JP2017015367A - Humidity adjuster element and air conditioning system - Google Patents

Humidity adjuster element and air conditioning system Download PDF

Info

Publication number
JP2017015367A
JP2017015367A JP2015135553A JP2015135553A JP2017015367A JP 2017015367 A JP2017015367 A JP 2017015367A JP 2015135553 A JP2015135553 A JP 2015135553A JP 2015135553 A JP2015135553 A JP 2015135553A JP 2017015367 A JP2017015367 A JP 2017015367A
Authority
JP
Japan
Prior art keywords
humidity control
air
plate member
flat plate
control element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015135553A
Other languages
Japanese (ja)
Inventor
山口 秀樹
Hideki Yamaguchi
秀樹 山口
雅旦 田口
Masakatsu Taguchi
雅旦 田口
健太郎 植田
Kentaro Ueda
健太郎 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2015135553A priority Critical patent/JP2017015367A/en
Publication of JP2017015367A publication Critical patent/JP2017015367A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Landscapes

  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a humidity adjuster element capable of cooling a humidity adjuster part while restricting increasing of energy required for operation and capable of increasing adsorbing performance at the humidity adjuster part.SOLUTION: This invention relates to a humidity adjuster element E configured in such a manner that a humidity adjuster part W is formed at one surface side of a flat plate member 1, a cooling part C is formed at the other surface side of the flat plate member 1, a plurality of flat plate members 1 are stacked up to cause the humidity adjuster parts W and the cooling parts C to be alternatively arranged while holding each of the flat plate members 1 therebetween, the humidity adjuster part W has a first guiding member 3 capable of guiding a flow of air, the cooling part C has a second guiding member 4 capable of guiding a direction of air flow, the first guiding member 3 and the second guiding member 4 are arranged to cause the first air flow at the humidity adjuster part W and the second air flow at the cooling part C to become a parallel flow or opposing flow.SELECTED DRAWING: Figure 2

Description

本発明は、空気の水分を吸着する吸着処理及び空気へ水分を脱着する脱着処理を行うことができる調湿部を備える調湿素子及びそれを備えた空気調和システムに関する。   The present invention relates to a humidity control element including a humidity control unit capable of performing an adsorption process for adsorbing moisture in air and a desorption process for desorbing moisture to air, and an air conditioning system including the humidity control element.

特許文献1に記載の調湿素子は、平板部材(平板部材83)の一方の面側に調湿部(調湿側通路85)が形成され及び平板部材の他方の面側に冷却部(冷却側通路86)が形成されることで、複数の平板部材の間の調湿部と冷却部とが交互に積層された構造になっている。ここで、調湿部は、空気の通過により水分を吸着する一方で再生空気の通過により水分を脱着するように構成されており、冷却部は、調湿部における吸着時の吸着熱を吸収するように冷却空気が通過するように構成されている。   In the humidity control element described in Patent Document 1, a humidity control section (humidity control side passage 85) is formed on one surface side of a flat plate member (flat plate member 83), and a cooling section (cooling) is provided on the other surface side of the flat plate member. By forming the side passage 86), the humidity control section and the cooling section between the plurality of flat plate members are alternately stacked. Here, the humidity control unit is configured to adsorb moisture by passage of air while desorbing moisture by passage of regeneration air, and the cooling unit absorbs heat of adsorption at the time of adsorption in the humidity control unit. The cooling air is configured to pass through.

また、特許文献1に記載の調湿素子では、調湿部内には直線状の複数本の通路が平行に並んで形成されて、調湿部内ではその通路に沿って一方向に空気が流れる。同様に、冷却部内には直線状の複数本の通路が平行に並んで形成されて、冷却部内ではその通路に沿って一方向に空気が流れる。更に、調湿部での空気の流れる方向と、冷却部での空気の流れる方向とは直交する状態になっている。そして、調湿部での空気の流れる方向と冷却部での空気の流れる方向とが直交した状態で、冷却部を流れる空気による調湿部の冷却が行われている。   Moreover, in the humidity control element described in Patent Document 1, a plurality of linear passages are formed in parallel in the humidity control section, and air flows in one direction along the paths in the humidity control section. Similarly, a plurality of linear passages are formed in parallel in the cooling portion, and air flows in one direction along the passage in the cooling portion. Furthermore, the direction in which air flows in the humidity control section and the direction in which air flows in the cooling section are in a state of being orthogonal. Then, the humidity control unit is cooled by the air flowing through the cooling unit in a state where the direction of air flow in the humidity control unit and the direction of air flow in the cooling unit are orthogonal to each other.

特開2003−148768号公報JP 2003-148768 A

調湿部における水分吸着時の吸着熱は、その吸着が行われた箇所の調湿部の温度上昇を引き起こすことになる、或いは、調湿部を流れる空気によって、吸着が行われた箇所よりも下流側に運ばれることになると考えられる。そのため、冷却部は、調湿部で吸着が行われた箇所、或いは、調湿部で吸着が行われた箇所よりも下流側を冷却することが好ましい。   The heat of adsorption at the time of moisture adsorption in the humidity control section will cause a temperature rise in the humidity control section at the location where the adsorption has been performed, or more than the location where adsorption has been performed by the air flowing through the humidity control section. It is thought that it will be carried downstream. Therefore, it is preferable that the cooling unit cools the downstream side of the portion where the adsorption is performed in the humidity control unit or the location where the adsorption is performed in the humidity control unit.

ところが、特許文献1に記載のような直交型の調湿素子では、冷却部を流れる空気を、調湿部の冷却のために有効に利用できない場合もある。一例を挙げると、調湿部内の複数の空気の経路のそれぞれでは、空気が流れる途中で水分の吸着処理が行われて吸着熱が発生するが、時間経過と共に、吸着が多く行われる箇所が上流側から下流側へと移ることもある。つまり、空気の経路内の上流側の吸湿剤が既に多くの量の水分を吸着した後では、その経路内の下流側で多くの吸着が行われて吸着熱が発生する場合も起こり得る。   However, in the orthogonal humidity control element as described in Patent Document 1, the air flowing through the cooling unit may not be effectively used for cooling the humidity control unit. For example, in each of a plurality of air paths in the humidity control section, moisture adsorption processing is performed while air is flowing, and adsorption heat is generated. It may move from the side to the downstream side. That is, after the hygroscopic agent on the upstream side in the air path has already adsorbed a large amount of moisture, a large amount of adsorption may be performed on the downstream side in the path to generate heat of adsorption.

従って、特許文献1に記載のような直交型の調湿素子のように、冷却部内の一つの空気の経路が、調湿部内の一つの空気の経路の上流側で交差するような位置関係にあると、冷却部内の一つの経路を流れる空気は、多くの吸着熱が発生する前の上流側の調湿部を冷却することになる。つまり、冷却部内の一つの経路を流れる空気は、吸着熱がそれほど発生していない上流側の調湿部を冷却するために利用されているだけであり、冷却しなければならない下流側の調湿部を冷却するためには利用されていないことになる。   Therefore, like an orthogonal humidity control device as described in Patent Document 1, the positional relationship is such that one air path in the cooling section intersects upstream of one air path in the humidity control section. If it exists, the air which flows through one path | route in a cooling part will cool the upstream humidity control part before much adsorption heat generate | occur | produces. In other words, the air flowing through one path in the cooling unit is only used to cool the upstream humidity control unit that does not generate much adsorption heat, and the downstream humidity control unit that must be cooled. It is not used to cool the part.

また、特許文献1に記載のような直交型の調湿素子において、冷却部を流れる空気の単位時間当たりの流量を増加させることで、調湿部の冷却に寄与する空気量を増加させることもできる。ところが、冷却部に流す空気の流量を増加させるためには、冷却部に空気を流すためのファン等の出力を増加させる必要があり、その分だけ多くのエネルギーが必要になる。   Further, in the orthogonal humidity control element as described in Patent Document 1, the amount of air that contributes to cooling of the humidity control unit can be increased by increasing the flow rate per unit time of the air flowing through the cooling unit. it can. However, in order to increase the flow rate of air flowing to the cooling unit, it is necessary to increase the output of a fan or the like for flowing air to the cooling unit, and much energy is required accordingly.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、運転に要するエネルギーの増加を抑制しながら調湿部の冷却を行って、調湿部での吸着性能を高めることができる調湿素子及びそれを備えた空気調和システムを提供する点にある。   The present invention has been made in view of the above problems, and its purpose is to improve the adsorption performance in the humidity control section by cooling the humidity control section while suppressing an increase in energy required for operation. It is in providing a humidity control element that can be used and an air conditioning system including the humidity control element.

上記目的を達成するための本発明に係る調湿素子の特徴構成は、平板部材の一方の面側に調湿部が形成され及び前記平板部材の他方の面側に冷却部が形成されることで、複数の前記平板部材の間に前記調湿部と前記冷却部とが交互に積層されており、
前記調湿部は、空気の流れる方向を誘導可能な第1誘導部材を有し、前記第1誘導部材によって誘導されながら流れる第1空気の水分を吸湿剤によって吸着する吸着処理及び前記第1誘導部材によって誘導されながら流れる前記第1空気へ水分を前記吸湿剤から脱着する脱着処理を行うことができ、
前記冷却部は、空気の流れる方向を誘導可能な第2誘導部材を有し、前記第2誘導部材によって誘導されながら流れる第2空気によって、前記調湿部が前記吸着処理を行った場合に発生する吸着熱を前記平板部材を介して吸収することができる調湿素子であって、
前記調湿部での前記第1空気の流れと前記冷却部での前記第2空気の流れとが並行流又は対向流となるように前記第1誘導部材及び前記第2誘導部材を配置してある点にある。
The characteristic configuration of the humidity control element according to the present invention for achieving the above object is that a humidity control section is formed on one surface side of the flat plate member and a cooling section is formed on the other surface side of the flat plate member. The humidity control unit and the cooling unit are alternately stacked between the plurality of flat plate members,
The humidity control unit includes a first guide member capable of guiding an air flow direction, an adsorption process for adsorbing moisture of the first air flowing while being guided by the first guide member with a moisture absorbent, and the first guide. A desorption process for desorbing moisture from the hygroscopic agent to the first air flowing while being guided by the member can be performed,
The cooling unit includes a second guide member that can guide a flow direction of air, and is generated when the humidity control unit performs the adsorption process by the second air that flows while being guided by the second guide member. A humidity control element capable of absorbing heat of adsorption through the flat plate member,
The first guide member and the second guide member are arranged so that the flow of the first air in the humidity control section and the flow of the second air in the cooling section are parallel flow or counterflow. There is a point.

上記特徴構成によれば、調湿部において空気の流れる方向を誘導可能な第1誘導部材と、冷却部において空気の流れる方向を誘導可能な第2誘導部材とが、調湿部での第1空気の流れと冷却部での第2空気の流れとが平板部材を間に挟んで並行流又は対向流になるように配置されている。つまり、例えば、調湿部の空気の経路内の上流側の吸湿剤で多くの吸着が行われて吸着熱が発生しているのか、或いは、その経路内の下流側で多くの吸着が行われて吸着熱が発生しているのかに関わらず、冷却部を流れる第2空気と調湿部を流れる第1空気とが平板部材を間に挟んで並行して又は対向して流れていれば、冷却部を流れる第2空気は、調湿部を冷却するために有効に活用される。その結果、調湿部での吸着処理を良好に行わせることができる。特に、冷却部を流れる第2空気と調湿部を流れる第1空気とが対向流となっていれば、調湿部を流れる第1空気と冷却部を流れる第2空気との間の熱交換効率が高まる。
また、冷却部内を流れる第2空気が調湿部を冷却するために有効に利用されるため、調湿部の冷却に寄与する空気量を増加させるために、冷却部を流れる第2空気の単位時間当たりの流量を増加させるといった手法は不要になる。
従って、運転に要するエネルギーの増加を抑制しながら調湿部の冷却を行って、調湿部での吸着性能を高めることができる調湿素子を提供できる。
According to the above characteristic configuration, the first guide member capable of guiding the direction of air flow in the humidity control unit and the second guide member capable of guiding the direction of air flow in the cooling unit are the first in the humidity control unit. The flow of air and the flow of the second air in the cooling section are arranged so as to be parallel flow or counterflow with the flat plate member interposed therebetween. That is, for example, whether a large amount of adsorption is performed by the upstream moisture absorbent in the air path of the humidity control unit and heat of adsorption is generated, or a large amount of adsorption is performed downstream in the path. Regardless of whether heat of adsorption is generated, if the second air flowing through the cooling section and the first air flowing through the humidity control section are flowing in parallel or facing each other with the flat plate member in between, The second air flowing through the cooling unit is effectively used to cool the humidity control unit. As a result, it is possible to satisfactorily perform the adsorption process in the humidity control unit. In particular, if the second air flowing through the cooling section and the first air flowing through the humidity control section are counterflows, heat exchange between the first air flowing through the humidity control section and the second air flowing through the cooling section. Increases efficiency.
Moreover, since the 2nd air which flows through the inside of a cooling part is utilized effectively in order to cool a humidity control part, in order to increase the air quantity which contributes to cooling of a humidity control part, the unit of the 2nd air which flows through a cooling part A method of increasing the flow rate per hour becomes unnecessary.
Therefore, it is possible to provide a humidity control element capable of cooling the humidity control section while suppressing an increase in energy required for operation and improving the adsorption performance in the humidity control section.

本発明に係る調湿素子の更に別の特徴構成は、前記第1誘導部材は、前記第1空気が流れる方向に向かって長く形成され且つ前記第1空気が流れる方向から見た断面が波形に形成される第1波板部材を有する点にある。   Still another characteristic configuration of the humidity control element according to the present invention is that the first guide member is formed long in a direction in which the first air flows, and a cross section viewed from the direction in which the first air flows has a waveform. It is in the point which has the 1st corrugated member formed.

上記特徴構成によれば、第1空気を第1波板部材の谷間部分に沿って流すことができる。   According to the above characteristic configuration, the first air can flow along the valley portion of the first corrugated plate member.

本発明に係る調湿素子の更に別の特徴構成は、前記調湿部を構成する前記平板部材の一方の表面及び前記第1波板部材の両面は前記吸湿剤を保持している点にある。   Still another characteristic configuration of the humidity control element according to the present invention is that one surface of the flat plate member and both surfaces of the first corrugated plate member constituting the humidity control section hold the moisture absorbent. .

上記特徴構成によれば、平板部材及び表面積の大きな第1波板部材の両方に多くの吸湿剤を保持させることができる。その結果、調湿部による水分の吸着性能を高くすることができる。   According to the above characteristic configuration, it is possible to hold a large amount of the hygroscopic agent on both the flat plate member and the first corrugated plate member having a large surface area. As a result, moisture adsorption performance by the humidity control unit can be increased.

本発明に係る調湿素子の更に別の特徴構成は、前記調湿部は、前記平板部材の一方の表面及び前記第1波板部材の両面に前記吸湿剤を保持させた後で、前記平板部材及び前記第1波板部材を組み付けて形成される点にある。   Still another characteristic configuration of the humidity control element according to the present invention is that the humidity control unit holds the moisture absorbent on one surface of the flat plate member and both surfaces of the first corrugated plate member, and then the flat plate. It is in the point formed by assembling the member and the first corrugated plate member.

平板部材及び第1波板部材を組み付けた後は、平板部材と第1波板部材との間の隙間が狭くなっているため、平板部材の一方の表面及び第1波板部材の両面にアクセスすることが困難になる。その結果、平板部材の一方の表面及び第1波板部材の両面に吸湿剤を万遍なく保持させることは困難になる。
ところが本特徴構成では、平板部材及び第1波板部材を組み付ける前、即ち、平板部材の一方の表面及び第1波板部材の両面に対して容易にアクセスできるときに、平板部材の一方の表面及び第1波板部材の両面に吸湿剤を容易に保持させることができる。
After assembling the flat plate member and the first corrugated member, since the gap between the flat plate member and the first corrugated member is narrowed, one surface of the flat plate member and both surfaces of the first corrugated member are accessed. It becomes difficult to do. As a result, it becomes difficult to uniformly hold the hygroscopic agent on one surface of the flat plate member and both surfaces of the first corrugated plate member.
However, in this characteristic configuration, before assembling the flat plate member and the first corrugated member, that is, when one surface of the flat plate member and both surfaces of the first corrugated member can be easily accessed, one surface of the flat plate member. And a hygroscopic agent can be easily hold | maintained on both surfaces of a 1st corrugated plate member.

本発明に係る調湿素子の更に別の特徴構成は、前記第2誘導部材は、前記第2空気が流れる方向に向かって長く形成され且つ前記第2空気が流れる方向から見た断面が波形に形成される第2波板部材を有する点にある。   Still another characteristic configuration of the humidity control element according to the present invention is that the second guide member is formed long in a direction in which the second air flows and a cross section viewed from the direction in which the second air flows has a waveform. It is in the point which has the 2nd corrugated board member formed.

上記特徴構成によれば、第2空気を第2波板部材の谷間部分に沿って流すことができる。   According to the above characteristic configuration, the second air can flow along the valley portion of the second corrugated plate member.

本発明に係る調湿素子の更に別の特徴構成は、前記平板部材は樹脂材料を用いて形成される点にある。   Still another characteristic configuration of the humidity control element according to the present invention is that the flat plate member is formed using a resin material.

上記特徴構成によれば、樹脂材料を用いて、平板部材を目的とする形に容易に作製することができる。   According to the above characteristic configuration, the flat plate member can be easily manufactured in a desired shape using the resin material.

本発明に係る空気調和システムの特徴構成は、上記調湿素子を備え、室外空間から取り込んだ室外空気を前記第1空気として前記調湿部に流し、前記調湿部を通過した後の前記第1空気を室内空間に送出する点にある。   The characteristic configuration of the air conditioning system according to the present invention includes the humidity control element, and flows the outdoor air taken in from an outdoor space as the first air to the humidity control section and passes through the humidity control section. 1 It is in the point which sends out air to indoor space.

上記特徴構成によれば、室外空気から水分を減少させた後の空気を室内空間に送出することができる。   According to the above characteristic configuration, the air after the moisture is reduced from the outdoor air can be sent to the indoor space.

本発明に係る空気調和システムの別の特徴構成は、室外空間から取り込んだ室外空気を前記第2空気として前記冷却部に流す点にある。   Another characteristic configuration of the air conditioning system according to the present invention is that outdoor air taken in from an outdoor space is caused to flow to the cooling unit as the second air.

上記特徴構成によれば、調湿素子の調湿部には、室外空気に吸着熱が加わった温度の空気が流れ、調湿素子の冷却部には、室外空気と同等の温度の空気が流れる。つまり、冷却部に流れる空気の温度は調湿部に流れる空気の温度よりも低くなっているので、冷却部を流れる空気によって、調湿部を確実に冷却することができる。   According to the above characteristic configuration, air at a temperature obtained by adding heat of adsorption to the outdoor air flows through the humidity control section of the humidity control element, and air at a temperature equivalent to the outdoor air flows through the cooling section of the humidity control element. . That is, since the temperature of the air flowing through the cooling unit is lower than the temperature of the air flowing through the humidity control unit, the humidity control unit can be reliably cooled by the air flowing through the cooling unit.

調湿素子の斜視図である。It is a perspective view of a humidity control element. 調湿素子の分解図である。It is an exploded view of a humidity control element. 調湿素子の断面図である。It is sectional drawing of a humidity control element. 調湿素子の製造工程を説明する図である。It is a figure explaining the manufacturing process of a humidity control element. 調湿素子の製造工程を説明する図である。It is a figure explaining the manufacturing process of a humidity control element. 調湿素子を備える空気調和システムの構成を示す図である。It is a figure which shows the structure of an air conditioning system provided with a humidity control element. 別実施形態の調湿素子の断面図である。It is sectional drawing of the humidity control element of another embodiment. 別実施形態の調湿素子の断面図である。It is sectional drawing of the humidity control element of another embodiment.

以下に図面を参照して本発明の実施形態に係る調湿素子Eについて説明する。
図1は調湿素子Eの斜視図である。図2は調湿素子Eの分解図である。図3は調湿素子Eの断面図である。図示するように、調湿素子Eは、平板部材1の一方の面側に調湿部Wが形成され及び平板部材1の他方の面側に冷却部Cが形成されることで、複数の平板部材1の間に調湿部Wと冷却部Cとが交互に積層された構造、即ち、調湿部Wと冷却部Cとが各平板部材1を間に挟んで交互に配置された構造になっている。
A humidity control element E according to an embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view of the humidity control element E. FIG. FIG. 2 is an exploded view of the humidity control element E. FIG. FIG. 3 is a cross-sectional view of the humidity control element E. As shown in the drawing, the humidity control element E has a plurality of flat plates in which the humidity control portion W is formed on one surface side of the flat plate member 1 and the cooling portion C is formed on the other surface side of the flat plate member 1. In the structure in which the humidity control part W and the cooling part C are alternately stacked between the members 1, that is, the structure in which the humidity control part W and the cooling part C are alternately arranged with the flat plate members 1 interposed therebetween. It has become.

調湿部Wは、水分を吸着及び脱着する役割を担う。具体的には、調湿部Wは、空気の流れる方向を誘導可能な第1誘導部材3を有し、第1誘導部材3によって誘導されながら流れる第1空気の水分を吸湿剤6によって吸着する吸着処理及び第1誘導部材3によって誘導されながら流れる第1空気へ水分を吸湿剤6から脱着する脱着処理を行うことができる。   The humidity control unit W plays a role of adsorbing and desorbing moisture. Specifically, the humidity control unit W includes a first guide member 3 capable of guiding the air flow direction, and adsorbs moisture of the first air flowing while being guided by the first guide member 3 by the moisture absorbent 6. The adsorption process and the desorption process of desorbing moisture from the moisture absorbent 6 to the first air flowing while being guided by the first guide member 3 can be performed.

調湿部Wは、上下2枚の平板部材1と側壁板2とで囲まれた空間である。調湿部Wとなる空間は、空気が流入する流入口Win及び空気が流出する流出口Woutという2つの開口部分を有する。流入口Winから調湿部Wに流入した空気は、調湿部Wの内部を通過して、流出口Woutから排出される。調湿部Wの内部の空気が通過する経路の途中には、第1誘導部材3によって空気の流れが誘導される第1誘導部分9が形成される。例えば、平板部材1と側壁板2と第1誘導部材3との間の複数の隙間が空気の経路となる。第1誘導部分9よりも流入口Win側には流入領域8があり、この流入領域8で各隙間に空気が分配される。第1誘導部分9よりも流出口Wout側には流出領域10があり、各隙間を通ってきた空気がこの流出領域10で合流する。平板部材1と側壁板2と第1誘導部材3との間に形成される各隙間(即ち、空気が通過する第1誘導部分9の空間)は、流入領域8と流出領域10との間では直線状になっている。   The humidity control portion W is a space surrounded by the upper and lower two flat plate members 1 and the side wall plate 2. The space serving as the humidity control section W has two opening portions, an inlet Win through which air flows in and an outlet Wout through which air flows out. The air that has flowed into the humidity control unit W from the inflow port Win passes through the inside of the humidity control unit W and is discharged from the outflow port Wout. In the middle of the path through which the air inside the humidity control section W passes, a first guiding portion 9 is formed through which the air flow is guided by the first guiding member 3. For example, a plurality of gaps among the flat plate member 1, the side wall plate 2, and the first guide member 3 serve as air paths. There is an inflow region 8 on the inflow side Win side with respect to the first guide portion 9, and air is distributed to each gap in the inflow region 8. There is an outflow region 10 on the outflow port Wout side of the first guide portion 9, and the air that has passed through the gaps merges in the outflow region 10. Each gap formed between the flat plate member 1, the side wall plate 2, and the first guide member 3 (that is, the space of the first guide portion 9 through which air passes) is between the inflow region 8 and the outflow region 10. It is straight.

本実施形態では、第1誘導部材3は、第1空気が流れる方向に向かって長く形成され且つ第1空気が流れる方向から見た断面が波形に形成される第1波板部材5aを有する。これにより、第1空気を第1波板部材5aの谷間部分に沿って流すことができる。
加えて、調湿部Wを構成する平板部材1の一方の表面及び第1波板部材5aの両面は吸湿剤6を保持している。つまり、調湿部Wに流入した第1空気が接触する全ての部分には吸湿剤6が設けられている。このように、平板部材1及び表面積の大きな第1波板部材5aの両方に多くの吸湿剤6を保持させることができるので、調湿部Wによる水分の吸着性能を高くすることができる。
In this embodiment, the 1st guide member 3 has the 1st corrugated member 5a in which the cross section seen from the direction through which the 1st air flows is formed in a waveform in elongate toward the direction through which the 1st air flows. Thereby, 1st air can be flowed along the valley part of the 1st corrugated board member 5a.
In addition, one surface of the flat plate member 1 constituting the humidity control section W and both surfaces of the first corrugated plate member 5 a hold the moisture absorbent 6. That is, the hygroscopic agent 6 is provided in all the portions where the first air that has flowed into the humidity control section W comes into contact. As described above, since a large amount of the hygroscopic agent 6 can be held in both the flat plate member 1 and the first corrugated plate member 5a having a large surface area, the moisture adsorption performance by the humidity control section W can be enhanced.

第1波板部材5aを形成している波形の山の頂点部分及び波形の谷の底部分は、上下2枚の平板部材1(又は、その表面に設けられている吸湿剤6)のそれぞれに対して接触している或いは接着されている。つまり、第1波板部材5aは上下2枚の平板部材1の間の間隔を一定に保つためのスペーサとして機能し、この第1波板部材5aによって調湿部Wの変形等を防止できる。また、第1波板部材5aを介して、調湿部Wの内部で熱を伝達させることができる。更に、波形にすることで第1波板部材5aの表面積が大きくなるので、第1波板部材5aの表面が保持可能な吸湿剤6の量を増加させることができる。   The top portion of the corrugated peak and the bottom portion of the corrugated trough that form the first corrugated plate member 5a are provided on each of the upper and lower flat plate members 1 (or the moisture absorbent 6 provided on the surface). They are touching or adhered to. In other words, the first corrugated member 5a functions as a spacer for keeping the distance between the two upper and lower flat plate members 1 constant, and the deformation of the humidity control portion W can be prevented by the first corrugated member 5a. Further, heat can be transferred inside the humidity control section W via the first corrugated plate member 5a. Furthermore, since the surface area of the 1st corrugated member 5a becomes large by making it a waveform, the quantity of the moisture absorbent 6 which the surface of the 1st corrugated member 5a can hold | maintain can be increased.

冷却部Cは、調湿部Wを冷却する機能を担う。具体的には、冷却部Cは、空気の流れる方向を誘導可能な第2誘導部材4を有し、第2誘導部材4によって誘導されながら流れる第2空気によって、調湿部Wが吸着処理を行った場合に発生する吸着熱を平板部材1を介して吸収することができる。   The cooling unit C has a function of cooling the humidity control unit W. Specifically, the cooling unit C includes the second guide member 4 capable of guiding the air flow direction, and the humidity control unit W performs the adsorption process by the second air flowing while being guided by the second guide member 4. The heat of adsorption generated when this is performed can be absorbed through the flat plate member 1.

冷却部Cは、上下2枚の平板部材1と側壁板2とで囲まれた空間である。冷却部Cとなる空間は、空気が流入する流入口Cin及び空気が流出する流出口Coutという2つの開口部分を有する。流入口Cinから冷却部Cに流入した空気は、冷却部Cの内部を通過して、流出口Coutから排出される。冷却部Cの内部の空気が通過する経路の途中には、第2誘導部材4によって空気の流れが誘導される第2誘導部分12が形成される。例えば、平板部材1と側壁板2と第2誘導部材4との間の複数の隙間が空気の経路となる。第2誘導部分12よりも流入口Cin側には流入領域11があり、この流入領域11で各隙間に空気が分配される。第2誘導部分12よりも流出口Cout側には流出領域13があり、各隙間を通ってきた空気がこの流出領域13で合流する。平板部材1と側壁板2と第2誘導部材4との間に形成される各隙間(即ち、空気が通過する第2誘導部分12の空間)は、流入領域11と流出領域13との間では直線状になっている。   The cooling part C is a space surrounded by two upper and lower flat plate members 1 and side wall plates 2. The space serving as the cooling unit C has two opening portions, an inlet Cin through which air flows in and an outlet Cout through which air flows out. The air that has flowed into the cooling unit C from the inflow port Cin passes through the inside of the cooling unit C and is discharged from the outflow port Cout. In the middle of the path through which the air inside the cooling section C passes, a second guiding portion 12 is formed in which the air flow is guided by the second guiding member 4. For example, a plurality of gaps among the flat plate member 1, the side wall plate 2, and the second guide member 4 serve as air paths. There is an inflow region 11 on the inlet Cin side of the second guide portion 12, and air is distributed to the gaps in the inflow region 11. There is an outflow region 13 on the outlet Cout side of the second guide portion 12, and the air that has passed through the gaps merges in the outflow region 13. Each gap formed between the flat plate member 1, the side wall plate 2, and the second guide member 4 (that is, the space of the second guide portion 12 through which air passes) is between the inflow region 11 and the outflow region 13. It is straight.

本実施形態では、第2誘導部材4は、第2空気が流れる方向に向かって長く形成され且つ第2空気が流れる方向から見た断面が波形に形成される第2波板部材5bを有する。これにより、第2空気を第2波板部材5bの谷間部分に沿って流すことができる。   In the present embodiment, the second guide member 4 has a second corrugated plate member 5b that is formed long in the direction in which the second air flows and has a cross section viewed from the direction in which the second air flows. Thereby, 2nd air can be flowed along the trough part of the 2nd corrugated board member 5b.

第2波板部材5bを形成している波形の山の頂点部分及び波形の谷の底部分は、上下2枚の平板部材1のそれぞれに対して接触している或いは接着されている。つまり、第2波板部材5bは上下2枚の平板部材1の間の間隔を一定に保つためのスペーサとして機能し、この第2波板部材5bによって冷却部Cの変形等を防止できる。また、第2波板部材5bを介して、冷却部Cの内部で熱を伝達させることができる。   The apex portion of the corrugated mountain and the bottom portion of the corrugated valley forming the second corrugated plate member 5b are in contact with or bonded to the upper and lower two flat plate members 1, respectively. That is, the second corrugated member 5b functions as a spacer for maintaining a constant distance between the upper and lower two flat plate members 1, and the second corrugated member 5b can prevent the cooling portion C from being deformed. Moreover, heat can be transmitted inside the cooling part C through the second corrugated plate member 5b.

吸湿剤6としては様々な種類のものを用いることができるが、例えば、ポリアクリル酸系の樹脂(架橋構造を有するポリアクリル酸ナトリウム等)を主成分とする材料を用いることができる。また、平板部材1と吸湿剤6とのバインダーとして、吸湿剤6を構成する材料と極性が近く、吸湿剤6の体積変化やヒートサイクルに耐えることのできる(即ち、バインダーとしての機能を維持できる)柔軟性を有する材料を用いることができる。例えば、吸湿剤6として上述のようなポリアクリル酸系の材料を用いる場合、バインダーとしては水性ウレタン樹脂、ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体などの材料を利用できる。或いは、上述した材料を混合したものをバインダーとして利用することもできる。本実施形態では、吸湿剤6としてポリアクリル酸ナトリウムを用い、バインダーとして水性ウレタン樹脂を用いる。   Various kinds of hygroscopic agents 6 can be used. For example, a material mainly composed of a polyacrylic acid-based resin (such as sodium polyacrylate having a crosslinked structure) can be used. Further, the binder of the flat plate member 1 and the hygroscopic agent 6 is close in polarity to the material constituting the hygroscopic agent 6 and can withstand the volume change and heat cycle of the hygroscopic agent 6 (that is, the function as the binder can be maintained). ) A flexible material can be used. For example, when a polyacrylic acid-based material as described above is used as the hygroscopic agent 6, a material such as an aqueous urethane resin, polyvinyl acetate, or ethylene-vinyl acetate copolymer can be used as the binder. Or what mixed the material mentioned above can also be utilized as a binder. In this embodiment, sodium polyacrylate is used as the hygroscopic agent 6 and an aqueous urethane resin is used as the binder.

平板部材1及び波板部材5及び側壁板2は、樹脂、紙、金属(例えばアルミニウム等)、ガラス、セラミックなどの材料を用いて作製することができる。
尚、吸湿剤6を平板部材1及び波板部材5(第1波板部材5a)に対してバインダーを用いて保持させる場合、それら三者の接着性を良好にするためには、平板部材1及び波板部材5(第1波板部材5a)は、極性が上記バインダー又は吸湿剤6に近く、耐熱性を有する樹脂材料であることが好ましい。例えば、平板部材1及び波板部材5(第1波板部材5a)の構成材料として、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリスチレンや、上述した材料の共重合体又は混合したものなどを用いることができる。また、平板部材1及び波板部材5及び側壁板2に樹脂材料を用いると、目的とする形に容易に作製することができる。本実施形態では、平板部材1及び波板部材5及び側壁板2としてポリエチレンテレフタレートを用いる。
The flat plate member 1, the corrugated plate member 5, and the side wall plate 2 can be manufactured using materials such as resin, paper, metal (for example, aluminum), glass, and ceramic.
When the hygroscopic agent 6 is held on the flat plate member 1 and the corrugated plate member 5 (first corrugated plate member 5a) by using a binder, the flat plate member 1 is used in order to improve the adhesion of these three members. The corrugated plate member 5 (first corrugated plate member 5a) is preferably a resin material having a polarity close to that of the binder or the hygroscopic agent 6 and having heat resistance. For example, as a constituent material of the flat plate member 1 and the corrugated plate member 5 (first corrugated plate member 5a), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polybutylene terephthalate, polyvinyl chloride, polyvinyl acetate Polystyrene, a copolymer of the above-described materials, or a mixture thereof can be used. Moreover, when a resin material is used for the flat plate member 1, the corrugated plate member 5, and the side wall plate 2, it can be easily manufactured into a target shape. In this embodiment, polyethylene terephthalate is used as the flat plate member 1, the corrugated plate member 5, and the side wall plate 2.

図1〜図3に示すように、本実施形態の調湿素子Eは、合計3層の冷却部Cと、合計2層の調湿部Wとが交互に積層された構造になっている。つまり、各調湿部Wは、上下側を冷却部Cで挟まれた構造になっている。その結果、調湿部Wが吸着処理を行った場合に発生する吸着熱は、上下側に配置された冷却部Cに対して平板部材1を介して伝わり、吸収されることになる。   As shown in FIGS. 1 to 3, the humidity control element E of the present embodiment has a structure in which a total of three layers of cooling units C and a total of two layers of humidity control units W are alternately stacked. That is, each humidity control part W has a structure in which the upper and lower sides are sandwiched between the cooling parts C. As a result, the heat of adsorption generated when the humidity control unit W performs the adsorption process is transmitted to and absorbed by the cooling unit C disposed on the upper and lower sides via the flat plate member 1.

また、調湿部Wと冷却部Cとの積層方向視では、一つの平板部材1を間に挟んで、調湿部Wでの第1空気の流れと冷却部Cでの第2空気の流れとが並行流又は対向流になるように第1誘導部材3及び第2誘導部材4を配置してある。特に、本実施形態では、調湿部Wに流れる第1空気と冷却部Cに流れる第2空気とが対向流となるように、調湿部Wの流入口Win及び流出口Woutが設定され、及び、冷却部Cの流入口Cin及び流出口Coutが設定されている。
尚、調湿部Wに流れる第1空気と冷却部Cに流れる第2空気とが並行流となるように、調湿部Wの流入口Win及び流出口Woutを設定し、及び、冷却部Cの流入口Cin及び流出口Coutを設定してもよい。
ここで、調湿部Wでの第1空気の流れ方向と冷却部Cでの第2空気の流れ方向とは、調湿部Wと冷却部Cとの積層方向視で完全な平行(並行流、対向流)になっている必要はなく、ある程度の角度を持って交差していてもよい。例えば、調湿部Wでの第1空気の流れ方向と冷却部Cでの第2空気の流れ方向とが、調湿部Wと冷却部Cとの積層方向視で、相互に10度程度の角度をもって交差していてもよい。
Further, in the stacking direction view of the humidity control unit W and the cooling unit C, the flow of the first air in the humidity control unit W and the flow of the second air in the cooling unit C with one flat plate member 1 interposed therebetween. The first guide member 3 and the second guide member 4 are arranged so that and become parallel flow or counterflow. In particular, in the present embodiment, the inlet Win and the outlet Wout of the humidity control unit W are set so that the first air that flows to the humidity control unit W and the second air that flows to the cooling unit C are counterflows. And the inflow port Cin and the outflow port Cout of the cooling part C are set.
The inlet Win and the outlet Wout of the humidity control unit W are set so that the first air flowing through the humidity control unit W and the second air flowing through the cooling unit C are in parallel flow, and the cooling unit C The inlet Cin and the outlet Cout may be set.
Here, the flow direction of the first air in the humidity control unit W and the flow direction of the second air in the cooling unit C are completely parallel (parallel flow) as viewed in the stacking direction of the humidity control unit W and the cooling unit C. , It is not necessary to have an opposite flow), and they may intersect at a certain angle. For example, the flow direction of the first air in the humidity control section W and the flow direction of the second air in the cooling section C are about 10 degrees from each other in the stacking direction view of the humidity control section W and the cooling section C. You may cross at an angle.

このように、第1誘導部材3と第2誘導部材4とが上述のように配置されていれば、例えば、調湿部Wの空気の経路内の上流側の吸湿剤6で多くの吸着が行われて吸着熱が発生しているのか、或いは、その経路内の下流側で多くの吸着が行われて吸着熱が発生しているかに関わらず、冷却部Cを流れる第2空気は、調湿部Wを冷却するために有効に活用される。その結果、調湿部Wでの吸着処理を良好に行わせることができる。特に、冷却部Cを流れる第2空気と調湿部Wを流れる第1空気とが対向流となっていれば、調湿部Wを流れる第1空気と冷却部Cを流れる第2空気との間の熱交換効率が高まる。また、冷却部Cを流れる空気が調湿部Wを冷却するために有効に利用されるため、調湿部Wの冷却に寄与する空気量を増加させるために、冷却部Cを流れる空気の単位時間当たりの流量を増加させるといった手法は不要になる。従って、運転に要するエネルギーの増加を抑制しながら調湿部Wの冷却を行って、調湿部Wでの吸着性能を高めることができる調湿素子Eを提供できる。   Thus, if the 1st guide member 3 and the 2nd guide member 4 are arrange | positioned as mentioned above, many adsorption | suction will be carried out with the upstream moisture absorbent 6 in the path | route of the air of the humidity control part W, for example. The second air flowing through the cooling section C is controlled regardless of whether the adsorption heat is generated and whether the adsorption heat is generated on the downstream side in the path. Effectively used to cool the wet portion W. As a result, it is possible to satisfactorily perform the adsorption process in the humidity control unit W. In particular, if the second air flowing through the cooling unit C and the first air flowing through the humidity control unit W are counterflows, the first air flowing through the humidity control unit W and the second air flowing through the cooling unit C The heat exchange efficiency between them increases. Further, since the air flowing through the cooling unit C is effectively used to cool the humidity control unit W, the unit of the air flowing through the cooling unit C in order to increase the amount of air that contributes to the cooling of the humidity control unit W A method of increasing the flow rate per hour becomes unnecessary. Therefore, it is possible to provide the humidity control element E that can cool the humidity control section W while suppressing an increase in energy required for operation, and can improve the adsorption performance in the humidity control section W.

次に、本実施形態の調湿素子Eの製造方法について説明する。図4及び図5は、調湿素子Eの製造工程を説明する図である。
先ず、図4に示すように、空気が流れる方向に向かって長く形成され且つ空気が流れる方向から見た断面が波形に形成される波板部材5と、平坦な平板部材1という二種類の資材を用意する(資材用意工程)。
次に、平板部材1の一方の表面に上記バインダーを用いて吸湿剤6を保持させる。加えて、波板部材5の両方の表面にも同様の吸湿剤6を保持させることで、第1波板部材5aを形成する(吸湿剤保持工程)。これに対して、吸湿剤6を保持させていない波板部材5は、第2波板部材5bとして利用できる。
Next, the manufacturing method of the humidity control element E of this embodiment is demonstrated. 4 and 5 are diagrams for explaining a manufacturing process of the humidity control element E. FIG.
First, as shown in FIG. 4, two kinds of materials, a corrugated plate member 5 that is formed long in the direction of air flow and has a corrugated cross section viewed from the direction of air flow, and a flat plate member 1. Is prepared (material preparation process).
Next, the moisture absorbent 6 is held on one surface of the flat plate member 1 using the binder. In addition, the 1st corrugated board member 5a is formed by hold | maintaining the same hygroscopic agent 6 also on both surfaces of the corrugated board member 5 (hygroscopic agent holding | maintenance process). On the other hand, the corrugated member 5 that does not hold the hygroscopic agent 6 can be used as the second corrugated member 5b.

尚、波板部材5を第1波板部材5aとして利用するのであれば、第1波板部材5aとバインダーと吸湿剤6との接着性を考慮して、上述したような樹脂材料によって作製された第1波板部材5aを用いることが好ましい。そして、第2波板部材5bも同様の材料を用いて作製してもよい。
但し、第2波板部材5bには吸湿剤6を保持させる必要がないため、第1波板部材5aとバインダーと吸湿剤6との接着性を考慮しなくてもよい。つまり、第2波板部材5bを、樹脂、紙、金属(例えばアルミニウム等)、ガラス、セラミックなどの材料を用いて作製することができる。
If the corrugated member 5 is used as the first corrugated member 5a, the corrugated member 5 is made of a resin material as described above in consideration of the adhesiveness between the first corrugated member 5a, the binder, and the hygroscopic agent 6. It is preferable to use the first corrugated plate member 5a. The second corrugated plate member 5b may also be manufactured using the same material.
However, since it is not necessary to hold the hygroscopic agent 6 in the second corrugated plate member 5b, it is not necessary to consider the adhesiveness between the first corrugated plate member 5a, the binder, and the hygroscopic agent 6. That is, the second corrugated plate member 5b can be manufactured using a material such as resin, paper, metal (for example, aluminum), glass, or ceramic.

このようにして、図5に示すように、一方の表面に吸湿剤6を保持している平板部材1と、両方の表面に吸湿剤6を保持している波板部材5(第1波板部材5a)と、表面に吸湿剤6を保持していない波板部材5(第2波板部材5b)という三種類の部材を用意することができる。そして、これらを組み付けることで、図3に示した構造の調湿素子Eを得ることができる(組付工程)。
つまり、調湿部Wは、平板部材1の一方の表面及び第1波板部材5aの両面に吸湿剤6を保持させた後で、平板部材1及び第1波板部材5aを組み付けて形成される。
In this way, as shown in FIG. 5, the flat plate member 1 holding the hygroscopic agent 6 on one surface and the corrugated plate member 5 (first corrugated plate) holding the hygroscopic agent 6 on both surfaces. Three types of members can be prepared: a member 5a) and a corrugated member 5 (second corrugated member 5b) that does not hold the moisture absorbent 6 on its surface. And the humidity control element E of the structure shown in FIG. 3 can be obtained by assembling these (an assembling process).
That is, the humidity control portion W is formed by assembling the flat plate member 1 and the first corrugated member 5a after holding the moisture absorbent 6 on one surface of the flat plate member 1 and both surfaces of the first corrugated plate member 5a. The

このように、本実施形態の調湿素子Eの製造方法では、平板部材1及び第1波板部材5aを組み付ける前、即ち、平板部材1の一方の表面及び第1波板部材5aの両面に対して容易にアクセスできるときに、平板部材1の一方の表面及び第1波板部材5aの両面に吸湿剤6を容易に保持させることができる。尚、平板部材1及び第1波板部材5aを組み付けた後は、平板部材1と第1波板部材5aとの間の隙間が狭くなっているため、平板部材1の一方の表面及び第1波板部材5aの両面にアクセスすることが困難になる。その結果、平板部材1の一方の表面及び第1波板部材5aの両面に吸湿剤6を万遍なく保持させることは困難になる。   Thus, in the manufacturing method of the humidity control element E of the present embodiment, before assembling the flat plate member 1 and the first corrugated plate member 5a, that is, on one surface of the flat plate member 1 and both surfaces of the first corrugated plate member 5a. On the other hand, when it is easily accessible, the moisture absorbent 6 can be easily held on one surface of the flat plate member 1 and both surfaces of the first corrugated plate member 5a. In addition, since the clearance gap between the flat plate member 1 and the 1st corrugated member 5a is narrow after the flat plate member 1 and the 1st corrugated member 5a are assembled | attached, one surface of the flat plate member 1 and the 1st It becomes difficult to access both surfaces of the corrugated plate member 5a. As a result, it becomes difficult to uniformly hold the hygroscopic agent 6 on one surface of the flat plate member 1 and both surfaces of the first corrugated plate member 5a.

次に、本実施形態の調湿素子E(E1,E2)を備える空気調和システムについて説明する。
図6は、調湿素子Eを備える空気調和システムの構成を示す図である。図示するように、この空気調和システムは2つの調湿素子E1,E2を備える。後述するように、図6には、調湿素子E1で除湿運転が行われ、調湿素子E2で再生運転が行われている状態を記載している。空気調和システムは、室外空間から取り込んだ室外空気を第1空気として一方の調湿素子E1の調湿部Wに流し、その調湿部Wを通過した後の第1空気を室内空間に送出するように構成されている。空気調和システムは、室外空間から取り込んだ室外空気を室内に供給するための給気通路L1と、室内空間から取り出した室内空気を室外に排出するための排気通路L2とを有する。尚、本実施形態では、空気を流すためのファンやブロアなどの説明は省略している。
Next, an air conditioning system provided with the humidity control element E (E1, E2) of this embodiment is demonstrated.
FIG. 6 is a diagram illustrating a configuration of an air conditioning system including the humidity control element E. As shown in the figure, this air conditioning system includes two humidity control elements E1 and E2. As will be described later, FIG. 6 shows a state where the dehumidifying operation is performed by the humidity control element E1 and the regeneration operation is performed by the humidity control element E2. The air conditioning system flows outdoor air taken in from the outdoor space as first air to the humidity control portion W of one humidity control element E1, and sends the first air after passing through the humidity control portion W to the indoor space. It is configured as follows. The air conditioning system has an air supply passage L1 for supplying outdoor air taken in from the outdoor space into the room, and an exhaust passage L2 for discharging indoor air taken out from the indoor space to the outdoor. In the present embodiment, description of a fan, a blower and the like for flowing air is omitted.

給気通路L1の途中には、室外から室内に向かって、調湿素子E1と顕熱熱交換器20とが順に配置されている。排気通路L2の途中には、室内から室外に向かって、顕熱熱交換器20と加熱器21と調湿素子E2とが順に配置されている。室外空間から給気通路L1に取り込まれた空気は、調湿素子E1の調湿部Wの流入口Winに導入され、調湿部Wにおいて吸着処理が行われた後、即ち、空気の除湿が行われた後、調湿部Wの流出口Woutから出て、給気通路L1を介して顕熱熱交換器20へ向かう。   In the middle of the air supply passage L1, the humidity control element E1 and the sensible heat exchanger 20 are sequentially arranged from the outside toward the inside. In the middle of the exhaust passage L2, a sensible heat exchanger 20, a heater 21, and a humidity control element E2 are sequentially arranged from the room toward the outside. The air taken into the air supply passage L1 from the outdoor space is introduced into the inlet Win of the humidity control section W of the humidity control element E1, and after the adsorption processing is performed in the humidity control section W, that is, the air is dehumidified. After being performed, it exits from the outlet Wout of the humidity control section W and travels toward the sensible heat exchanger 20 via the air supply passage L1.

顕熱熱交換器20では、調湿素子E1によって除湿(水分の吸着処理)が行われた後の室外空気と、室内から取り込まれた室内空気との熱交換が行われ、両者の温度が近付くことになる。つまり、調湿素子E1での水分の吸着処理によって水分が減少された後の室外空気は、顕熱熱交換器20でその温度が室内空気の温度に近付けられた状態で、給気通路L1を介して室内へと供給される。   In the sensible heat exchanger 20, heat is exchanged between the outdoor air after the dehumidification (moisture adsorption process) is performed by the humidity control element E1 and the indoor air taken in from the room, and the temperatures of the two approaches. It will be. That is, the outdoor air after the moisture is reduced by the moisture adsorption process in the humidity control element E1 is passed through the supply passage L1 in a state where the temperature is brought close to the temperature of the indoor air by the sensible heat exchanger 20. Through the room.

顕熱熱交換器20で熱交換が行われた後の室内空気は、排気通路L2の途中に設けられた加熱器21によって昇温される。図6に示す例では、加熱器21には熱媒通流路22が接続され、その熱媒通流路22を流れる熱媒と、排気通路L2を流れる室内空気との間での熱交換が行われる。そして、昇温された後の室内空気は、排気通路L2を介して調湿素子E2に供給される。   The room air after heat exchange is performed in the sensible heat exchanger 20 is heated by a heater 21 provided in the middle of the exhaust passage L2. In the example shown in FIG. 6, a heating medium passage 22 is connected to the heater 21, and heat exchange between the heating medium flowing through the heating medium passage 22 and the indoor air flowing through the exhaust passage L <b> 2 is performed. Done. And the indoor air after temperature rising is supplied to the humidity control element E2 via the exhaust passage L2.

加熱器21によって昇温された後の空気は、排気通路L2を介して調湿素子E2の調湿部Wの流入口Winに導入され、調湿部Wにおいて脱着処理が行われた後、即ち、吸湿剤6の再生に利用された後、調湿部Wの流出口Woutから出て、排気通路L2を介して室外へと排出される。   The air heated by the heater 21 is introduced into the inlet Win of the humidity control section W of the humidity control element E2 through the exhaust passage L2, and after the desorption process is performed in the humidity control section W, that is, After being used for the regeneration of the moisture absorbent 6, the moisture absorbent 6 exits from the outlet Wout of the humidity control section W and is discharged outside through the exhaust passage L <b> 2.

加えて、本実施形態の空気調和システムでは、調湿素子E1の冷却部Cには室外空気が流れるように構成されている。具体的には、空気調和システムは、調湿素子E1よりも上流側の給気通路L1の途中の分岐部位23と、調湿素子E2よりも下流側の排気通路L2の途中の合流部位24とを接続する分岐通路L3を有する。分岐通路L3を流れる室外空気は、調湿素子E1の冷却部Cの流入口Cinに導入され、調湿部Wが吸着処理を行った場合に発生する吸着熱を平板部材1を介して吸収した後、冷却部Cの流出口Coutから出て、排気通路L2の合流部位24に至る。このように、調湿素子E1の調湿部Wには、室外空気に吸着熱が加わった温度の空気が流れ、調湿素子E1の冷却部Cには、室外空気と同等の温度の空気が流れる。つまり、冷却部Cに流れる空気の温度は調湿部Wに流れる空気の温度よりも低くなっているので、冷却部Cを流れる空気によって、調湿部Wを確実に冷却することができる。   In addition, the air conditioning system of the present embodiment is configured such that outdoor air flows through the cooling unit C of the humidity control element E1. Specifically, the air conditioning system includes a branch part 23 in the middle of the air supply passage L1 upstream of the humidity control element E1, and a joining part 24 in the middle of the exhaust passage L2 downstream of the humidity control element E2. Has a branch passage L3. The outdoor air flowing through the branch passage L3 is introduced into the inlet Cin of the cooling unit C of the humidity control element E1, and absorbs heat of adsorption generated when the humidity control unit W performs the adsorption process through the flat plate member 1. After that, it exits from the outlet Cout of the cooling part C and reaches the confluence portion 24 of the exhaust passage L2. As described above, air having a temperature obtained by adding heat of adsorption to the outdoor air flows through the humidity control section W of the humidity control element E1, and air having a temperature equivalent to the outdoor air flows through the cooling section C of the humidity control element E1. Flowing. That is, since the temperature of the air flowing through the cooling unit C is lower than the temperature of the air flowing through the humidity control unit W, the humidity control unit W can be reliably cooled by the air flowing through the cooling unit C.

また、図示を省略するが、空気調和システムは、調湿素子E1と調湿素子E2とを切り換える切換機構等を備えている。その結果、吸着処理に利用した後の調湿素子E1を次に再生すること、及び、吸湿剤6の再生を行った後の調湿素子E2を次に吸着処理に利用することが可能となる。同じく図示を省略するが、空気調和システムを用いて、室内へ供給される空気を加湿するような運転も可能である。   Moreover, although illustration is abbreviate | omitted, the air conditioning system is provided with the switching mechanism etc. which switch the humidity control element E1 and the humidity control element E2. As a result, it is possible to regenerate the humidity control element E1 after being used for the adsorption process, and to use the humidity control element E2 after the regeneration of the hygroscopic agent 6 for the adsorption process. . Although not shown in the figure, an operation that humidifies the air supplied to the room using an air conditioning system is also possible.

<別実施形態>
<1>
上記実施形態では、調湿素子Eの構造及び空気調和システムの構造について具体例を挙げて説明したが、調湿素子Eの構造及び空気調和システムの構造は上述したものに限定されず、適宜変更可能である。
<Another embodiment>
<1>
In the said embodiment, although the structure of the humidity control element E and the structure of the air conditioning system were given and demonstrated, the structure of the humidity control element E and the structure of the air conditioning system are not limited to what was mentioned above, It changes suitably. Is possible.

例えば、調湿素子Eが有する第1誘導部材3及び第2誘導部材4の形状は上述した波形には限定されない。図7は、別実施形態の調湿素子Eの断面図である。図示するように、二つの平板部材1の間には、上述した波板部材5の代わりにリブ14が設けられており、このリブ14を用いて第1誘導部材3及び第2誘導部材4が形成される。このリブ14は、波板部材5と同様に、空気が流れる方向に向かって長く形成されている。リブ14は、二つの平板部材1の夫々に対して垂直に配置されており、空気の流れる方向を誘導する役割に加えて、二つの平板部材1の間のスペーサの役割を果たすことができる。図中では、調湿部Wに設けられているリブ14を第1リブ14aと表記し、冷却部Cに設けられているリブ14を第2リブ14bと表記している。
図7に示す調湿素子Eでも、調湿部Wにおいて第1空気が接触する部分の表面には吸湿剤6が設けられている。つまり、調湿部Wを構成する平板部材1の一方の表面及び第1リブ14aの両方の表面は吸湿剤6を保持している。
For example, the shape of the 1st induction member 3 and the 2nd induction member 4 which the humidity control element E has is not limited to the waveform mentioned above. FIG. 7 is a cross-sectional view of a humidity control element E according to another embodiment. As shown in the drawing, a rib 14 is provided between the two flat plate members 1 instead of the corrugated plate member 5 described above, and the first guiding member 3 and the second guiding member 4 are formed using the rib 14. It is formed. Like the corrugated plate member 5, the rib 14 is formed long in the direction in which air flows. The rib 14 is disposed perpendicular to each of the two flat plate members 1 and can serve as a spacer between the two flat plate members 1 in addition to the role of guiding the air flow direction. In the drawing, the rib 14 provided in the humidity control portion W is referred to as a first rib 14a, and the rib 14 provided in the cooling portion C is referred to as a second rib 14b.
Also in the humidity control element E shown in FIG. 7, the moisture absorbent 6 is provided on the surface of the portion where the first air contacts in the humidity control section W. That is, one surface of the flat plate member 1 constituting the humidity control portion W and both surfaces of the first rib 14 a hold the moisture absorbent 6.

他にも、波板部材5の断面の形状は上述したものから適宜変更可能である。例えば、上記実施形態では、波板部材5の断面の形状が滑らかな波形である例を示したが、断面が三角形や矩形などを一つの単位形状として、その単位形状が繰り返されるような波形に形成されてもよい。
更に、上記実施形態では、調湿素子Eが有する第1誘導部材3及び第2誘導部材4が、上述した波板部材5(及び金属膜7)又はリブ14のみを有する例を説明したが、第1誘導部材3及び第2誘導部材4は、波板部材5又はリブ14等に加えて、更に別の部材を有していてもよい。例えば、調湿部W及び冷却部Cの内部(即ち、上下2枚の平板部材1同士の間)に、1個以上のスペーサを設けることでそれら上下2枚の平板部材1同士の間隔を確保し、そのスペーサの周囲に上述した波板部材5又はリブ14等を設けてもよい。つまり、調湿素子Eが有する第1誘導部材3及び第2誘導部材4は、波板部材5又はリブ14等と、1個以上のスペーサとを有していてもよい。この場合、スペーサも、空気の流れる方向を誘導可能な誘導部材となる。
In addition, the shape of the cross section of the corrugated plate member 5 can be appropriately changed from the above-described one. For example, in the above-described embodiment, an example in which the cross-sectional shape of the corrugated member 5 is a smooth waveform is shown. However, the cross-section has a triangular shape, a rectangular shape, etc. as one unit shape, and the unit shape is repeated. It may be formed.
Furthermore, in the said embodiment, although the 1st induction | guidance | derivation member 3 and the 2nd induction | guidance | derivation member 4 which the humidity control element E had demonstrated only the corrugated plate member 5 (and metal film 7) or the rib 14 mentioned above, The first guide member 3 and the second guide member 4 may have another member in addition to the corrugated plate member 5 or the rib 14. For example, by providing one or more spacers inside the humidity control unit W and the cooling unit C (that is, between the two upper and lower flat plate members 1), the interval between the two upper and lower flat plate members 1 is secured. The corrugated plate member 5 or the rib 14 described above may be provided around the spacer. That is, the first induction member 3 and the second induction member 4 included in the humidity control element E may include the corrugated member 5 or the rib 14 and one or more spacers. In this case, the spacer is also a guide member capable of guiding the direction of air flow.

また、上記実施形態では、調湿素子Eが合計3層の冷却部Cと合計2層の調湿部Wとが交互に積層された構造になっている例を説明したが、それらの層数は適宜変更可能である。   Moreover, although the said embodiment demonstrated the example where the humidity control element E became a structure where the cooling part C of a total of 3 layers and the humidity control part W of a total of 2 layers were laminated | stacked alternately, the number of those layers Can be appropriately changed.

<2>
上記実施形態において、調湿部W及び冷却部Cに設けられている流入領域8,11の形状及び範囲や、流出領域10,13の形状及び範囲は適宜変更可能である。
また、吸湿剤6は、調湿部Wに流入した第1空気が接触する全ての部分に設けなくてもよい。例えば、調湿部Wを構成する平板部材1の一方の表面のみに吸湿剤6を保持させること、或いは、調湿部Wを構成する第1波板部材5aの両面のみに吸湿剤6を保持させることでも構わない。
<2>
In the said embodiment, the shape and range of the inflow area | regions 8 and 11 provided in the humidity control part W and the cooling part C and the shape and range of the outflow area | regions 10 and 13 can be changed suitably.
Further, the hygroscopic agent 6 may not be provided in all the portions where the first air that has flowed into the humidity control section W comes into contact. For example, the moisture absorbent 6 is held only on one surface of the flat plate member 1 constituting the humidity control portion W, or the moisture absorbent 6 is held only on both surfaces of the first corrugated plate member 5a constituting the humidity control portion W. It doesn't matter if

<3>
上記実施形態において、第2誘導部材4の材質に変更を加えてもよい。図8は、別実施形態の調湿素子Eの断面図である。図示するように、冷却部Cを構成する平板部材1の一方の表面には金属膜7を形成してある。つまり、平板部材1の一方の表面には金属膜7を形成し、平板部材1の他方の表面には吸湿剤6を保持させている。例えば、金属膜7は、アルミニウムなどの金属を蒸着法などを用いて形成することができる。そして、金属膜7が形成されている方の表面は冷却部Cにおいて第2空気が流れる通路となり、吸湿剤6が保持されている方の表面は調湿部Wにおいて第1空気が流れる通路となる。熱伝導性の良好な金属膜7を平板部材1の一方の表面に形成することで、平板部材1では、面方向での熱の伝達が促進される。従って、調湿部Wが吸着処理を行った場合に発生する吸着熱は、冷却部Cの平板部材1の全面で吸収することができる。
<3>
In the above embodiment, the material of the second guide member 4 may be changed. FIG. 8 is a cross-sectional view of a humidity control element E according to another embodiment. As shown in the drawing, a metal film 7 is formed on one surface of the flat plate member 1 constituting the cooling section C. That is, the metal film 7 is formed on one surface of the flat plate member 1, and the moisture absorbent 6 is held on the other surface of the flat plate member 1. For example, the metal film 7 can be formed using a metal such as aluminum by vapor deposition or the like. The surface on which the metal film 7 is formed becomes a passage through which the second air flows in the cooling section C, and the surface on which the moisture absorbent 6 is held is a passage through which the first air flows in the humidity control section W. Become. By forming the metal film 7 having good thermal conductivity on one surface of the flat plate member 1, heat transfer in the surface direction is promoted in the flat plate member 1. Therefore, the heat of adsorption generated when the humidity control unit W performs the adsorption process can be absorbed by the entire surface of the flat plate member 1 of the cooling unit C.

他にも、上記実施形態では、加熱器21が熱媒通流路22を流れる熱媒の熱を利用して室内空気を昇温する例を説明したが、加熱器21の構成を変更してもよい。例えば、加熱器21が電気ヒーターを備え、その電気ヒーターから放出される熱を利用して室内空気を昇温するような構成を採用してもよい。   In addition, in the above-described embodiment, the example in which the heater 21 raises the temperature of the indoor air using the heat of the heat medium flowing through the heat medium passage 22 has been described, but the configuration of the heater 21 is changed. Also good. For example, a configuration in which the heater 21 includes an electric heater and the temperature of the room air is raised using heat released from the electric heater may be employed.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   The configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in the other embodiment, as long as no contradiction occurs. The embodiment disclosed in this specification is an exemplification, and the embodiment of the present invention is not limited to this. The embodiment can be appropriately modified without departing from the object of the present invention.

本発明は、運転に要するエネルギーの増加を抑制しながら調湿部の冷却を行って、調湿部での吸着性能を高めることができる調湿素子及びそれを備えた空気調和システムに利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a humidity control element that can cool the humidity control section while suppressing an increase in energy required for operation and can enhance the adsorption performance in the humidity control section, and an air conditioning system including the humidity control element.

E 調湿素子
E1 調湿素子
E2 調湿素子
1 平板部材
3 第1誘導部材
4 第2誘導部材
5 波板部材
5a 第1波板部材
5b 第2波板部材
6 吸湿剤
7 金属膜
14 リブ
14a 第1リブ
14b 第2リブ
C 冷却部
W 調湿部
E Humidity adjustment element E1 Humidity adjustment element E2 Humidity adjustment element 1 Flat plate member 3 First induction member 4 Second induction member 5 Corrugated plate member 5a First corrugated plate member 5b Second corrugated plate member 6 Hygroscopic agent 7 Metal film 14 Rib 14a 1st rib 14b 2nd rib C Cooling part W Humidity control part

Claims (8)

平板部材の一方の面側に調湿部が形成され及び前記平板部材の他方の面側に冷却部が形成されることで、複数の前記平板部材の間に前記調湿部と前記冷却部とが交互に積層されており、
前記調湿部は、空気の流れる方向を誘導可能な第1誘導部材を有し、前記第1誘導部材によって誘導されながら流れる第1空気の水分を吸湿剤によって吸着する吸着処理及び前記第1誘導部材によって誘導されながら流れる前記第1空気へ水分を前記吸湿剤から脱着する脱着処理を行うことができ、
前記冷却部は、空気の流れる方向を誘導可能な第2誘導部材を有し、前記第2誘導部材によって誘導されながら流れる第2空気によって、前記調湿部が前記吸着処理を行った場合に発生する吸着熱を前記平板部材を介して吸収することができる調湿素子であって、
前記調湿部での前記第1空気の流れと前記冷却部での前記第2空気の流れとが並行流又は対向流となるように前記第1誘導部材及び前記第2誘導部材を配置してある調湿素子。
A humidity control part is formed on one surface side of the flat plate member, and a cooling part is formed on the other surface side of the flat plate member, so that the humidity control part and the cooling part are between the flat plate members. Are stacked alternately,
The humidity control unit includes a first guide member capable of guiding an air flow direction, an adsorption process for adsorbing moisture of the first air flowing while being guided by the first guide member with a moisture absorbent, and the first guide. A desorption process for desorbing moisture from the hygroscopic agent to the first air flowing while being guided by the member can be performed,
The cooling unit includes a second guide member that can guide a flow direction of air, and is generated when the humidity control unit performs the adsorption process by the second air that flows while being guided by the second guide member. A humidity control element capable of absorbing heat of adsorption through the flat plate member,
The first guide member and the second guide member are arranged so that the flow of the first air in the humidity control section and the flow of the second air in the cooling section are parallel flow or counterflow. A humidity control element.
前記第1誘導部材は、前記第1空気が流れる方向に向かって長く形成され且つ前記第1空気が流れる方向から見た断面が波形に形成される第1波板部材を有する請求項1に記載の調湿素子。   2. The first corrugated member according to claim 1, wherein the first guide member includes a first corrugated plate member that is formed long in a direction in which the first air flows and has a corrugated cross section viewed from the direction in which the first air flows. Humidity control element. 前記調湿部を構成する前記平板部材の一方の表面及び前記第1波板部材の両面は前記吸湿剤を保持している請求項2に記載の調湿素子。   The humidity control element according to claim 2, wherein one surface of the flat plate member and both surfaces of the first corrugated plate member constituting the humidity control unit hold the moisture absorbent. 前記調湿部は、前記平板部材の一方の表面及び前記第1波板部材の両面に前記吸湿剤を保持させた後で、前記平板部材及び前記第1波板部材を組み付けて形成される請求項3に記載の調湿素子。   The humidity control part is formed by assembling the flat plate member and the first corrugated plate member after holding the hygroscopic agent on one surface of the flat plate member and both surfaces of the first corrugated plate member. Item 4. The humidity control element according to Item 3. 前記第2誘導部材は、前記第2空気が流れる方向に向かって長く形成され且つ前記第2空気が流れる方向から見た断面が波形に形成される第2波板部材を有する請求項1〜4の何れか一項に記載の調湿素子。   The said 2nd induction member has a 2nd corrugated board member which is long formed in the direction where the said 2nd air flows, and the cross section seen from the direction where the said 2nd air flows is formed in a waveform. The humidity control element according to any one of the above. 前記平板部材は樹脂材料を用いて形成される請求項1〜5の何れか一項に記載の調湿素子。   The humidity control element according to claim 1, wherein the flat plate member is formed using a resin material. 請求項1〜6の何れか一項に記載の調湿素子を備え、
室外空間から取り込んだ室外空気を前記第1空気として前記調湿部に流し、前記調湿部を通過した後の前記第1空気を室内空間に送出する空気調和システム。
The humidity control element according to any one of claims 1 to 6,
An air conditioning system for flowing outdoor air taken from an outdoor space as the first air to the humidity control unit and sending the first air after passing through the humidity control unit to the indoor space.
室外空間から取り込んだ室外空気を前記第2空気として前記冷却部に流す請求項7に記載の空気調和システム。   The air conditioning system according to claim 7, wherein outdoor air taken in from an outdoor space is caused to flow as the second air to the cooling unit.
JP2015135553A 2015-07-06 2015-07-06 Humidity adjuster element and air conditioning system Pending JP2017015367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015135553A JP2017015367A (en) 2015-07-06 2015-07-06 Humidity adjuster element and air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015135553A JP2017015367A (en) 2015-07-06 2015-07-06 Humidity adjuster element and air conditioning system

Publications (1)

Publication Number Publication Date
JP2017015367A true JP2017015367A (en) 2017-01-19

Family

ID=57829002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015135553A Pending JP2017015367A (en) 2015-07-06 2015-07-06 Humidity adjuster element and air conditioning system

Country Status (1)

Country Link
JP (1) JP2017015367A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110057091A (en) * 2019-03-26 2019-07-26 淮南市知产创新技术研究有限公司 A kind of symmetrical structure Total heat exchange core

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843398A (en) * 1981-09-10 1983-03-14 Seibu Giken:Kk Manufacture of heat exchange element
JPS6268520A (en) * 1985-09-20 1987-03-28 Matsushita Electric Ind Co Ltd Dry dehumidifier
JPS62148330U (en) * 1986-03-10 1987-09-19
JP2001263729A (en) * 2000-03-23 2001-09-26 Daikin Ind Ltd Adsorption/desorption device and moisture adjusting system using same
JP2005058874A (en) * 2003-08-08 2005-03-10 Daikin Ind Ltd Cooling and adsorbing element
JP3115390U (en) * 2005-08-03 2005-11-04 順利空調工程有限公司 Fixed water vapor siphon transmission honeycomb dehumidifier
WO2008041327A1 (en) * 2006-10-03 2008-04-10 Mitsubishi Electric Corporation Total heat exchange element and total heat exchange apparatus
US20140262125A1 (en) * 2013-03-14 2014-09-18 Venmar Ces, Inc. Energy exchange assembly with microporous membrane
JP2014214949A (en) * 2013-04-25 2014-11-17 新晃工業株式会社 Total heat exchanger using water vapor selection permeable film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843398A (en) * 1981-09-10 1983-03-14 Seibu Giken:Kk Manufacture of heat exchange element
JPS6268520A (en) * 1985-09-20 1987-03-28 Matsushita Electric Ind Co Ltd Dry dehumidifier
JPS62148330U (en) * 1986-03-10 1987-09-19
JP2001263729A (en) * 2000-03-23 2001-09-26 Daikin Ind Ltd Adsorption/desorption device and moisture adjusting system using same
JP2005058874A (en) * 2003-08-08 2005-03-10 Daikin Ind Ltd Cooling and adsorbing element
JP3115390U (en) * 2005-08-03 2005-11-04 順利空調工程有限公司 Fixed water vapor siphon transmission honeycomb dehumidifier
WO2008041327A1 (en) * 2006-10-03 2008-04-10 Mitsubishi Electric Corporation Total heat exchange element and total heat exchange apparatus
US20140262125A1 (en) * 2013-03-14 2014-09-18 Venmar Ces, Inc. Energy exchange assembly with microporous membrane
JP2014214949A (en) * 2013-04-25 2014-11-17 新晃工業株式会社 Total heat exchanger using water vapor selection permeable film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110057091A (en) * 2019-03-26 2019-07-26 淮南市知产创新技术研究有限公司 A kind of symmetrical structure Total heat exchange core

Similar Documents

Publication Publication Date Title
JP2014507622A5 (en)
EA201170657A1 (en) DRY AIR CONDITIONING
JP6376890B2 (en) Desiccant block device and desiccant air conditioner
JP2005513392A5 (en)
JP6566829B2 (en) Air conditioning system
JP2017015367A (en) Humidity adjuster element and air conditioning system
JP2017015369A (en) Heat exchanging element and humidity adjuster element
JP7333875B2 (en) Total heat exchange element and ventilator
JP2015169401A (en) heat exchange element and heat exchanger
JP6570410B2 (en) Air conditioning system
JP6570345B2 (en) Air conditioning system
JP2001263729A (en) Adsorption/desorption device and moisture adjusting system using same
JP2018169054A (en) Air conditioning system
JP6695495B2 (en) Total heat exchange element, method for manufacturing total heat exchange element, and total heat exchange device
JP2017142032A (en) Indirect evaporative type air conditioner
JP6078602B1 (en) Indirect vaporization air conditioner and indirect vaporization air conditioning method
JP2017013031A (en) Humidity control element
JP6262445B2 (en) Total heat exchanger using water vapor permselective membrane
JP3649203B2 (en) Humidity control device
JP6078609B1 (en) Indirect vaporization air conditioner and indirect vaporization air conditioning method
JP4269843B2 (en) Cooling adsorption element
JP2018169056A (en) Air conditioning system
JP2004324901A (en) Heat exchange ventilating device
JP6815516B2 (en) Total heat exchange element and heat exchange ventilation system
JP2018169055A (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190924