JPWO2007097447A1 - 核酸保護基の脱離方法 - Google Patents

核酸保護基の脱離方法 Download PDF

Info

Publication number
JPWO2007097447A1
JPWO2007097447A1 JP2008501776A JP2008501776A JPWO2007097447A1 JP WO2007097447 A1 JPWO2007097447 A1 JP WO2007097447A1 JP 2008501776 A JP2008501776 A JP 2008501776A JP 2008501776 A JP2008501776 A JP 2008501776A JP WO2007097447 A1 JPWO2007097447 A1 JP WO2007097447A1
Authority
JP
Japan
Prior art keywords
group
general formula
following general
acid derivative
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008501776A
Other languages
English (en)
Inventor
英俊 北川
英俊 北川
博文 増田
博文 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shinyaku Co Ltd
Original Assignee
Nippon Shinyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shinyaku Co Ltd filed Critical Nippon Shinyaku Co Ltd
Publication of JPWO2007097447A1 publication Critical patent/JPWO2007097447A1/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/067Pyrimidine radicals with ribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/167Purine radicals with ribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Saccharide Compounds (AREA)

Abstract

本発明の目的は、リボースの2’位水酸基が下記置換基(I)で保護され、3’位水酸基と5’位水酸基がケイ素保護基で保護されているリボ核酸誘導体について、リボースの3’位水酸基と5’位水酸基を保護しているケイ素置換基を、安価かつ大量に効率よく脱離する方法を提供することにある。式(I)中、WG1は、電子吸引性基を表す。次の一般式(1)で表されるリボ核酸誘導体に、次の一般式(2)で表される3級アミンとフッ化水素酸との塩、又は3級アミンとフッ化水素酸との混合物を作用させ、リボースの3’位水酸基と5’位水酸基とを保護しているケイ素置換基を脱離することによって、次の一般式(3)で表されるリボ核酸誘導体を製造する。

Description

本発明は、リボースの2’位水酸基が下記置換基(I)で保護され、3’位水酸基と5’位水酸基がケイ素保護基で保護されているリボ核酸誘導体について、リボースの3’位水酸基と5’位水酸基のケイ素保護基を除去する方法に関するものである。
Figure 2007097447
式(I)中、WGは、電子吸引性基を表す。
WGに係る「電子吸引性基」としては、例えば、シアノ、ニトロ、アルキルスルホニル、アリールスルホニル、ハロゲンを挙げることができる。なかでも、シアノが好ましい。
WGに係る「アルキルスルホニル」の「アルキル」部分としては、例えば、直鎖状又は分枝鎖状の炭素数1〜5のアルキルを挙げることができる。具体的には、例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、n−ペンチル、イソペンチル、ネオペンチル、tert−ペンチルを挙げることができる。
WGに係る「アリールスルホニル」の「アリール」部分としては、例えば、炭素数6〜12のアリールを挙げることができる。具体的には、例えば、フェニル、1−ナフチル、2−ナフチル、ビフェニルを挙げることができる。当該アリールは置換されていてもよく、かかる置換基としては、例えば、ハロゲン、アルキル、アルコキシ、シアノ、ニトロを挙げることができ、これらが任意の位置に1〜3個置換されていてもよい。
オリゴリボ核酸(オリゴRNA)は、遺伝子解析のRNAプローブ、RNA医薬品素材(アンチセンスRNA、リボザイム、RNAiを利用した遺伝子発現制御)、人工酵素、アプタマーとして有用であることは周知である。
オリゴRNAを製造するための試薬として、リボースの2’位水酸基が中性条件において脱離可能な2−シアノエトキシメチル(CEM基)で置換されているホスホロアミダイト化合物が知られている(非特許文献1)。また、和田らも、オリゴRNAを製造するための試薬として、例えば、1−(2−シアノエトキシ)エチル(CEE基)を2’位の水酸基に導入したホスホロアミダイト化合物を提供している(非特許文献2、非特許文献3)。
該ホスホロアミダイト化合物を製造する過程において、和田らは、リボースの3’位水酸基と5’位水酸基を保護しているジシロキシル基を脱離するために、フッ素化剤(テトラブチルアンモニウムフロリド(以下、「TBAF」という。)、トリエチルアミントリヒドロフロリド、フッ化水素ピリジン等)と酸(酢酸、塩酸、硫酸)との任意の混合比の混合試薬として使用することができることを報告している(特許文献1)。しかしながら、実施例では、TBAFと酢酸との混合試薬を使用してジシロキシル基が脱保護されている例があるのみである。
また、實吉らは、2’位水酸基が2−シアノエチルで置換されたホスホロアミダイト化合物を製造する過程において、リボースの3’位水酸基と5’位水酸基を保護しているジシロキシル基を脱離するため、トリエチルアミントリヒドロフロリドとトリエチルアミンとの1:0.5の混合比の混合試薬を使用することができることを報告している(非特許文献4)。

国際公報WO2005/023828 A1パンフレット 大木ら,ORGANIC LETTERS,Vol.7,3477(2005) 和田 猛,BIO INDUSTRY,Vol.21,No.1,17(2004) T.Umemotoら,Tetrahedron Letters,Vol.45,9529(2004) 實吉 尚郎ら,Jornal of Organic Chemistry,70,10453(2005)
本発明の目的は、主として、リボースの2’位水酸基が下記置換基(I)で保護され、3’位水酸基と5’位水酸基がケイ素保護基で保護されているリボ核酸誘導体について、リボースの3’位水酸基と5’位水酸基を保護しているケイ素置換基を、効率よく脱離する方法を提供することにある。
Figure 2007097447
式(I)中、WGは、前記と同義である。
本発明者らは、上記目的を達成するために、鋭意検討した結果、次の一般式(1)で表されるリボ核酸誘導体に、次の一般式(2)で表される3級アミンとフッ化水素酸との塩、又は3級アミンとフッ化水素酸との混合物を作用させることによって、次の一般式(3)で表されるリボ核酸誘導体を効率よく製造できることを見出し、本発明を完成するに至った。
Figure 2007097447
式(1)、(2)及び(3)中、Bzは、保護基を有していてもよい核酸塩基又はその修飾体を表す。WGは、前記と同義である。R7a、R7b、R7cは、それぞれ同一若しくは異なって、アルキルを表すか、又はR7a、R7b、R7cが隣接する窒素原子と一緒になって形成する、2環性の飽和アミノ環基を表す。xは、1〜30の範囲内にある数を表す。Aは、次の一般式(4a)又は(4b)で表されるケイ素置換基を表す。
Figure 2007097447
式(4a)及び(4b)中、Rは、アルキルを表す。
Bzに係る「核酸塩基」としては、核酸の合成に使用されるものであれば特に制限されず、例えば、シトシン、ウラシル等のピリミジン塩基、アデニン、グアニン等のプリン塩基が挙げることができる。
Bzに係る「核酸塩基」は、保護されていてもよく、なかでもアミノ基を有する核酸塩基、例えば、アデニン、グアニン、シトシンは、アミノ基が保護されているのが好ましい。かかる「アミノ基の保護基」としては、核酸の保護基として使用されるものであれば特に制限されず、具体的には、例えば、ベンゾイル、4−メトキシベンゾイル、アセチル、プロピオニル、ブチリル、イソブチリル、フェニルアセチル、フェノキシアセチル、4−tert−ブチルフェノキシアセチル、4−イソプロピルフェノキシアセチル、(ジメチルアミノ)メチレンを挙げることができる。
Bzの「修飾体」とは、核酸塩基が任意の置換基で置換されている基であり、かかる置換基としては、例えば、ハロゲン、アシル、アルキル、アリールアルキル、アルコキシ、アルコキシアルキル、ヒドロキシ、アミノ、モノアルキルアミノ、ジアルキルアミノ、カルボキシ、シアノ、ニトロを挙げることができ、これらが任意の位置に1〜3個置換されている。
Bzの「修飾体」に係る「ハロゲン」としては、例えば、フッ素、塩素、臭素、ヨウ素を挙げることができる。
Bzの「修飾体」に係る「アシル」としては、例えば、直鎖状又は分枝鎖状の炭素数1〜6のアルカノイル、炭素数7〜13のアロイルを挙げることができる。具体的には、例えば、ホルミル、アセチル、n−プロピオニル、イソプロピオニル、n−ブチリル、イソブチリル、tert−ブチリル、バレリル、ヘキサノイル、ベンゾイル、ナフトイル、レブリニルを挙げることができる。
Bzの「修飾体」に係る「アルキル」としては、例えば、直鎖状又は分枝鎖状の炭素数1〜5のアルキルを挙げることができる。具体的には、例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、n−ペンチル、イソペンチル、ネオペンチル、tert−ペンチルを挙げることができる。当該アルキルは置換されていてもよく、かかる置換基としては、例えば、ハロゲン、アルキル、アルコキシ、シアノ、ニトロを挙げることができ、これらが任意の位置に1〜3個置換されていてもよい。
Bzの「修飾体」に係る「アリールアルキル」、「アルコキシアルキル」、「モノアルキルアミノ」、「ジアルキルアミノ」及び「アルキルスルホニル」の「アルキル」部分は、上記の「アルキル」と同じものを挙げることができる。
Bzの「修飾体」に係る「アルコキシ」としては、例えば、直鎖状又は分枝鎖状の炭素数1〜4のアルコキシを挙げることができる。具体的には、例えば、メトキシ、エトキシ、n−プロポキシ、イソプロポキシ、n−ブトキシ、イソブトキシ、sec−ブトキシ、tert−ブトキシを挙げることができる。なかでも炭素数1〜3のものが好ましく、とりわけメトキシが好ましい。
Bzの「修飾体」に係る「アルコキシアルキル」の「アルコキシ」部分は、上記の「アルコキシ」と同じものを挙げることができる。
Bzの「修飾体」に係る「アリールアルキル」の「アリール」としては、例えば、炭素数6〜12のアリールを挙げることができる。具体的には、例えば、フェニル、1−ナフチル、2−ナフチル、ビフェニルを挙げることができる。当該アリールは置換されていてもよく、かかる置換基としては、例えば、ハロゲン、アルキル、アルコキシ、シアノ、ニトロを挙げることができ、これらが任意の位置に1〜3個置換されていてもよい。
Bzの「修飾体」に係る「アルキル」、「アリール」の置換基である「ハロゲン」、「アルキル」及び「アルコキシ」としては、各々上記と同じものを挙げることができる。

に係る「アルキル」としては、例えば、直鎖状又は分枝鎖状の炭素数1〜5のアルキルを挙げることができる。具体的には、例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、n−ペンチル、イソペンチル、ネオペンチル、tert−ペンチルを挙げることができる。

本発明において使用しうる3級アミンとフッ化水素酸との塩、又は3級アミンとフッ化水素酸との混合物としては、例えば、上記一般式(2)で表される3級アミンとフッ化水素酸との塩、又は適当な溶媒中において3級アミンとフッ化水素酸とが任意の比で混合されたものを挙げることができる。

7a、R7b、R7cに係る「アルキル」としては、Bzの「修飾体」に係る「アルキル」と同じものを挙げることができる。
7a、R7b、R7cに係る「2環性の飽和アミノ環基」としては、例えば、キヌクリジン、トリエチレンジアミンを挙げることができる。
xは、1〜30の範囲内にある数を表し、端数であってもよい。好ましくは2〜15の範囲内にある数であり、より好ましくは3〜10の範囲内にある数である。

本発明に使用する「3級アミン」として、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N,N−ジイソプロピルエチルアミン、キヌクリジン、トリエチレンジアミンを挙げることができる。
本発明に係る「3級アミンとフッ化水素酸との塩」としては、例えば、トリメチルアミントリハイドロフロリド、トリメチルアミンテトラハイドロフロリド、トリメチルアミンペンタハイドロフロリド、トリメチルアミンヘキサハイドロフロリド、トリメチルアミンペンタハイドロフロリド、トリエチルアミンジハイドロフロリド、トリエチルアミントリハイドロフロリド、トリエチルアミンテトラハイドロフロリド、トリエチルアミン26ハイドロフロリド、キヌクリジントリハイドロフロリド、トリエチレンジアミンテトラハイドロフロリドを挙げることができる(例えば、Journal Molecular Structure,193,247(1989)、Pol.J.Chem,67(2),281(1993)、Chem。Europ.J.,4(6),1043(1998)、J.Fluorine.Chem.,118(1−2),123,(2002)を参照)。とりわけ、トリエチルアミントリハイドロフロリドが好ましい。

また、本発明に使用しうる「3級アミンとフッ化水素酸との混合物」としては、例えば、上記3級アミンとフッ化水素酸とを、適当な溶媒(例えば、THF、アセトニトリル、メタノール、イソプロパール、トルエン)中、例えば、1:1〜1:30(3級アミン:フッ化水素酸)の混合比(モル比)で混合したものを挙げることができる。また、好ましくは1:2〜1:15(3級アミン:フッ化水素酸)の混合比(モル比)で混合したものであり、より好ましくは1:3〜1:10(3級アミン:フッ化水素酸)の混合比(モル比)で混合したものである。
また、本発明として、次の一般式(1)で表されるリボ核酸誘導体に、次の一般式(2)で表される3級アミンとフッ化水素酸との塩、又は3級アミンとフッ化水素酸との混合物を作用させ、リボースの3’位水酸基と5’位水酸基とを保護しているケイ素置換基を脱離することによって、次の一般式(3)で表されるリボ核酸誘導体を製造する工程を含む、下記一般式(A)で表されるホスホロアミダイト化合物(以下、「ホスホロアミダイト化合物(A)」という。)の製造方法を挙げることができる。
Figure 2007097447
式(1)、(2)及び(3)中、A、Bz、R7a、R7b、R7c、WG、xは、前記と同義である。
Figure 2007097447
式(A)中、Bz、WGは、前記と同義である。R2a、R2bは、同一若しくは異なって、アルキルを表すか、又は、R2a、R2bが隣接する窒素原子と一緒になって形成する、5〜6員の飽和アミノ環基を表す。かかる飽和アミノ環基は、窒素原子の他に環構成原子として酸素原子又は硫黄原子を1個有していてもよい。WGは、同一又は異なって、電子吸引性基を表す。Rは、次の一般式(5)で表される置換基を表す。
Figure 2007097447
式(5)中、R11、R12、R13は、同一又は異なって、水素又はアルコキシを表す。

11、R12、R13に係る「アルコキシ」としては、前記Bzの修飾体に係る「アルコキシ」と同じものを挙げることができる。
2a、R2bに係る「アルキル」としては、前記Bzの修飾体に係る「アルキル」と同じものを挙げることができる。
2a、R2bに係る「5〜6員の飽和アミノ環基」としては、例えば、ピロリジン−1−イル、ピペリジン−1−イル、モルホリン−1−イル、チオモルホリン−1−イルを挙げることができる。
WGに係る「電子吸引性基」としては、前記WGに係る「電子吸引性基」と同じものを挙げることができる。
ホスホロアミダイト化合物(A)は、リボースの2’位水酸基が下記置換基(I)で保護され、3’位水酸基と5’位水酸基がケイ素保護基で保護されているホスホロアミダイト化合物である。また、2’位の水酸基に導入された基が直鎖状の置換基であり、3’位の水酸基に結合するリン原子の周りにおける立体が混み合っていないため、従来から使用されているホスホロアミダイト化合物と比較して、オリゴRNAを合成する際、非常に短時間に縮合反応が進行し、縮合収率がよいという特徴を有する。ホスホロアミダイト化合物(A)を使用することにより、オリゴDNAの製造とほぼ同様の手法を用いて、高純度のオリゴRNAの製造が可能である。
Figure 2007097447
式(I)中、WGは、前記と同義である。
ここで、「オリゴDNA」とは、デオキシリボ核酸(DNA)のみからなるオリゴ核酸をいう。また、本発明において「オリゴRNA」とは、リボ核酸(RNA)及びデオキシリボ核酸(DNA)からなるオリゴ核酸であり、少なくとも1つはリボ核酸(RNA)を含有するオリゴ核酸をいう。
以下、本発明を詳細に説明する。
以下に示す製法において、原料が反応に影響を及ぼす置換基(例えば、ヒドロキシ、アミノ、カルボキシ)を有する場合は、原料をあらかじめ公知の方法に従い、適当な保護基で保護した後に反応を行う。保護基は、最終的に、接触還元、アルカリ処理、酸処理などの公知の方法に従い保護基を脱離することができる。
I.本発明にかかるホスホロアミダイト化合物(A)の製法
本発明にかかる次の一般式(A)で表されるホスホロアミダイト化合物(A)の製造方法(以下、「本発明ホスホロアミダイト製造方法」という。)について、以下に詳述する。
ホスホロアミダイト化合物(A)は、公知化合物又は容易に製造可能な中間体から、例えば、次の工程a〜工程eの操作を実施することにより製造することができる。

以下、詳細に説明する。
(1)工程a:
次の一般式(6)で表されるリボ核酸誘導体にアルキル化試薬を作用させることによって、中性条件下において脱離するエーテル型保護基を2’位の水酸基に導入した、次の一般式(1)で表されるリボ核酸誘導体を製造する工程。
Figure 2007097447
式(1)及び(6)中、Bz、A、WGは、前記と同義である。

「アルキル化試薬」として、例えば、次の一般式(11)で表されるエーテル化合物を挙げることができる。
Figure 2007097447
式(11)中、Lは、ハロゲン、アリールチオ基、アルキルスルホキシド基又はアルキルチオ基を表す。WGは、前記と同義である。
Lに係る「ハロゲン」、「アリールチオ基」の「アリール」、「アルキルスルホキシド基」及び「アルキルチオ基」の「アルキル」としては、前記Bzの修飾体に係る「ハロゲン」、「アリール」、「アルキル」と同じものを挙げることができる。
エーテル化合物(11)の具体例としては、次の1.〜2.の化合物を挙げることができる。
1.クロロメチル 2−シアノエチルエーテル
2.2−シアノエチル メチルチオメチルエーテル
エーテル化合物(11)は、中性条件下において脱離可能なエーテル型置換基を、2’位の水酸基に塩基性条件下において導入することができる新規なアルキル化試薬であり、ホスホロアミダイト化合物(A)を製造するための試薬として有用である。
エーテル化合物(11)は、次に示す工程1〜工程4を実施することにより製造することができる。
工程1:
次の一般式(13)で表されるアルコール化合物をアルキルチオメチル化し、次の一般式(14)で表される化合物を製造する工程。
Figure 2007097447
式(13)及び(14)中、WGは、前記と同義である。Rは、アルキル又はアリールを表す。
化合物(14)は、Lがアルキルチオ基であるエーテル化合物(11)である。
に係る「アルキル」としては、前記Bzの修飾体に係る「アルキル」と同じものを挙げることができる。
がメチルである場合、アルキルチオメチル化試薬としては、例えば、ジメチルスルホキシド、無水酢酸及び酢酸の混合溶液を挙げることができる。「ジメチルスルホキシド」の使用量は、化合物(13)のモル量に対して、10〜200倍モル量が適当であり、20〜100倍モル量である。「酢酸」の使用量は、化合物(13)のモル量に対して、10〜150倍モル量が適当であり、20〜100倍モル量である。「無水酢酸」の使用量は、化合物(13)のモル量に対して、10〜150倍モル量が適当であり、20〜100倍モル量である。反応温度は、0℃〜100℃が適当である。反応時間は、使用する原料の種類、反応温度等によって異なるが、通常1〜48時間が適当である。

工程2:
化合物(14)をハロゲン化し、次の一般式(15)で表される化合物を製造する工程。
Figure 2007097447
式(14)及び(15)中、WG、Rは、前記と同義である。Xは、ハロゲンを表す。
化合物(14)は、エーテル化合物(11)におけるLがハロゲンである化合物である。
に係る「ハロゲン」としては、前記Bzの修飾体に係る「ハロゲン」と同じものを挙げることができる。
本工程は、公知の方法(例えば、T.Bennecheら、Synthesis 762(1983))により実施することができる。使用する溶媒は、反応に関与しなければ特に限定されないが、例えば、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタンなどのハロゲン系炭化水素を挙げることができる。ハロゲン化試薬としては、例えば、塩化スルフリル、オキシ塩化リンを挙げることができる。「ハロゲン化試薬」の使用量は、化合物(14)のモル量に対して、0.8〜20倍モル量が適当であり、1〜10倍モル量である。反応温度は、0℃〜100℃が適当である。反応時間は、使用する原料の種類、反応温度等によって異なるが、通常30分〜24時間が適当である。

工程3:
化合物(15)をアリールチオ化し、次の一般式(16)で表される化合物を製造する工程。
Figure 2007097447
式(15)及び(16)中、WG、Xは、前記と同義である。R3aは、アリールを表す。
化合物(16)は、エーテル化合物(11)におけるLがアリールチオ基である化合物である。
3aに係る「アリール」としては、前記Bzの修飾体に係る「アリール」と同じものを挙げることができる。
本工程は、公知の方法により実施することができる。使用する溶媒は、反応に関与しなければ特に限定されないが、例えば、ジクロロメタン、アセトニトリルを挙げることができる。アリールチオ化試薬としては、例えば、チオフェノール、4−メチルベンゼンチオールを挙げることができる。「アリールチオ化試薬」の使用量は、化合物(15)のモル量に対して、0.8〜20倍モル量が適当であり、好ましくは1〜5倍モル量である。反応温度は、0℃〜100℃が適当である。反応時間は、使用する原料の種類、反応温度等によって異なるが、通常1〜48時間が適当である。

工程4:
化合物(14)を酸化し、次の一般式(17)で表される化合物を製造する工程。
Figure 2007097447
式(14)及び(17)中、WG、Rは、前記と同義である。
化合物(17)は、エーテル化合物(11)におけるLがアルキルスルホキシド基である化合物である。
に係る「アルキル」としては、前記Bzの修飾体に係る「アルキル」と同じものを挙げることができる。
本工程は、公知の方法により実施することができる。使用する溶媒は、反応に関与しなければ特に限定されないが、例えば、ジクロロメタン、クロロホルム、メタノールを挙げることができる。酸化剤としては、例えば、メタクロロ過安息香酸、メタ過ヨウ素酸塩、過酸化水素を挙げることができる。「酸化剤」の使用量は、化合物(14)のモル量に対して、0.8〜10倍モル量が適当であり、好ましくは1〜2倍モル量である。反応温度は、0℃〜100℃が適当である。反応時間は、使用する原料の種類、反応温度等によって異なるが、通常1〜48時間が適当である。
「アルキル化試薬」として、化合物(15)を使用する場合、以下のように実施することができる。
本工程は、公知の方法に従い、市販品として入手可能又は文献記載の方法に従い合成可能であるリボ核酸誘導体(6)にアルキル化試薬と塩基とを作用させることにより実施することができる。使用する溶媒は、反応に関与しなければ特に限定されないが、例えば、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタンなどのハロゲン系炭化水素を挙げることができる。「アルキル化試薬」の使用量は、リボ核酸誘導体(6)のモル量に対して、0.8〜20倍モル量が適当であり、好ましくは1〜10倍モル量である。本工程において、必要に応じて、リボ核酸誘導体(6)に金属試薬と塩基を作用させ製造される中間体を経由した後、アルキル化試薬を作用させることもできる。かかる「金属試薬」として、例えば、二塩化ジブチルスズ、t−ブチルマグネシウムクロライドを挙げることができる。「金属試薬」の使用量は、リボ核酸誘導体(6)のモル量に対して、0.8〜20倍モル量が適当であり、好ましくは1〜10倍モル量である。「塩基」としては、ピリジン、2,6−ジメチルピリジン、2,4,6−トリメチルピリジン、N−メチルイミダゾール、トリエチルアミン、トリブチルアミン、N,N−ジイソプロピルエチルアミン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセンなどの有機塩基を挙げることができる。「塩基」の使用量は、リボ核酸誘導体(6)のモル量に対して、0.8〜20倍モル量が適当であり、好ましくは1〜10倍モル量である。反応温度は、0℃〜120℃が適当である。反応時間は、使用する原料の種類、反応温度等によって異なるが、通常30分〜24時間が適当である。
「アルキル化試薬」として、化合物(14)又は(16)を使用する場合、以下のように実施することができる。
本工程は、公知の方法(例えば、M.Matteucci,Tetrahedron Letters,Vol.31,2385(1990))に従い、市販品として入手可能又は文献記載の方法に従い合成可能であるリボ核酸誘導体(6)に、アルキル化試薬と酸と硫黄原子に対するハロゲン化剤とを作用させることにより実施することができる。「アルキル化試薬」の使用量は、リボ核酸誘導体(6)のモル量に対して、0.8〜5倍モル量が適当であり、好ましくは1〜3倍モル量である。「酸」としては、例えば、トリフルオロメタンスルホン酸、トリフルオロメタンスルホン酸銀、トリメチルシリルトリフルオロメタンスルホネートを挙げることができる。「酸」の使用量は、リボ核酸誘導体(6)のモル量に対して、0.01〜20倍モル量が適当であり、好ましくは0.02〜10倍モル量である。使用する溶媒は、反応に関与しなければ特に限定されないが、例えば、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタン、ベンゼン、トルエン、キシレン、テトラヒドロフラン(以下、「THF」という。)、アセトニトリル又はこれら任意の混合溶媒を挙げることができる。本工程において使用する「硫黄原子に対するハロゲン化剤」として、例えば、N−ブロモスクシンイミド(NBS)、N−ヨードスクシンイミド(NIS)を挙げることができる。「硫黄原子に対するハロゲン化剤」の使用量は、リボ核酸誘導体(6)のモル量に対して、0.8〜10倍モル量が適当であり、好ましくは1〜5倍モル量である。反応温度は、−78℃〜30℃が適当である。反応時間は、使用する原料の種類、反応温度等によって異なるが、通常5分〜5時間が適当である。
「アルキル化試薬」として、化合物(17)を使用する場合、以下のように実施することができる。
本工程は、公知の方法に従い、市販品として入手可能又は文献記載の方法に従い合成可能であるリボ核酸誘導体(6)に、アルキル化試薬と酸無水物と塩基とを作用させることにより実施することができる。「アルキル化試薬」の使用量は、リボ核酸誘導体(6)のモル量に対して、0.8〜5倍モル量が適当であり、好ましくは1〜3倍モル量である。「酸無水物」としては、例えば、トリフルオロメタンスルホン酸無水物、無水酢酸を挙げることができる。「酸無水物」の使用量は、リボ核酸誘導体(6)のモル量に対して、0.01〜20倍モル量が適当であり、好ましくは0.02〜10倍モル量である。塩基としては、例えば、テトラメチルウレア、コリジンを挙げることができる。「塩基」の使用量は、リボ核酸誘導体(6)のモル量に対して、0.01〜20倍モル量が適当であり、好ましくは0.02〜10倍モル量である。使用する溶媒は、反応に関与しなければ特に限定されないが、例えば、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタン又はこれら任意の混合溶媒を挙げることができる。反応温度は、−78℃〜30℃が適当である。反応時間は、使用する原料の種類、反応温度等によって異なるが、通常5分〜24時間が適当である。
(2)工程b:
工程aとは別に、リボ核酸誘導体(6)にジメチルスルホキシドと酢酸と無水酢酸とを作用させることによって、次の一般式(7)で表されるリボ核酸誘導体を製造する工程。
Figure 2007097447
式(6)及び(7)中、A、Bzは、前記と同義である。
に係る「アルキル」としては、前記Bzの修飾体に係る「アルキル」と同じものを挙げることができる。
本工程は、公知の方法に従い、市販品として入手可能又は文献記載の方法に従い合成可能であるリボ核酸誘導体(6)に、ジメチルスルホキシドと酢酸と無水酢酸とを作用させることにより実施することができる。
「ジメチルスルホキシド」の使用量は、リボ核酸誘導体(6)のモル量に対して、10〜200倍モル量が適当であり、好ましくは20〜100倍モル量である。「酢酸」の使用量は、リボ核酸誘導体(6)のモル量に対して、10〜150倍モル量が適当であり、好ましくは20〜100倍モル量である。「無水酢酸」の使用量は、リボ核酸誘導体(6)のモル量に対して、10〜150倍モル量が適当であり、好ましくは20〜100倍モル量である。反応温度は、10℃〜50℃が適当である。反応時間は、使用する原料の種類、反応温度等によって異なるが、通常30分〜24時間が適当である。
(3)工程c:
工程bにおいて製造されるリボ核酸誘導体(7)に次の一般式(8)で表されるアルコール化合物と酸と硫黄原子に対するハロゲン化剤とを作用させることによって、中性条件下において脱離するエーテル型保護基を2’位の水酸基に導入した、次の一般式(1)で表されるリボ核酸誘導体を製造する工程。
Figure 2007097447
式(7)、(8)及び(1)中、A、Bz、WGは、前記と同義である。
本工程は、公知の方法に従い、リボ核酸誘導体(7)に、アルコール化合物(8)と酸と硫黄原子に対するハロゲン化剤とを作用させることにより実施することができる。
使用する溶媒は、反応に関与しなければ特に限定されないが、例えば、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタン、ベンゼン、トルエン、キシレン、THF、アセトニトリル又はこれら任意の混合溶媒を挙げることができる。「アルコール化合物(8)」の使用量は、リボ核酸誘導体(7)のモル量に対して、0.8〜20倍モル量が適当であり、好ましくは1〜10倍モル量である。「酸」としては、例えば、トリフルオロメタンスルホン酸、トリフルオロメタンスルホン酸銀、トリメチルシリルトリフルオロメタンスルホネートを挙げることができる。「硫黄原子に対するハロゲン化剤」としては、例えば、N−ブロモスクシンイミド(NBS)、N−ヨードスクシンイミド(NIS)を挙げることができる。「硫黄原子に対するハロゲン化剤」の使用量は、リボ核酸誘導体(7)のモル量に対して、0.1〜20倍モル量が適当であり、好ましくは0.2〜10倍モル量である。反応温度は、−100℃〜20℃が適当である。反応時間は、使用する原料の種類、反応温度等によって異なるが、通常5分〜12時間が適当である。
(4)工程d:
工程a又はcにおいて製造されるリボ核酸誘導体(1)に、次の一般式(2)で表される3級アミンとフッ化水素酸との塩、又は3級アミンとフッ化水素酸との混合物を作用させリボースの3’位水酸基と5’位水酸基とを保護しているケイ素置換基を脱離することによって、次の一般式(3)で表されるリボ核酸誘導体を製造する工程。
Figure 2007097447
式(1)、(2)及び(3)中、A、Bz、R7a、R7b、R7c、WG、xは、前記と同義である。
本工程は、リボ核酸誘導体(1)を適当な溶媒に溶解し、上記一般式(2)のような3級アミンとフッ化水素酸との塩、又は3級アミンとフッ化水素酸との混合物を反応させることにより実施することができる。
また、場合によっては、3級アミンとフッ化水素酸との塩、又は3級アミンとフッ化水素酸との混合物に、さらに適当な酸を添加した混合試薬を使用して本工程を実施することもできる。使用することができる酸としては、例えば、酢酸、塩酸、硫酸を挙げることができる。当該酸の使用量としては、リボ核酸誘導体(1)のモル量に対して、例えば、0.8〜10が適当であり、好ましくは1〜1.5である。
使用しうる溶媒としては、例えば、THF、アセトニトリル、メタノール、イソプロパール、トルエンを挙げることができる。特に、THF、アセトニトリルが好ましい。
リボ核酸誘導体(1)の種類や用いる3級アミンとフッ化水素酸との塩、3級アミンとフッ化水素酸との混合物、使用する溶媒等によって異なるが、本工程に使用しうる「3級アミンとフッ化水素酸との塩、3級アミンとフッ化水素酸との混合物」の使用量としては、リボ核酸誘導体(1)のモル量に対して、1〜10倍モル量が適当であり、好ましくは1.2〜1.5倍モル量である。反応温度は、0℃〜80℃が適当である。反応時間は、リボ核酸誘導体の種類や用いる3級アミンとフッ化水素酸との塩、3級アミンとフッ化水素酸との混合物、使用する溶媒等によって異なるが、反応温度等によって異なるが、通常30分〜10時間が適当である。
反応終了後、そのまま又は反応混合物に適量の水を加えて冷却することにより、リボ核酸誘導体(3)を析出物として得ることができる。添加する水の量としては、使用する溶媒の量に対して、0.05〜5倍量が適当であり、好ましくは0.06〜1倍量であり、より好ましくは0.07〜0.1倍量である。
(5)工程e:
工程dにおいて製造されるリボ核酸誘導体(3)の5’位の水酸基に酸性条件下において脱離する保護基(R)を導入する、リボ核酸誘導体(10)を製造する工程。
Figure 2007097447
式(3)、(9)及び(10)中、Bz、R、WGは、前記と同義である。Xは、ハロゲンを表す。
に係る「ハロゲン」としては、前記Bzの修飾体に係る「ハロゲン」と同じものを挙げることができる。
本工程は、公知の方法に従い、リボ核酸誘導体(3)にR(9)を作用させることにより実施することができる。R(9)の使用量は、リボ核酸誘導体(3)のモル量に対して、0.8〜20倍モル量が適当であり、好ましくは1〜10倍モル量である。使用する溶媒は、反応に関与しなければ特に限定されないが、例えば、アセトニトリル、THF等を挙げることができる。「塩基」としては、ピリジン、2,6−ジメチルピリジン、2,4,6−トリメチルピリジン、N−メチルイミダゾール、トリエチルアミン、トリブチルアミン、N,N−ジイソプロピルエチルアミン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセンなどの有機塩基を挙げることができる。「塩基」の使用量は、リボ核酸誘導体(3)のモル量に対して、0.8〜20倍モル量が適当であり、好ましくは1〜10倍モル量である。反応温度は、0℃〜120℃が適当である。反応時間は、使用する原料の種類、反応温度等によって異なるが、通常30分〜24時間が適当である。
(6)工程f:
工程eにおいて製造されるリボ核酸誘導体(10)にホスホロアミダイト化試薬と、必要に応じて活性化剤とを作用させることによって、3’位の水酸基がホスホロアミダイト化されたホスホロアミダイト化合物(A)を製造する工程。
Figure 2007097447
式(10)及び(A)中、Bz、R、R2a、R2b、WG、WGは、前記と同義である。
「ホスホロアミダイト化試薬」としては、例えば、次の一般式(12a)、(12b)で表される化合物を挙げることができる。
Figure 2007097447
式(12a)及び(12b)中、R2a、R2b、WGは、前記と同義である。Xは、ハロゲンを表す。
に係る「ハロゲン」としては、前記Bzの修飾体に係る「ハロゲン」と同じものを挙げることができる。
本工程は、リボ核酸誘導体(10)にホスホロアミダイト試薬を作用させて、3’位の水酸基をホスホロアミダイト化する反応であり、公知の方法に従い実施することができる。必要に応じて、活性化剤を使用することもできる。使用する溶媒は、反応に関与しなければ特に限定されないが、例えば、アセトニトリル、THFを挙げることができる。
「ホスホロアミダイト化試薬」の使用量は、リボ核酸誘導体(10)のモル量に対して、0.8〜20倍モル量が適当であり、好ましくは1〜10倍モル量である。「活性化剤」としては、例えば、1H−テトラゾール、5−エチルチオテトラゾール、5−ベンジルメルカプト−1H−テトラゾール、4,5−ジクロロイミダゾール、4,5−ジシアノイミダゾール、ベンゾトリアゾールトリフラート、イミダゾールトリフラート、ピリジニウムトリフラート、N,N−ジイソプロピルエチルアミン、2,4,6−コリジン/N−メチルイミダゾールを挙げることができる。「活性化剤」の使用量は、リボ核酸誘導体(10)のモル量に対して、0.8〜20倍モル量が適当であり、好ましくは1〜10倍モル量である。反応温度は、0℃〜120℃が適当である。反応時間は、使用する原料の種類、反応温度等によって異なるが、通常30分〜24時間が適当である。
このようにして、製造されるホスホロアミダイト化合物(A)は、それ自体公知の手段、例えば、濃縮、液性変換、転溶、溶媒抽出、結晶化、再結晶、分留、クロマトグラフィーにより分離精製することができる。
II.オリゴRNAの製法
ホスホロアミダイト化合物(A)を使用することによって、次の一般式(B)で表されるオリゴRNA(以下、「オリゴRNA(B)」という。)を製造することができる。
以下に詳述する。
Figure 2007097447
式(B)中、各Bは、それぞれ独立して、核酸塩基又はその修飾体を表す。各Qは、それぞれ独立して、O又はSを表す。各Rは、それぞれ独立して、H、水酸基、ハロゲン、アルコキシ、アルキルチオ、アルキルアミノ、ジアルキルアミノ、アルケニルオキシ、アルケニルチオ、アルケニルアミノ、ジアルケニルアミノ、アルキニルオキシ、アルキニルチオ、アルキニルアミノ、ジアルキニルアミノ又はアルコキシアルキルオキシを表すが、少なくとも1つは水酸基を表す。Zは、H、リン酸基又はチオリン酸基を表す。nは、1〜200の範囲内にある整数を表す。
nは、10〜100の範囲内にある整数が好ましく、また、より好ましくは、15〜50の範囲内にある整数である。

Bで表される核酸塩基としては特に限定されるものではなく、例えば、シトシン、ウラシル、チミン等のピリミジン塩基、アデニン、グアニン等のプリン塩基を挙げることができる。
Bの「修飾体」とは、核酸塩基が任意の置換基で置換されている基であり、Bの修飾体に係る置換基としては、例えば、ハロゲン、アシル、アルキル、アリールアルキル、アルコキシ、アルコキシアルキル、ヒドロキシ、アミノ、モノアルキルアミノ、ジアルキルアミノ、カルボキシ、シアノ、ニトロを挙げることができ、これらが任意の位置に1〜3個置換されている。
Bの修飾体に係る「ハロゲン」、「アシル」、「アルキル」、「アリールアルキル」、「アルコキシ」、「アルコキシアルキル」、「アミノ」、「モノアルキルアミノ」、「ジアルキルアミノ」としては、前記Bzの修飾体に係るそれらと同じものを挙げることができる。
Rに係る「ハロゲン」、「アルコキシ」、「アルキルアミノ」又は「ジアルキルアミノ」は、前記Bzの修飾体に係るそれらと同じものを挙げることができる。
Rに係る「アルコキシアルキルオキシ」、「アルキルチオ」の「アルキル」としては、前記Bzの修飾体に係る「アルキル」と同じものを挙げることができる。
Rに係る「アルコキシアルキルオキシ」の「アルコキシ」としては、前記Bzの修飾体に係る「アルコキシ」と同じものを挙げることができる。
Rに係る「アルケニルオキシ」、「アルケニルチオ」、「アルケニルアミノ」、「ジアルケニルアミノ」の「アルケニル」としては、例えば、直鎖状又は分枝鎖状の炭素数2〜6のアルケニルを挙げることができる。具体的には、例えば、ビニル、アリル、1−プロペニル、イソプロペニル、1−ブテニル、2−ブテニル、1−ペンテニル、1−ヘキセニル等を挙げることができる。
Rに係る「アルキニルオキシ」、「アルキニルチオ」、「アルキニルアミノ」、「ジアルキニルアミノ」の「アルキニル」としては、例えば、直鎖状又は分枝鎖状の炭素数2〜4のアルキニルを挙げることができる。具体的には、例えば、エチニル、2−プロピニル、1−ブチニル等を挙げることができる。

ホスホロアミダイト化合物(A)を用いるオリゴRNA(B)の製法は、公知の方法に従い行うことができるが、例えば、次に示す工程A〜工程Gの操作を実施することにより、段階的に3’から5’の方向へ核酸モノマー化合物を縮合することにより行うことができる。
オリゴRNA製法において、各Rのうち少なくとも1つが水酸基であるオリゴRNA(B)を製造することができる。例えば、下記工程Bにおいて、核酸モノマー化合物として全てホスホロアミダイト化合物(A)を使用することにより、各Rが全て水酸基であるオリゴRNA(B)を製造することができる。

下記工程に使用されている化合物及び試薬のうち、ホスホロアミダイト化合物(A)以外については、オリゴRNA又はオリゴDNAの合成に一般的に使用されているものであれば特に限定されない。また、既存の核酸合成試薬を用いた場合と同様、すべての工程をマニュアル又は市販のDNA自動合成機を用いて製造することができる。自動合成機で行うことにより操作法の簡便化、また合成の正確性の点から自動合成機を用いる方法が望ましい。また、下記工程A〜工程Gに記載されている化合物及び試薬のうち、核酸モノマー化合物以外については、オリゴDNA又はオリゴRNAの合成に一般的に使用されているものであれば特に限定されない。
(1)工程A:
次の一般式(18)で表される(オリゴ)核酸誘導体に酸を作用させることによって、5’位の水酸基の保護基を脱離して、次の一般式(19)で表されるオリゴ核酸誘導体を製造する工程。
Figure 2007097447
式(18)及び(19)中、各Qは、それぞれ独立して、前記と同義である。n、R、WGは前記と同義である。各Bxは、それぞれ独立して、保護基を有していてもよい核酸塩基又はその修飾体を表す。各Rは、それぞれ独立して、H、ハロゲン、アルコキシ、アルキルチオ、アルキルアミノ、ジアルキルアミノ、アルケニルオキシ、アルケニルチオ、アルケニルアミノ、ジアルケニルアミノ、アルキニルオキシ、アルキニルチオ、アルキニルアミノ、ジアルキニルアミノ、アルコキシアルキルオキシ又は次の一般式(20)で表される置換基を表す。
Figure 2007097447
式(20)中、WGは、前記と同義である。
Eは、アシル又は次の一般式(21)で表される置換基を表す。
Figure 2007097447
式(21)中、Eは、単結合又は次の一般式(22)で表される置換基を表す。
Figure 2007097447
式(22)中、Q、WGは、前記と同義である。
Tは、H、アシルオキシ、ハロゲン、アルコキシ、アルキルチオ、アルキルアミノ、ジアルキルアミノ、アルケニルオキシ、アルケニルチオ、アルケニルアミノ、ジアルケニルアミノ、アルキニルオキシ、アルキニルチオ、アルキニルアミノ、ジアルキニルアミノ、アルコキシアルキルオキシ、上記一般式(20)で表される置換基又は上記一般式(21)で表される置換基を表す。但し、E又はTのどちらか一方は、置換基(21)を表す。

Bxに係る「核酸塩基」としては、核酸の合成に使用されるものであれば特に制限されず、例えば、シトシン、ウラシル、チミン等のピリミジン塩基、アデニン、グアニン等のプリン塩基を挙げることができる。
Bxに係る「核酸塩基」は、保護されていてもよく、なかでもアミノ基を有する核酸塩基、例えば、アデニン、グアニン、シトシンは、アミノ基が保護されているのが好ましい。
かかる「アミノ基の保護基」としては、核酸の保護基として使用されるものであれば特に制限されず、例えば、ベンゾイル、4−メトキシベンゾイル、アセチル、プロピオニル、ブチリル、イソブチリル、フェニルアセチル、フェノキシアセチル、4−tert−ブチルフェノキシアセチル、4−イソプロピルフェノキシアセチル、(ジメチルアミノ)メチレンを挙げることができる。
Bxの「修飾体」とは、核酸塩基が任意の置換基で置換されている基であり、Bxの「修飾体」に係る置換基としては、例えば、ハロゲン、アシル、アルキル、アリールアルキル、アルコキシ、アルコキシアルキル、ヒドロキシ、アミノ、モノアルキルアミノ、ジアルキルアミノ、カルボキシ、シアノ、ニトロを挙げることができ、これらが任意の位置に1〜3個置換されている。
Bxの修飾体に係る「ハロゲン」、「アシル」、「アルキル」、「アリールアルキル」、「アルコキシ」、「アルコキシアルキル」、「モノアルキルアミノ」、「ジアルキルアミノ」としては、前記Bzの修飾体に係るそれらと同じものを挙げることができる。
に係る「ハロゲン」、「アルコキシ」、「アルキルアミノ」及び「ジアルキルアミノ」としては、前記Bzの修飾体に係るそれらと同じものを挙げることができる。
に係る「アルコキシアルキルオキシ」及び「アルキルチオ」の「アルキル」部分としては、前記Bzの修飾体に係る「アルキル」と同じものを挙げることができる。
に係る「アルコキシアルキルオキシ」の「アルコキシ」部分としては、前記Bzの修飾体に係る「アルコキシ」と同じものを挙げることができる。
に係る「アルケニルオキシ」、「アルケニルチオ」、「アルケニルアミノ」、「ジアルケニルアミノ」の「アルケニル」部分としては、前記Rに係る「アルケニル」と同じものを挙げることができる。
に係る「アルキニルオキシ」、「アルキニルチオ」、「アルキニルアミノ」、「ジアルキニルアミノ」の「アルキニル」部分としては、前記Rに係る「アルキニル」と同じものを挙げることができる。
に係る「アルキルアミノ」、「アルケニルアミノ」、「アルキニルアミノ」は保護されていてもよく、かかる保護基はアミノ基の保護基として使用されるものであれば特に制限されず、例えば、トリフルオロアセチル、ベンゾイル、4−メトキシベンゾイル、アセチル、プロピオニル、ブチリル、イソブチリル、フェニルアセチル、フェノキシアセチル、4−tert−ブチルフェノキシアセチル、4−イソプロピルフェノキシアセチル、(ジメチルアミノ)メチレンを挙げることができる。特に、トリフルオロアセチルが好ましい。


Eに係る「アシル」としては、前記Bzの修飾体に係る「アシル」と同じものを挙げることができる。
Tの「アシルオキシ」に係る「アシル」部分は、前記Bzの修飾体に係る「アシル」と同じものを挙げることができる。
Tに係る「ハロゲン」、「アルコキシ」、「アルキルアミノ」及び「ジアルキルアミノ」としては、前記Bzの修飾体に係るそれらと同じものを挙げることができる。
Tに係る「アルコキシアルキルオキシ」及び「アルキルチオ」の「アルキル」部分としては、前記Bzの修飾体に係る「アルキル」と同じものを挙げることができる。
Tに係る「アルコキシアルキルオキシ」の「アルコキシ」部分としては、前記Bzの修飾体に係る「アルコキシ」と同じものを挙げることができる。
Tに係る「アルケニルオキシ」、「アルケニルチオ」、「アルケニルアミノ」、「ジアルケニルアミノ」の「アルケニル」部分としては、前記Rに係る「アルケニル」と同じものを挙げることができる。
Tに係る「アルキニルオキシ」、「アルキニルチオ」、「アルキニルアミノ」、「ジアルキニルアミノ」の「アルキニル」部分としては、前記Rに係る「アルキニル」と同じものを挙げることができる。
Tに係る「アルキルアミノ」、「アルケニルアミノ」、「アルキニルアミノ」は保護されていてもよく、かかる保護基はアミノ基の保護基として使用されるものであれば特に制限されず、例えば、トリフルオロアセチル、ベンゾイル、4−メトキシベンゾイル、アセチル、プロピオニル、ブチリル、イソブチリル、フェニルアセチル、フェノキシアセチル、4−tert−ブチルフェノキシアセチル、4−イソプロピルフェノキシアセチル、(ジメチルアミノ)メチレンを挙げることができる。特に、トリフルオロアセチルが好ましい。

本工程は、固相担体に担持された次の一般式(23a)、(23b)で表される核酸誘導体(n=1である核酸誘導体(18))、又は、工程A〜工程Dの操作を行うことにより製造される固相担体に担持されたオリゴRNA若しくはオリゴDNA(n=2〜100であるオリゴ核酸誘導体(18))(以下、「固相担体に担持されているオリゴ核酸誘導体」という。)に酸を作用させることにより実施することができる。
Figure 2007097447
式(23a)及び(23b)中、B、Rは、前記と同義である。R2L、R4Lは、前記置換基(21)を表す。Rは、アシルオキシを表す。R4aは、H、アシルオキシ、ハロゲン、アルコキシ、アルキルチオ、アルキルアミノ、ジアルキルアミノ、アルケニルオキシ、アルケニルチオ、アルケニルアミノ、ジアルケニルアミノ、アルキニルオキシ、アルキニルチオ、アルキニルアミノ、ジアルキニルアミノ、アルコキシアルキルオキシ又は前記置換基(20)を表す。

、R4aの「アシルオキシ」に係る「アシル」部分としては、前記Bzの修飾体に係る「アシル」と同じものを挙げることができる。
4aに係る「ハロゲン」、「アルコキシ」、「アルキルアミノ」及び「ジアルキルアミノ」としては、前記Bzの修飾体に係るそれらと同じものを挙げることができる。
4aに係る「アルコキシアルキルオキシ」及び「アルキルチオ」の「アルキル」部分としては、前記Bzの修飾体に係る「アルキル」と同じものを挙げることができる。
4aに係る「アルコキシアルキルオキシ」の「アルコキシ」部分としては、前記Bzの修飾体に係る「アルコキシ」と同じものを挙げることができる。
4aに係る「アルケニルオキシ」、「アルケニルチオ」、「アルケニルアミノ」、「ジアルケニルアミノ」の「アルケニル」部分としては、前記Rに係る「アルケニル」と同じものを挙げることができる。
4aに係る「アルキニルオキシ」、「アルキニルチオ」、「アルキニルアミノ」、「ジアルキニルアミノ」の「アルキニル」部分としては、前記Rに係る「アルキニル」と同じものを挙げることができる。
4aに係る「アミノ」、「アルキルアミノ」、「アルケニルアミノ」、「アルキニルアミノ」は保護されていてもよく、かかる保護基はアミノ基の保護基として使用されるものであれば特に制限されず、例えば、トリフルオロアセチル、ベンゾイル、4−メトキシベンゾイル、アセチル、プロピオニル、ブチリル、イソブチリル、フェニルアセチル、フェノキシアセチル、4−tert−ブチルフェノキシアセチル、4−イソプロピルフェノキシアセチル、(ジメチルアミノ)メチレンを挙げることができる。特に、トリフルオロアセチルが好ましい。
「固相担体」としては、例えば、定孔ガラス(controlled pore glass;CPG)、オキサリル化−定孔ガラス(例えば、Alulら,Nucleic Acids Research,Vol.19,1527(1991)を参照)、TentaGel支持体−アミノポリエチレングリコール誘導体化支持体(例えば、Wrightら,Tetrahedron Letters,Vol.34,3373(1993)を参照)、Poros−ポリスチレン/ジビニルベンゼンのコポリマーを挙げることができる。
「リンカー」としては、例えば、3−アミノプロピル、スクシニル、2,2’−ジエタノールスルホニル、ロングチェーンアルキルアミノ(LCAA)を挙げることができる。
核酸誘導体(23a)、核酸誘導体(23b)は、公知の方法に従い製造される又は市販品として入手できる固相担体に担持された化合物であり、好ましい態様としては、例えば、次の一般式(24)、(25)で表される核酸誘導体を挙げることができる。
Figure 2007097447
式(24)及び(25)中、B、Q、R、R、WGは、前記と同義である。
が置換基(20)である核酸誘導体(24)、(25)は、ホスホロアミダイト化合物(A)から公知の方法に従い製造することができる。

本工程に使用しうる「酸」としては、例えば、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸を挙げることができる。本工程に使用しうる酸は、1〜5%の濃度になるように適当な溶媒で希釈して使用することもできる。溶媒としては、反応に関与しなければ特に限定されないが、ジクロロメタン、アセトニトリル、水又はこれら任意の混合溶媒を挙げることができる。上記反応における反応温度は、20℃〜50℃が好ましい。反応時間は、(オリゴ)核酸誘導体(18)の種類、使用する酸の種類、反応温度等によって異なるが、通常1分〜1時間が適当である。使用する試薬の量は固相担体に担持されているオリゴ核酸誘導体に対して0.8〜100倍モル量が適当であり、好ましくは1〜10倍モル量である。
(2)工程B:
工程Aにおいて製造されるオリゴ核酸誘導体(19)に、活性化剤を用いて核酸モノマー化合物を縮合させ、次の一般式(26)で表されるオリゴ核酸誘導体を製造する工程。
Figure 2007097447
式(19)及び(26)中、各B、各Q、各R、各WGは、それぞれ独立して、前記と同義である。E、n、R、Tは、前記と同義である。
本工程は、固相担体に担持されているオリゴ核酸誘導体に核酸モノマー化合物と活性化剤とを作用させることにより実施することができる。
「核酸モノマー化合物」としては、ホスホロアミダイト化合物(A)又は次の一般式(27)で表される核酸誘導体を挙げることができる。
Figure 2007097447
式(27)中、R、R2a、R2b、R4a、WGは、前記と同義である。Bは、保護基を有していてもよい核酸塩基又はその修飾体を表す。

に係る「核酸塩基」としては、核酸の合成に使用されるものであれば特に制限されず、例えば、シトシン、ウラシル、チミン等のピリミジン塩基、アデニン、グアニン等のプリン塩基を挙げることができる。
に係る「核酸塩基」は、保護されていてもよく、なかでもアミノ基を有する核酸塩基、例えば、アデニン、グアニン、シトシンは、アミノ基が保護されているのが好ましい。
かかる「アミノ基の保護基」としては、核酸の保護基として使用されるものであれば特に制限されず、具体的には、例えば、ベンゾイル、4−メトキシベンゾイル、アセチル、プロピオニル、ブチリル、イソブチリル、フェニルアセチル、フェノキシアセチル、4−tert−ブチルフェノキシアセチル、4−イソプロピルフェノキシアセチル、(ジメチルアミノ)メチレンを挙げることができる。
の「修飾体」とは、核酸塩基が任意の置換基で置換されている基であり、Bの「修飾体」に係る置換基としては、例えば、ハロゲン、アシル、アルキル、アリールアルキル、アルコキシ、アルコキシアルキル、ヒドロキシ、アミノ、モノアルキルアミノ、ジアルキルアミノ、カルボキシ、シアノ、ニトロを挙げることができ、これらが任意の位置に1〜3個置換されている。
の修飾体に係る「ハロゲン」、「アシル」、「アルキル」、「アリールアルキル」、「アルコキシ」、「アルコキシアルキル」、「モノアルキルアミノ」、「ジアルキルアミノ」としては、前記Bzの修飾体に係るそれらと同じものを挙げることができる。

「活性化剤」としては、前記と同じものを挙げることができる。

反応溶媒としては、反応に関与しなければ特に限定されないが、例えば、アセトニトリル、THFを挙げることができる。上記反応における反応温度は、20℃〜50℃が好ましい。反応時間は、オリゴ核酸誘導体(19)の種類、使用する活性化剤の種類、反応温度等によって異なるが、通常1分〜1時間が適当である。使用する試薬の量は固相担体に担持されているオリゴ核酸誘導体に対して0.8〜100倍モル量が適当であり、好ましくは1〜10倍モル量である。
(3)工程C:
工程Bにおいて未反応であるオリゴ核酸誘導体(19)の5’位の水酸基をキャッピングする工程。
Figure 2007097447
式(19)及び(28)中、各B、各Q、各R、各WGは、それぞれ独立して、前記と同義である。Rは、メチル、フェノキシメチルを表す。E、n、T、は、前記と同義である。Rは、メチル、フェノキシメチル、tert−ブチルフェノキシメチルを表す。
本工程は、工程Bにおいて未反応であった5’位の水酸基を保護する反応であり、固相担体に担持されているオリゴ核酸誘導体にキャップ化剤を作用することにより実施することができる。
「キャップ化剤」としては、例えば、無水酢酸、フェノキシ酢酸無水物又はtert−ブチルフェノキシ酢酸無水物を挙げることができる。キャップ化剤は、0.05〜1Mの濃度になるように適当な溶媒で希釈して使用することもできる。溶媒としては、反応に関与しなければ特に限定されないが、ピリジン、ジクロロメタン、アセトニトリル、THF又はこれら任意の混合溶媒を挙げることができる。また、本工程において必要に応じて、「反応促進剤」として、例えば、4−ジメチルアミノピリジン、N−メチルイミダゾールを使用することができる。上記反応における反応温度は、20℃〜50℃が好ましい。反応時間は、オリゴ核酸誘導体(19)の種類、使用するキャップ化剤の種類、反応温度等によって異なるが、通常1分〜30分が適当である。使用する試薬の量は固相担体に担持されているオリゴ核酸誘導体に対して0.8〜100倍モル量が適当であり、好ましくは1〜10倍モル量である。
(4)工程D:
工程Bにおいて製造されるオリゴ核酸誘導体(26)に酸化剤を作用させることによって亜リン酸基をリン酸基又はチオリン酸基に変換する工程。
Figure 2007097447
式(26)及び(29)中、各B、各Q、各R、各WGは、それぞれ独立して、前記と同義である。E、n、R、Tは、前記と同義である。
本工程は、3価のリンから5価のリンに酸化剤を使用して変換する反応であり、固相担体に担持されているオリゴ核酸誘導体に酸化剤を作用させることにより実施することができる。
リンを酸素で酸化する場合には、「酸化剤」として、例えば、ヨウ素、tert−ブチルヒドロペルオキシドを使用することができる。該酸化剤は、0.05〜2Mの濃度になるように適当な溶媒で希釈して使用することができる。反応に使用する溶媒としては、反応に関与しなければ特に限定されないが、ピリジン、THF、水又はこれら任意の混合溶媒を挙げることができる。例えば、ヨウ素/水/ピリジン―THFあるいはヨウ素/ピリジン―酢酸や過酸化剤(t−ブチルヒドロパーオキシド/メチレンクロライドなど)を用いることができる。
また、リンを硫黄で酸化する場合には、「酸化剤」として、例えば、硫黄、Beaucage試薬(3H−1,2−ベンゾジチオール−3−オン−1,1−ジオキシド)、3−アミノ−1,2,4−ジチアゾール−5−チオン(ADTT)を使用することができる。該酸化剤は、0.05〜2Mの濃度になるように適当な溶媒で希釈して使用することができる。反応に使用する溶媒としては、反応に関与しなければ特に限定されないが、例えば、ジクロロメタン、アセトニトリル、ピリジン又はこれら任意の混合溶媒が挙げられる。
反応温度は、20℃〜50℃が好ましい。反応時間は、オリゴ核酸誘導体(26)の種類、使用する酸化剤の種類、反応温度等によって異なるが、通常1分〜30分が適当である。使用する試薬の量は固相担体に担持されているオリゴ核酸誘導体に対して0.8〜100倍モル量が適当であり、好ましくは10〜50倍モル量である。
(5)工程E:
工程Dにおいて製造されるオリゴ核酸誘導体(29)を固相担体から切り出し、各核酸塩基部及び各リン酸基の保護基を脱離する工程。
Figure 2007097447
式(29)及び(30)中、各B、各B、各Q、各R、各WGは、それぞれ独立して、前記と同義である。E、R、R、n、T、Zは、前記と同義である。
切り出し工程は、所望の鎖長のオリゴRNAを切り出し剤によって、固相担体及びリンカーから外す反応であり、所望の鎖長のオリゴRNAが担持された固体担体に切り出し剤を添加することにより実施することができる。本工程において、核酸塩基部の保護基を脱離することができる。
「切り出し剤」としては、例えば、濃アンモニア水、メチルアミン等を挙げることができる。本工程に使用しうる「切り出し剤」は、例えば、水、メタノール、エタノール、イソプロピルアルコール、アセトニトリル、THF又はこれら任意の混合溶媒で希釈して使用することもできる。なかでも、エタノールが好ましい。
反応温度は、15℃〜75℃が適当であり、好ましくは15℃〜30℃であり、より好ましくは18℃〜25℃である。脱保護反応時間は、10分〜30時間が適当であり、好ましくは30分〜24時間であり、より好ましくは1〜4時間である。脱保護に使用される溶液中の水酸化アンモニウムの濃度は、20〜30重量%が適当であり、好ましくは25〜30重量%であり、より好ましくは28〜30重量%である。使用する試薬の量は、固相担体に担持されているオリゴ核酸誘導体に対して0.8〜100倍モル量が適当であり、好ましくは10〜50倍モル量である。

(6)工程F:
工程Eにおいて製造されるオリゴ核酸誘導体(30)に、各リボースの2’位水酸基の保護基を脱離するための試薬を作用させることによって、次の一般式(31)で表されるオリゴ核酸誘導体を製造する工程。
Figure 2007097447
式(30)及び(31)中、各B、各Q、各R、各Rは、それぞれ独立して、前記と同義である。n、R、Zは、前記と同義である。

本工程は、オリゴ核酸誘導体(30)に、2’位の水酸基の保護基を脱離する試薬を作用させることにより実施することができる。2’位の水酸基の保護基を脱離する工程は、「2’位の水酸基の保護基を脱離する試薬」として、例えば、TBAF、トリエチルアミントリハイドロフロリドを作用させることにより行うことができる。使用する「2’位の水酸基の保護基を脱離する試薬」の量は除去される保護基に対して1〜500倍モル量が適当であり、好ましくは5〜10倍モル量である。使用する溶媒としては、反応に関与しなければ特に限定されないが、例えば、THF、N−メチルピロリドン、ピリジン、ジメチルスルホキシド又はこれら任意の混合溶媒を挙げることができる。反応溶媒の使用量は、「2’位の水酸基の保護基を脱離する試薬」に対して、0.8〜100倍モル量が適当であり、好ましくは1〜10倍モル量である。反応温度は、20℃〜80℃が好ましい。反応時間は、オリゴ核酸誘導体(30)の種類、使用する2’位の水酸基の保護基を脱離する試薬の種類、反応温度等によって異なるが、通常1時間〜100時間が適当である。
必要であれば、本工程における副生成物であるアクリロニトリルを捕捉するため、アクリロニトリルの捕捉剤として、例えば、ニトロアルカン、アルキルアミン、アミジン、チオール、チオール誘導体又はこれら任意の混合物を添加することができる。「ニトロアルカン」としては、直鎖状の炭素数1〜6のニトロアルカンを挙げることができる。具体的には、例えば、ニトロメタンを挙げることができる。「アルキルアミン」としては、例えば、直鎖状の炭素数1〜6のアルキルアミンを挙げることができる。具体的には、例えば、メチルアミン、エチルアミン、n−プロピルアミン、n−ブチルアミン、n−ペンチルアミン、n−ヘキシルアミンを挙げることができる。「アミジン」としては、例えば、ベンズアミジン、ホルムアミジンを挙げることができる。「チオール」としては、例えば、直鎖状の炭素数1〜6のチオールを挙げることができる。具体的には、例えば、メタンチオール、エタンチオール、1−プロパンチオール、1−ブタンチオール、1−ペンタンチオール、1−ヘキサンチオールを挙げることができる。「チオール誘導体」としては、例えば、同一又は異なる直鎖状の炭素数1〜6のアルキルチオール基を有するアルコール又はエーテルを挙げることができる。具体的には、例えば、2−メルカプトエタノール、4−メルカプト−1−ブタノール、6−メルカプト−1−ヘキサノール、メルカプトメチルエーテル、2−メルカプトエチルエーテル、3−メルカプトプロピルエーテル、4−メルカプトブチルエーテル、5−メルカプトペンチルエーテル、6−メルカプトヘキシルエーテルを挙げることができる。「アクリロニトリルの捕捉剤」の使用量としては、オリゴ核酸誘導体(30)の種類等によって異なるが、オリゴ核酸誘導体(30)の各リボースの2’位水酸基を保護している2−シアノエトキシメチルに対して、0.8〜500倍モル量が適当であり、好ましくは1〜10倍モル量である。

上記反応混合物から通常の分離精製手段、例えば、抽出、濃縮、中和、濾過、遠心分離、再結晶、シリカゲルカラムクロマトグラフィー、薄層クロマトグラフィー、逆層ODSカラムクロマトグラフィー、イオン交換カラムクロマトグラフィー、ゲルろ過カラムクロマトグラフィー、透析、限界ろ過などの手段を用いることにより、5’位が保護されたオリゴRNAを単離精製することができる。
(7)工程G:
工程Fにおいて製造されるオリゴ核酸誘導体(31)の5’位の水酸基を脱離する工程。
Figure 2007097447
式(31)及び(B)中、各B、各Q、各Rは、それぞれ独立して、前記と同義である。n、R、Zは、前記と同義である。
本工程は、最終的にオリゴ核酸誘導体(31)の5’位の水酸基の保護基を脱離する反応であり、固体担体から切り出されたオリゴRNAに酸を作用させることにより実施することができる。
本工程において使用しうる「酸」としては、例えば、トリクロロ酢酸、ジクロロ酢酸、酢酸を挙げることができる。本工程に使用しうる酸は、適当な溶媒で希釈して使用することもできる。溶媒としては、反応に関与しなければ特に限定されないが、ジクロロメタン、アセトニトリル、水、pHが2〜5の緩衝液又はこれら任意の混合溶媒を挙げることができる。緩衝液としては、例えば、酢酸緩衝液を挙げることができる。上記反応における反応温度は、20℃〜50℃が好ましい。反応時間は、オリゴ核酸誘導体(31)の種類、使用する酸の種類、反応温度等によって異なるが、通常1分〜1時間が適当である。使用する試薬の量は固相担体に担持されているオリゴ核酸誘導体に対して0.8〜100倍モル量が適当であり、好ましくは1〜10倍モル量である。
(7)工程H:
工程Gにおいて製造されるオリゴRNA(B)を分離精製する工程。
「分離精製工程」とは、上記反応混合物から通常の分離精製手段、例えば、抽出、濃縮、中和、濾過、遠心分離、再結晶、CからC18の逆相カラムクロマトグラフィー、CからC18逆相カートリッジカラム、陽イオン交換カラムクロマトグラフィー、陰イオン交換カラムクロマトグラフィー、ゲルろ過カラムクロマトグラフィー、高速液体クロマトグラフィー、透析、限界ろ過などの手段を単独若しくは組み合わせて用いることにより、所望のオリゴRNA(B)を単離精製する工程である。
「溶出溶媒」としては、例えば、アセトニトリル、メタノール、エタノール、イソプロピルアルコール、水の単独溶媒もしくは任意の比率の混合溶媒を挙げることができる。この場合添加物として、例えば、リン酸ナトリウム、リン酸カリウム、塩化ナトリウム、塩化カリウム、酢酸アンモニウム、酢酸トリエチルアンモニウム、酢酸ナトリウム、酢酸カリウム、トリス塩酸、エチレンジアミン四酢酸を1mM〜2Mの濃度で添加し、溶液のpHを1〜9の範囲で調整することもできる。
工程A〜工程Dの操作を繰り返すことにより、所望の鎖長のオリゴRNA(B)を製造することができる。なお、本製法においてオリゴRNA(B)を製造するための出発原料として、R4aが置換基(20)である核酸誘導体(23a)、R4aがH若しくはアシルオキシである核酸誘導体(23a)、又はRがアシルである核酸誘導体(23b)等を使用することができる。但し、出発原料として、R4aがH若しくはアシルオキシである核酸誘導体(23a)、又はRがアシルである核酸誘導体(23b)を使用した場合、核酸モノマー化合物として、少なくとも1つは本発明ホスホロアミダイト化合物を使用する必要がある。
また、本製法において、工程Eの操作を行う前に工程Fの操作を行い、その後工程Eの操作を行い、次いで工程Gの操作を行うことによりオリゴRNA(B)を単離精製することもできる。
以下に実施例を揚げて本発明を更に詳しく説明するが、本発明はこれらのみに限定されない。
参考例1 クロロメチル 2−シアノエチルエーテル
工程1 メチルチオメチル 2−シアノエチルエーテルの製造
3−ヒドロキシプロピオニトリル32g(450mmol)をジメチルスルホキシド450mlに溶解し、無水酢酸324mL、酢酸231mLを加え室温で24時間攪拌した。炭酸水素ナトリウム990gを水4.5Lに溶解したものを調製し、これに反応液を一時間かけて滴下した。そのまま一時間攪拌し、反応液を酢酸エチルにて抽出し、無水硫酸マグネシウムにて乾燥、溶媒留去し得られた油状物をシリカゲルカラムクロマトグラフィーにて精製し、無色油状物のメチルチオメチル 2−シアノエチルエーテルを41g得た(収率70%)。

H−NMR(CDCl): 2.18(s,3H);2.66(t,2H,J=6.3Hz);3.77(t,2H,J=6.3Hz);4.69(s,2H)

工程2 クロロメチル 2−シアノエチルエーテルの製造
工程1で得られたメチルチオメチル 2−シアノエチルエーテル3.3g(25mmol)を70mLの塩化メチレンに溶解させ、氷冷下2mL(25mmol)の塩化スルフリルを滴下し、さらに室温にて一時間反応させた。反応後、溶媒を留去し真空中にて蒸留し、目的化合物を無色油状物として2.5g得た(収率85%)。

沸点:84−85℃(0.3Torr)

H−NMR(CDCl): 2.72(t,2H,J=6.3Hz);3.92(t,2H,J=6.3Hz);5.52(s,2H)
参考例2 5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)ウリジン 3’−O−(2−シアノエチル N,N−ジイソプロピルホスホロアミダイト)
工程1 5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)ウリジンの製造
5’−O−(4,4’−ジメトキシトリチル)ウリジン546mg(1mmol)を1,2−ジクロロエタン4mLに溶解し、ジイソプロピルエチルアミン452mg(3.5mmol)を加え、ついで365mg(1.2mmol)の二塩化ジブチルスズを加えた後、室温で一時間反応した。その後80℃にしクロロメチル 2−シアノエチルエーテル155.4mg(1.3mmol)を滴下、そのまま30分間攪拌した。反応終了後、飽和炭酸水素ナトリウム水溶液に反応液を加え塩化メチレンにて抽出を行い無水硫酸マグネシウムにて乾燥、溶媒留去し、得られた混合物を30gのシリカゲルカラムクロマトグラフィーにて精製し、5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)ウリジンを得た(197mg;収率34%)。

H−NMR(CDCl): 2.47(d,1H,J=7.8Hz);2.69(t,2H,J=6.3Hz);3.55(dd,1H,11.3,2.2Hz);3.62(dd,1H,11.3,2.2Hz);3.83(s,6H);3.87(t,2H,J=6.3Hz);4.07−4.08(m,1H);4.32(dd,1H,J=5.3,1.9Hz);4.54(q,1H,J=5.3Hz);4.94,5.11(2d,2H,J=6.9Hz);5.32(d,1H,J=8.2Hz);6.00(d,1H,J=1.9Hz);6.85−6.88(m,4H);7.29−7.41(m,9H);8.02(d,1H,J=8.2Hz);8.53(br.s,1H)

ESI−Mass:652[M+Na]

工程2 5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)ウリジン 3’−O−(2−シアノエチル N,N−ジイソプロピルホスホロアミダイト)の製造
工程1で得られた5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)ウリジン209mg(0.332mmol)、テトラゾール23mg(0.332mmol)をアセトニトリル2mLに溶解し150mgの(0.498mmol)の2−シアノエチル N,N,N’,N’−テトライソプロピルホスホロジアミダイトを滴下し、45℃で1.5時間反応させた。反応後、飽和炭酸水素ナトリウム水溶液を加え酢酸エチルにて抽出し、無水硫酸マグネシウムにて乾燥、溶媒留去し得られた混合物を20gのシリカゲルカラムクロマトグラフィーにて精製し、目的化合物を得た(200mg;収率73%)。

ESI−Mass:852[M+Na]
参考例3 2’−O−(2−シアノエトキシメチル)ウリジン
工程1 3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−(2−シアノエトキシメチル)ウリジンの製造
3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)ウリジン150mg(0.3mmol)をアルゴン雰囲気下THF7mLに溶解し、メチルチオメチル 2−シアノエチルエーテル54mg(0.4mmol)、モレキュラーシーブス4A100mgを加え、10分攪拌した。0℃にしトリフルオロメタンスルホン酸10mg(0.06mmol)のTHF2mL溶液を加え攪拌した後、N−ヨードスクシンイミド92mg(0.4mmol)を加え、1時間攪拌した。反応液をセライトろ過し、塩化メチレンにて洗浄した後、有機相を1Mのチオ硫酸水素ナトリウム水溶液にて洗浄、飽和炭酸水素ナトリウム水溶液にて洗浄し、無水硫酸マグネシウムにて乾燥、溶媒留去した。得られた残渣を薄層クロマトグラフィーにて精製し、3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−(2−シアノエトキシメチル)ウリジンを得た(150mg;収率85%)。

H−NMR(CDCl): 0.97−1.12(m,28H);2.68−2.73(m,2H);3.78−3.86(m,1H);3.96−4.05(m,2H);4.12−4.30(m,4H);5.0−5.04(m,2H);5.70(d,1H,J=8.2Hz);5.75(s,1H);7.90(d,1H,J=8.2Hz);9.62(br.s,1H)

ESI−Mass:570[M+H]

工程2 2’−O−(2−シアノエトキシメチル)ウリジンの製造
工程1で得られた3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−(2−シアノエトキシメチル)ウリジン200mg(0.35mmol)をメタノール2mLに溶解し、フッ化アンモニウム65mg(1.76mmol)を加え50℃にて5時間加熱攪拌した。放冷後アセトニトリルを加え攪拌し、ろ過濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、目的化合物を得た(108mg;収率94%)。

H−NMR(CDOD): 2.72−2.76(t,2H,J=6.2Hz);3.68−3.92(m,4H);4.00−4.03(m,1H);4.26−4.32(m,2H);4.81−4.95(m,2H);5.71(d,1H,J=8.1Hz);6.00(d,1H,J=3.3Hz);8.10(d,1H,J=8.1Hz)

ESI−Mass:350[M+Na]
参考例4 5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)ウリジンの製造
2’−O−(2−シアノエトキシメチル)ウリジン14g(43mmol)をピリジンで共沸し真空ポンプで30分乾燥した。THF300mLに溶解し、アルゴン雰囲気下ピリジン68g(856mmol)、モレキュラーシーブス4A20gを加え10分攪拌した。これに4,4’−ジメトキシトリチルクロライド19.6g(57.8mmol)を3回に分けて1時間ごとに加え、さらに1時間攪拌した。メタノール10mLを加え2分攪拌した後、セライトろ過し酢酸エチルにて洗浄した。ろ液を濃縮後、残渣を酢酸エチルに溶解し、飽和炭酸水素ナトリウム水溶液と分液した。有機相を飽和塩化ナトリウム水溶液にて洗浄、無水硫酸マグネシウムにて乾燥後溶媒留去した。得られた残渣をシリカゲルクロマトグラフィーにて精製し、目的化合物を得た(26.5g;収率98%)。
参考例5 −アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)シチジン 3’−O−(2−シアノエチル N,N−ジイソプロピルホスホロアミダイト)
工程1 −アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)シチジンの製造
−アセチル−5’−O−(4,4’−ジメトキシトリチル)シチジン588mg(1mmol)を1,2−ジクロロエタン4mLに溶解し、ジイソプロピルエチルアミン452mg(3.5mmol)を加え、ついで365mg(1.2mmol)の二塩化ジブチルスズを加えた後、室温で一時間反応した。その後80℃にしクロロメチル 2−シアノエチルエーテル155.4mg(1.3mmol)を滴下、そのまま60分間攪拌した。反応終了後、飽和炭酸水素ナトリウム水溶液に反応液を加え塩化メチレンにて抽出を行い無水硫酸マグネシウムにて乾燥、溶媒留去し、得られた混合物を30gのシリカゲルカラムクロマトグラフィーにて精製し、N−アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)シチジンを得た(219mg;収率35%)。

H−NMR(CDCl): 2.19(s,3H);2.56(d,1H,J=8.8Hz);2.65(t,2H,J=6.2Hz);3.55(dd,1H,10.5,2.5Hz);3.63(dd,1H,10.5,2.5Hz);3.82(s,6H);3.86(t,2H,J=6.2Hz);4.09−4.14(m,1H);4.28(d,1H,J=5.1Hz);4.44−4.49(m,1H);4.97,5.24(2d,2H,J=6.9Hz);5.96(s,1H);6.86−6.88(m,4H);7.09(d,1H,J=6.9Hz);7.26−7.42(m,9H);8.48(d,1H,J=6.9Hz);8.59(br.s,1H)

ESI−Mass:693[M+Na]

工程2 −アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)シチジン 3’−O−(2−シアノエチル N,N−ジイソプロピルホスホロアミダイト)の製造
工程1で得られたN−アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル) シチジン205mg(0.306mmol)を塩化メチレン2mLに溶解し、ジイソプロピルエチルアミン105mg(0.812mmol)を加え2−シアノエチルN,N−ジイソプロピルクロロホスホロアミダイト116mg(0.49mmol)を滴下し、室温で1時間反応させた。反応後、溶媒を留去し得られた混合物を20gのシリカゲルカラムクロマトグラフィーにて精製し、目的化合物を得た(242mg;収率91%)。

ESI−Mass:871[M+H]
参考例6 −アセチル−2’−O−(2−シアノエトキシメチル)シチジン
工程1 −アセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−(2−シアノエトキシメチル)シチジンの製造
−アセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)シチジン1.00g(1.89mmol)とメチルチオメチル 2−シアノエチルエーテル500mg(3.79mmol)を混合し、トルエン10mLとTHF10mLの混合溶媒に溶解した。ついでトリフルオロメタンスルホン酸銀975mg(3.79mmol)を加え、モレキュラーシーブス4Aを加え、乾燥した。氷冷下、N−ブロモスクシンイミド370mg(2.08mmol)を加え、反応容器を遮光し、10分間撹拌した。さらにN−ブロモスクシンイミド70mg(0.39mmol)を追加し、25分間撹拌した。反応終了後、塩化メチレンを加えて希釈し、飽和炭酸水素ナトリウム水溶液にて洗浄を行い、無水硫酸ナトリウムにて乾燥、溶媒留去し、得られた混合物をシリカゲルカラムクロマトグラフィーにて精製し、N−アセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−(2−シアノエトキシメチル)シチジンを得た。(936mg;収率81%)。

H−NMR(CDCl): 0.90−1.11(m,28H);2.28(s,3H);2.62−2.79(m,2H);3.78−3.89(m,1H);3.96−4.04(m,2H);4.19−4.23(m,3H);4.30(d,1H,J=13.6Hz);5.00(d,1H,J=6.8Hz);5.09(d,1H,J=6.8Hz);5.77(s,1H);7.44(d,1H,J=7.5Hz);8.30(d,1H,J=7.5Hz);10.13(s,1H)

ESI−Mass:611[M+H]

工程2 −アセチル−2’−O−(2−シアノエトキシメチル)シチジンの製造
工程1で得られたN−アセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−(2−シアノエトキシメチル)シチジン500mg(0.819mmol)をTHF2.5mLとメタノール2.5mLの混合溶媒に溶解し、フッ化アンモニウム150mg(4.10mmol)を加え、50℃で4時間反応させた。反応終了後、アセトニトリルにて希釈、濾過し、溶媒を留去し得られた混合物をシリカゲルカラムクロマトグラフィーにて精製し、目的化合物を得た(210mg;収率70%)。

H−NMR(DO): 2.13(s,3H);2.66−2.71(m,2H);3.72−3.78(m,3H);3.90(dd,1H,13.0,2.6Hz);4.06−4.11(m,1H);4.20(dd,1H,J=7.1,5.2Hz);4.29(dd,1H,J=5.1,2.9Hz);4.83(d,1H,J=7.2Hz);4.94(d,1H,J=7.2Hz);5.95(d,1H,J=2.9Hz);7.25(d,1H,J=7.6Hz);8.25(d,1H,J=7.6Hz)

ESI−Mass:391[M+Na]
参考例7 −アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)シチジンの製造
2’−O−(2−シアノエトキシメチル)シチジン9.9g(26.8mmol)をピリジンで共沸し真空ポンプで30分乾燥した。THF190mLに溶解し、アルゴン雰囲気下ピリジン43g(538mmol)、モレキュラーシーブス4A20gを加え10分攪拌した。これに4,4’−ジメトキシトリチルクロライド11.8g(34.9mmol)を3回に分けて1時間ごとに加え、さらに1時間攪拌した。メタノール2mLを加え2分攪拌した後、セライトろ過し酢酸エチルにて洗浄した。ろ液をエバポレーターで濃縮後残渣を酢酸エチルに溶解し、飽和炭酸水素ナトリウム水溶液と分液した。有機相を飽和塩化ナトリウム水溶液にて洗浄、無水硫酸マグネシウムにて乾燥後溶媒留去した。得られた残渣をシリカゲルクロマトグラフィーにて精製し、目的化合物を得た(15g;収率83%)。
参考例8 −アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)グアノシン 3’−O−(2−シアノエチル N,N−ジイソプロピルホスホロアミダイト)
工程1 −アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)グアノシンの製造
−アセチル−5’−O−(4,4’−ジメトキシトリチル)グアノシン627mg(1mmol)を1,2−ジクロロエタン4mLに溶解し、ジイソプロピルエチルアミン452mg(3.5mmol)を加え、ついで365mg(1.2mmol)の二塩化ジブチルスズを加えた後、室温で一時間反応した。その後80℃にしクロロメチル 2−シアノエチルエーテル155.4mg(1.3mmol)を滴下、そのまま60分間攪拌した。反応終了後、飽和炭酸水素ナトリウム水溶液に反応液を加え塩化メチレンにて抽出を行い無水硫酸マグネシウムにて乾燥、溶媒留去し、得られた混合物を30gのシリカゲルカラムクロマトグラフィーにて精製し、N−アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)グアノシンを得た(450mg;収率63%)。

H−NMR(CDCl): 1.92(s,3H);2.47−2.51(m,2H);2.68(br.s,1H);3.30(dd,1H,10.7,3.8Hz);3.47(dd,1H,10.7,3.8Hz);3.55−3.60(m,1H);3.65−3.70(m,1H);3.74,3.75(2s,6H);4.22−4.23(m,1H);4.55−4.58(m,1H);4.78,4.83(2d,2H,J=7.0Hz);5.01(t,1H,J=5.1Hz);5.99(d,1H,J=5.1Hz);6.76−6.79(m,4H);7.17−7.44(m,9H);7.88(s,1H);8.36(br.s,1H);12.06(br.s,1H)

工程2 −アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)グアノシン 3’−O−(2−シアノエチル N,N−ジイソプロピルホスホロアミダイト)の製造
工程1で得られたN−アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)グアノシン400mg(0.563mmol)を塩化メチレン2mLに溶解し、ジイソプロピルエチルアミン181mg(1.4mmol)を加え2−シアノエチルN,N−ジイソプロピルクロロホスホロアミダイト161mg(0.68mmol)を滴下し、室温で1時間反応させた。反応後、溶媒を留去し得られた混合物を20gのシリカゲルカラムクロマトグラフィーにて精製し、目的化合物を得た(471mg;収率92%)。
参考例9 −アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)アデノシン 3’−O−(2−シアノエチル N,N−ジイソプロピルホスホロアミダイト)
工程1 −アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)アデノシンの製造
−アセチル−5’−O−(4,4’−ジメトキシトリチル)アデノシン22.0g(36.0mmol)を1,2−ジクロロエタン170mLに溶解し、ジイソプロピルエチルアミン16.3g(126mmol)を加え、ついで12.1g(39.7mmol)の二塩化ジブチルスズを加えた後、室温で一時間反応した。その後80℃にし15分間撹拌後、クロロメチル 2−シアノエチルエーテル4.30g(36.0mmol)を滴下、そのまま30分間撹拌した。反応終了後、飽和炭酸水素ナトリウム水溶液に反応液を加え塩化メチレンにて抽出を行い無水硫酸マグネシウムにて乾燥、溶媒留去し、得られた混合物をシリカゲルカラムクロマトグラフィーにて精製し、N−アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)アデノシンを得た。(7.47g;収率33%)

H−NMR(CDCl): 2.51(t,2H,J=6.2Hz);2.58(d,1H,J=5.5Hz);2.61(s,3H);3.45(dd,1H,J=10.7,4.0Hz);3.54(dd,1H,J=10.7,3.2Hz);3.62−3.79(m,2H);3.79(s,6H);4.25(br.q,1H,J〜4.6Hz);4.59(q,1H,J=5.2Hz);4.87−4.94(m,3H);6.23(d,1H,J=4.4Hz);6.80−6.83(m,4H);7.22−7.32(m,7H);7.40−7.43(m,2H);8.20(s,1H);8.61(br.s,1H);8.62(s,1H)

ESI−Mass:695[M+H]

工程2 −アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)アデノシン 3’−O−(2−シアノエチル N,N−ジイソプロピルホスホロアミダイト)の製造
工程1で得られたN−アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)アデノシン10.0g(14.4mmol)を塩化メチレン75mLに溶解し、ジイソプロピルエチルアミン4.7g(36mmol)を加え2−シアノエチルN,N−ジイソプロピルクロロホスホロアミダイト4.82g(20.3mmol)を滴下し、室温で1時間反応させた。反応後、溶媒を30mL程度残して留去し得られた反応混合物をシリカゲルカラムクロマトグラフィーにて精製し、目的化合物を得た(12.0g;収率93%)。

ESI−Mass:895[M+H]
参考例10 −アセチル−2’−O−(2−シアノエトキシメチル)アデノシン
工程1 −アセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−(2−シアノエトキシメチル)アデノシンの製造
N−ヨードスクシンイミド245mg(1.09mmol)とトリフルオロメタンスルホン酸銀280mg(1.09mmol)を塩化メチレン8mLに懸濁させ、モレキュラーシーブス4Aを加え、乾燥した。ここに、N−アセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)アデノシン400mg(0.73mmol)とメチルチオメチル 2−シアノエチルエーテル145mg(1.11mmol)を塩化メチレン4mLに溶解し、氷冷下で加えた。そのまま3時間撹拌した。反応終了後、塩化メチレンを加えて希釈し、チオ硫酸ナトリウム水溶液と飽和炭酸水素ナトリウム水溶液にて洗浄を行い、無水硫酸マグネシウムにて乾燥、溶媒留去し、得られた混合物をシリカゲルカラムクロマトグラフィーにて精製し、N−アセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−(2−シアノエトキシメチル)アデノシンを得た。(201mg;収率45%)

H−NMR(CDCl): 0.98−1.11(m,28H);2.62(s,3H);2.69(td,2H,6.5,J=1.5Hz);3.81−3.89(m,1H);4.02−4.09(m,2H);4.17(d,1H,J=9.4Hz);4.28(d,1H,J=13.4Hz);4.50(d,1H,J=4.5Hz);4.67(dd,1H,J=8.8,4.5Hz);5.02(d,1H,J=7.0Hz);5.08(d,1H,J=7.0Hz);6.10(s,1H);8.34(s,1H);8.66(s,1H);8.67(s,1H)

ESI−Mass:636[M+H]

工程2 −アセチル−2’−O−(2−シアノエトキシメチル)アデノシンの製造
工程1で得られたN−アセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−(2−シアノエトキシメチル)アデノシン300mg(0.47mmol)を、酢酸0.1mLと0.5MTBAFのTHF溶液2mLの混合溶液に溶解し、室温で2時間撹拌した。反応終了後、得られた反応混合物をシリカゲルカラムクロマトグラフィーにて精製し、目的化合物を得た。(160mg;収率86%)。

H−NMR(DMSO−d6): 2.25(s,3H);2.53−2.68(m,2H);3.41−3.46(m,1H);3.56−3.64(m,2H);3.69−3.73(m,1H);4.00−4.01(m,1H);4.36−4.37(m,1H);4.72−4.78(m,3H);5.20(bt,2H);5.41(d,1H,J=5.2Hz);6.17(d,1H,J=5.7Hz);8.66(s,1H);8.72(s,1H);10.72(s,1H)

ESI−Mass:415[M+Na]
参考例11 −アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)アデノシンの製造
−アセチル−2’−O−(2−シアノエトキシメチル)アデノシン9.50g(24.2mmol)を脱水ピリジン100mLに溶解し、濃縮して乾燥した後、アルゴン雰囲気下、脱水ピリジン100mLに溶解した。氷冷下、4,4’−ジメトキシトリチルクロリド10.7g(31.2mmol)を加え、室温で1時間20分反応した。反応終了後、塩化メチレンにて希釈し、水にて洗浄を行い無水硫酸ナトリウムにて乾燥、溶媒留去し、得られた混合物をシリカゲルカラムクロマトグラフィーにて精製し、目的化合物を得た。(13.8g;収率82%)
参考例12 −フェノキシアセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)グアノシン 3’−O−(2−シアノエチル N,N−ジイソプロピルホスホロアミダイト)
工程1 −フェノキシアセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)グアノシンの製造
−フェノキシアセチル−5’−O−(4,4’−ジメトキシトリチル)グアノシン720mg(1mmol)を1,2−ジクロロエタン4mLに溶解し、ジイソプロピルエチルアミン452mg(3.5mmol)を加え、ついで365mg(1.2mmol)の二塩化ジブチルスズを加えた後、室温で一時間反応した。その後80℃にしクロロメチル 2−シアノエチルエーテル155.4mg(1.3mmol)を滴下、そのまま60分間攪拌した。反応終了後、飽和炭酸水素ナトリウム水溶液に反応液を加え塩化メチレンにて抽出を行い無水硫酸マグネシウムにて乾燥、溶媒留去し、得られた混合物を30gのシリカゲルカラムクロマトグラフィーにて精製し、N−フェノキシアセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)グアノシンを得た(384mg;収率48%)。

H−NMR(CDCl): 2.47−2.51(m,2H);2.58(br.s,1H);3.42(dd,1H,10.1,3.8Hz);3.46(dd,1H,10.1,3.8Hz);3.53−3.57(m,1H);3.69−3.73(m,1H);3.77(s,6H);4.24−4.26(m,1H);4.48−4.50(m,1H);4.61−4.65(m,2H);4.83,4.87(2d,2H,J=7.0Hz);4.88(t,1H,J=5.7Hz);6.05(d,1H,J=5.7Hz);6.80−6.82(m,4H);6.92−6.96(m,3H);7.07−7.11(m,2H);7.20−7.42(m,9H);7.84(s,1H);8.99(s,1H);11.81(br.s,1H)

ESI−Mass:825[M+Na]

工程2 −フェノキシアセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)グアノシン 3’−O−(2−シアノエチル N,N−ジイソプロピルホスホロアミダイトの製造
工程1で得られたN−フェノキシアセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)グアノシン320mg(0.399mmol)を塩化メチレン4mLに溶解し、ジイソプロピルエチルアミン128.8mg(0.996mmol)を加え2−シアノエチル N,N−ジイソプロピルクロロホスホロアミダイト141.5mg(0.598mmol)を滴下し、室温で1時間反応させた。反応後、溶媒を留去し得られた混合物を30gのシリカゲルカラムクロマトグラフィーにて精製し、目的化合物を得た(316mg;収率79%)。

ESI−Mass:1003[M+H]
参考例13 −フェノキシアセチル−2’−O−(2−シアノエトキシメチル)グアノシン
工程1 −フェノキシアセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−(2−シアノエトキシメチル)グアノシンの製造
−フェノキシアセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)グアノシン2.0g(3.0mmol)をTHF16mLに溶解し、メチルチオメチル 2−シアノエチルエーテル0.99g(7.6mmol)、モレキュラーシーブス4A1.0gを加え、アルゴン雰囲気下−45℃で10分攪拌した。トリフルオロメタンスルホン酸0.68g(4.5mmol)のTHF5mL溶液を加え攪拌した後、N−ヨードスクシンイミド1.02g(4.5mmol)を加え、15分攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、ろ過後酢酸エチルにて抽出、有機相を1Mのチオ硫酸水素ナトリウム水溶液にて洗浄、水、次いで飽和塩化ナトリウム水溶液にて洗浄し、無水硫酸マグネシウムにて乾燥、溶媒留去した。得られた残渣をシリカゲルクロマトグラフィーにて精製し、N−フェノキシアセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−(2−シアノエトキシメチル)グアノシンを得た(2.0g;収率89%)。

H−NMR(CDCl): 0.99−1.11(m,28H);2.59−2.77(m,2H);3.82−4.05(m,3H);4.15(d,1H,J=9.3Hz);4.25−4.35(m,2H);4.52−4.56(dd,1H,J=9.3,4.3Hz);5.00,5.07(2d,2H,J=7.2Hz);5.95(s,1H)6.99−7.12(m,3H);7.35−7.40(m,2H);8.09(s,1H);9.38(br.s,1H);11.85(br.s,1H)

ESI−Mass:766[M+Na]

工程2 −フェノキシアセチル−2’−O−(2−シアノエトキシメチル)グアノシンの製造
1MTBAF/THF溶液2.83mL(2.83mmol)に酢酸0.14mL(0.14mmol)を加えた溶液を調整する。工程1で得られたN−フェノキシアセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−(2−シアノエトキシメチル)グアノシン1.0g(1.35mmol)をTHF2.83mLに溶解し、上で調整した溶液を加えアルゴン雰囲気下室温で1時間攪拌した。反応液を減圧下濃縮後、塩化メチレンに溶解しシリカゲルクロマトグラフィーにのせ精製し、目的化合物を得た。(0.67g;収率99%)。

H−NMR(DMSO−d6): 2.59−2.66(m,2H);3.41−3.63(m,4H);3.98(m,1H);4.32(m,1H);4.58−4.62(t,1H,J=5.3Hz);4.71−4.78(dd,2H,J=13.1,6.8Hz);4.87(s,2H);5.12(s,1H)5.37(s,1H);5.97(d,1H,J=6.1Hz)6.96−6.99(m,3H);7.28−7.34(m,2H);8.30(s,1H);11.78(br.s,2H)

ESI−Mass:500[M−H]
参考例14 −フェノキシアセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)グアノシンの製造
−フェノキシアセチル−2’−O−(2−シアノエトキシメチル)グアノシン660mg(1.32mmol)をピリジンで共沸し真空ポンプで30分乾燥した。THF9mLに溶解し、アルゴン雰囲気下ピリジン2.1g(26.4mmol)、モレキュラーシーブス4A600mgを加え10分攪拌した。これに4,4’−ジメトキシトリチルクロライド540mg(1.58mmol)を3回に分けて1時間ごとに加え、さらに1時間攪拌した。メタノール2mLを加え2分攪拌した後、セライトろ過し酢酸エチルにて洗浄した。ろ液をエバポレーターで濃縮後残渣を酢酸エチルに溶解し、飽和炭酸水素ナトリウム水溶液と分液した。有機相を飽和塩化ナトリウム水溶液にて洗浄、無水硫酸マグネシウムにて乾燥後溶媒留去した。得られた残渣をシリカゲルクロマトグラフィーにて精製し、目的化合物を得た(800mg;収率75%)。
参考例15 −アセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−(2−シアノエトキシメチル)アデノシン
工程1 −アセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−メチルチオメチルアデノシンの製造
−アセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)アデノシン2.00g(3.62mmol)をジメチルスルホキシド25mLに溶解し、無水酢酸17.5mL、酢酸12.5mLを加え室温で14時間撹拌した。反応終了後、水200mLに反応液を加え、酢酸エチルにて抽出を行い、飽和炭酸水素ナトリウム水溶液にて洗浄を行い、無水硫酸ナトリウムにて乾燥、溶媒留去し、得られた混合物をシリカゲルカラムクロマトグラフィーにて精製し、N−アセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−メチルチオメチルアデノシンを得た。(1.36g;収率61%)

H−NMR(CDCl): 0.96−1.11(m,28H);2.20(s,3H);2.61(s,3H);4.03(dd,1H,J=13.4,2.4Hz);4.18(d,1H,J=9.1Hz);4.27(d,1H,J=13.4Hz);4.63−4.71(m,2H);5.00(d,1H,J=11.5Hz);5.07(d,1H,J=11.5Hz);6.09(s,1H);8.31(s,1H);8.65(s,1H);8.69(s,1H)

ESI−Mass:635[M+Na]

工程2 −アセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−(2−シアノエトキシメチル)アデノシンの製造
工程1で得られたN−アセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−メチルチオメチルアデノシン1.00g(1.63mmol)を、THF25mLに溶解した。3−ヒドロキシプロピオニトリル5.88g(82.7mmol)を加え、モレキュラーシーブス4Aを加えて乾燥し、−45℃に冷却した。N−ヨードスクシンイミド440mg(1.96mmol)を加え、ついでトリフルオロメタンスルホン酸490mg(3.26mmol)を加えた後、−45℃で15分間撹拌した。反応終了後、冷却したままトリエチルアミンを加えて中和し、塩化メチレンにて希釈、チオ硫酸ナトリウム水溶液と飽和炭酸水素ナトリウム水溶液にて洗浄を行い、無水硫酸ナトリウムにて乾燥、溶媒留去し、得られた混合物をシリカゲルカラムクロマトグラフィーにて精製し、目的化合物を得た。(722mg;収率71%)。
参考例16 シチジリル−〔3’→5’〕−ウリジリル−〔3’→5’〕−ウリジリル−〔3’→5’〕−アデニリル−〔3’→5’〕−シチジリル−〔3’→5’〕−グアニリル−〔3’→5’〕−シチジリル−〔3’→5’〕−ウリジリル−〔3’→5’〕−グアニリル−〔3’→5’〕−アデニリル−〔3’→5’〕−グアニリル−〔3’→5’〕−ウリジリル−〔3’→5’〕−アデニリル−〔3’→5’〕−シチジリル−〔3’→5’〕−ウリジリル−〔3’→5’〕−ウリジリル−〔3’→5’〕−シチジリル−〔3’→5’〕−グアニリル−〔3’→5’〕−アデニリル−〔3’→5’〕−ウリジンの製造
市販の2’/3’−O−ベンゾイル−5’−O−(4,4’−ジメトキシトリチル)ウリジンを担持したCPG固相担体(37mg,1μmol)をグラスフィルター付きカラムに入れ、核酸自動合成機(ExpediteTM:アプライドバイオシステムズ社)を使用して、標記化合物のオリゴRNAの合成を行った。
核酸モノマー化合物として、5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)ウリジン 3’−O−(2−シアノエチル N,N−ジイソプロピルホスホロアミダイト)、N−アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)シチジン 3’−O−(2−シアノエチル N,N−ジイソプロピルホスホロアミダイト)、N−アセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)アデノシン 3’−O−(2−シアノエチル N,N−ジイソプロピルホスホロアミダイト)、N−フェノキシアセチル−5’−O−(4,4’−ジメトキシトリチル)−2’−O−(2−シアノエトキシメチル)グアノシン 3’−O−(2−シアノエチル N,N−ジイソプロピルホスホロアミダイト)を、縮合触媒として5−エチルチオテトラゾールを、酸化剤としてヨウ素溶液を、キャッピング溶液としてフェノキシ酢酸無水物とN−メチルイミダゾール溶液を使用した。核酸モノマー化合物を19回縮合させた後、固相上で、5’末端の水酸基の保護基の除去を行った後、切り出し剤として、濃アンモニア水−エタノール混合液(3:1)を用いて、40℃、4時間かけてCPG固相担体からの切り出し及び各リン酸部位の保護基の脱離反応及び塩基の保護基の除去を行った。反応混合物を減圧下、濃縮後、10%の nn-−プロピルアミン、0.6% のビス(2−メルカプトエチル)エーテルを含む1MのテトラブチルアンモニウムフルオリドのTHF溶液を用いて室温1時間反応し、2’位の水酸基の保護基を脱離した。溶液を脱塩処理後、DEAE−イオン交換樹脂(TOYOPEARL DEAE−650)にて精製し、高純度の目的化合物を得た(112OD260;収率58%)。
ここで、目的化合物の収量として、波長260nmの紫外線の吸光度(OD260)を用いた。以下、同様に吸光度(OD260)を目的化合物の収量とした。

MALDI−TOF−MS:計算値 6305.9 [M+H]
実測値 6304.8 [M+H]
試験例1 −アセチル−2’−O−(2−シアノエトキシメチル)シチジン
50g(95mmol)のN−アセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)シチジンを500mL(142mmol)のTHFに溶解し、18.64gのメチルチオメチル 2−シアノエチルエーテル、40gのモレキュラーシーブス4Aを加え、アルゴン雰囲気下、−45℃で30分攪拌した。21.41g(142mmol)のトリフルオロメタンスルホン酸を滴下した後、31.97g(142mmol)のN−ヨードスクシンイミドを加え、30分攪拌した。反応液にトリエチルアミン80mlを加え、ろ過後、酢酸エチルにて抽出、有機層を1Mのチオ硫酸水素ナトリウム水溶液、飽和炭酸水素ナトリウム水溶液、次いで飽和塩化ナトリウム水溶液にて洗浄し、無水硫酸ナトリウムにて乾燥、溶媒留去した。
得られた残渣を300mLのTHFに溶解し、18.3g(110mmol)のトリエチルアミントリヒドロフロリドを加え45℃で2時間攪拌した。生じた析出物を吸引ろ過にて回収し、冷却したTHFで洗浄、乾燥し目的化合物を得た。(27g;収率78%)。

ESI−Mass:391.3[M+Na]

Figure 2007097447
リボースの2’位水酸基が1−(2−シアノエトキシ)エチルで保護され、3’位水酸基と5’水酸基がジシロキシルで保護されているシチジン誘導体において、トリエチルアミントリヒドロフロリドを使用して、3’位水酸基と5’水酸基を保護しているジシロキシルを脱保護すると、シリカゲルカラム精製を行うことなく析出物として目的化合物を得ることができた。
試験例2 −フェノキシアセチル−2’−O−(2−シアノエトキシメチル)グアノシン
47g(63mmol)のN−フェノキシアセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−(2−シアノエトキシメチル)グアノシンを280mLのアセトニトリルに溶解し、15.3g(95mmol)のトリエチルアミントリヒドロフロリドを加え35℃で2時間攪拌した。反応液をヘキサン100mlにて2回抽出し、残ったアセトニトリル層に30mlの水を加え、室温で5分攪拌した。生じた析出物を吸引ろ過にて回収し、冷却した混媒(水:アセトニトリル=1:1)で洗浄、乾燥し目的化合物を得た。(22g;収率69%)。

ESI−Mass:500[M−H]

Figure 2007097447
リボースの2’位水酸基が1−(2−シアノエトキシ)エチルで保護され、3’位水酸基と5’水酸基がジシロキシルで保護されているグアノシン誘導体において、トリエチルアミントリヒドロフロリドを使用して、3’位水酸基と5’水酸基を保護しているジシロキシルを脱保護すると、シリカゲルカラム精製を行うことなく析出物として目的化合物を得ることができた。
試験例3 −アセチル−2’−O−(2−シアノエトキシメチル)アデノシン
44g(69mmol)のN−アセチル−3’,5’−O−(テトライソプロピルジシロキサン−1,3−ジイル)−2’−O−(2−シアノエトキシメチル)アデノシンを、150mLのTHFに溶解し、13.4g(83mmol)のトリエチルアミントリヒドロフロリドを50mLのTHFに溶解したものを調製し、これを加え、45℃で1時間撹拌した。反応終了後、50mLのヘキサンを加えて氷冷下で撹拌した。生じた析出物を吸引ろ過にて回収し、目的化合物を得た。(29g;定量的)。

ESI−Mass:415.4[M+Na]

Figure 2007097447
リボースの2’位水酸基が1−(2−シアノエトキシ)エチルで保護され、3’位水酸基と5’水酸基がジシロキシルで保護されているアデノシン誘導体において、トリエチルアミントリヒドロフロリドを使用して、3’位水酸基と5’水酸基を保護しているジシロキシルを脱保護すると、シリカゲルカラム精製を行うことなく析出物として目的化合物を得ることができた。
本発明によれば、リボ核酸誘導体(1)のリボースの3’位水酸基と5’位水酸基とを保護しているケイ素置換基を脱離する工程において、3級アミンとフッ化水素酸との塩、又は3級アミンとフッ化水素酸との混合物を作用させることによって、シリカゲルカラムによる精製操作を行うことなく、安価にしかも高純度でリボ核酸誘導体(3)を析出物として獲得することができる。
したがって、本発明によれば、オリゴRNA(B)の製造に使用することができるホスホロアミダイト化合物(A)を、安価に製造することが可能である。

Claims (16)

  1. 次の一般式(1)で表されるリボ核酸誘導体に、次の一般式(2)で表される3級アミンとフッ化水素酸との塩、又は3級アミンとフッ化水素酸との混合物を作用させ、リボースの3’位水酸基と5’位水酸基とを保護しているケイ素置換基を脱離することを特徴とする、次の一般式(3)で表されるリボ核酸誘導体の製造方法。
    Figure 2007097447
    式(1)、(2)及び(3)中、Bzは、保護基を有していてもよい核酸塩基又はその修飾体を表す。R7a、R7b、R7cは、それぞれ同一若しくは異なって、アルキルを表すか、又はR7a、R7b、R7cが隣接する窒素原子と一緒になって形成する、2環性の飽和アミノ環基を表す。xは、1〜30の範囲内にある数を表す。WGは、電子吸引性基を表す。Aは、次の一般式(4a)又は(4b)で表されるケイ素置換基を表す。
    Figure 2007097447
    式(4a)及び(4b)中、Rは、アルキルを表す。
  2. xが2〜15の範囲内にある数である、請求項1記載のリボ核酸誘導体の製造方法。
  3. 3級アミンとフッ化水素酸との塩がトリエチルアミントリヒドロフロリドである、請求項1又は2のいずれかに記載のリボ核酸誘導体の製造方法。
  4. WGがシアノである、請求項1〜3のいずれかに記載のリボ核酸誘導体の製造方法。
  5. 下記工程を含む、次の一般式(A)で表されるホスホロアミダイト化合物の製造方法。
    Figure 2007097447
    式(A)中、Bzは、保護基を有していてもよい核酸塩基又はその修飾体を表す。Rは、次の一般式(5)で表される置換基を表す。
    Figure 2007097447
    式(5)中、R11、R12、R13は、同一又は異なって、水素又はアルコキシを表す。
    2a、R2bは、同一若しくは異なって、アルキルを表すか、又は、R2a、R2bが隣接する窒素原子と一緒になって形成する、5〜6員の飽和アミノ環基を表す。かかる飽和アミノ環基は、窒素原子の他に環構成原子として酸素原子又は硫黄原子を1個有していてもよい。WG、WGは、同一又は異なって、電子吸引性基を表す。
    工程:
    次の一般式(1)で表されるリボ核酸誘導体に、次の一般式(2)で表される3級アミンとフッ化水素酸との塩、又は3級アミンとフッ化水素酸との混合物を作用させリボースの3’位水酸基と5’位水酸基とを保護しているケイ素置換基を脱離することを特徴とする、次の一般式(3)で表されるリボ核酸誘導体を製造する工程。
    Figure 2007097447
    式(1)、(2)及び(3)中、Bz、WGは、前記と同義である。R7a、R7b、R7cは、それぞれ同一若しくは異なって、アルキルを表すか、又はR7a、R7b、R7cが隣接する窒素原子と一緒になって形成する、2環性の飽和アミノ環基を表す。xは、1〜30の範囲内にある数を表す。Aは、次の一般式(4a)又は(4b)で表されるケイ素置換基を表す。
    Figure 2007097447
    式(4a)及び(4b)中、Rは、アルキルを表す。
  6. xが2〜15の範囲内にある数である、請求項5記載のホスホロアミダイト化合物の製造方法。
  7. 3級アミンとフッ化水素酸との塩がトリエチルアミントリヒドロフロリドである、請求項5又は6のいずれかに記載のホスホロアミダイト化合物の製造方法。
  8. WGがシアノである、請求項5〜7のいずれかに記載のホスホロアミダイト化合物の製造方法。
  9. 下記工程a〜fを含む、次の一般式(A)で表されるホスホロアミダイト化合物の製造方法。
    Figure 2007097447
    式(A)中、Bzは、保護基を有していてもよい核酸塩基又はその修飾体を表す。Rは、次の一般式(5)で表される置換基を表す。
    Figure 2007097447
    式(5)中、R11、R12、R13は、同一又は異なって、水素又はアルコキシを表す。
    2a、R2bは、同一若しくは異なって、アルキルを表すか、又は、R2a、R2bが隣接する窒素原子と一緒になって形成する、5〜6員の飽和アミノ環基を表す。かかる飽和アミノ環基は、窒素原子の他に環構成原子として酸素原子又は硫黄原子を1個有していてもよい。WG、WGは、同一又は異なって、電子吸引性基を表す。

    工程a:
    次の一般式(6)で表されるリボ核酸誘導体にアルキル化試薬を作用させることによって、中性条件下において脱離するエーテル型保護基を2’位の水酸基に導入した、次の一般式(1)で表されるリボ核酸誘導体を製造する工程、
    Figure 2007097447
    式(1)及び(6)中、Bz、WGは、前記と同義である。Aは、次の一般式(4a)又は(4b)で表されるケイ素置換基を表す。
    Figure 2007097447
    式(4a)及び(4b)中、Rは、アルキルを表す。
    工程b:
    工程aとは別に、リボ核酸誘導体(6)にジメチルスルホキシドと酢酸と無水酢酸とを作用させることによって、次の一般式(7)で表されるリボ核酸誘導体を製造する工程、
    Figure 2007097447
    式(6)及び(7)中、A、Bzは、前記と同義である。
    工程c:
    工程bにおいて製造されるリボ核酸誘導体(7)に次の一般式(8)で表されるアルコール化合物と酸と硫黄原子に対するハロゲン化剤とを作用させることによって、中性条件下において脱離するエーテル型保護基を2’位の水酸基に導入した、次の一般式(1)で表されるリボ核酸誘導体を製造する工程、
    Figure 2007097447
    式(1)、(7)及び(8)中、A、Bz、WGは、前記と同義である。
    工程d:
    工程a又はcにおいて製造される次の一般式(1)で表されるリボ核酸誘導体に、次の一般式(2)で表される3級アミンとフッ化水素酸との塩、又は3級アミンとフッ化水素酸との混合物を作用させリボースの3’位水酸基と5’位水酸基とを保護しているケイ素置換基を脱離することを特徴とする、次の一般式(3)で表されるリボ核酸誘導体を製造する工程、
    Figure 2007097447
    式(1)、(2)及び(3)中、A、Bz、WGは、前記と同義である。R7a、R7b、R7cは、それぞれ同一若しくは異なって、アルキルを表すか、又はR7a、R7b、R7cが隣接する窒素原子と一緒になって形成する、2環性の飽和アミノ環基を表す。xは、1〜30の範囲内にある数を表す。
    工程e:
    工程dにおいて製造されるリボ核酸誘導体(3)の5’位の水酸基に酸性条件下において脱離する保護基(R)を導入する、リボ核酸誘導体(10)を製造する工程、
    Figure 2007097447
    式(3)、(9)及び(10)中、Bz、R、WGは、前記と同義である。Xは、ハロゲンを表す。
    工程f:
    工程eにおいて製造されるリボ核酸誘導体(10)にホスホロアミダイト化試薬と、必要に応じて活性化剤とを作用させることによって、3’位の水酸基がホスホロアミダイト化された、次の一般式(A)で表されるホスホロアミダイト化合物を製造する工程。
    Figure 2007097447
    式(10)及び(A)中、Bz、R、WGは、前記と同義である。R2a、R2bは、同一若しくは異なって、アルキルを表すか、又は、R2a、R2bが隣接する窒素原子と一緒になって形成する、5〜6員の飽和アミノ環基を表す。かかる飽和アミノ環基は、窒素原子の他に環構成原子として酸素原子又は硫黄原子を1個有していてもよい。WGは、電子吸引性基を表す。
  10. アルキル化試薬が、次の一般式(11)で表されるエーテル化合物である、請求項9記載のホスホロアミダイト化合物の製造方法。
    Figure 2007097447
    式(11)中、Lは、ハロゲン、アリールチオ基、アルキルスルホキシド基又はアルキルチオ基を示し、WGは、電子吸引性基を表す。
  11. xが2〜15の範囲内にある数である、請求項9又は10のいずれかに記載のホスホロアミダイト化合物の製造方法。
  12. 3級アミンとフッ化水素酸との塩がトリエチルアミントリヒドロフロリドである、請求項9〜11のいずれかに記載のホスホロアミダイト化合物の製造方法。
  13. WGがシアノである、請求項9〜12のいずれかに記載のホスホロアミダイト化合物の製造方法。
  14. ホスホロアミダイト化試薬が、次の一般式(12a)又は(12b)で表される化合物である、請求項9〜13のいずれかに記載のホスホロアミダイト化合物の製造方法。
    Figure 2007097447
    式(12a)及び(12b)中、R2a、R2bは、同一若しくは異なって、アルキルを表すか、又は、R2a、R2bが隣接する窒素原子と一緒になって形成する、5〜6員の飽和アミノ環基を表す。かかる飽和アミノ環基は、窒素原子の他に環構成原子として酸素原子又は硫黄原子を1個有していてもよい。WGは、電子吸引性基を表す。Xは、ハロゲンを表す。
  15. 工程fにおいて使用する活性化剤が、1H−テトラゾール、5−エチルチオテトラゾール、5−ベンジルメルカプト−1H−テトラゾール、4,5−ジクロロイミダゾール、4,5−ジシアノイミダゾール、ベンゾトリアゾールトリフラート、イミダゾールトリフラート、ピリジニウムトリフラート、N,N−ジイソプロピルエチルアミン又は2,4,6−コリジン/N−メチルイミダゾールである、請求項9〜14のいずれかに記載のホスホロアミダイト化合物の製造方法。
  16. 請求項5〜15のいずれかに記載の製造方法において製造されるホスホロアミダイト化合物を使用することを特徴とする、次の一般式(B)で表されるオリゴRNAの製造方法。
    Figure 2007097447
    式(B)中、各Bは、それぞれ独立して、核酸塩基又はその修飾体を表す。各Qは、それぞれ独立して、O又はSを表す。各Rは、それぞれ独立して、H、水酸基、ハロゲン、アルコキシ、アルキルチオ、アルキルアミノ、ジアルキルアミノ、アルケニルオキシ、アルケニルチオ、アルケニルアミノ、ジアルケニルアミノ、アルキニルオキシ、アルキニルチオ、アルキニルアミノ、ジアルキニルアミノ又はアルコキシアルキルオキシを表すが、少なくとも1つは水酸基を表す。Zは、H、リン酸基又はチオリン酸基を表す。nは、1〜200の範囲内にある整数を表す。
JP2008501776A 2006-02-27 2007-02-26 核酸保護基の脱離方法 Withdrawn JPWO2007097447A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006050394 2006-02-27
JP2006050394 2006-02-27
PCT/JP2007/053492 WO2007097447A1 (ja) 2006-02-27 2007-02-26 核酸保護基の脱離方法

Publications (1)

Publication Number Publication Date
JPWO2007097447A1 true JPWO2007097447A1 (ja) 2009-07-16

Family

ID=38437482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008501776A Withdrawn JPWO2007097447A1 (ja) 2006-02-27 2007-02-26 核酸保護基の脱離方法

Country Status (7)

Country Link
US (1) US20090312534A1 (ja)
EP (1) EP1995252A1 (ja)
JP (1) JPWO2007097447A1 (ja)
KR (1) KR20080106443A (ja)
CN (1) CN101421289A (ja)
CA (1) CA2642693A1 (ja)
WO (1) WO2007097447A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1995253B1 (en) * 2006-02-27 2016-12-21 Nippon Shinyaku Co., Ltd. Method for detaching protecting group on nucleic acid
JP2008174524A (ja) * 2007-01-22 2008-07-31 Nippon Shinyaku Co Ltd リボ核酸化合物の製造方法
US10377788B2 (en) 2015-04-02 2019-08-13 Bonac Corporation Method for producing glycoside compounds
US20210355153A1 (en) 2018-09-07 2021-11-18 Sumitomo Chemical Company, Limited Method for producing glycoside compound
WO2021075423A1 (ja) * 2019-10-18 2021-04-22 富士フイルム和光純薬株式会社 ホスホロアミダイト活性化剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580870B2 (ja) 2003-09-02 2010-11-17 株式会社キラルジェン リボヌクレオチド又はリボヌクレオチド誘導体の製造方法
KR101281836B1 (ko) * 2004-08-26 2013-07-03 니뽄 신야쿠 가부시키가이샤 포스포라미다이트 화합물 및 올리고 rna의 제조 방법
US8859749B2 (en) * 2005-03-08 2014-10-14 Qiagen Gmbh Modified short interfering RNA

Also Published As

Publication number Publication date
CN101421289A (zh) 2009-04-29
US20090312534A1 (en) 2009-12-17
CA2642693A1 (en) 2007-08-30
EP1995252A1 (en) 2008-11-26
KR20080106443A (ko) 2008-12-05
WO2007097447A1 (ja) 2007-08-30

Similar Documents

Publication Publication Date Title
JP5157168B2 (ja) ホスホロアミダイト化合物及びオリゴrnaの製法
JP5187189B2 (ja) 核酸保護基の脱離方法
JPWO2007097447A1 (ja) 核酸保護基の脱離方法
JPWO2007097446A1 (ja) オリゴ核酸のキャッピング法
JP5168145B2 (ja) 核酸保護基の導入方法
RU2415862C2 (ru) Производное фосфорамидита и способ получения олиго-рнк
WO2021070494A1 (ja) 核酸オリゴマーの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100216

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110930