着剤として酢酸ビニル樹脂エマルジョン接着剤に適当量の水を混合したものを用いた。組立方法その他は、実施例1と同一の条件で全熱交換素子を製作した。水溶媒系接着剤の塗布量は、塗布する水溶媒系接着剤の固形分量が実施の形態1と同程度になるように調整した。
[Conventional example]
The same partitioning member 1 and spacing member 2 as those in the first embodiment were used, and a water-solvent adhesive in which an appropriate amount of water was mixed with a vinyl acetate resin emulsion adhesive was used. For the assembly method and others, a total heat exchange element was manufactured under the same conditions as in Example 1. The application amount of the water-solvent adhesive was adjusted so that the solid content of the applied water-solvent adhesive was approximately the same as that in the first embodiment.

〔比較例〕
水溶媒系接着剤により仕切部材1に添加した水溶性吸湿剤が流失することを確認するため、実施の形態1と同一の仕切部材1を用い、間隔保持部材2として、吸水性の少ない樹脂(PET樹脂)により、実施の形態1と同様の形状の間隔保持部材を製作した。接着剤は、水溶媒系の感圧型接着剤を用いた。
[Comparative example]
In order to confirm that the water-soluble hygroscopic agent added to the partition member 1 is washed away by the aqueous solvent-based adhesive, the partition member 1 identical to that of the first embodiment is used, and the spacing member 2 is a resin having low water absorption ( A spacing member having the same shape as that of the first embodiment was manufactured using PET resin. As the adhesive, an aqueous solvent-based pressure sensitive adhesive was used.

PET樹脂製間隔保持部材の稜部へ感圧型接着剤を塗布し、十分乾燥させて添加されている水分が蒸発した後に、仕切部材1を重ねて圧着し、図5に示すような単位構造部材10aを製作する。次に、その単位構造部材10aの他の稜部に感圧型接着剤を塗布し、十分乾燥させて水分が蒸発した後に、次の単位構造部材10aを90°回転させて重ねて圧着して全熱交換素子を製作した。   A pressure sensitive adhesive is applied to the ridges of the interval holding member made of PET resin, and after sufficiently drying, the added water is evaporated, and then the partition member 1 is stacked and pressure-bonded to form a unit structure member as shown in FIG. 10a is produced. Next, a pressure-sensitive adhesive is applied to the other ridges of the unit structural member 10a, and after sufficiently drying to evaporate the water, the next unit structural member 10a is rotated by 90 ° and overlapped for pressure bonding. A heat exchange element was manufactured.

上記のようなPET樹脂製間隔保持部材を用いて全熱交換素子を製作することにより、エレメント製作中に仕切部材1に水分が吸収されても、水溶性吸湿剤が仕切部材1の外へ流失することはない。この全熱交換素子の性能を従来例と比較することにより、接着剤の水分のみにより仕切部材1から水溶性吸湿剤が流失することを確認することができる。   By manufacturing the total heat exchange element using the PET resin spacing member as described above, the water-soluble moisture absorbent flows out of the partition member 1 even if moisture is absorbed by the partition member 1 during element manufacture. Never do. By comparing the performance of the total heat exchange element with that of the conventional example, it can be confirmed that the water-soluble moisture absorbent is washed away from the partition member 1 only by the moisture of the adhesive.

実施の形態1、実施の形態2、従来例及び比較例の同一サイズの全熱交換素子を製作し、同一試験条件(環境条件、風量条件や測定条件等)下で測定した湿度交換効率の値を表1に示す。   Humidity exchange efficiency value measured under the same test conditions (environmental conditions, air flow conditions, measurement conditions, etc.) by manufacturing total heat exchange elements of the same size as those of Embodiment 1, Embodiment 2, Conventional Example and Comparative Example Is shown in Table 1.

Figure 2008041327
Figure 2008041327

高湿度環境下と低湿度環境下における湿度交換効率の違いを測定するため、高湿度環境として、JIS B8628(全熱交換器)の交換効率測定条件(夏場条件)に準拠した条件を用い、また、低湿度環境として、ARI(米国空調冷凍協会)1060−RATING AIR−TO−AIR ENERGY RECOVERY VENTIRATION EQUIPMENTの交換効率測定条件(冷房条件)に準拠した条件を用いて測定した。低湿度域湿度交換効率/高湿度域湿度交換効率の割合を()内に併記した。   In order to measure the difference in humidity exchange efficiency between a high humidity environment and a low humidity environment, the conditions conforming to the exchange efficiency measurement conditions (summer conditions) of JIS B8628 (total heat exchanger) are used as the high humidity environment. As a low-humidity environment, measurement was performed using conditions based on the exchange efficiency measurement conditions (cooling conditions) of ARI (American Air Conditioning and Refrigeration Association) 1060-RATING AIR-TO-AIR ENERGY RECOVERY VENTIRATION EQUIIPMENT. The ratio of low humidity range humidity exchange efficiency / high humidity range humidity exchange efficiency is also shown in parentheses.

表1に示すように、従来例に対し、実施の形態1及び実施の形態2の全熱交換素子は、湿度交換効率の絶対値、高湿度環境下と低湿度環境下における交換効率の差異、のいずれも優れている。また、従来例と比較すると比較例は、高湿度環境下における湿度交換効率の絶対値はそれ程違いがないが、低湿度環境下における湿度交換効率が大きく向上している。これが吸湿剤の流失による効果の違いである。また、実施の形態1では、湿度交換効率の環境変化については比較例とほぼ同程度の値が得られていることから、仕切部材1からの水溶性吸湿剤の流失が防がれていることが解る。   As shown in Table 1, with respect to the conventional example, the total heat exchange element of the first embodiment and the second embodiment is the absolute value of the humidity exchange efficiency, the difference in the exchange efficiency between the high humidity environment and the low humidity environment, Both are excellent. In addition, compared with the conventional example, the comparative example shows that the absolute value of the humidity exchange efficiency under a high humidity environment is not so different, but the humidity exchange efficiency under a low humidity environment is greatly improved. This is the difference in effect due to the loss of the hygroscopic agent. Moreover, in Embodiment 1, since about the same value as the comparative example was obtained about the environmental change of humidity exchange efficiency, the loss of the water-soluble moisture absorbent from the partition member 1 is prevented. I understand.

以上のように、本発明にかかる全熱交換素子は、建築物の換気、自動車や列車等の移動体の換気を行う熱交換換気装置に有用であり、特に、潜熱と顕熱を同時に交換する全熱交換を行なう全熱交換器に適している。   As described above, the total heat exchange element according to the present invention is useful for a heat exchange ventilator that ventilates a building and a moving body such as an automobile or a train, and in particular, simultaneously exchanges latent heat and sensible heat. Suitable for total heat exchanger that performs total heat exchange.

Claims (16)

積層した第1、第2の層状空気流路間を仕切る部材であって水溶性吸湿剤を添加した仕切部材と、
前記第1、第2の層状空気流路を形成し、前記仕切部材間の間隔を保持する間隔保持部材と、
前記仕切部材と間隔保持部材とを接着する接着剤と、
を備える全熱交換素子において、
前記接着剤が、水溶性吸湿剤を含浸した水溶媒系接着剤であることを特徴とする全熱交換素子。
A partition member for partitioning the laminated first and second laminar air flow paths to which a water-soluble hygroscopic agent is added;
An interval holding member that forms the first and second laminar air flow paths and holds an interval between the partition members;
An adhesive that bonds the partition member and the spacing member;
In a total heat exchange element comprising:
A total heat exchange element, wherein the adhesive is a water-solvent adhesive impregnated with a water-soluble hygroscopic agent.
積層した第1、第2の層状空気流路間を仕切る仕切部材と、
前記第1、第2の層状空気流路を形成し、前記仕切部材間の間隔を保持する間隔保持部材と、
前記仕切部材と間隔保持部材とを接着する接着剤と、
を備える全熱交換素子において、
前記接着剤が、前記仕切部材に浸透させる水溶性吸湿剤を含む薬剤を含浸させた水溶媒系接着剤であることを特徴とする全熱交換素子。
A partition member for partitioning the laminated first and second laminar air flow paths;
An interval holding member that forms the first and second laminar air flow paths and holds an interval between the partition members;
An adhesive that bonds the partition member and the spacing member;
In a total heat exchange element comprising:
The total heat exchange element, wherein the adhesive is a water-based adhesive impregnated with a chemical containing a water-soluble moisture absorbent that permeates the partition member.
前記仕切部材及び間隔保持部材が、水分とその溶質を吸収する吸液性素材により形成されていることを特徴とする請求項1又は2に記載の全熱交換素子。   The total heat exchange element according to claim 1 or 2, wherein the partition member and the spacing member are formed of a liquid-absorbing material that absorbs moisture and a solute thereof. 前記吸液性素材が、毛細管現象により水分とその溶質を吸収する多孔質素材であることを特徴とする請求項3に記載の全熱交換素子。   4. The total heat exchange element according to claim 3, wherein the liquid-absorbing material is a porous material that absorbs moisture and its solute by capillary action. 前記多孔質素材が、セルロース繊維を素材とする紙もしくは不織布であることを特徴とする請求項4に記載の全熱交換素子。   The total heat exchange element according to claim 4, wherein the porous material is paper or nonwoven fabric made of cellulose fiber. 前記間隔保持部材に水溶性吸湿剤が添加されていることを特徴とする請求項1又は2に記載の全熱交換素子。   The total heat exchange element according to claim 1, wherein a water-soluble moisture absorbent is added to the spacing member. 前記仕切部材に難燃剤が添加されていることを特徴とする請求項1又は2に記載の全熱交換素子。   The total heat exchange element according to claim 1, wherein a flame retardant is added to the partition member. 前記間隔保持部材に難燃剤が添加されていることを特徴とする請求項1又は2に記載の全熱交換素子。   The total heat exchange element according to claim 1, wherein a flame retardant is added to the spacing member. 前記仕切部材に添加した水溶性吸湿剤と、前記水溶媒系接着剤に含浸させた水溶性吸湿剤とが、同一のものであることを特徴とする請求項1に記載の全熱交換素子。   The total heat exchange element according to claim 1, wherein the water-soluble moisture absorbent added to the partition member and the water-soluble moisture absorbent impregnated in the aqueous solvent adhesive are the same. 前記水溶媒系接着剤に水溶性難燃剤を含浸させたことを特徴とする請求項1又は2に記載の全熱交換素子。   The total heat exchange element according to claim 1 or 2, wherein the water-based adhesive is impregnated with a water-soluble flame retardant. 前記水溶性吸湿剤が、潮解性アルカリ金属塩、潮解性アルカリ土類金属塩のいずれか一つ又はそれらを混合したものであることを特徴とする請求項1又は2に記載の全熱交換素子。   3. The total heat exchange element according to claim 1, wherein the water-soluble hygroscopic agent is one of a deliquescent alkali metal salt and a deliquescent alkaline earth metal salt, or a mixture thereof. . 前記水溶性吸湿剤が、尿素、カラギーナン、アルギン酸、アルギン酸塩のいずれか一つ又はそれらを混合したものであることを特徴とする請求項1又は2に記載の全熱交換素子。   3. The total heat exchange element according to claim 1, wherein the water-soluble hygroscopic agent is any one of urea, carrageenan, alginic acid, and alginate or a mixture thereof. 前記水溶媒系接着剤が、水を主溶媒とする樹脂エマルジョン接着剤であることを特徴とする請求項1又は2に記載の全熱交換素子。   The total heat exchange element according to claim 1 or 2, wherein the water-based adhesive is a resin emulsion adhesive containing water as a main solvent. 前記水溶媒系接着剤が、水を主溶媒とする樹脂エマルジョン分散型接着剤であって、酢酸ビニル樹脂エマルジョン接着剤、酢酸ビニル−アクリル酸エステル共重合樹脂エマルジョン接着剤、エチレン−酢酸ビニル共重合樹脂エマルジョン接着剤のいずれか一つ又はそれらを混合したものであることを特徴とする請求項1又は2に記載の全熱交換素子。   The water solvent type adhesive is a resin emulsion dispersion type adhesive containing water as a main solvent, and is a vinyl acetate resin emulsion adhesive, a vinyl acetate-acrylate copolymer resin emulsion adhesive, an ethylene-vinyl acetate copolymer. The total heat exchange element according to claim 1 or 2, wherein any one of the resin emulsion adhesives or a mixture thereof is used. 前記水溶媒系接着剤が、耐水性を有するエマルジョン接着剤であることを特徴とする請求項1又は2に記載の全熱交換素子。   The total heat exchange element according to claim 1, wherein the water-based adhesive is an emulsion adhesive having water resistance. 請求項1又は2に記載の全熱交換素子を備えることを特徴とする全熱交換器。   A total heat exchanger comprising the total heat exchange element according to claim 1.
JP2007503143A 2006-10-03 2006-10-03 Total heat exchange element and total heat exchanger Active JP4855386B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/319807 WO2008041327A1 (en) 2006-10-03 2006-10-03 Total heat exchange element and total heat exchange apparatus

Publications (2)

Publication Number Publication Date
JPWO2008041327A1 true JPWO2008041327A1 (en) 2010-02-04
JP4855386B2 JP4855386B2 (en) 2012-01-18

Family

ID=39268194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007503143A Active JP4855386B2 (en) 2006-10-03 2006-10-03 Total heat exchange element and total heat exchanger

Country Status (7)

Country Link
US (2) US8689859B2 (en)
EP (1) EP2071267B1 (en)
JP (1) JP4855386B2 (en)
CN (1) CN101233381B (en)
HK (1) HK1120105A1 (en)
TW (1) TW200817647A (en)
WO (1) WO2008041327A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101148711B1 (en) * 2007-05-02 2012-05-23 미쓰비시덴키 가부시키가이샤 Heat exchanger element and heat exchanger
JP2009250585A (en) * 2008-04-10 2009-10-29 Mitsubishi Electric Corp Total enthalpy heat exchange element and total enthalpy heat exchanger
CN102414533A (en) * 2009-04-28 2012-04-11 三菱电机株式会社 Heat exchange element
LT2435171T (en) * 2009-05-18 2021-09-27 Zehnder Group International Ag Coated membranes for enthalpy exchange and other applications
WO2011033624A1 (en) * 2009-09-16 2011-03-24 三菱電機株式会社 Total enthalpy heat exchange element
AU2010325220B2 (en) * 2009-11-24 2014-06-19 Air To Air Sweden Ab A method of producing multiple channels for use in a device for exchange of solutes or heat between fluid flows
US9683789B2 (en) 2009-11-24 2017-06-20 Air To Air Sweden Ab Method of producing multiple channels for use in a device for exchange of solutes or heat between fluid flows
FR2961891B1 (en) 2010-06-23 2012-08-03 Aldes Aeraulique AERAULIC EXCHANGER WITH ALVEOLE PLATES
ES2527826T3 (en) 2012-01-20 2015-01-30 Zehnder Verkaufs- Und Verwaltungs Ag Heat exchanger element and production procedure
WO2013157040A1 (en) * 2012-04-18 2013-10-24 三菱電機株式会社 Heat-exchange element and air conditioner
US20140014289A1 (en) * 2012-07-11 2014-01-16 Kraton Polymers U.S. Llc Enhanced-efficiency energy recovery ventilation core
EP3022508B2 (en) 2013-07-19 2021-08-04 Westwind Limited Heat / enthalpy exchanger element and method for the production
US20160237620A1 (en) * 2013-10-02 2016-08-18 Toray Industries, Inc. Base paper for heat exchanger, and total heat exchange element using same
US20160252269A1 (en) * 2013-10-02 2016-09-01 Toray Industries, Inc. Heat exchange element and heat exchanger
JP6436096B2 (en) * 2013-12-26 2018-12-12 東レ株式会社 Manufacturing method of total heat exchange element
JP5987854B2 (en) * 2014-03-10 2016-09-07 三菱電機株式会社 Heat exchange element and heat exchanger
DE102014003959B4 (en) * 2014-03-20 2018-11-08 Mann+Hummel Gmbh Humidifying device, for example for a fuel cell
CN104110983A (en) * 2014-07-16 2014-10-22 王云清 Dew point evaporative cooling core
CN104110973A (en) * 2014-07-16 2014-10-22 袁野 Evaporative cooling core based on corrugated paper and flat plates
CZ2014956A3 (en) * 2014-12-23 2016-05-18 2Vv S.R.O. Enthalpic heat-exchange apparatus
JP2016223737A (en) * 2015-06-02 2016-12-28 三菱電機株式会社 Heat exchange element and heat exchanger
JP2017015367A (en) * 2015-07-06 2017-01-19 大阪瓦斯株式会社 Humidity adjuster element and air conditioning system
DE102016010733A1 (en) * 2015-09-22 2017-03-23 Mann + Hummel Gmbh A multi-component medium for use in a humidifier of known design
US10840521B2 (en) * 2015-12-30 2020-11-17 Mann+Hummel Gmbh Humidifier, for example for a fuel cell
EP3674649B1 (en) * 2017-08-23 2022-06-15 Mitsubishi Paper Mills Limited Paper for total heat exchanging element and total heat exchanging element
EP3781421B1 (en) * 2018-04-05 2023-10-11 Zehnder Group International AG Exchanger element for a vehicle and vehicle equipped with such an exchanger element
WO2020012572A1 (en) * 2018-07-11 2020-01-16 三菱電機株式会社 Heat exchanger and heat exchanger manufacturing method
FR3090837B1 (en) * 2018-12-19 2021-01-15 Valeo Systemes Thermiques Heat exchanger with brazed end cheek
CN110981492A (en) * 2019-12-27 2020-04-10 苏州风享环保科技有限公司 Silicon carbide ceramic heat exchange module and manufacturing method thereof
JP6833121B1 (en) * 2020-01-06 2021-02-24 三菱電機株式会社 Dehumidifying element, dehumidifying device equipped with this dehumidifying element, and manufacturing method of dehumidifying element
JP6790312B1 (en) 2020-06-11 2020-11-25 三菱電機株式会社 Dehumidifying element, dehumidifying device and manufacturing method of dehumidifying element
EP4016699A1 (en) * 2020-12-17 2022-06-22 Volvo Car Corporation Temperature management system
EP4147892A1 (en) * 2021-09-10 2023-03-15 Thermo King Corporation Recovery heat exchanger in an environmental control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027489A (en) * 1999-05-10 2001-01-30 Mitsubishi Electric Corp Heat-exchanger and manufacture of heat-exchanger
JP2002310589A (en) * 2001-04-11 2002-10-23 Mitsubishi Electric Corp Heat exchanging element
JP2003148892A (en) * 2001-11-16 2003-05-21 Mitsubishi Electric Corp Heat exchanger and heat exchanging ventilator

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115696A (en) 1981-01-08 1982-07-19 Mitsubishi Electric Corp Full heat exchange element
DE3277828D1 (en) * 1981-12-07 1988-01-21 Matsushita Electric Ind Co Ltd Heat exchange system
JPS58132545A (en) 1982-02-02 1983-08-06 株式会社西部抜研 Manufacture of blank for total heat exchanger
JPS60101156A (en) * 1983-11-07 1985-06-05 Sanyo Chem Ind Ltd Hydrophilic film-forming agent for aluminum
JPH0628173Y2 (en) * 1986-03-10 1994-08-03 株式会社西部技研 Moisture exchange element
JP2829356B2 (en) 1990-08-24 1998-11-25 株式会社西部技研 Element for total heat exchanger and method for producing the same
JP3233169B2 (en) * 1992-05-03 2001-11-26 株式会社西部技研 Element for total heat exchanger and method for producing the same
US5505769A (en) * 1993-08-02 1996-04-09 Munters Corporation Titanium silicate aerogel element and humidity exchanger using matrix of aerogel element
JPH10153398A (en) 1996-11-20 1998-06-09 Tokushu Paper Mfg Co Ltd Sheet for total heat exchanging body and production thereof
JP3791726B2 (en) 1997-12-19 2006-06-28 特種製紙株式会社 Total heat exchanger paper and total heat exchanger element using the same
CA2283089C (en) * 1999-05-10 2004-05-25 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and method for preparing it
JP4587343B2 (en) * 1999-12-01 2010-11-24 ヤヨイ化学工業株式会社 Water-based adhesive
JP4413386B2 (en) 2000-07-11 2010-02-10 大日本スクリーン製造株式会社 Index creating apparatus in image component block layout apparatus, index creating method in image component block layout method, and recording medium
TW536578B (en) 2000-09-26 2003-06-11 Seibu Giken Kk Co-generation system and dehumidification air-conditioner
EP2312051B1 (en) 2001-06-01 2017-07-12 Mitsubishi Paper Mills Limited Total heat exchanging element paper
JP2003251133A (en) 2002-03-07 2003-09-09 Seibu Giken Co Ltd Adsorption sheet and adsorber using the same
EP1553354B1 (en) * 2002-07-22 2011-03-16 Daikin Industries, Ltd. Dehumidification unit, and adsorbing element used for the dehumidification unit
JP2004225969A (en) 2003-01-22 2004-08-12 Seibu Giken Co Ltd Total enthalpy heat exchanging element
JP4206894B2 (en) * 2003-10-15 2009-01-14 三菱電機株式会社 Total heat exchange element
WO2007013153A1 (en) * 2005-07-27 2007-02-01 Mitsubishi Denki Kabushiki Kaisha Heat exchange device and heat exchanger ventilator loaded with the same
US7320361B2 (en) * 2005-10-28 2008-01-22 Mitsubishi Denki Kabushiki Kaisha Heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027489A (en) * 1999-05-10 2001-01-30 Mitsubishi Electric Corp Heat-exchanger and manufacture of heat-exchanger
JP2002310589A (en) * 2001-04-11 2002-10-23 Mitsubishi Electric Corp Heat exchanging element
JP2003148892A (en) * 2001-11-16 2003-05-21 Mitsubishi Electric Corp Heat exchanger and heat exchanging ventilator

Also Published As

Publication number Publication date
TW200817647A (en) 2008-04-16
EP2071267A1 (en) 2009-06-17
CN101233381B (en) 2010-06-09
WO2008041327A1 (en) 2008-04-10
US8607851B2 (en) 2013-12-17
US8689859B2 (en) 2014-04-08
EP2071267A4 (en) 2010-09-15
TWI311636B (en) 2009-07-01
JP4855386B2 (en) 2012-01-18
US20100089558A1 (en) 2010-04-15
US20110108256A1 (en) 2011-05-12
CN101233381A (en) 2008-07-30
HK1120105A1 (en) 2009-03-20
EP2071267B1 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP4855386B2 (en) Total heat exchange element and total heat exchanger
JP5036813B2 (en) HEAT EXCHANGE ELEMENT, HEAT EXCHANGER AND HEAT EXCHANGE ELEMENT MANUFACTURING METHOD
US9255744B2 (en) Coated membranes for enthalpy exchange and other applications
KR100893819B1 (en) Heat exchanger and heat exchange ventilator
JP4206894B2 (en) Total heat exchange element
JP5506441B2 (en) Total heat exchange element and total heat exchanger
JP4980789B2 (en) Total heat exchanger seat
CA2580575A1 (en) Heat exchange device and heat exchanger ventilator loaded with the same
WO2007116567A1 (en) Total enthalpy heat exchanger
KR100837023B1 (en) Total heat exchanging element and total heat exchanger
JP2009250585A (en) Total enthalpy heat exchange element and total enthalpy heat exchanger
JP2007315649A (en) Total enthalpy heat exchanger
JP2016223737A (en) Heat exchange element and heat exchanger
JP4305530B2 (en) Heat exchanger
JP3594486B2 (en) Moisture exchange element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4855386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250