JP2001027489A - Heat-exchanger and manufacture of heat-exchanger - Google Patents

Heat-exchanger and manufacture of heat-exchanger

Info

Publication number
JP2001027489A
JP2001027489A JP2000055539A JP2000055539A JP2001027489A JP 2001027489 A JP2001027489 A JP 2001027489A JP 2000055539 A JP2000055539 A JP 2000055539A JP 2000055539 A JP2000055539 A JP 2000055539A JP 2001027489 A JP2001027489 A JP 2001027489A
Authority
JP
Japan
Prior art keywords
heat exchanger
moisture
partition
spacing
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000055539A
Other languages
Japanese (ja)
Other versions
JP3501075B2 (en
Inventor
Yoichi Sugiyama
陽一 杉山
Hidemoto Arai
秀元 荒井
Kenji Mizoguchi
賢治 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000055539A priority Critical patent/JP3501075B2/en
Publication of JP2001027489A publication Critical patent/JP2001027489A/en
Application granted granted Critical
Publication of JP3501075B2 publication Critical patent/JP3501075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements

Abstract

PROBLEM TO BE SOLVED: To provide manufacture of a heat-exchanger to increase a corrugating process speed and improve productivity. SOLUTION: This manufacturing method is that a moisture permeation film 8 having an air shield function is formed on one surface of a plate-form porous member 7 by chemical coating and a laminating process to produce a gas shield substance for heat-exchange, a space holding member 3 to constitute a liquid passage 4 is adhered to the surface on the moisture permeation film 8 of this gas shield substance through a corrugating process to produce a heat-exchanger constituting member 6, and the heat-exchanger constituting member 6 is laminated such that a fluid passage 4 or the like formed of the space holding member 3 crosses or parallels the moisture permeation film at every one layer. Further, the other surface of the porous member 7 is coated with a moisture absorbent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体間での熱交換
を行なわせる主として空調分野に利用される積層構造の
熱交換器及び熱交換器の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger having a laminated structure mainly used in the field of air conditioning for performing heat exchange between fluids and a method of manufacturing the heat exchanger.

【0002】[0002]

【従来の技術】近年、暖房及び冷房などの空調機器が発
達かつ普及し、空調装置を用いた居住区域が拡大するに
つれて換気において温度及び湿度が回収できる空調用の
熱交換器に対する重要性も高まっている。こうした熱交
換器は例えば、特公昭47ー19990号公報や特公昭
54ー1054号公報及び特公昭51ー2131号公報
に開示されているようなものが広く採用されている。こ
れらのいずれも伝熱性と通湿性とを有する仕切板を間隔
板を挟んで所定の間隔をおいて複数層に重ね合わせた基
本構造を採っている。仕切板は方形の平板で、間隔板は
投影平面が仕切板に一致する鋸波状又は正弦波状の波形
を成形した波板となっており、間隔板を仕切板の間にそ
の波形の成形方向を交互に90度又はそれに近い角度を
持たせて挟着し、一次気流と二次気流を通す二系統の流
体通路をこれらの各層間に一層おきに構成している。
2. Description of the Related Art In recent years, as air conditioners such as heating and cooling have been developed and spread, and as living spaces using air conditioners have expanded, the importance of air conditioner heat exchangers capable of recovering temperature and humidity in ventilation has also increased. ing. As such heat exchangers, those disclosed in, for example, JP-B-47-19990, JP-B-54-1054, and JP-B-51-2131 are widely employed. Each of these has a basic structure in which a partition plate having heat conductivity and moisture permeability is laminated on a plurality of layers at a predetermined interval with a spacing plate interposed therebetween. The partition plate is a square flat plate, and the spacing plate is a corrugated plate formed by shaping a sawtooth or sinusoidal waveform whose projection plane matches the partition plate, and the forming direction of the waveform alternates between the partition plates and the partition plate. It is sandwiched at an angle of 90 degrees or close to it, and two fluid passages for passing the primary airflow and the secondary airflow are formed alternately between these layers.

【0003】熱交換器の仕切板に要求される特性として
は、通気性が低く、透湿性が高いことである。これは、
使用時に屋外から屋内に吸込まれる新鮮な外気と屋内か
ら屋外へ排気される汚れた空気とが混合することなく、
しかも顕熱と同時に潜熱も熱交換できるようにするため
に、水蒸気が吸込み空気と排出空気の間で効率よく移行
することが要求されるからである。そして、このような
要求に対処できる仕切板の素材として、特公昭58―4
6325号公報に示されているような気体遮蔽物が開発
されている。これは、多孔質部材に吸湿剤としてハロゲ
ン化リチウムを含む水溶性高分子物質を含浸もしくは塗
布することにより得られるものである。また、特公昭5
3―34663号公報に示されているように、必要に応
じて水溶性高分子物質の中にグアニジン系の難燃剤を混
ぜて含浸もしくは塗布することにより難燃性を改善する
工夫も講じられている。
[0003] The characteristics required for the partition plate of the heat exchanger are low air permeability and high moisture permeability. this is,
Without mixing fresh air sucked into the room from the outside and dirty air exhausted from the room to the outside during use,
In addition, in order to exchange heat with latent heat at the same time as sensible heat, it is required that water vapor be efficiently transferred between intake air and exhaust air. As a material for a partition plate that can meet such demands, Japanese Patent Publication No. 58-4
A gas shield as disclosed in JP-A-6325 has been developed. This is obtained by impregnating or applying a water-soluble polymer substance containing lithium halide as a moisture absorbent to a porous member. In addition, Tokubo Sho 5
As disclosed in Japanese Patent Publication No. 3-34663, a measure has been taken to improve the flame retardancy by mixing and impregnating or applying a guanidine-based flame retardant in a water-soluble polymer substance as necessary. I have.

【0004】[0004]

【発明が解決しようとする課題】上記したような多孔質
部材に水溶性高分子物質を含浸もしくは塗布した透湿性
気体遮蔽物で仕切板を構成した熱交換器においては、夏
期などの温度と湿度が高い条件下では、仕切板の吸湿に
より水溶性高分子物質の一部が溶け、ブロッキング現象
がおき、コルゲート時等の巻き戻し作業時に素材が破れ
るといった問題点がある。また、この種の熱交換器は、
仕切板を構成する素材に間隔板を構成する素材をコルゲ
ート加工しながら接着して得られる片面段ボール構造物
を熱交換器構成部材として複数枚積層することにより製
造されている。
In a heat exchanger in which a partition plate is constituted by a moisture-permeable gas shield obtained by impregnating or applying a water-soluble polymer substance to a porous member as described above, the temperature and humidity in summer and the like are high. Under high conditions, there is a problem that a part of the water-soluble polymer substance is dissolved due to moisture absorption of the partition plate, a blocking phenomenon occurs, and the material is broken at the time of rewinding operation such as corrugation. Also, this kind of heat exchanger
It is manufactured by laminating a plurality of single-sided corrugated cardboard structures obtained by adhering the material constituting the spacing plate to the material constituting the partition plate while corrugating the material as a heat exchanger constituting member.

【0005】コルゲート加工は、間隔板の素材を成形す
る互いに噛み合って回転する歯車状の上下のコルゲータ
ーと、仕切板の素材を間隔板の素材に回転しながら押付
けるプレスロールを中核として構成されていて、間隔板
の段形状を整えるために、上下のコルゲーターとプレス
ロールは通常、150℃以上の高温に維持されている。
従って、仕切板の素材の水溶性高分子物質の一部がプレ
スロールの熱によって溶け、プレスロールに融着しやす
く、プレスロールの温度を下げれば仕切板の素材のプレ
スロールへの融着は防止できるものの、温度を低くする
とコルゲートの段形状が崩れ熱交換器構成部材として使
えないものになってしまう。
[0005] The corrugating process is constituted mainly by a gear-shaped upper and lower corrugator, which rotates while meshing with each other, which forms the material of the spacing plate, and a press roll which presses the material of the partition plate while rotating against the material of the spacing plate. The upper and lower corrugators and press rolls are usually maintained at a high temperature of 150 ° C. or higher in order to adjust the step shape of the spacing plate.
Therefore, a part of the water-soluble polymer material of the material of the partition plate is melted by the heat of the press roll, and it is easy to fuse to the press roll. Although it can be prevented, when the temperature is lowered, the step shape of the corrugate is broken and the corrugate cannot be used as a heat exchanger component.

【0006】そこでこれまでは、融着の起き難い温度に
プレスロール及び上下のコルゲーターの温度を調整し、
送りスピードを遅くして段形状の崩れを防止している。
そのため、生産性が随分低く製造コストも高くついてい
る。また、片面段ボール構造物の熱交換器構成部材は、
空気中の水分を吸収することによって反りが生じたり、
積層時に使う水溶媒系の接着剤の水分によっても反りが
発生したりする。従って、積層・接着工程において押え
作業を行ない反りの発生を防止しているが、そのことに
より大変煩雑な工程となっている。
Therefore, hitherto, the temperature of the press roll and the upper and lower corrugators has been adjusted to a temperature at which fusion is unlikely to occur.
The feed speed is reduced to prevent the step shape from collapsing.
Therefore, the productivity is considerably low and the production cost is high. The heat exchanger components of the single-sided cardboard structure are:
Warping occurs by absorbing moisture in the air,
Warpage may also occur due to the water content of the aqueous solvent adhesive used during lamination. Therefore, the pressing operation is performed in the laminating / adhering process to prevent the occurrence of warpage, but this is a very complicated process.

【0007】また、この種の熱交換器では温度交換と湿
度交換に対する熱交換面積が異なるため温度交換効率と
湿度交換効率が異なり、例えば夏期と冬期で顕熱比が異
なる空気条件下で熱交換を行なうとエンタルピー交換効
率に差がでるといった問題点もある。
Further, in this type of heat exchanger, the heat exchange areas for the temperature exchange and the humidity exchange are different, so that the temperature exchange efficiency and the humidity exchange efficiency are different. For example, the heat exchange is performed under air conditions in which the sensible heat ratio differs between summer and winter. There is also a problem that the enthalpy exchange efficiency becomes different when the above is performed.

【0008】本発明は、上記した従来の問題点を解消す
るためになされたもので、その課題とするところは、コ
ルゲート加工のスピードを上げることができる生産性の
高い熱交換器の製造方法を開発することであり、コルゲ
ート加工のスピードを上げることができる生産性の高い
難燃性を備えた熱交換器の製造方法を開発することであ
り、夏期と冬期での熱交換効率の差の少ない熱交換器を
得ることであり、製造工程が簡素化できコストの低減を
推進できる熱交換器を得ることである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a method of manufacturing a heat exchanger having high productivity which can increase the speed of corrugating. The goal is to develop a method of manufacturing a highly heat-resistant heat exchanger that can increase the speed of corrugating with a small difference in heat exchange efficiency between summer and winter. It is an object of the present invention to provide a heat exchanger which can simplify a manufacturing process and promote cost reduction.

【0009】[0009]

【課題を解決するための手段】第1の発明は、板状の多
孔質部材の片面に空気遮蔽機能を有する透湿膜を薬液塗
工やラミネート加工により形成して熱交換用の気体遮蔽
物を得るとともに、この気体遮蔽物の透湿膜側の面に、
流体通路を構成する間隔保持部材をコルゲート加工によ
り接着して熱交換器構成部材を作り、この熱交換器構成
部材を一層おきに間隔保持部材による流体通路が交差又
は併行するように積層する手段を採用する。
According to a first aspect of the present invention, a gas permeable member for heat exchange is formed by forming a moisture permeable membrane having an air shielding function on one surface of a plate-shaped porous member by chemical liquid coating or lamination. And at the surface of the gas shield on the moisture permeable membrane side,
Means for forming a heat exchanger component by bonding the spacing members constituting the fluid passages by corrugating, and laminating the heat exchanger components so that the fluid passages of the spacing members intersect or parallel with each other. adopt.

【0010】第2の発明は、予め難燃処理を施した多孔
質部材である紙材の片面に空気遮蔽機能を有する透湿膜
を薬液塗工により形成して熱交換用の気体遮蔽物を得る
とともに、この気体遮蔽物の透湿膜側の面に、流体通路
を構成する間隔保持部材をコルゲート加工により接着し
て熱交換器構成部材を作り、この熱交換器構成部材を一
層おきに間隔保持部材による流体通路が交差又は併行す
るように積層する手段を採用する。
In a second aspect of the present invention, a gas permeable material for heat exchange is formed by forming a moisture permeable film having an air shielding function on one surface of a paper material which is a porous member which has been subjected to a flame retardant treatment in advance by applying a chemical solution. At the same time, a spacing member that constitutes a fluid passage is adhered to the surface of the gas shield on the moisture-permeable membrane side by corrugation to form a heat exchanger component, and the heat exchanger components are spaced apart from each other. Means for stacking so that the fluid passages by the holding members cross or parallel to each other are employed.

【0011】第3の発明は、請求項1又は請求項2のい
ずれかに係る前記手段における熱交換器構成部材を積層
する際に、難燃性の接着剤を用いて熱交換器構成部材同
士を接着するようにする手段を採用する。
According to a third aspect of the present invention, in stacking the heat exchanger components in the means according to any one of claims 1 and 2, the heat exchanger components are connected to each other by using a flame-retardant adhesive. Is adopted.

【0012】第4の発明は、二系統の流体通路が一層お
きに交差又は併行するように構成された積層構造の熱交
換器について、その流体通路同士を仕切る仕切部材を、
板状の多孔質部材の片面に空気遮蔽機能を有する透湿膜
を薬液塗工やラミネート加工により形成した気体遮蔽物
により構成し、一方の流体通路については仕切部材の透
湿膜側の面同士が向き合うように間隔保持部材で保持す
る手段を採用する。
According to a fourth aspect of the present invention, in a heat exchanger having a laminated structure in which two systems of fluid passages cross or alternate with each other, a partition member for partitioning the fluid passages is provided.
One side of a plate-shaped porous member is constituted by a gas-permeable material formed by applying a chemical solution or laminating a moisture-permeable film having an air-shielding function on one surface, and one of the fluid passages is formed between surfaces of the partition member on the moisture-permeable film side. A means for holding with a space holding member so as to face each other is adopted.

【0013】第5の発明は、二系統の流体通路が一層お
きに交差又は併行するように構成された積層構造の熱交
換器について、その流体通路同士を仕切る仕切部材と、
仕切部材同士の間隔を保持する間隔保持部材とを、表裏
で湿度による伸びの異なる素材でそれぞれ構成するとと
もに、間隔保持部材の湿度により伸びやすい面と、仕切
部材の湿度により伸びやすい面とを接合して積層する手
段を採用する。
A fifth aspect of the present invention relates to a heat exchanger having a laminated structure in which two fluid passages intersect or parallel with each other, and a partition member for dividing the fluid passages from each other;
The spacing member that holds the gap between the partition members is made of a material that has different elongation due to humidity on the front and back, and the surface that is more easily stretched due to the humidity of the spacing member and the surface that is more stretchable due to the humidity of the partition member are joined. And means for stacking.

【0014】第6の発明は、流体通路同士を仕切る複数
の仕切部材と、当該複数の仕切部材間に設けられ、前記
仕切部材間の間隔を保持するとともに前記仕切部材間に
前記流体通路を形成する間隔保持部材とを有し、前記仕
切部材および前記間隔保持部材が積層され、二系統の流
体通路が一層おきに構成された階層構造の熱交換器であ
って、前記仕切部材は、板状の多孔質部材と、当該多孔
質部材の片面に形成された空気遮蔽機能を有する透湿膜
とを有するものである。
According to a sixth aspect of the present invention, there are provided a plurality of partition members for partitioning the fluid passages, and a plurality of partition members provided between the plurality of partition members for maintaining an interval between the partition members and forming the fluid passage between the partition members. A space holding member, wherein the partition member and the space holding member are stacked, and a heat exchanger having a hierarchical structure in which two systems of fluid passages are arranged every other layer, wherein the partition member has a plate shape. And a moisture-permeable membrane having an air shielding function formed on one surface of the porous member.

【0015】第7の発明は、前記多孔質部材の他の片面
に形成された吸湿剤層を有するものである。
According to a seventh aspect of the present invention, the porous member has a moisture absorbent layer formed on another surface of the porous member.

【0016】第8の発明は、前記多孔質部材として難燃
処理を施した部材を用いるものである。
According to an eighth aspect of the present invention, a member subjected to a flame-retardant treatment is used as the porous member.

【0017】第9の発明は、前記間隔保持部材は、前記
流体通路の気体が漏れ出るのを防止する気体遮蔽膜を有
するものである。
In a ninth aspect of the present invention, the spacing member has a gas shielding film for preventing gas in the fluid passage from leaking.

【0018】第10の発明は、板状の多孔質部材の片面
に空気遮蔽機能を有する透湿膜を形成し、前記多孔質部
材の他の片面に吸湿剤層を形成する工程と、前記透湿膜
が形成された面に、流体通路を形成する間隔保持部材を
コルゲート加工により接着して熱交換器構成部材を製造
する工程と、当該製造された熱交換器構成部材を積層す
る工程とを有するものである。
According to a tenth aspect, a step of forming a moisture-permeable film having an air-shielding function on one surface of a plate-shaped porous member and forming a moisture-absorbing agent layer on another surface of the porous member is provided. A step of manufacturing a heat exchanger component by bonding a spacing member that forms a fluid passage to the surface on which the wet film is formed by corrugating, and a step of laminating the manufactured heat exchanger component. Have

【0019】第11の発明は、板状の多孔質部材の片面
に空気遮蔽機能を有する透湿膜を形成する工程と、前記
透湿膜が形成された面に、流体通路を形成する間隔保持
部材をコルゲート加工により接着して熱交換器構成部材
を製造する工程と、当該製造された熱交換器構成部材の
間隔保持部材の一部に接着剤を塗布するとともに前記多
孔質部材の他の片面に吸湿剤を塗布する工程と、当該工
程の後、前記熱交換器構成部材を積層する工程とを有す
るものである。
According to an eleventh aspect of the present invention, a step of forming a moisture permeable film having an air shielding function on one surface of a plate-like porous member, and maintaining a gap for forming a fluid passage on the surface on which the moisture permeable film is formed are provided. A step of manufacturing the heat exchanger component by bonding the members by corrugating, and applying an adhesive to a part of the spacing member of the manufactured heat exchanger component and the other surface of the porous member. And a step of, after the step, laminating the heat exchanger constituent members.

【0020】第12の発明は、前記接着剤を塗布する工
程では、前記接着剤として接着性および気体遮蔽機能を
有する薬剤を用い、当該薬剤を当該製造された熱交換器
構成部材の間隔保持部材の略全面に当該薬剤を塗布する
ものである。
According to a twelfth aspect of the present invention, in the step of applying the adhesive, an agent having an adhesive property and a gas shielding function is used as the adhesive, and the agent is used as a spacer for the heat exchanger component manufactured. Is applied to substantially the entire surface of the substrate.

【0021】[0021]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。 実施の形態1.図1〜図4によって示す本実施の形態
は、図1に示すような積層構造の六面体に構成された空
調用に適した熱交換器1の製造方法に関するものであ
る。この製造方法で得られる熱交換器1は、伝熱性と通
湿性とを有する薄肉の仕切部材2を間隔保持部材3を挟
んで所定の間隔をおいて、複数層に重ね合わせ接着した
構成となっている。熱交換器1を構成している仕切部材
2は正方形や菱形の平板として構成され、間隔保持部材
3は投影平面形状が仕切部材2に一致する鋸波状又は正
弦波状の波形を成形した波板に形成されている。この間
隔保持部材3を仕切部材2の間にその波の目の方向を交
互に90度又はそれに近い角度を持たせて挟着し、一次
気流(イ)と二次気流(ロ)を通す流体通路4と流体通
路5がこれらの各層間に一層おきに構成されているもの
である。
Embodiments of the present invention will now be described with reference to the drawings. Embodiment 1 FIG. The present embodiment shown in FIGS. 1 to 4 relates to a method for manufacturing a heat exchanger 1 configured as a hexahedron having a laminated structure and suitable for air conditioning as shown in FIG. The heat exchanger 1 obtained by this manufacturing method has a configuration in which a thin partition member 2 having heat conductivity and moisture permeability is laminated and adhered to a plurality of layers at a predetermined interval with the spacing member 3 interposed therebetween. ing. The partition member 2 constituting the heat exchanger 1 is configured as a square or rhombic flat plate, and the spacing member 3 is formed into a corrugated sheet having a sawtooth or sinusoidal waveform whose projected plane shape matches the partition member 2. Is formed. A fluid that passes through the primary air flow (a) and the secondary air flow (b) by sandwiching the spacing member 3 between the partition members 2 so that the direction of the eyes of the waves is alternately at 90 degrees or an angle close thereto. The passages 4 and the fluid passages 5 are arranged alternately between these layers.

【0022】この熱交換器1は、図2及び図3に示すよ
うな一枚の仕切部材2の片面に間隔保持部材3を接着し
た熱交換器構成部材6を積層接着することにより製造さ
れる。熱交換器構成部材6は、図3に示すように板状の
多孔質部材7の片面に空気遮蔽機能を有する透湿膜8を
薬液塗工により形成した仕切部材2となる気体遮蔽物の
透湿膜8側の面に、流体通路4,5を構成する間隔保持
部材3となる素材9をコルゲート加工により接着するこ
とにより連続的に作られる。
The heat exchanger 1 is manufactured by laminating and adhering a heat exchanger component 6 in which a spacing member 3 is adhered to one surface of a single partition member 2 as shown in FIGS. . As shown in FIG. 3, the heat exchanger component member 6 is formed of a plate-shaped porous member 7 on one side of which a moisture-permeable film 8 having an air-shielding function is formed by chemical liquid coating. It is made continuously by adhering a raw material 9 to be the spacing member 3 constituting the fluid passages 4 and 5 to the surface on the wet film 8 side by corrugating.

【0023】多孔質部材7には厚さ60〜120μm程
度で、坪量が25〜150(g/m 2 )のセルロース繊
維を主とする紙材が採用されている。透湿膜8は水溶性
高分子物質であるポリビニルアルコール(PVA)等を
水に溶かし、さらに吸湿作用のある薬剤として塩化リチ
ウム及び難燃剤としてスルファミン酸グアニジンを混ぜ
て透湿膜形成用の薬液としている。この透湿膜形成用の
薬液をロールクォータを用いて多孔質部材7の片面に毎
分約10〜50mのスピードで薬液塗布し、直ちに乾燥
させて仕切部材用の素材とし、図4に示すようなシング
ルフェーサ装置に送り込む。仕切部材用の多孔質部材7
の乾燥後の薬液塗工量は、10〜30g/m2である。
The porous member 7 has a thickness of about 60 to 120 μm.
And the basis weight is 25 to 150 (g / m Two ) Cellulose fiber
Paper mainly made of fiber is used. The moisture permeable membrane 8 is water-soluble
Polymeric substances such as polyvinyl alcohol (PVA)
Dissolves in water, and as a drug with hygroscopic action
And guanidine sulfamate as a flame retardant
To form a moisture permeable film. For forming this moisture permeable membrane
A chemical solution is applied to one side of the porous member 7 using a roll quota.
Apply the chemical at a speed of about 10 to 50 m per minute and dry immediately
Then, a material for the partition member is formed, as shown in FIG.
Send to Lufesa device. Porous member 7 for partition member
The amount of applied chemical after drying is 10 to 30 g / mTwoIt is.

【0024】仕切部材用の多孔質部材7は、片面に透湿
膜8が形成されこれにより空気遮蔽機能、吸湿機能、難
燃機能を具備したものとなっており、これにセルロース
繊維を主とする間隔保持部材3となる紙材がシングルフ
ェーサ装置に送り込まれ、コルゲート加工されて片面段
ボール状の熱交換器構成部材6が連続的に製造される。
コルゲート加工は、間隔保持部材3を成形する互いに噛
み合って回転する歯車状の上下のコルゲーター10,1
1と、仕切部材2の素材である多孔質部材7を間隔保持
部材3の素材9に回転しながら押付けるプレスロール1
2並びに糊付ロール13を中核として構成されていて、
間隔保持部材3の段形状を整えるために、上下のコルゲ
ーター10,11とプレスロール12は段形状を整えや
すい高い温度に維持されている。糊付ロール13は下段
コルゲーター11により送り出される段付きの間隔保持
部材3の素材9の段の峰部分に水溶媒系の酢酸ビニル系
エマルジョン接着剤を塗布する。仕切部材2の素材はプ
レスロール12側に透湿膜8の無い面を向けて送られ、
透湿膜8側の面が間隔保持部材3の素材9との接着面と
されている。このようにして製造された熱交換器構成部
材6を裁断し、交互に向きを90度変えて積層接着する
ことにより図1に示すような熱交換器1が製造される。
なお、裁断した熱交換器構成部材6を間隔保持部材3の
波の目の方向を併行にして積層することによって対向流
型の熱交換器を得ることもできる。
The porous member 7 for the partition member has a moisture-permeable film 8 formed on one side, thereby having an air-shielding function, a moisture-absorbing function, and a flame-retardant function. The paper material serving as the spacing member 3 is fed into a single facer device and corrugated to continuously produce a heat exchanger component 6 in the form of a single-faced cardboard box.
The corrugating process is to form the spacing member 3 and to engage and rotate the gear-shaped upper and lower corrugators 10, 1.
1 and a press roll 1 for pressing a porous member 7, which is a raw material of the partition member 2, against a raw material 9 of the spacing member 3 while rotating.
2 and the sizing roll 13 as a core,
In order to adjust the step shape of the spacing member 3, the upper and lower corrugators 10, 11 and the press roll 12 are maintained at a high temperature at which the step shape is easily adjusted. The gluing roll 13 applies a water solvent-based vinyl acetate emulsion adhesive to the peak of the step of the material 9 of the stepped spacing member 3 sent out by the lower corrugator 11. The material of the partition member 2 is sent to the press roll 12 side with the surface without the moisture permeable membrane 8 facing,
The surface on the moisture permeable film 8 side is an adhesive surface with the material 9 of the spacing member 3. The heat exchanger component 6 manufactured as described above is cut, and alternately turned 90 degrees to be laminated and adhered, whereby the heat exchanger 1 as shown in FIG. 1 is manufactured.
Note that a counter-flow heat exchanger can also be obtained by laminating the cut heat exchanger constituent members 6 with the direction of the waves of the spacing members 3 parallel.

【0025】この熱交換器1の製造方法の特徴は、図4
に示すコルゲート加工において段形状を整えるための上
下のコルゲーター10,11とプレスロール12の温度
を高く維持しても、プレスロール12側には透湿膜8が
無く、プレスロール12には多孔質部材7の面が当って
いるため、熱で透湿膜8が溶融してプレスロール12に
仕切部材2の素材である多孔質部材7が融着するような
ことがないことであり、段形状を整えやすい高温下で送
りスピードを速くしてコルゲート加工ができることであ
る。従来のコルゲート加工の送りスピードよりも約3倍
の送りスピードでコルゲート加工を行なうことができ、
著しく生産性を向上させることができるうえ、加工費に
ついても1/3程度に低減することができる。
The feature of the method of manufacturing the heat exchanger 1 is shown in FIG.
Even if the temperatures of the upper and lower corrugators 10 and 11 and the press roll 12 for adjusting the step shape in the corrugating shown in FIG. 1 are maintained high, the press roll 12 does not have the moisture permeable film 8 and the press roll 12 is porous. Since the surface of the member 7 is in contact, the moisture-permeable film 8 is not melted by heat and the porous member 7 as a material of the partition member 2 is not fused to the press roll 12. This means that corrugating can be performed by increasing the feed speed under high temperatures where it is easy to prepare Corrugation can be performed at a feed speed about three times faster than the feed speed of conventional corrugating,
The productivity can be remarkably improved, and the processing cost can be reduced to about 1/3.

【0026】なお、多孔質部材7の片面に有機材料を用
いた樹脂フィルムをラミネート加工して透湿膜8を形成
して仕切部材2の素材として用いても同様の効果を得る
ことができる。また、透湿膜8を10〜20μm程度の
ポリエステル系のフィルムで形成し、間隔保持部材3
に、同系のポリエステル繊維とセルロース繊維とを混抄
した混抄紙材を用いれば、接着剤を用いることなく熱融
着によってコルゲート加工を行なうことができるので、
さらに高速で加工することができるようになる。
The same effect can be obtained by laminating a resin film using an organic material on one surface of the porous member 7 to form the moisture permeable film 8 and using the film as the material of the partition member 2. Further, the moisture permeable membrane 8 is formed of a polyester film having a thickness of about 10 to 20 μm,
In addition, if a mixed paper material obtained by mixing similar polyester fibers and cellulose fibers is used, corrugation can be performed by heat fusion without using an adhesive,
Processing can be performed at a higher speed.

【0027】実施の形態2.図5,6によって示す本実
施の形態は、実施の形態1と同様に積層構造の六面体に
構成された空調用に適した熱交換器の製造方法に関する
ものである。本実施の形態の製造方法も仕切部材の組成
を除けば基本的には実施の形態1の製造方法と同じであ
る。従って、図1,2はこれを援用するとともに実施の
形態1のものと同じ部分については、実施の形態1のも
のと同一の符号を用いそれらについての説明は省略す
る。
Embodiment 2 FIG. The present embodiment shown in FIGS. 5 and 6 relates to a method of manufacturing a heat exchanger suitable for air conditioning and configured in a hexahedron having a laminated structure as in the first embodiment. The manufacturing method of the present embodiment is basically the same as the manufacturing method of the first embodiment except for the composition of the partition member. Therefore, FIGS. 1 and 2 are referred to, and the same parts as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted.

【0028】本実施の形態の製造方法によって得られる
熱交換器1も、図1に示すように伝熱性と通湿性とを有
する薄肉の仕切部材2を間隔保持部材3を挟んで所定の
間隔をおいて、複数層に重ね合わせ接着した構成となっ
ている。熱交換器1を構成している仕切部材2は正方形
や菱形の平板として構成され、間隔保持部材3は投影平
面形状が仕切部材2に一致する鋸波状又は正弦波状の波
形を成形した波板に形成されている。この間隔保持部材
3を仕切部材2の間にその波の目の方向を交互に90度
又はそれに近い角度を持たせて挟着し、一次気流(イ)
と二次気流(ロ)を通す流体通路4と流体通路5がこれ
らの各層間に一層おきに構成されているものである。
As shown in FIG. 1, the heat exchanger 1 obtained by the manufacturing method according to the present embodiment also includes a thin partition member 2 having heat conductivity and moisture permeability, and a predetermined gap between the thin partition member 2 and the spacing member 3. Here, it is configured to be laminated and adhered to a plurality of layers. The partition member 2 constituting the heat exchanger 1 is configured as a square or rhombic flat plate, and the spacing member 3 is formed into a corrugated sheet having a sawtooth or sinusoidal waveform whose projected plane shape matches the partition member 2. Is formed. The spacing member 3 is sandwiched between the partition members 2 with the direction of the wave eyes alternately at an angle of 90 degrees or close thereto, and the primary air flow (a)
And a fluid passage 4 and a fluid passage 5 for passing the secondary airflow (b) are provided alternately between these layers.

【0029】この熱交換器1も、実施の形態1のものと
同様に図2に示すような一枚の仕切部材2の片面に間隔
保持部材3を接着した熱交換器構成部材6を積層するこ
とにより製造される。熱交換器構成部材6は、板状の多
孔質部材7の片面に空気遮蔽機能を有する透湿膜8を薬
液塗工により形成した仕切部材2となる気体遮蔽物の透
湿膜8側の面に、流体通路4,5を構成する間隔保持部
材3となる素材9をコルゲート加工により接着すること
により連続的に作られる。
In this heat exchanger 1, as in the first embodiment, a heat exchanger component 6 in which a spacing member 3 is adhered to one surface of a single partition member 2 as shown in FIG. It is manufactured by The heat exchanger constituent member 6 is a surface of the gas shielding material on the moisture permeable film 8 side of the gas shielding material that becomes the partition member 2 in which a moisture permeable film 8 having an air shielding function is formed on one surface of a plate-shaped porous member 7 by applying a chemical solution. Then, a material 9 serving as the spacing member 3 constituting the fluid passages 4 and 5 is continuously formed by bonding by corrugating.

【0030】多孔質部材7には難燃紙と称されるJI
S.A1322適合品が用いられる。この難燃紙は、セ
ルロース繊維に抄紙の段階で難燃剤14が混抄してあ
り、厚さ60〜120μm程度で、坪量が25〜150
(g/m2 )の紙材である。難燃剤14には、グアニジ
ン系のものが一般的に使用されているが、シングルフェ
ーサ装置に対する適性及び環境面の配慮からはスルファ
ミン酸グアニジンが適している。難燃剤14は、原紙の
比重で10〜40%が混抄される。難燃剤14を予め混
抄しておくことにより、表面のべと付きが軽減され扱い
易くなる。また、難燃剤14は一般に吸湿性が高いの
で、吸湿性の高い系統の難燃剤14を選定することによ
り未処理の普通紙より含水率を向上させることができ
る。
The porous member 7 has a JI called flame retardant paper.
S. A1322 compliant product is used. This flame-retardant paper is obtained by mixing the flame retardant 14 with cellulose fibers at the stage of paper making, has a thickness of about 60 to 120 μm, and has a basis weight of 25 to 150.
(G / m 2 ) paper material. A guanidine-based flame retardant is generally used, but guanidine sulfamate is suitable from the viewpoint of suitability for a single facer device and environmental considerations. The flame retardant 14 is mixed at a specific gravity of the base paper of 10 to 40%. By blending the flame retardant 14 in advance, the stickiness of the surface is reduced and handling becomes easier. Further, since the flame retardant 14 generally has high hygroscopicity, the moisture content can be improved more than untreated plain paper by selecting the flame retardant 14 of a system having high hygroscopicity.

【0031】透湿性に関しては、仕切部材2表層で凝縮
した水分子が仕切部材2内部の繊維層に形成される毛細
管を水の形で移動して反対面表層より蒸発する透湿過程
において、図6に示すようにセルロース繊維15間に難
燃剤14が充填されることにより仕切部材2内部の毛細
管の径が小さくなるので、従来より少量の水分で毛細管
現象が発現し反対面表層に水分が移動しやすくなる。そ
の結果、湿度交換効率の優れた熱交換器1を構成するこ
とができる。
Regarding the moisture permeability, the water molecules condensed in the surface layer of the partition member 2 move in the form of water through the capillary formed in the fiber layer inside the partition member 2 and evaporate from the opposite surface layer. As shown in FIG. 6, when the flame retardant 14 is filled between the cellulose fibers 15, the diameter of the capillary inside the partition member 2 becomes smaller, so that a smaller amount of moisture causes a capillary phenomenon to occur and moisture moves to the opposite surface layer. Easier to do. As a result, the heat exchanger 1 having excellent humidity exchange efficiency can be configured.

【0032】透湿膜8は水溶性高分子物質であるポリビ
ニルアルコール(PVA)等を水に溶かし、さらに吸湿
作用のある薬剤として塩化リチウム及び難燃剤としてス
ルファミン酸グアニジンを混ぜて透湿膜形成用の薬液と
している。この透湿膜形成用の薬液をロールクォータを
用いて多孔質部材7の片面に毎分約30〜70mのスピ
ードで薬液塗布し、直ちに乾燥させて仕切部材2用の素
材とし、実施の形態1で示した図4に示すようなシング
ルフェーサ装置に送り込む。仕切部材2用の多孔質部材
7の乾燥後の薬液塗工量は5〜15g/m2 程である。
The moisture-permeable film 8 is formed by dissolving polyvinyl alcohol (PVA) or the like, which is a water-soluble polymer substance, in water, and further mixing lithium chloride as a hygroscopic agent and guanidine sulfamate as a flame retardant to form a moisture-permeable film. Of chemicals. The liquid chemical for forming a moisture permeable film is applied to one surface of the porous member 7 at a speed of about 30 to 70 m / min by using a roll quarter, and immediately dried to obtain a material for the partition member 2. Is fed into a single facer device as shown in FIG. The applied amount of the chemical solution of the porous member 7 for the partition member 2 after drying is about 5 to 15 g / m 2 .

【0033】仕切部材2を構成する難燃紙材は、片面に
透湿膜8が形成され、これにより空気遮蔽機能、吸湿機
能、難燃機能を具備したものとなっており、これにセル
ロース繊維を主とする間隔保持部材3となる素材9がシ
ングルフェーサ装置に送り込まれ、実施の形態1で説明
した仕方と同様の仕方で、コルゲート加工されて片面段
ボール状の熱交換器構成部材6が連続的に製造される。
このようにして製造された熱交換器構成部材6を裁断
し、交互に向きを90度変えて積層接着することにより
図1に示すような熱交換器1が製造される。この製造方
法によれば、予め難燃処理を施した難燃紙材を仕切部材
2の素材とするため、透湿膜8を形成するための薬液塗
工量を実施の形態1の仕方よりも少なくすることがで
き、製造工程における薬液塗工スピードを速めることに
より生産性が一層向上する。これ以外の効果は実施の形
態1の製造方法と同じである。
The flame-retardant paper material constituting the partition member 2 has a moisture-permeable film 8 formed on one side, thereby having an air-shielding function, a moisture-absorbing function, and a flame-retardant function. Is mainly fed into the single facer device, and corrugated to form a single-sided cardboard heat exchanger component 6 in the same manner as described in the first embodiment. Manufactured continuously.
The heat exchanger component 6 manufactured as described above is cut, and alternately turned 90 degrees to be laminated and adhered, whereby the heat exchanger 1 as shown in FIG. 1 is manufactured. According to this manufacturing method, since the flame-retardant paper material that has been subjected to the flame-retardant treatment is used as the material of the partition member 2, the amount of the chemical solution applied to form the moisture-permeable film 8 is smaller than that of the first embodiment. The productivity can be further improved by increasing the chemical solution coating speed in the manufacturing process. Other effects are the same as those of the manufacturing method of the first embodiment.

【0034】なお、本実施の形態においても、裁断した
熱交換器構成部材6を間隔保持部材3の波の目の方向を
併行にして積層することによって対向流型の熱交換器を
得ることができる。また、難燃紙材の片面に有機材料を
用いた樹脂フィルムをラミネート加工して透湿膜8を形
成して仕切部材2の素材として用いても同様の効果を得
ることができる。そして、透湿膜8を10〜20μm程
度のポリエステル系のフィルムで形成し、間隔保持部材
3に、同系のポリエステル繊維とセルロース繊維とを混
抄した混抄紙材を用いれば、接着剤を用いることなく熱
融着によってコルゲート加工を行なうことができるの
で、さらに高速で加工することができるようになる。
In this embodiment, too, a counter-flow type heat exchanger can be obtained by laminating the cut heat exchanger components 6 in parallel with the direction of the waves of the spacing members 3. it can. The same effect can be obtained by laminating a resin film using an organic material on one surface of the flame-retardant paper material to form the moisture-permeable film 8 and using the film as the material of the partition member 2. If the moisture permeable membrane 8 is formed of a polyester film having a thickness of about 10 to 20 μm, and the spacing member 3 is made of a mixed paper material in which the same polyester fiber and cellulose fiber are mixed, the adhesive is not used. Since corrugation can be performed by heat fusion, processing can be performed at a higher speed.

【0035】実施の形態3.図7によって示す本実施の
形態は、実施の形態1や実施の形態2の製造方法によっ
て得られる熱交換器構成部材6を積層する際の熱交換器
構成部材6同士の接着に接着剤16として、水溶媒系の
酢酸ビニル系エマルジョン接着剤に臭素系化合物ならび
に金属酸化物を配合したエマルジョン樹脂添加用難燃剤
に難燃剤を混入したものを用いた熱交換器の製造方法で
ある。
Embodiment 3 FIG. In the present embodiment shown in FIG. 7, the adhesive 16 is used for bonding the heat exchanger components 6 when the heat exchanger components 6 obtained by the manufacturing method of the first and second embodiments are laminated. And a method for manufacturing a heat exchanger using a flame retardant mixed with a flame retardant for adding an emulsion resin in which a bromine compound and a metal oxide are mixed with an aqueous solvent-based vinyl acetate emulsion adhesive.

【0036】このような接着剤16を用いて熱交換器構
成部材6を交互に向きを90度変えて積層接着すること
により、薬液塗工やラミネート加工による透湿膜8を形
成しない多孔質部材7の面の難燃性を接着剤16によっ
て付与することができ、熱交換器1全体としての難燃性
の向上を推進することができる。この接着剤16を用い
て熱交換器構成部材6を接着したサンプルと、通常の酢
酸ビニル系エマルジョン接着剤を用いて熱交換器構成部
材6を接着したサンプルとをJIS.A1322の燃焼
実験により比較しところ、前者の炭化長が7cmに対
し、後者の炭化長は8.6cmであり、難燃性が向上す
ることが確認された。
The heat exchanger components 6 are alternately laminated and bonded by changing the direction by 90 degrees using such an adhesive 16 so that the porous member which does not form the moisture permeable membrane 8 by chemical liquid coating or laminating is formed. The flame retardancy of the surface 7 can be imparted by the adhesive 16, and the improvement of the flame retardancy of the heat exchanger 1 as a whole can be promoted. A sample in which the heat exchanger component 6 is bonded using the adhesive 16 and a sample in which the heat exchanger component 6 is bonded using a normal vinyl acetate emulsion adhesive are described in JIS. Comparison with A1322 combustion experiment revealed that the former carbonization length was 7 cm and the latter carbonization length was 8.6 cm, confirming that the flame retardancy was improved.

【0037】コルゲート加工により熱交換器構成部材6
を製造する際の仕切部材2の素材と間隔保持部材3の素
材9との接着に、水溶媒系の酢酸ビニル系エマルジョン
接着剤に臭素系化合物ならびに金属酸化物を配合したエ
マルジョン樹脂添加用難燃剤に難燃剤を混入した接着剤
を用いることにより、熱交換器1の難燃性を格段に向上
させることができる。
Heat exchanger components 6 by corrugating
A flame retardant for adding an emulsion resin in which a bromine compound and a metal oxide are mixed with a water solvent-based vinyl acetate emulsion adhesive to bond the material of the partition member 2 and the material 9 of the spacing member 3 when manufacturing the resin. By using an adhesive mixed with a flame retardant, the flame retardancy of the heat exchanger 1 can be remarkably improved.

【0038】実施の形態4.図8,9,10によって示
す本実施の形態は、実施の形態1や実施の形態2の製造
方法によって得られた熱交換器構成部材6と他の構成の
熱交換器構成部材17との積層接着によって構成した熱
交換器に関するものである。実施の形態1,2で示した
熱交換器構成部材6は、多孔質部材7の透湿膜8側の面
に間隔保持部材3の素材9が接着された構成である。こ
の熱交換器構成部材6とは、間隔保持部材3の素材9の
接着面が反対の図9に示すような構成の熱交換器構成部
材17を作り、一方の流体通路4について仕切部材2の
透湿膜8側の面同士が向き合うように二種類の熱交換器
構成部材6,17を図10に示すように交互に積層接着
して熱交換器を構成する。
Embodiment 4 FIG. The present embodiment shown in FIGS. 8, 9 and 10 is a laminate of the heat exchanger component 6 obtained by the manufacturing method of the first and second embodiments and the heat exchanger component 17 of another configuration. The present invention relates to a heat exchanger formed by bonding. The heat exchanger component 6 described in the first and second embodiments has a configuration in which the material 9 of the spacing member 3 is bonded to the surface of the porous member 7 on the moisture permeable membrane 8 side. With the heat exchanger component 6, a heat exchanger component 17 having a configuration as shown in FIG. 9 in which the adhesive surface of the material 9 of the spacing member 3 is opposite to that of FIG. As shown in FIG. 10, two types of heat exchanger constituent members 6, 17 are alternately laminated and bonded so that the surfaces on the side of the moisture permeable membrane 8 face each other to form a heat exchanger.

【0039】二種類の熱交換器構成部材6,17はいず
れも片面に透湿膜8が形成されているため仕切部材2の
透湿性は表裏で差があるが、二種類の熱交換器構成部材
6,17を図10に示すように積層することにより、流
体通路5から流体通路4に湿度が移行する場合と、流体
通路4から流体通路5に湿度が移行する場合において、
前者より後者の方が移行率が大きくなる。従来の積層構
造の熱交換器においては、温度と湿度の交換効率におい
て湿度交換効率が低いため、全熱に対する湿度の割合が
大きくなる夏期は、全熱交換効率で冬期より悪くなる
が、本実施の形態の熱交換器のように、一方の流体通路
4の仕切部材2の透湿膜8側の面同士が向き合うように
構成し、夏期条件で高湿度側の流体通路5を透湿膜8が
対向する通路とすることにより、夏期と冬期とで全熱交
換効率の差を少なくすることができ、夏期と冬期とのエ
ンタルピー交換効率の差を減少させることができる。
Although the two types of heat exchanger components 6 and 17 each have the moisture permeable film 8 formed on one side, the moisture permeability of the partition member 2 is different between the front and back sides. By laminating the members 6 and 17 as shown in FIG. 10, when the humidity shifts from the fluid passage 5 to the fluid passage 4, and when the humidity shifts from the fluid passage 4 to the fluid passage 5,
The latter has a higher transition rate than the former. In conventional heat exchangers with a laminated structure, the humidity and heat exchange efficiency of the temperature and humidity exchange efficiency are low, so in summer when the ratio of humidity to total heat is large, the total heat exchange efficiency is worse than in winter, but this implementation As in the heat exchanger of the embodiment, the surfaces of the partition member 2 of the one fluid passage 4 on the moisture permeable membrane 8 side face each other, and the fluid passage 5 on the high humidity side is connected to the moisture permeable membrane 8 in summer conditions. , The difference in the total heat exchange efficiency between summer and winter can be reduced, and the difference in enthalpy exchange efficiency between summer and winter can be reduced.

【0040】本実施の形態で示した構成で、平面積30
0mm×300mm,高さ500mmの熱交換器を作成
して試験を行なった結果、夏期と冬期の条件間で全熱交
換効率の差が約30%程改善された。これにより、夏冬
での熱回収の差を考慮する空調設計に係る問題を小さく
することができる。なお、この実施の形態の熱交換器の
構成は、交差流型の他にも間隔保持部材3の波の目が併
行する対向流型の熱交換器にも適応することができる。
In the structure shown in the present embodiment, the plane area 30
A heat exchanger having a size of 0 mm x 300 mm and a height of 500 mm was prepared and tested. As a result, the difference in total heat exchange efficiency between the summer and winter conditions was improved by about 30%. As a result, it is possible to reduce problems related to the air conditioning design that takes into account the difference in heat recovery between summer and winter. The configuration of the heat exchanger according to the present embodiment can be applied to not only a cross-flow type heat exchanger but also a counter-flow type heat exchanger in which the crests of the spacing member 3 are parallel.

【0041】実施の形態5.図11によって示す本実施
の形態も、実施の形態4で示したような二系統の流体通
路が一層おきに交差又は併行するように構成された積層
構造の空調用の熱交換器に関するものである。本実施の
形態の熱交換器は、流体通路4,5同士を仕切る仕切部
材2と、仕切部材2同士の間隔を保持する間隔保持部材
3とを、表裏で湿度による伸びの異なる素材でそれぞれ
構成し、間隔保持部材3の湿度により伸びやすい面側
と、仕切部材2の湿度により伸びやすい面側とを接合し
て積層接着した構成である。
Embodiment 5 FIG. The present embodiment shown in FIG. 11 also relates to a heat exchanger for air-conditioning having a laminated structure in which two fluid passages as shown in the fourth embodiment are configured to intersect or parallel every other layer. . In the heat exchanger of the present embodiment, the partition member 2 for partitioning the fluid passages 4 and 5 and the spacing member 3 for maintaining the spacing between the partition members 2 are made of materials having different elongation due to humidity on both sides. Then, the surface side of the spacing member 3 that is easily stretched by humidity and the surface side of the partition member 2 that is easily stretched by humidity are joined and laminated and bonded.

【0042】間隔保持部材3は紙材で構成され、片面側
は比較的水分による伸びの少ない部分18となってお
り、他面側は比較敵水分による伸びの大きい部分19と
なっている。伸びの少ない部分18は、抄紙する際に乾
燥工程で固めて艶を持たせた艶加工面として構成され、
伸びの大きい部分19は、艶加工をしない通常の紙面と
して構成されている。仕切部材2は、実施の形態1,2
で示した構成のものであり、コルゲート加工において間
隔保持部材3の伸びやすい側の面の峰部を透湿膜8側に
して接着する。従来の熱交換器では、熱交換器構成部材
6を積層し接着する際に、水溶媒系エマルジョン接着剤
を間隔保持部材3の峰部分に塗布するが、水溶媒系エマ
ルジョン接着剤の水分により間隔保持部材3が伸びてし
まい、積層時にうねりが発生していた。
The spacing member 3 is made of a paper material, and has a portion 18 on one side which is relatively low in elongation due to moisture, and a portion 19 on the other side which is large in expansion due to comparative enemy water. The low elongation portion 18 is configured as a glossy surface that is hardened in a drying process during papermaking and has a gloss.
The portion 19 with large elongation is configured as a normal paper surface without gloss processing. The partition member 2 is the same as in the first and second embodiments.
In the corrugating process, the ridge of the surface on the side where the spacing member 3 is easily stretched is bonded to the moisture permeable film 8 side. In the conventional heat exchanger, when laminating and adhering the heat exchanger constituent members 6, the aqueous solvent-based emulsion adhesive is applied to the ridge portion of the spacing member 3, but the spacing is caused by the moisture of the aqueous solvent-based emulsion adhesive. The holding member 3 was elongated, and undulation occurred during lamination.

【0043】しかしながら本実施の形態の熱交換器で
は、間隔保持部材3の水溶媒系エマルジョン接着剤を塗
布する側は水分により反り難い構成であるため、積層接
着時の反りが減少し、うねりの少ないものとなる。従っ
て、積層・接着工程において反りの発生を抑えたり、反
りを修正する押え作業を行なわなくてもよく、生産性が
向上する。また、通常水を吸い難い紙材と、水溶媒系の
接着剤を用いるコルゲート加工は、接着力発現速度の低
下のために加工スピードを通常より遅くしなければなら
ないが、間隔保持部材3の艶加工してない吸水性のある
面を仕切部材2に接合するため接着力が早期に発現さ
れ、コルゲート加工のスピードを遅くしないでも済む効
果もある。また、仕切部材2の透湿膜8側の面は水分を
吸収し伸び易いので、間隔保持部材3の水分により伸び
易い面を接合することにより、熱交換器構成部材6とし
ての伸びの力を打ち消すことができ、熱交換器全体の外
観品質も向上する。
However, in the heat exchanger of the present embodiment, the side of the spacing member 3 to which the aqueous solvent-based emulsion adhesive is applied is hardly warped due to moisture. Less. Therefore, it is not necessary to perform the pressing operation for suppressing the warpage or correcting the warpage in the laminating / adhering process, and the productivity is improved. In addition, in the corrugating process using a paper material that is usually hard to absorb water and a water-based adhesive, the processing speed must be lower than usual in order to decrease the speed of developing the adhesive force. Since the non-processed water-absorbing surface is joined to the partition member 2, the adhesive force is developed early, and there is an effect that the speed of the corrugating process does not need to be reduced. Since the surface of the partition member 2 on the moisture permeable membrane 8 side absorbs moisture and is easily stretched, by joining the surface of the spacing member 3 which is easily stretched by moisture, the stretching force of the heat exchanger component member 6 is reduced. It can be counteracted and the overall appearance of the heat exchanger is improved.

【0044】実施の形態6.この実施の形態は、多孔質
部材7の片面に空気遮蔽機能を有する透湿膜8を形成
し、もう片面には吸湿性能を持つ薬剤の層を形成したも
のである。図12〜図15によって示す本実施の形態
は、図12に示すような積層構造の六面体に構成された
空調用に適した熱交換器1およびその製造方法に関する
ものである。
Embodiment 6 FIG. In this embodiment, a porous member 7 is formed on one surface with a moisture-permeable film 8 having an air-shielding function, and on the other surface with a drug layer having a moisture absorbing property. The present embodiment shown in FIGS. 12 to 15 relates to a heat exchanger 1 configured in a hexahedron having a laminated structure as shown in FIG. 12 and suitable for air conditioning, and a method of manufacturing the same.

【0045】この製造方法で得られる熱交換器1は、伝
熱性と通湿性とを有する薄肉の仕切部材2を間隔保持部
材3を挟んで所定の間隔をおいて、複数層に重ね合わせ
接着した構成となっている。熱交換器1を構成している
仕切部材2は正方形や菱形の平板として構成され、間隔
保持部材3は投影平面形状が仕切部材2に一致する鋸波
状又は正弦波状の波形を成形した波板に形成されてい
る。この間隔保持部材3を仕切部材2の間にその波の目
の方向を交互に90度又はそれに近い角度を持たせて挟
着し、一次気流(イ)と二次気流(ロ)を通す流体通路
4と流体通路5がこれらの各層間に一層おきに構成され
ているものである。
In the heat exchanger 1 obtained by this manufacturing method, a thin partition member 2 having heat conductivity and moisture permeability is laminated and adhered to a plurality of layers at predetermined intervals with a spacing member 3 interposed therebetween. It has a configuration. The partition member 2 constituting the heat exchanger 1 is configured as a square or rhombic flat plate, and the spacing member 3 is formed into a corrugated sheet having a sawtooth or sinusoidal waveform whose projected plane shape matches the partition member 2. Is formed. A fluid that passes through the primary air flow (a) and the secondary air flow (b) by sandwiching the spacing member 3 between the partition members 2 so that the direction of the eyes of the waves is alternately at 90 degrees or an angle close thereto. The passages 4 and the fluid passages 5 are arranged alternately between these layers.

【0046】この熱交換器1は、図13及び図14に示
すような一枚の仕切部材2の片面に間隔保持部材3を接
着した熱交換器構成部材6を積層接着することにより製
造される。図14に示すように板状の多孔質部材7の片
面に空気遮蔽機能を有する透湿膜8を薬液塗工により形
成し、もう片面には、吸湿性能を持つ薬液(吸湿剤)2
0を塗布して仕切部材2を作り、この仕切部材2の透湿
膜8側の面に、流体通路4,5を構成する間隔保持部材
3となる素材9をコルゲート加工により接着する。この
ような手順で熱交換器構成部材6は連続的に作られる。
The heat exchanger 1 is manufactured by laminating and adhering a heat exchanger component 6 in which a spacing member 3 is adhered to one surface of a single partition member 2 as shown in FIGS. . As shown in FIG. 14, a moisture-permeable film 8 having an air shielding function is formed on one surface of a plate-shaped porous member 7 by applying a chemical solution, and a chemical solution (hygroscopic agent) 2 having a moisture absorbing property is formed on the other surface.
The material 9 serving as the spacing member 3 constituting the fluid passages 4 and 5 is adhered to the surface of the partition member 2 on the moisture permeable membrane 8 side by corrugating. In such a procedure, the heat exchanger component 6 is continuously produced.

【0047】多孔質部材7には厚さ60〜120μm程
度で、坪量が25〜150(g/m 2 )のセルロース繊
維を主とする紙材が採用されている。透湿膜8は水溶性
高分子物質であるポリビニルアルコール(PVA)等を
水に溶かし、さらに吸湿作用のある薬剤として塩化リチ
ウム及び難燃剤としてスルファミン酸グアニジンを混ぜ
て透湿膜形成用の薬液としている。
The porous member 7 has a thickness of about 60 to 120 μm.
And the basis weight is 25 to 150 (g / m Two ) Cellulose fiber
Paper mainly made of fiber is used. The moisture permeable membrane 8 is water-soluble
Polymeric substances such as polyvinyl alcohol (PVA)
Dissolves in water, and as a drug with hygroscopic action
And guanidine sulfamate as a flame retardant
To form a moisture permeable film.

【0048】この透湿膜形成用の薬液をロールクォータ
を用いて多孔質部材7の片面に毎分約10〜50mのス
ピードで薬液塗布し、更に、反対面より粘着性の少ない
吸湿剤として塩化リチウム等を塗工し直ちに乾燥させて
仕切部材用の素材とし、図15に示すようなシングルフ
ェーサ装置に送り込む。仕切部材用の多孔質部材7の乾
燥後の薬液塗工量は、10〜30g/m2である。
The chemical for forming the moisture permeable film is applied to one surface of the porous member 7 at a speed of about 10 to 50 m / min by using a roll quarter, and furthermore, a chloride is used as a hygroscopic agent having less tackiness than the opposite surface. Lithium or the like is applied and immediately dried to obtain a material for a partition member, which is fed into a single facer device as shown in FIG. The applied amount of the chemical solution of the porous member 7 for the partition member after drying is 10 to 30 g / m 2 .

【0049】仕切部材用の多孔質部材7は、片面に透湿
膜8が形成されこれにより空気遮蔽機能、吸湿機能、難
燃機能を具備したものとなっており、これにセルロース
繊維を主とする間隔保持部材3となる紙材がシングルフ
ェーサ装置に送り込まれ、コルゲート加工されて片面段
ボール状の熱交換器構成部材6が連続的に製造される。
The porous member 7 for the partition member has a moisture-permeable film 8 formed on one side, thereby having an air-shielding function, a moisture-absorbing function, and a flame-retardant function. The paper material serving as the spacing member 3 is fed into a single facer device and corrugated to continuously produce a heat exchanger component 6 in the form of a single-faced cardboard box.

【0050】コルゲート加工は、間隔保持部材3を成形
する互いに噛み合って回転する歯車状の上下のコルゲー
ター10,11と、仕切部材2の素材である多孔質部材
7を間隔保持部材3の素材9に回転しながら押付けるプ
レスロール12並びに糊付ロール13を中核として構成
されていて、間隔保持部材3の段形状を整えるために、
上下のコルゲーター10,11とプレスロール12は段
形状を整えやすい高い温度に維持されている。
In the corrugating process, upper and lower gear-shaped corrugators 10 and 11 that mesh with each other and rotate to form the spacing member 3 and the porous member 7 that is the material of the partition member 2 are used as the material 9 of the spacing member 3. The press roll 12 and the sizing roll 13 pressed while rotating are configured as a core, and in order to adjust the step shape of the spacing member 3,
The upper and lower corrugators 10, 11 and the press roll 12 are maintained at a high temperature at which the step shape is easily adjusted.

【0051】糊付ロール13は下段コルゲーター11に
より送り出される段付きの間隔保持部材3の素材9の段
の峰部分に水溶媒系の酢酸ビニル系エマルジョン接着剤
を塗布する。仕切部材2の素材はプレスロール12側に
透湿膜8の無い面(吸湿剤20の層が形成された面)を
向けて送られ、透湿膜8側の面が間隔保持部材3の素材
9との接着面とされている。このようにして製造された
熱交換器構成部材6を裁断し、交互に向きを90度変え
て積層接着することにより図12に示すような熱交換器
1が製造される。なお、裁断した熱交換器構成部材6を
間隔保持部材3の波の目の方向を併行にして積層するこ
とによって対向流型の熱交換器を得ることもできる。
The gluing roll 13 applies a water solvent-based vinyl acetate emulsion adhesive to the peak of the step of the material 9 of the stepped spacing member 3 sent out by the lower step corrugator 11. The material of the partition member 2 is sent to the press roll 12 side with the surface without the moisture permeable film 8 (the surface on which the layer of the moisture absorbent 20 is formed). 9 as an adhesive surface. The heat exchanger component 6 manufactured as described above is cut and alternately turned 90 degrees, and laminated and adhered, whereby the heat exchanger 1 as shown in FIG. 12 is manufactured. Note that a counter-flow heat exchanger can also be obtained by laminating the cut heat exchanger constituent members 6 with the direction of the waves of the spacing members 3 parallel.

【0052】この熱交換器1の製造方法の特徴は、図1
5に示すコルゲート加工において段形状を整えるための
上下のコルゲーター10,11とプレスロール12の温
度を高く維持しても、プレスロール12側には透湿膜8
が無く、プレスロール12には多孔質部材7の粘着性の
少ない吸湿剤20の層が当っているため、熱で透湿膜8
が溶融してプレスロール12に仕切部材2の素材である
多孔質部材7が融着するようなことがないことであり、
段形状を整えやすい高温下で送りスピードを速くしてコ
ルゲート加工ができることである。
The feature of the method of manufacturing the heat exchanger 1 is shown in FIG.
In the corrugating shown in FIG. 5, even if the temperatures of the upper and lower corrugators 10 and 11 and the press roll 12 for adjusting the step shape are kept high, the moisture permeable film 8 is formed on the press roll 12 side.
And the press roll 12 is exposed to a layer of the hygroscopic agent 20 of the porous member 7 having low adhesiveness.
Is not melted and the porous member 7 which is the material of the partition member 2 is fused to the press roll 12.
This means that corrugating can be performed by increasing the feed speed under high temperatures where it is easy to adjust the step shape.

【0053】そのため、従来のコルゲート加工の送りス
ピードよりも約3倍の送りスピードでコルゲート加工を
行なうことができ、著しく生産性を向上させることがで
きるうえ、加工費についても1/3程度に低減すること
ができる。
Therefore, the corrugating can be performed at a feed speed approximately three times as high as that of the conventional corrugating, so that the productivity can be remarkably improved and the processing cost can be reduced to about 1/3. can do.

【0054】また、本実施の形態では多孔質部材7の片
面には吸湿剤20の層を形成しているため、透湿性能を
上げることができるという効果を奏する。この点につい
て、以下に詳述する。
Further, in this embodiment, since the layer of the moisture absorbent 20 is formed on one surface of the porous member 7, the effect of improving the moisture permeability can be obtained. This will be described in detail below.

【0055】片面のみに透湿膜を形成し、他の片面には
処理を施さない場合には、透湿膜形成薬剤の中に含まれ
る吸湿剤の効果により透湿膜面側からの透湿性能に比較
して反対面の未処理側からの透湿性能は低いものとなっ
ている。この仕切部材を用いて熱交換器を構成すると一
層ごとの風路は、透湿膜形成薬液処理面と未塗工面とを
対向させた風路となる。したがって、この熱交換器を用
いて熱交換をおこなうと透湿性能は透湿膜形成薬処理面
と未塗工面の透湿性能のおよそ平均値となる。
When a moisture permeable film is formed only on one surface and the other surface is not treated, moisture permeable from the moisture permeable film surface side is caused by the effect of the moisture absorbent contained in the moisture permeable film forming agent. The moisture permeability from the untreated side on the opposite side is lower than the performance. When a heat exchanger is configured using this partition member, the air path for each layer is an air path in which the surface treated with the chemical liquid forming the moisture-permeable film and the uncoated surface are opposed to each other. Therefore, when heat exchange is performed using this heat exchanger, the moisture permeability becomes an average value of the moisture permeability of the treated surface and the uncoated surface.

【0056】一方、本実施の形態のように、片面に透湿
膜8を形成し、他の片面に吸湿剤20である塩化リチウ
ムを塗工することにより、透湿性能が向上し表裏での透
湿性能の差が小さくなる。これにより、透湿膜形成薬液
処理面側の透湿性能を向上させるよりはるかに効果的に
表裏での平均透湿性能を向上させることができ、熱交換
器としても容易に透湿性能を上げることが可能となる。
On the other hand, as in the present embodiment, the moisture permeable performance is improved by forming the moisture permeable film 8 on one side and applying lithium chloride as the moisture absorbent 20 on the other side. The difference in moisture permeability is reduced. As a result, the average moisture permeability on the front and back surfaces can be improved much more effectively than the moisture permeability on the moisture-permeable film forming chemical solution treatment surface side, and the moisture permeability can be easily increased as a heat exchanger. It becomes possible.

【0057】なお、多孔質部材7の片面に有機材料を用
いた樹脂フィルムをラミネート加工して透湿膜8を形成
して仕切部材2の素材として用いても同様の効果を得る
ことができる。また、透湿膜8を10〜20μm程度の
ポリエステル系のフィルムで形成し、間隔保持部材3
に、同系のポリエステル繊維とセルロース繊維とを混抄
した混抄紙材を用いれば、接着剤を用いることなく熱融
着によってコルゲート加工を行なうことができるので、
さらに高速で加工することができるようになる。
A similar effect can be obtained by laminating a resin film using an organic material on one surface of the porous member 7 to form a moisture-permeable film 8 and using the film as a material of the partition member 2. Further, the moisture permeable membrane 8 is formed of a polyester film having a thickness of about 10 to 20 μm,
In addition, if a mixed paper material obtained by mixing similar polyester fibers and cellulose fibers is used, corrugation can be performed by heat fusion without using an adhesive,
Processing can be performed at a higher speed.

【0058】実施の形態7.この実施の形態は、多孔質
部材7として難燃紙材を用い、この難燃紙材の片面に透
湿膜8を設け、他の片面には吸湿性能を持つ薬剤の層を
設けたものである。
Embodiment 7 FIG. In this embodiment, a flame-retardant paper material is used as a porous member 7, and a moisture-permeable film 8 is provided on one surface of the flame-retardant paper material, and a drug layer having a moisture absorbing property is provided on the other surface. is there.

【0059】図16によって示す本実施の形態は、実施
の形態6と同様に積層構造の六面体に構成された空調用
に適した熱交換器およびその製造方法に関するものであ
る。本実施の形態の製造方法も仕切部材の組成を除けば
基本的には実施の形態6の製造方法と同じである。従っ
て、図12,13を援用するとともに実施の形態6のも
のと同じ部分については、実施の形態6のものと同一の
符号を用いそれらについての説明は省略する。
This embodiment shown in FIG. 16 relates to a heat exchanger suitable for air-conditioning and formed in a hexahedron having a laminated structure as in the sixth embodiment, and a method of manufacturing the same. The manufacturing method of the present embodiment is basically the same as the manufacturing method of the sixth embodiment except for the composition of the partition member. Therefore, the same parts as those of the sixth embodiment are denoted by the same reference numerals as those of the sixth embodiment, and the description thereof will be omitted.

【0060】本実施の形態の製造方法によって得られる
熱交換器1も、図12に示すように伝熱性と通湿性とを
有する薄肉の仕切部材2を間隔保持部材3を挟んで所定
の間隔をおいて、複数層に重ね合わせ接着した構成とな
っている。熱交換器1を構成している仕切部材2は正方
形や菱形の平板として構成され、間隔保持部材3は投影
平面形状が仕切部材2に一致する鋸波状又は正弦波状の
波形を成形した波板に形成されている。この間隔保持部
材3を仕切部材2の間にその波の目の方向を交互に90
度又はそれに近い角度を持たせて挟着し、一次気流
(イ)と二次気流(ロ)を通す流体通路4と流体通路5
がこれらの各層間に一層おきに構成されているものであ
る。
As shown in FIG. 12, the heat exchanger 1 obtained by the manufacturing method of the present embodiment also includes a thin partition member 2 having heat conductivity and moisture permeability, and a predetermined interval between the thin partition members 2 with the interval holding member 3 interposed therebetween. Here, it is configured to be laminated and adhered to a plurality of layers. The partition member 2 constituting the heat exchanger 1 is configured as a square or rhombic flat plate, and the spacing member 3 is formed into a corrugated sheet having a sawtooth or sinusoidal waveform whose projected plane shape matches the partition member 2. Is formed. The direction of the crevice of the wave is alternately set to 90 between the spacing members 3 and the partition members 2.
The fluid passage 4 and the fluid passage 5 which are sandwiched between the primary air flow (A) and the secondary air flow (B) by being held at an angle close to or
Are arranged every other layer between these layers.

【0061】この熱交換器1も、実施の形態6のものと
同様に図13に示すような一枚の仕切部材2の片面に間
隔保持部材3を接着した熱交換器構成部材6を積層する
ことにより製造される。板状の多孔質部材7の片面に空
気遮蔽機能を有する透湿膜8を薬液塗工により形成し、
もう片面には、吸湿性能を持つ薬液(吸湿剤)20を塗
布して仕切部材2を作り、この仕切部材2の透湿膜8側
の面に、流体通路4,5を構成する間隔保持部材3とな
る素材9をコルゲート加工により接着する。このような
手順で熱交換器構成部材6は連続的に作られる。
In this heat exchanger 1, similarly to the sixth embodiment, a heat exchanger component 6 in which a spacing member 3 is adhered to one surface of a single partition member 2 as shown in FIG. 13 is laminated. It is manufactured by Forming a moisture-permeable film 8 having an air shielding function on one surface of a plate-shaped porous member 7 by applying a chemical solution,
On the other surface, a chemical solution (hygroscopic agent) 20 having hygroscopic performance is applied to form the partition member 2, and on the surface of the partition member 2 on the side of the moisture permeable membrane 8, a spacing member that forms the fluid passages 4 and 5. The material 9 to be 3 is bonded by corrugating. In such a procedure, the heat exchanger component 6 is continuously produced.

【0062】多孔質部材7には難燃紙と称されるJI
S.A1322適合品が用いられる。この難燃紙は、セ
ルロース繊維に抄紙の段階で難燃剤14が混抄してあ
り、厚さ60〜120μm程度で、坪量が25〜150
(g/m2)の紙材である。難燃剤14には、グアニジ
ン系のものが一般的に使用されているが、シングルフェ
ーサ装置に対する適性及び環境面の配慮からはスルファ
ミン酸グアニジンが適している。
The porous member 7 has a JI called flame retardant paper.
S. A1322 compliant product is used. This flame-retardant paper is obtained by mixing the flame retardant 14 with cellulose fibers at the stage of paper making, has a thickness of about 60 to 120 μm, and has a basis weight of 25 to 150.
(G / m 2 ) paper material. A guanidine-based flame retardant is generally used, but guanidine sulfamate is suitable from the viewpoint of suitability for a single facer device and environmental considerations.

【0063】難燃剤14は、原紙の比重で10〜40%
が混抄される。難燃剤14を予め混抄しておくことによ
り、表面のべと付きが軽減され扱い易くなる。また、難
燃剤14は一般に吸湿性が高いので、吸湿性の高い系統
の難燃剤14を選定することにより未処理の普通紙より
含水率を向上させることができる。
The flame retardant 14 is 10 to 40% by specific gravity of the base paper.
Are mixed. By blending the flame retardant 14 in advance, the stickiness of the surface is reduced and handling becomes easier. Further, since the flame retardant 14 generally has high hygroscopicity, the moisture content can be improved more than untreated plain paper by selecting the flame retardant 14 of a system having high hygroscopicity.

【0064】透湿膜8は水溶性高分子物質であるポリビ
ニルアルコール(PVA)等を水に溶かし、さらに吸湿
作用のある薬剤として塩化リチウム及び難燃剤としてス
ルファミン酸グアニジンを混ぜて透湿膜形成用の薬液と
している。この透湿膜形成用の薬液をロールクォータを
用いて多孔質部材7の片面に毎分約30〜70mのスピ
ードで薬液塗布し、更に、反対面より粘着性の少ない吸
湿剤20として塩化リチウム等を塗工し直ちに乾燥させ
て仕切部材2用の素材とし、実施の形態6で示した図1
5に示すようなシングルフェーサ装置に送り込む。仕切
部材2用の多孔質部材7の乾燥後の薬液塗工量は5〜1
5g/m2 程である。
The moisture-permeable film 8 is formed by dissolving polyvinyl alcohol (PVA) or the like, which is a water-soluble polymer substance, in water, and further mixing lithium chloride as a hygroscopic agent and guanidine sulfamate as a flame retardant to form a moisture-permeable film. Of chemicals. The chemical for forming the moisture permeable film is applied to one surface of the porous member 7 at a speed of about 30 to 70 m / min using a roll quarter, and further, as a hygroscopic agent 20 having less adhesiveness than the opposite surface, lithium chloride or the like. And immediately dried to obtain a material for the partition member 2, and the material shown in FIG.
And fed into a single facer device as shown in FIG. The amount of the applied chemical after drying the porous member 7 for the partition member 2 is 5 to 1
It is about 5 g / m 2 .

【0065】仕切部材2を構成する難燃紙材は、片面に
透湿膜8が形成され、これにより空気遮蔽機能、吸湿機
能、難燃機能を具備したものとなっており、これにセル
ロース繊維を主とする間隔保持部材3となる素材9がシ
ングルフェーサ装置に送り込まれ、実施の形態6で説明
した仕方と同様の仕方で、コルゲート加工されて片面段
ボール状の熱交換器構成部材6が連続的に製造される。
The flame-retardant paper material constituting the partition member 2 has a moisture-permeable film 8 formed on one side, thereby having an air-shielding function, a moisture-absorbing function, and a flame-retardant function. Is mainly fed into the single-facer device, and corrugated to form a single-sided cardboard heat exchanger component 6 in the same manner as described in the sixth embodiment. Manufactured continuously.

【0066】このようにして製造された熱交換器構成部
材6を裁断し、交互に向きを90度変えて積層接着する
ことにより図12に示すような熱交換器1が製造され
る。この製造方法によれば、予め難燃処理を施した難燃
紙材を仕切部材2の素材とするため、透湿膜8を形成す
るための薬液塗工量を実施の形態6の仕方よりも少なく
することができ、製造工程における薬液塗工スピードを
速めることにより生産性が一層向上する。これ以外の効
果は実施の形態6の製造方法と同じである。
The heat exchanger components 6 manufactured as described above are cut, alternately turned 90 degrees, and laminated and bonded, whereby the heat exchanger 1 as shown in FIG. 12 is manufactured. According to this manufacturing method, since the flame-retardant paper material that has been subjected to the flame-retardant treatment is used as the material of the partition member 2, the amount of the chemical solution applied to form the moisture-permeable film 8 is smaller than that of the sixth embodiment. The productivity can be further improved by increasing the chemical solution coating speed in the manufacturing process. The other effects are the same as those of the manufacturing method of the sixth embodiment.

【0067】なお、本実施の形態においても、裁断した
熱交換器構成部材6を間隔保持部材3の波の目の方向を
併行にして積層することによって対向流型の熱交換器を
得ることができる。また、難燃紙材の片面に有機材料を
用いた樹脂フィルムをラミネート加工して透湿膜8を形
成して仕切部材2の素材として用いても同様の効果を得
ることができる。そして、透湿膜8を10〜20μm程
度のポリエステル系のフィルムで形成し、間隔保持部材
3に、同系のポリエステル繊維とセルロース繊維とを混
抄した混抄紙材を用いれば、接着剤を用いることなく熱
融着によってコルゲート加工を行なうことができるの
で、さらに高速で加工することができるようになる。
In this embodiment, too, a counter-flow type heat exchanger can be obtained by laminating the cut heat exchanger components 6 with the direction of the waves of the spacing members 3 parallel. it can. The same effect can be obtained by laminating a resin film using an organic material on one surface of the flame-retardant paper material to form the moisture-permeable film 8 and using the film as the material of the partition member 2. If the moisture permeable membrane 8 is formed of a polyester film having a thickness of about 10 to 20 μm, and the spacing member 3 is made of a mixed paper material in which the same polyester fiber and cellulose fiber are mixed, the adhesive is not used. Since corrugation can be performed by heat fusion, processing can be performed at a higher speed.

【0068】実施の形態8.この実施の形態は、吸湿剤
20を多孔質部材7に塗る手順が実施の形態6とは異な
るものである。本実施の形態は、実施の形態6と同様に
積層構造の六面体に構成された空調用に適した熱交換器
の製造方法に関するものである。本実施の形態の製造方
法も仕切部材の組成を除けば基本的には実施の形態6の
製造方法と同じである。従って、図12,13はこれを
援用するとともに実施の形態6のものと同じ部分につい
ては、実施の形態1のものと同一の符号を用いそれらに
ついての説明は省略する。
Embodiment 8 FIG. This embodiment is different from the sixth embodiment in the procedure for applying the moisture absorbent 20 to the porous member 7. The present embodiment relates to a method for manufacturing a heat exchanger suitable for air conditioning and configured in a hexahedron having a laminated structure as in the sixth embodiment. The manufacturing method of the present embodiment is basically the same as the manufacturing method of the sixth embodiment except for the composition of the partition member. Therefore, FIGS. 12 and 13 are referred to, and the same parts as those in the sixth embodiment are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted.

【0069】本実施の形態の製造方法によって得られる
熱交換器1も、図12に示すように伝熱性と通湿性とを
有する薄肉の仕切部材2を間隔保持部材3を挟んで所定
の間隔をおいて、複数層に重ね合わせ接着した構成とな
っている。熱交換器1を構成している仕切部材2は正方
形や菱形の平板として構成され、間隔保持部材3は投影
平面形状が仕切部材2に一致する鋸波状又は正弦波状の
波形を成形した波板に形成されている。この間隔保持部
材3を仕切部材2の間にその波の目の方向を交互に90
度又はそれに近い角度を持たせて挟着し、一次気流
(イ)と二次気流(ロ)を通す流体通路4と流体通路5
がこれらの各層間に一層おきに構成されているものであ
る。
As shown in FIG. 12, the heat exchanger 1 obtained by the manufacturing method of the present embodiment also includes a thin partition member 2 having heat conductivity and moisture permeability, and a predetermined gap between the thin partition member 2 and the spacing member 3. Here, it is configured to be laminated and adhered to a plurality of layers. The partition member 2 constituting the heat exchanger 1 is configured as a square or rhombic flat plate, and the spacing member 3 is formed into a corrugated sheet having a sawtooth or sinusoidal waveform whose projected plane shape matches the partition member 2. Is formed. The direction of the crevice of the wave is alternately set to 90 between the spacing members 3 and the partition members 2.
The fluid passage 4 and the fluid passage 5 which are sandwiched between the primary air flow (A) and the secondary air flow (B) by being held at an angle close to or
Are arranged every other layer between these layers.

【0070】この熱交換器1も、実施の形態6のものと
同様に図13に示すような一枚の仕切部材2の片面に間
隔保持部材3を接着した熱交換器構成部材6を積層する
ことにより製造される。この熱交換器構成部材6は以下
のように製造される。板状の多孔質部材7の片面に空気
遮蔽機能を有する透湿膜8を薬液塗工により形成して仕
切部材2を作り、この仕切部材2の透湿膜8側の面に、
流体通路4,5を構成する間隔保持部材3となる素材9
をコルゲート加工により接着する。このような手順で熱
交換器構成部材6は連続的に作られる。
In this heat exchanger 1, similarly to the sixth embodiment, a heat exchanger component 6 in which a spacing member 3 is adhered to one surface of a single partition member 2 as shown in FIG. 13 is laminated. It is manufactured by This heat exchanger component 6 is manufactured as follows. A partition member 2 is formed by forming a moisture permeable film 8 having an air shielding function on one surface of a plate-shaped porous member 7 by applying a chemical solution, and a surface of the partition member 2 on the moisture permeable film 8 side is provided with:
Material 9 serving as spacing member 3 constituting fluid passages 4 and 5
Are adhered by corrugating. In such a procedure, the heat exchanger component 6 is continuously produced.

【0071】多孔質部材7には厚さ60〜120μm程
度で、坪量が25〜150(g/m 2 )のセルロース繊
維を主とする紙材が採用されている。透湿膜8は水溶性
高分子物質であるポリビニルアルコール(PVA)等を
水に溶かし、さらに吸湿作用のある薬剤として塩化リチ
ウム及び難燃剤としてスルファミン酸グアニジンを混ぜ
て透湿膜形成用の薬液としている。
The porous member 7 has a thickness of about 60 to 120 μm.
And the basis weight is 25 to 150 (g / m Two ) Cellulose fiber
Paper mainly made of fiber is used. The moisture permeable membrane 8 is water-soluble
Polymeric substances such as polyvinyl alcohol (PVA)
Dissolves in water, and as a drug with hygroscopic action
And guanidine sulfamate as a flame retardant
To form a moisture permeable film.

【0072】この透湿膜形成用の薬液をロールクォータ
を用いて多孔質部材7の片面に毎分約10〜50mのス
ピードで薬液塗布し、直ちに乾燥させて仕切部材用の素
材とし、図15に示すようなシングルフェーサ装置に送
り込む。仕切部材用の多孔質部材7の乾燥後の薬液塗工
量は、10〜30g/m2である。尚、シングルフェー
サ装置に送り込む時点においては、仕切部材2にはまだ
吸湿剤20は塗布されていない点で実施の形態6とは異
なる。
This liquid chemical for forming a moisture permeable membrane was applied to one surface of the porous member 7 at a speed of about 10 to 50 m / min using a roll quarter, and immediately dried to obtain a material for a partition member. Into a single facer device as shown in The applied amount of the chemical solution of the porous member 7 for the partition member after drying is 10 to 30 g / m 2 . It is to be noted that, at the time of feeding into the single facer device, the difference from the sixth embodiment is that the hygroscopic agent 20 has not been applied to the partition member 2 yet.

【0073】同様に、多孔質部材7には難燃紙と称され
るJIS.A1322適合品を用いてもよく、この難燃
紙は、セルロース繊維に抄紙の段階で難燃剤14が混抄
してあり、厚さ60〜120μm程度で、坪量が25〜
150(g/m2 )の紙材である。難燃剤14には、グ
アニジン系のものが一般的に使用されているが、シング
ルフェーサ装置に対する適性及び環境面の配慮からはス
ルファミン酸グアニジンが適している。
Similarly, the porous member 7 has JIS. A1322 compliant product may be used. This flame retardant paper is obtained by mixing the flame retardant 14 with cellulose fiber at the stage of paper making, has a thickness of about 60 to 120 μm, and has a basis weight of 25 to
150 (g / m 2 ) paper material. A guanidine-based flame retardant is generally used, but guanidine sulfamate is suitable from the viewpoint of suitability for a single facer device and environmental considerations.

【0074】難燃剤14は、原紙の比重で10〜40%
が混抄される。難燃剤14を予め混抄しておくことによ
り、表面のべと付きが軽減され扱い易くなる。また、難
燃剤14は一般に吸湿性が高いので、吸湿性の高い系統
の難燃剤14を選定することにより未処理の普通紙より
含水率を向上させることができる。
The flame retardant 14 is 10 to 40% by specific gravity of the base paper.
Are mixed. By blending the flame retardant 14 in advance, the stickiness of the surface is reduced and handling becomes easier. Further, since the flame retardant 14 generally has high hygroscopicity, the moisture content can be improved more than untreated plain paper by selecting the flame retardant 14 of a system having high hygroscopicity.

【0075】透湿膜8は水溶性高分子物質であるポリビ
ニルアルコール(PVA)等を水に溶かし、さらに吸湿
作用のある薬剤として塩化リチウム及び難燃剤としてス
ルファミン酸グアニジンを混ぜて透湿膜形成用の薬液と
している。この透湿膜形成用の薬液をロールクォータを
用いて多孔質部材7の片面に毎分約30〜70mのスピ
ードで薬液塗布し、直ちに乾燥させて仕切部材2用の素
材とし、実施の形態6で示した図15に示すようなシン
グルフェーサ装置に送り込む。仕切部材2用の多孔質部
材7の乾燥後の薬液塗工量は5〜15g/m2 程であ
る。尚、シングルフェーサ装置に送り込む時点において
は、仕切部材2にはまだ吸湿剤20は塗布されていな
い。
The moisture-permeable membrane 8 is formed by dissolving polyvinyl alcohol (PVA) or the like, which is a water-soluble polymer substance, in water, and further mixing lithium chloride as a hygroscopic agent and guanidine sulfamate as a flame retardant to form a moisture-permeable membrane. Of chemicals. The liquid chemical for forming a moisture permeable film is applied to one surface of the porous member 7 at a speed of about 30 to 70 m / min by using a roll quarter, and immediately dried to obtain a material for the partition member 2. Is fed into a single facer device as shown in FIG. The applied amount of the chemical solution of the porous member 7 for the partition member 2 after drying is about 5 to 15 g / m 2 . It should be noted that the hygroscopic agent 20 has not yet been applied to the partition member 2 at the time of feeding into the single facer device.

【0076】仕切部材2を構成する難燃紙材は、片面に
透湿膜8が形成され、これにより空気遮蔽機能、吸湿機
能、難燃機能を具備したものとなっており、これにセル
ロース繊維を主とする間隔保持部材3となる素材9がシ
ングルフェーサ装置に送り込まれ、実施の形態6で説明
した仕方と同様の仕方で、コルゲート加工されて片面段
ボール状の熱交換器構成部材6が連続的に製造される。
このようにして製造された熱交換器構成部材6を裁断
し、交互に向きを90度変えて積層接着することにより
図12に示すような熱交換器1が製造される。
The flame-retardant paper material constituting the partition member 2 has a moisture-permeable film 8 formed on one side, thereby having an air-shielding function, a moisture-absorbing function, and a flame-retardant function. Is mainly fed into the single-facer device, and corrugated to form a single-sided cardboard heat exchanger component 6 in the same manner as described in the sixth embodiment. Manufactured continuously.
The heat exchanger component 6 manufactured as described above is cut and alternately turned 90 degrees, and laminated and adhered, whereby the heat exchanger 1 as shown in FIG. 12 is manufactured.

【0077】ただし、積層接着の際に、図17に示すよ
うにのり付けローラー21によって間隔保持部材3の山
の頂点に接着剤が塗布される。それと同時に吸湿剤塗工
ローラー22により、仕切部材2の透湿膜8が形成され
ていない側の面に水溶媒に溶かした吸湿剤20を塗工す
る。
However, at the time of laminating and bonding, as shown in FIG. 17, an adhesive is applied to the apex of the mountain of the spacing member 3 by the gluing roller 21. At the same time, a moisture absorbent 20 dissolved in a water solvent is applied to the surface of the partition member 2 on which the moisture permeable film 8 is not formed by the moisture absorbent applying roller 22.

【0078】このことにより、実施の形態6と同様に熱
交換器としての透湿性能を大幅に改善できる。また、積
層時の接着剤の溶液である水により間隔保持部材3が吸
湿し伸びておこる熱交換器構成部材6の反りが、反対側
から同様に水溶媒系の薬剤(水溶媒に溶かした吸湿剤2
0)を塗ることで低減される。そのため、熱交換器構成
部材6全体の反りを小さく押さえることができるので生
産性の向上にもつながる。
As a result, the moisture permeability of the heat exchanger can be greatly improved as in the sixth embodiment. In addition, the warp of the heat exchanger component 6 caused by moisture absorption and extension of the spacing member 3 due to water, which is a solution of the adhesive at the time of lamination, is likewise caused from the opposite side by a water-based chemical (moisture-absorbing dissolved in a water solvent). Agent 2
0) is reduced. Therefore, the warp of the entire heat exchanger component 6 can be kept small, which leads to an improvement in productivity.

【0079】実施の形態9.この実施の形態は、間隔保
持部材3への接着剤の塗布方法が実施の形態8と異なる
ものであり、その相違点を重点的に説明する。その他の
部分は、実施の形態8と同様であるので、説明は省略す
る。
Embodiment 9 This embodiment is different from the eighth embodiment in the method of applying the adhesive to the spacing member 3, and the differences will be mainly described. Other parts are the same as in the eighth embodiment, and a description thereof will not be repeated.

【0080】熱交換機構成部材6を連続的に製造するま
では実施の形態8と同様である。そして、このように製
造された、熱交換器構成部材6を裁断し、交互に向きを
90度変えて積層接着することにより図12に示すよう
な熱交換器1が製造される。この積層接着の際、図18
に示すようにのり付けローラー21によって間隔保持部
材3の山の頂点を含む全面に接着剤を塗布し、それと同
時に吸湿剤塗工ローラー22により水溶媒に溶かした吸
湿剤を塗工する。実施の形態8では間隔保持部材3の山
の頂点部分に接着剤を塗布していたが、この実施の形態
では間隔保持部材3の山の頂点だけでなく、谷部分を含
む全面または略全面に接着剤を塗布している。
The process is the same as that of the eighth embodiment until the heat exchanger components 6 are continuously manufactured. Then, the heat exchanger component member 6 manufactured as described above is cut and alternately turned 90 degrees to be laminated and adhered, whereby the heat exchanger 1 as shown in FIG. 12 is manufactured. At the time of this lamination bonding, FIG.
As shown in (1), an adhesive is applied to the entire surface including the peak of the crest of the spacing member 3 by the gluing roller 21, and at the same time, a hygroscopic agent dissolved in a water solvent is applied by the hygroscopic agent applying roller 22. In the eighth embodiment, the adhesive is applied to the apex of the crest of the spacing member 3. However, in this embodiment, not only the apex of the crest of the spacing member 3 but also the entire surface including the trough or almost the entire surface. Adhesive is applied.

【0081】塗工の方法としては、ローラー塗布および
薬剤の噴霧によるなどの方法があるが全面または略全面
にむらなく塗布できれば良い。
As a method of coating, there are methods such as roller coating and spraying of chemicals, but it is sufficient that the coating can be performed on the entire surface or almost the entire surface without unevenness.

【0082】通常、間隔板保持部材3は、加工性および
価格の点より紙素材が用いられているが、この素材が多
孔質で通気抵抗が低いと熱交換器部材の流体通路4を抜
けていく流体が間隔板保持部材3を通過して図19に示
すように横に気流(ハ)として漏れ出ることになる。
Normally, a paper material is used for the spacing plate holding member 3 in terms of workability and cost. However, if the material is porous and has low airflow resistance, it passes through the fluid passage 4 of the heat exchanger member. As shown in FIG. 19, the flowing fluid leaks laterally as airflow (c) through the spacing plate holding member 3.

【0083】このような熱交換器構成部材6をもちいて
熱交換器1を構成した場合、一次気流(イ)の一部が気
流(ハ)として二次気流(ロ)側に漏れ出ることにな
り、排気した空気が給気と混ざることになるので換気機
器としての効果が下がることになる。
When the heat exchanger 1 is constructed using such a heat exchanger component 6, a part of the primary air flow (a) leaks to the secondary air flow (b) as the air flow (c). As a result, the exhausted air is mixed with the supply air, so that the effect as a ventilation device is reduced.

【0084】そこで本発明のように間隔保持部材3に接
着剤として接着性および気体遮蔽機能を有する水溶媒タ
イプの酢酸ビニル系の接着剤を全面に塗布することによ
り、乾燥後に接着剤成分が間隔板保持部材3の表面に残
る。この接着剤成分は気体遮蔽機能を有するため、感覚
保持部材3の表面に気体遮蔽膜が形成されることにな
り、間隔板保持部材3を通して漏れ出る気流ハを完全に
防止することができる。よって、熱交換器を構成した場
合の排気と給気の漏れ混合防止に効果がある。また、実
施の形態8と同様の効果も奏する。
Thus, by applying an aqueous solvent type vinyl acetate adhesive having an adhesive property and a gas shielding function as an adhesive on the entire surface of the spacing member 3 as in the present invention, the adhesive component is removed after drying. It remains on the surface of the plate holding member 3. Since this adhesive component has a gas-shielding function, a gas-shielding film is formed on the surface of the sense-holding member 3, so that airflow leaking through the spacing plate holding member 3 can be completely prevented. Therefore, it is effective in preventing leakage and mixing of exhaust gas and air supply when a heat exchanger is configured. In addition, the same effect as that of the eighth embodiment can be obtained.

【0085】この実施の形態では、接着性および気体遮
蔽機能を有する接着剤を塗布しているが、気体遮蔽機能
を有する薬剤を塗布し、その後間隔保持部材の峰部分に
接着剤を塗るようにしてもよい。
In this embodiment, an adhesive having an adhesive property and a gas-shielding function is applied. However, an agent having a gas-shielding function is applied, and then the adhesive is applied to a peak portion of the spacing member. You may.

【0086】[0086]

【発明の効果】第1の発明によれば、板状の多孔質部材
の片面に空気遮蔽機能を有する透湿膜を薬液塗工やラミ
ネート加工により形成して熱交換用の気体遮蔽物を得る
とともに、この気体遮蔽物の前記透湿膜側の面に、流体
通路を構成する間隔保持部材をコルゲート加工により接
着して熱交換器構成部材を作り、この熱交換器構成部材
を一層おきに前記間隔保持部材による前記流体通路が交
差又は併行するように積層するので、コルゲート加工の
スピードを上げることができる生産性の高い熱交換器の
製造方法が得られる。
According to the first invention, a gas permeable material for heat exchange is obtained by forming a moisture-permeable film having an air shielding function on one surface of a plate-shaped porous member by applying a chemical solution or laminating. At the same time, on the surface of the gas shield on the side of the moisture-permeable membrane, a spacing member that constitutes a fluid passage is adhered by corrugation to form a heat exchanger component, and the heat exchanger component is placed every other layer. Since the fluid passages formed by the spacing members are stacked so as to intersect or parallel to each other, a method of manufacturing a heat exchanger with high productivity that can increase the speed of corrugating can be obtained.

【0087】第2の発明によれば、予め難燃処理を施し
た多孔質部材である紙材の片面に空気遮蔽機能を有する
透湿膜を薬液塗工により形成して熱交換用の気体遮蔽物
を得るとともに、この気体遮蔽物の前記透湿膜側の面
に、流体通路を構成する間隔保持部材をコルゲート加工
により接着して熱交換器構成部材を作り、この熱交換器
構成部材を一層おきに前記間隔保持部材による前記流体
通路が交差又は併行するように積層するので、コルゲー
ト加工のスピードを上げることができる生産性の高い難
燃性を備えた熱交換器の製造方法が得られる。
According to the second aspect of the present invention, a gas permeable film for heat exchange is formed by forming a moisture permeable film having an air shielding function on one surface of a paper material which is a porous member which has been subjected to a flame retardant treatment in advance by applying a chemical solution. A heat exchanger component is formed by bonding a spacing member, which constitutes a fluid passage, to the surface of the gas shield on the moisture permeable membrane side by corrugating, and further forming the heat exchanger component. Since the fluid passages formed by the spacing members are intersected or parallel with each other, a method of manufacturing a heat exchanger with high productivity and flame retardancy that can increase the speed of corrugating can be obtained.

【0088】第3の発明によれば、熱交換器構成部材を
積層する際に、難燃性の接着剤を用いて熱交換器構成部
材同士を接着するので、第1の発明又は第2の発明のい
ずれかに係る前記効果とともに熱交換器の難燃性を向上
させることができる。
According to the third invention, when the heat exchanger components are laminated, the heat exchanger components are adhered to each other by using a flame-retardant adhesive. The flame retardancy of the heat exchanger can be improved together with the effect according to any of the inventions.

【0089】第4の発明によれば、二系統の流体通路が
一層おきに交差又は併行するように構成された積層構造
の熱交換器であって、その流体通路同士を仕切る仕切部
材を、板状の多孔質部材の片面に空気遮蔽機能を有する
透湿膜を薬液塗工やラミネート加工により形成した気体
遮蔽物により構成し、一方の前記流体通路については前
記仕切部材の透湿膜側の面同士が向き合うように間隔保
持部材で保持するので、夏期と冬期での熱交換効率の差
の少ない熱交換器が得られる。
According to the fourth aspect of the present invention, there is provided a heat exchanger having a laminated structure in which two fluid passages intersect or alternate with each other, wherein a partition member for partitioning the fluid passages is formed by a plate. One side of a porous member is formed of a gas permeable material having an air shielding function formed by a chemical solution coating or laminating process, and one of the fluid passages is a surface of the partition member on the moisture permeable membrane side. Since they are held by the spacing members so that they face each other, a heat exchanger having a small difference in heat exchange efficiency between summer and winter can be obtained.

【0090】第5の発明によれば、二系統の流体通路が
一層おきに交差又は併行するように構成された積層構造
の熱交換器であって、その流体通路同士を仕切る仕切部
材と、この仕切部材同士の間隔を保持する間隔保持部材
とを、表裏で湿度による伸びの異なる素材でそれぞれ構
成するとともに、その間隔保持部材の湿度により伸びや
すい面と、その仕切部材の湿度により伸びやすい面とを
接合して積層したので、製造工程が簡素化できコストの
低減を推進できる熱交換器が得られる。
According to the fifth aspect of the present invention, there is provided a heat exchanger having a laminated structure in which two fluid passages intersect or run alternately, and a partition member for partitioning the fluid passages. The spacing members that hold the spacing between the partition members are made of materials different in elongation due to humidity on the front and back, respectively, and the surface that is easily stretched by the humidity of the spacing member and the surface that is easily stretched by the humidity of the partition member. Are joined and laminated, so that a heat exchanger that can simplify the manufacturing process and promote cost reduction can be obtained.

【0091】第6の発明によれば、流体通路同士を仕切
る複数の仕切部材と、当該複数の仕切部材間に設けら
れ、前記仕切部材間の間隔を保持するとともに前記仕切
部材間に前記流体通路を形成する間隔保持部材とを有
し、前記仕切部材および前記間隔保持部材が積層され、
二系統の流体通路が一層おきに構成された階層構造の熱
交換器であって、前記仕切部材は、板状の多孔質部材
と、当該多孔質部材の片面に形成された空気遮蔽機能を
有する透湿膜とを有するため、生産性を向上させること
ができる。
According to the sixth invention, a plurality of partition members for partitioning the fluid passages, and a plurality of partition members provided between the plurality of partition members for maintaining an interval between the partition members and for providing the fluid passage between the partition members Having an interval holding member, wherein the partition member and the interval holding member are laminated,
A heat exchanger having a hierarchical structure in which two systems of fluid passages are formed every other layer, wherein the partition member has a plate-like porous member and an air shielding function formed on one surface of the porous member. Since it has a moisture-permeable film, productivity can be improved.

【0092】第7の発明は、前記多孔質部材の他の片面
に形成された吸湿剤層を有するため、容易に透湿性能を
向上させることが可能となる。
According to the seventh aspect of the present invention, since the porous member has a hygroscopic layer formed on another surface of the porous member, the moisture permeability can be easily improved.

【0093】第8の発明は、前記多孔質部材として難燃
処理を施した部材を用いるため、透湿膜を形成するため
の薬液量を少なくすることができる。
In the eighth invention, since a member subjected to a flame-retardant treatment is used as the porous member, the amount of the chemical for forming the moisture permeable membrane can be reduced.

【0094】第9の発明は、前記間隔保持部材は、前記
流体通路の気体が漏れ出るのを防止する気体遮蔽膜を有
するため、流体通路の気体が間隔保持部材を通して漏れ
出て、他の流体通路の気体と混合するのを防止できる。
According to a ninth aspect of the present invention, since the gap holding member has a gas shielding film for preventing gas from leaking out of the fluid passage, gas in the fluid passage leaks through the gap holding member, and the other fluid is removed. Mixing with the gas in the passage can be prevented.

【0095】第10の発明は、板状の多孔質部材の片面
に空気遮蔽機能を有する透湿膜を形成し、前記多孔質部
材の他の片面に吸湿剤層を形成する工程と、前記透湿膜
が形成された面に、流体通路を形成する間隔保持部材を
コルゲート加工により接着して熱交換器構成部材を製造
する工程と、当該製造された熱交換器構成部材を積層す
る工程とを有するため、透湿性能を向上させた熱交換器
を得ることができる。
A tenth aspect of the present invention is a method for forming a moisture-permeable film having an air-shielding function on one surface of a plate-shaped porous member, and forming a moisture-absorbing agent layer on another surface of the porous member. A step of manufacturing a heat exchanger component by bonding a spacing member that forms a fluid passage to the surface on which the wet film is formed by corrugating, and a step of laminating the manufactured heat exchanger component. Therefore, a heat exchanger having improved moisture permeability can be obtained.

【0096】第11の発明は、板状の多孔質部材の片面
に空気遮蔽機能を有する透湿膜を形成する工程と、前記
透湿膜が形成された面に、流体通路を形成する間隔保持
部材をコルゲート加工により接着して熱交換器構成部材
を製造する工程と、当該製造された熱交換器構成部材の
間隔保持部材の一部に接着剤を塗布するとともに前記多
孔質部材の他の片面に吸湿剤を塗布する工程と、当該工
程の後、前記熱交換器構成部材を積層する工程とを有す
るため、熱交換器構成部材に接着剤を塗布したときに生
じる反りを小さくすることができる。
According to an eleventh aspect of the present invention, there is provided a step of forming a moisture-permeable film having an air-shielding function on one surface of a plate-like porous member, and maintaining a gap for forming a fluid passage on the surface on which the moisture-permeable film is formed. A step of manufacturing the heat exchanger component by bonding the members by corrugating, and applying an adhesive to a part of the spacing member of the manufactured heat exchanger component and the other surface of the porous member. And a step of laminating the heat exchanger components after the process, so that the warpage that occurs when the adhesive is applied to the heat exchanger components can be reduced. .

【0097】第12の発明は、前記接着剤を塗布する工
程では、前記接着剤として接着性および気体遮蔽機能を
有する薬剤を用い、当該薬剤を当該製造された熱交換器
構成部材の間隔保持部材の全面に当該薬剤を塗布するも
のであるため、流体通路の気体が間隔保持部材を通して
漏れ出て、他の流体通路の気体と混合するのを防止でき
る。
In a twelfth aspect of the present invention, in the step of applying the adhesive, an agent having an adhesive property and a gas shielding function is used as the adhesive, and the agent is used as a spacing member for the manufactured heat exchanger component. Since the drug is applied to the entire surface of the liquid passage, gas in the fluid passage can be prevented from leaking through the spacing member and being mixed with gas in other fluid passages.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施の形態1,2の製造方法で製造された熱
交換器を示す斜視図である。
FIG. 1 is a perspective view showing a heat exchanger manufactured by the manufacturing method according to the first and second embodiments.

【図2】 実施の形態1,2の製造方法で製造された熱
交換器構成部材を示す斜視図である。
FIG. 2 is a perspective view showing a heat exchanger component manufactured by the manufacturing method according to the first and second embodiments.

【図3】 実施の形態1の製造方法で製造された熱交換
器構成部材の拡大端面図である。
FIG. 3 is an enlarged end view of a heat exchanger component manufactured by the manufacturing method according to the first embodiment.

【図4】 実施の形態1の製造方法のコルゲート加工を
示す構成図である。
FIG. 4 is a configuration diagram illustrating corrugation processing in the manufacturing method according to the first embodiment;

【図5】 実施の形態2の製造方法で製造された熱交換
器構成部材の拡大端面図である。
FIG. 5 is an enlarged end view of a heat exchanger component manufactured by the manufacturing method according to the second embodiment.

【図6】 実施の形態2の製造方法による仕切部材の組
成を模式的に示す拡大図である。
FIG. 6 is an enlarged view schematically showing a composition of a partition member according to the manufacturing method of the second embodiment.

【図7】 実施の形態3の製造方法による熱交換器の部
分拡大端面図である。
FIG. 7 is a partially enlarged end view of the heat exchanger according to the manufacturing method of the third embodiment.

【図8】 実施の形態4の熱交換器における熱交換器構
成部材の拡大端面図である。
FIG. 8 is an enlarged end view of a heat exchanger component of the heat exchanger according to the fourth embodiment.

【図9】 実施の形態4の熱交換器における熱交換器構
成部材の拡大端面図である。
FIG. 9 is an enlarged end view of a heat exchanger component of the heat exchanger according to the fourth embodiment.

【図10】 実施の形態4の熱交換器の部分端面図であ
る。
FIG. 10 is a partial end view of a heat exchanger according to a fourth embodiment.

【図11】 実施の形態5の熱交換器構成部材の部分拡
大端面図である。
FIG. 11 is a partially enlarged end view of a heat exchanger component according to a fifth embodiment.

【図12】 実施の形態6の製造方法で製造された熱交
換器を示す斜視図である。
FIG. 12 is a perspective view showing a heat exchanger manufactured by the manufacturing method according to the sixth embodiment.

【図13】 実施の形態6の製造方法で製造された熱交
換器構成部材を示す斜視図である。
FIG. 13 is a perspective view showing a heat exchanger component manufactured by the manufacturing method according to the sixth embodiment.

【図14】 実施の形態6の製造方法で製造された熱交
換器構成部材の拡大端面図である。
FIG. 14 is an enlarged end view of a heat exchanger component manufactured by the manufacturing method according to the sixth embodiment.

【図15】 実施の形態6の製造方法のコルゲート加工
を示す構成図である。
FIG. 15 is a configuration diagram showing a corrugation process in the manufacturing method according to the sixth embodiment.

【図16】 実施の形態7の製造方法で製造された熱交
換器構成部材の拡大端面図である。
FIG. 16 is an enlarged end view of a heat exchanger component manufactured by the manufacturing method according to the seventh embodiment.

【図17】 実施の形態8における接着剤および吸湿剤
の塗布工程を示す図である。
FIG. 17 is a diagram illustrating a step of applying an adhesive and a moisture absorbent according to the eighth embodiment.

【図18】 実施の形態9における接着剤および吸湿剤
の塗布工程を示す図である。
FIG. 18 is a diagram illustrating a step of applying an adhesive and a moisture absorbent according to a ninth embodiment.

【図19】 間隔板保持部材3を通過して漏れ出る気流
ハを説明するための図である。
FIG. 19 is a view for explaining airflow c leaking through the spacing plate holding member 3;

【符号の説明】[Explanation of symbols]

1 熱交換器、 2 仕切部材、 3 間隔保持部材、
4 流体通路、 5流体通路、 6 熱交換器構成部
材、 7 多孔質部材、 8 透湿膜、 14 難燃
剤、 16 接着剤、 17 熱交換器構成部材、 1
8 伸びの少ない部分、 19 伸びの大きい部分、2
0 吸湿剤、21 のり付けローラー、22 吸湿剤塗
工ローラ。
1 heat exchanger, 2 partition member, 3 spacing member,
Reference Signs List 4 fluid passage, 5 fluid passage, 6 heat exchanger constituent member, 7 porous member, 8 moisture permeable membrane, 14 flame retardant, 16 adhesive, 17 heat exchanger constituent member, 1
8 Part with low elongation, 19 Part with large elongation, 2
0 hygroscopic agent, 21 gluing roller, 22 hygroscopic agent coating roller.

フロントページの続き (72)発明者 溝口 賢治 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3L103 AA01 BB42 DD15 DD54 DD92 DD95 4F100 AA05A AJ04B AK21A AK41B BA03 BA07 BA08 BA10A BA10C CA08A CA08B CA30C CB00 DD12C DG01B DG10B DG10C DJ00B EH41B EK08 GB51 JB09A JD02B JD02G JD04A JJ07B JJ07G JL11G JL12B Continued on the front page (72) Inventor Kenji Mizoguchi 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term in Mitsubishi Electric Corporation 3L103 AA01 BB42 DD15 DD54 DD92 DD95 4F100 AA05A AJ04B AK21A AK41B BA03 BA07 BA08 BA10A BA10C CA08A CA08B CA30C CB00 DD12C DG01B DG10B DG10C DJ00B EH41B EK08 GB51 JB09A JD02B JD02G JD04A JJ07B JJ07G JL11G JL12B

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 板状の多孔質部材の片面に空気遮蔽機能
を有する透湿膜を薬液塗工やラミネート加工により形成
して熱交換用の気体遮蔽物を得るとともに、この気体遮
蔽物の前記透湿膜側の面に、流体通路を構成する間隔保
持部材をコルゲート加工により接着して熱交換器構成部
材を作り、この熱交換器構成部材を一層おきに前記間隔
保持部材による前記流体通路が交差又は併行するように
積層する熱交換器の製造方法。
1. A gas-permeable material for heat exchange is obtained by forming a moisture-permeable film having an air-shielding function on one surface of a plate-shaped porous member by applying a chemical solution or laminating. On the surface on the moisture permeable membrane side, a spacing member that forms a fluid passage is adhered by corrugation to form a heat exchanger component, and the fluid passage by the spacing member is placed every other heat exchanger component. A method for manufacturing a heat exchanger in which the heat exchangers are stacked so as to intersect or parallel.
【請求項2】 予め難燃処理を施した多孔質部材である
紙材の片面に空気遮蔽機能を有する透湿膜を薬液塗工に
より形成して熱交換用の気体遮蔽物を得るとともに、こ
の気体遮蔽物の前記透湿膜側の面に、流体通路を構成す
る間隔保持部材をコルゲート加工により接着して熱交換
器構成部材を作り、この熱交換器構成部材を一層おきに
前記間隔保持部材による前記流体通路が交差又は併行す
るように積層する熱交換器の製造方法。
2. A gas-permeable material for heat exchange is obtained by forming a moisture-permeable film having an air-shielding function on one surface of a paper material, which is a porous member previously subjected to a flame-retardant treatment, by applying a chemical solution. A spacing member, which constitutes a fluid passage, is adhered to the surface of the gas shield on the moisture permeable membrane side by corrugating to form a heat exchanger component, and the heat exchanger component is placed every other layer and the spacing member is provided. A method for manufacturing a heat exchanger, wherein the fluid passages are stacked so as to intersect or parallel with each other.
【請求項3】 請求項1又は請求項2のいずれかに記載
の熱交換器の製造方法であって、熱交換器構成部材を積
層する際に、難燃性の接着剤を用いて熱交換器構成部材
同士を接着するようにした熱交換器の製造方法。
3. The method for manufacturing a heat exchanger according to claim 1, wherein when heat exchanger components are laminated, heat exchange is performed using a flame-retardant adhesive. A method for manufacturing a heat exchanger in which container components are bonded to each other.
【請求項4】 二系統の流体通路が一層おきに交差又は
併行するように構成された積層構造の熱交換器であっ
て、その流体通路同士を仕切る仕切部材を、板状の多孔
質部材の片面に空気遮蔽機能を有する透湿膜を薬液塗工
やラミネート加工により形成した気体遮蔽物により構成
し、一方の前記流体通路については前記仕切部材の透湿
膜側の面同士が向き合うように間隔保持部材で保持した
熱交換器。
4. A heat exchanger having a laminated structure in which two fluid passages intersect or parallel with each other, wherein a partition member for partitioning the fluid passages is formed of a plate-like porous member. A moisture-permeable film having an air-shielding function is formed on one surface by a gas-shielding material formed by applying a chemical solution or laminating, and one of the fluid passages is spaced so that the surfaces of the partition member on the moisture-permeable film side face each other. Heat exchanger held by holding member.
【請求項5】 二系統の流体通路が一層おきに交差又は
併行するように構成された積層構造の熱交換器であっ
て、その流体通路同士を仕切る仕切部材と、この仕切部
材同士の間隔を保持する間隔保持部材とを、表裏で湿度
による伸びの異なる素材でそれぞれ構成するとともに、
その間隔保持部材の湿度により伸びやすい面と、その仕
切部材の湿度により伸びやすい面とを接合して積層した
熱交換器。
5. A heat exchanger having a laminated structure in which two fluid passages intersect or parallel with each other, wherein a partition member for partitioning the fluid passages and an interval between the partition members are provided. While holding the spacing members to be held, each with a material with different elongation due to humidity on the front and back,
A heat exchanger in which the surface of the spacing member that easily expands due to humidity and the surface of the partition member that easily expands due to humidity are joined and laminated.
【請求項6】 流体通路同士を仕切る複数の仕切部材
と、当該複数の仕切部材間に設けられ、前記仕切部材間
の間隔を保持するとともに前記仕切部材間に前記流体通
路を形成する間隔保持部材とを有し、前記仕切部材およ
び前記間隔保持部材が積層され、二系統の流体通路が一
層おきに構成された階層構造の熱交換器であって、 前記仕切部材は、板状の多孔質部材と、当該多孔質部材
の片面に形成された空気遮蔽機能を有する透湿膜とを有
することを特徴とする熱交換器。
6. A plurality of partition members for partitioning fluid passages, and a spacing member provided between the plurality of partition members for maintaining a gap between the partition members and forming the fluid passage between the partition members. A heat exchanger having a hierarchical structure in which the partition member and the spacing member are stacked, and two systems of fluid passages are arranged alternately, wherein the partition member is a plate-shaped porous member. And a moisture permeable membrane having an air shielding function formed on one surface of the porous member.
【請求項7】 前記仕切部材は、前記多孔質部材の他の
片面に形成された吸湿剤層を有することを特徴とする請
求項6記載の熱交換器。
7. The heat exchanger according to claim 6, wherein the partition member has a moisture absorbent layer formed on another surface of the porous member.
【請求項8】 前記多孔質部材は難燃処理を施した部材
であることを特徴とする請求項6記載の熱交換器。
8. The heat exchanger according to claim 6, wherein the porous member is a member subjected to a flame retardant treatment.
【請求項9】前記間隔保持部材は、前記流体通路の気体
が漏れ出るのを防止する気体遮蔽膜を有することを特徴
とする請求項6記載の熱交換器。
9. The heat exchanger according to claim 6, wherein said spacing member has a gas shielding film for preventing gas in said fluid passage from leaking out.
【請求項10】 板状の多孔質部材の片面に空気遮蔽機
能を有する透湿膜を形成し、前記多孔質部材の他の片面
に吸湿剤層を形成する工程と、 前記透湿膜が形成された面に、流体通路を形成する間隔
保持部材をコルゲート加工により接着して熱交換器構成
部材を製造する工程と、 当該製造された熱交換器構成部材を積層する工程とを有
することを特徴とする熱交換器の製造方法。
10. A step of forming a moisture-permeable film having an air shielding function on one surface of a plate-shaped porous member, and forming a moisture-absorbing agent layer on another surface of the porous member, and forming the moisture-permeable film. A step of manufacturing a heat exchanger component by bonding a spacing member that forms a fluid passage to the surface thus formed by corrugating, and a step of laminating the manufactured heat exchanger component. Method of manufacturing a heat exchanger.
【請求項11】板状の多孔質部材の片面に空気遮蔽機能
を有する透湿膜を形成する工程と、 前記透湿膜が形成された面に、流体通路を形成する間隔
保持部材をコルゲート加工により接着して熱交換器構成
部材を製造する工程と、 当該製造された熱交換器構成部材の間隔保持部材の一部
に接着剤を塗布するとともに前記多孔質部材の他の片面
に吸湿剤を塗布する工程と、 当該工程の後、前記熱交換器構成部材を積層する工程と
を有することを特徴とする熱交換器の製造方法。
11. A step of forming a moisture-permeable film having an air-shielding function on one surface of a plate-shaped porous member, and corrugating a spacing member for forming a fluid passage on the surface on which the moisture-permeable film is formed. Manufacturing a heat exchanger component by bonding, and applying an adhesive to a part of the spacing member of the manufactured heat exchanger component and applying a desiccant to the other surface of the porous member. A method for manufacturing a heat exchanger, comprising: a step of applying; and, after the step, a step of laminating the heat exchanger constituent members.
【請求項12】前記接着剤を塗布する工程では、前記接
着剤として接着性および気体遮蔽機能を有する薬剤を用
い、当該薬剤を当該製造された熱交換器構成部材の間隔
保持部材の略全面に当該薬剤を塗布することを特徴とす
る請求項11記載の熱交換器の製造方法。
12. In the step of applying the adhesive, a chemical agent having an adhesive property and a gas shielding function is used as the adhesive agent, and the chemical agent is applied to substantially the entire surface of the spacing member of the heat exchanger component manufactured. The method for manufacturing a heat exchanger according to claim 11, wherein the chemical is applied.
JP2000055539A 1999-05-10 2000-03-01 HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD Expired - Lifetime JP3501075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000055539A JP3501075B2 (en) 1999-05-10 2000-03-01 HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12811599 1999-05-10
JP11-128115 1999-05-10
JP2000055539A JP3501075B2 (en) 1999-05-10 2000-03-01 HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2001027489A true JP2001027489A (en) 2001-01-30
JP3501075B2 JP3501075B2 (en) 2004-02-23

Family

ID=26463878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000055539A Expired - Lifetime JP3501075B2 (en) 1999-05-10 2000-03-01 HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP3501075B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228393A (en) * 2001-01-31 2002-08-14 Mitsubishi Electric Corp Heat exchanger, method for recovering its function, heat exchanger and ventilator and maintenance system therefor
JP2002310589A (en) * 2001-04-11 2002-10-23 Mitsubishi Electric Corp Heat exchanging element
JP2003148892A (en) * 2001-11-16 2003-05-21 Mitsubishi Electric Corp Heat exchanger and heat exchanging ventilator
KR20040040176A (en) * 2002-11-06 2004-05-12 엘지전자 주식회사 Heat exchange structure in air conditioner
EP1553354A1 (en) * 2002-07-22 2005-07-13 Daikin Industries, Ltd. Dehumidifying element, and adsorbing element used for the dehumidifying element
KR100539429B1 (en) * 2001-11-01 2005-12-27 미츠비시덴키 가부시키가이샤 Heat exchanger and method of manufacturing the same
JP2007003161A (en) * 2005-06-27 2007-01-11 Mitsubishi Electric Corp Heat exchanger, and its manufacturing method
JP2007147279A (en) * 2007-03-05 2007-06-14 Mitsubishi Electric Corp Heat exchanger and heat exchanging ventilator
JP2007315649A (en) * 2006-05-24 2007-12-06 Mitsubishi Electric Corp Total enthalpy heat exchanger
WO2008129669A1 (en) * 2007-04-17 2008-10-30 Mitsubishi Electric Corporation Process for manufacturing total heat exchanger element and total heat exchanger element
WO2008139560A1 (en) * 2007-05-02 2008-11-20 Mitsubishi Electric Corporation Heat exchanger element and heat exchanger
KR100911024B1 (en) * 2008-01-29 2009-08-05 한국에너지기술연구원 Method and apparatus for manufacturing the honeycomb structure of air-to-air heat exchanger
JPWO2008041327A1 (en) * 2006-10-03 2010-02-04 三菱電機株式会社 Total heat exchange element and total heat exchanger
KR101072119B1 (en) 2007-06-18 2011-10-10 미쓰비시덴키 가부시키가이샤 Heat exchange element, method of producing the heat exchange element, heat exchanger, and heat exchange and ventilation device
CN101419033B (en) * 2007-10-25 2012-02-22 台州市普瑞泰环境设备科技有限公司 Long life highly effective energy-conserving type heat exchanging core
KR101177615B1 (en) * 2007-05-31 2012-08-27 미쓰비시덴키 가부시키가이샤 Heat exchanger element
JP2012189264A (en) * 2011-03-10 2012-10-04 Mitsubishi Electric Corp Total heat exchange element
JPWO2012056506A1 (en) * 2010-10-25 2014-02-24 三菱電機株式会社 Total heat exchange element and total heat exchanger
CN104110983A (en) * 2014-07-16 2014-10-22 王云清 Dew point evaporative cooling core
WO2015098592A1 (en) * 2013-12-26 2015-07-02 東レ株式会社 Method for manufacturing total heat exchanger element, and total heat exchanger element
JP2019515244A (en) * 2016-05-03 2019-06-06 リケア ホールディング ビーブイ Heat exchanger to exchange energy between two air flows
JP2020183841A (en) * 2019-05-09 2020-11-12 ダイキン工業株式会社 Total heat exchange element
WO2020226048A1 (en) * 2019-05-09 2020-11-12 ダイキン工業株式会社 Method for using sheet-shaped member
US20220178630A1 (en) * 2019-02-27 2022-06-09 Panasonic Intellectual Property Management Co., Ltd. Heat exchange element and heat exchange-type ventilation device using same
WO2024053082A1 (en) * 2022-09-09 2024-03-14 三菱電機株式会社 Heat exchange element and heat exchange ventilation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795333B1 (en) * 2003-07-02 2008-01-17 주식회사 코오롱 A moisture-permeable complex membrance used in heat exchange device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444255A (en) * 1977-09-13 1979-04-07 Sanyo Electric Co Ltd Heat exchanger
JPH08219676A (en) * 1995-02-15 1996-08-30 Mitsubishi Electric Corp Heat-exchanger, distance plate of heat-exchanger, and partition plate of heat-exchanger
JPH1081864A (en) * 1996-09-05 1998-03-31 Tokai Rubber Ind Ltd Hot-melt flame-retardant adhesive composition and insulating tape prepared therefrom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444255A (en) * 1977-09-13 1979-04-07 Sanyo Electric Co Ltd Heat exchanger
JPH08219676A (en) * 1995-02-15 1996-08-30 Mitsubishi Electric Corp Heat-exchanger, distance plate of heat-exchanger, and partition plate of heat-exchanger
JPH1081864A (en) * 1996-09-05 1998-03-31 Tokai Rubber Ind Ltd Hot-melt flame-retardant adhesive composition and insulating tape prepared therefrom

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228393A (en) * 2001-01-31 2002-08-14 Mitsubishi Electric Corp Heat exchanger, method for recovering its function, heat exchanger and ventilator and maintenance system therefor
JP2002310589A (en) * 2001-04-11 2002-10-23 Mitsubishi Electric Corp Heat exchanging element
JP4660955B2 (en) * 2001-04-11 2011-03-30 三菱電機株式会社 Heat exchange element
KR100539429B1 (en) * 2001-11-01 2005-12-27 미츠비시덴키 가부시키가이샤 Heat exchanger and method of manufacturing the same
US7188665B2 (en) 2001-11-16 2007-03-13 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and heat exchanger ventilator
JP2003148892A (en) * 2001-11-16 2003-05-21 Mitsubishi Electric Corp Heat exchanger and heat exchanging ventilator
EP1553354A4 (en) * 2002-07-22 2010-01-20 Daikin Ind Ltd Dehumidifying element, and adsorbing element used for the dehumidifying element
EP1553354A1 (en) * 2002-07-22 2005-07-13 Daikin Industries, Ltd. Dehumidifying element, and adsorbing element used for the dehumidifying element
KR20040040176A (en) * 2002-11-06 2004-05-12 엘지전자 주식회사 Heat exchange structure in air conditioner
JP2007003161A (en) * 2005-06-27 2007-01-11 Mitsubishi Electric Corp Heat exchanger, and its manufacturing method
JP2007315649A (en) * 2006-05-24 2007-12-06 Mitsubishi Electric Corp Total enthalpy heat exchanger
JP4855386B2 (en) * 2006-10-03 2012-01-18 三菱電機株式会社 Total heat exchange element and total heat exchanger
US8607851B2 (en) 2006-10-03 2013-12-17 Mitsubishi Electric Corporation Total heat exchanging element and total heat exchanger
US8689859B2 (en) 2006-10-03 2014-04-08 Mitsubishi Electric Corporation Total heat exchanging element and total heat exchanger
JPWO2008041327A1 (en) * 2006-10-03 2010-02-04 三菱電機株式会社 Total heat exchange element and total heat exchanger
JP2007147279A (en) * 2007-03-05 2007-06-14 Mitsubishi Electric Corp Heat exchanger and heat exchanging ventilator
EP2138792A1 (en) * 2007-04-17 2009-12-30 Mitsubishi Electric Corporation Process for manufacturing total heat exchanger element and total heat exchanger element
EP2138792A4 (en) * 2007-04-17 2013-07-24 Mitsubishi Electric Corp Process for manufacturing total heat exchanger element and total heat exchanger element
JPWO2008129669A1 (en) * 2007-04-17 2010-07-22 三菱電機株式会社 Total heat exchange element manufacturing method and total heat exchange element
US8316542B2 (en) 2007-04-17 2012-11-27 Mitsubishi Electric Corporation Method of manufacturing total heat exchange element and total heat exchange element
WO2008129669A1 (en) * 2007-04-17 2008-10-30 Mitsubishi Electric Corporation Process for manufacturing total heat exchanger element and total heat exchanger element
JP4874389B2 (en) * 2007-04-17 2012-02-15 三菱電機株式会社 Total heat exchange element manufacturing method and total heat exchange element
JP5036813B2 (en) * 2007-05-02 2012-09-26 三菱電機株式会社 HEAT EXCHANGE ELEMENT, HEAT EXCHANGER AND HEAT EXCHANGE ELEMENT MANUFACTURING METHOD
KR101148711B1 (en) * 2007-05-02 2012-05-23 미쓰비시덴키 가부시키가이샤 Heat exchanger element and heat exchanger
US8726978B2 (en) 2007-05-02 2014-05-20 Mitsubishi Electric Corporation Heat exchanger element and heat exchanger
JPWO2008139560A1 (en) * 2007-05-02 2010-07-29 三菱電機株式会社 Heat exchange element and heat exchanger
WO2008139560A1 (en) * 2007-05-02 2008-11-20 Mitsubishi Electric Corporation Heat exchanger element and heat exchanger
KR101177615B1 (en) * 2007-05-31 2012-08-27 미쓰비시덴키 가부시키가이샤 Heat exchanger element
KR101072119B1 (en) 2007-06-18 2011-10-10 미쓰비시덴키 가부시키가이샤 Heat exchange element, method of producing the heat exchange element, heat exchanger, and heat exchange and ventilation device
US8590606B2 (en) 2007-06-18 2013-11-26 Mitsubishi Electric Corporation Heat exchange element and manufacturing method thereof, heat exchanger, and heat exchange ventilator
CN101419033B (en) * 2007-10-25 2012-02-22 台州市普瑞泰环境设备科技有限公司 Long life highly effective energy-conserving type heat exchanging core
KR100911024B1 (en) * 2008-01-29 2009-08-05 한국에너지기술연구원 Method and apparatus for manufacturing the honeycomb structure of air-to-air heat exchanger
JPWO2012056506A1 (en) * 2010-10-25 2014-02-24 三菱電機株式会社 Total heat exchange element and total heat exchanger
JP5627704B2 (en) * 2010-10-25 2014-11-19 三菱電機株式会社 Total heat exchange element and total heat exchanger
JP2012189264A (en) * 2011-03-10 2012-10-04 Mitsubishi Electric Corp Total heat exchange element
WO2015098592A1 (en) * 2013-12-26 2015-07-02 東レ株式会社 Method for manufacturing total heat exchanger element, and total heat exchanger element
CN105874295A (en) * 2013-12-26 2016-08-17 东丽株式会社 Method for manufacturing total heat exchanger element, and total heat exchanger element
CN104110983A (en) * 2014-07-16 2014-10-22 王云清 Dew point evaporative cooling core
JP2019515244A (en) * 2016-05-03 2019-06-06 リケア ホールディング ビーブイ Heat exchanger to exchange energy between two air flows
US20220178630A1 (en) * 2019-02-27 2022-06-09 Panasonic Intellectual Property Management Co., Ltd. Heat exchange element and heat exchange-type ventilation device using same
WO2020226047A1 (en) * 2019-05-09 2020-11-12 ダイキン工業株式会社 Total heat exchange element
WO2020226048A1 (en) * 2019-05-09 2020-11-12 ダイキン工業株式会社 Method for using sheet-shaped member
JPWO2020226048A1 (en) * 2019-05-09 2021-10-28 ダイキン工業株式会社 How to use the sheet-shaped member
CN113748306A (en) * 2019-05-09 2021-12-03 大金工业株式会社 Total heat exchange element
JP2020183841A (en) * 2019-05-09 2020-11-12 ダイキン工業株式会社 Total heat exchange element
EP3954961A4 (en) * 2019-05-09 2022-12-21 Daikin Industries, Ltd. Total heat exchange element
US11559861B2 (en) 2019-05-09 2023-01-24 Daikin Industries, Ltd. Method for using sheet shaped member
CN113748306B (en) * 2019-05-09 2023-11-03 大金工业株式会社 Total heat exchange element
WO2024053082A1 (en) * 2022-09-09 2024-03-14 三菱電機株式会社 Heat exchange element and heat exchange ventilation device

Also Published As

Publication number Publication date
JP3501075B2 (en) 2004-02-23

Similar Documents

Publication Publication Date Title
JP2001027489A (en) Heat-exchanger and manufacture of heat-exchanger
US6536514B1 (en) Heat exchanger and method for preparing it
JP3969064B2 (en) Heat exchanger and heat exchange ventilator
EP2163842B1 (en) Total heat exchanger element and process for manufacturing the same
US8550151B2 (en) Heat exchanger
JP5506441B2 (en) Total heat exchange element and total heat exchanger
CN1328564C (en) Total heat exchanging element
JPH1054691A (en) Shim of heat exchanger, and member for heat exchanger, and heat exchanger, and its manufacture
JP5036813B2 (en) HEAT EXCHANGE ELEMENT, HEAT EXCHANGER AND HEAT EXCHANGE ELEMENT MANUFACTURING METHOD
JP2738284B2 (en) Method of manufacturing heat exchanger, spacing plate thereof and partition plate of heat exchanger
JP2002310589A (en) Heat exchanging element
JP4305530B2 (en) Heat exchanger
WO2023223455A1 (en) Total heat exchange element, total heat exchanger, and production method of total heat exchange element
JP2002228382A (en) Heat exchanger
CN111919078B (en) Total heat exchange element and total heat exchanger
JP2007003161A (en) Heat exchanger, and its manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R151 Written notification of patent or utility model registration

Ref document number: 3501075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term