JPWO2007086491A1 - Cellulose fiber mixed fabric - Google Patents

Cellulose fiber mixed fabric Download PDF

Info

Publication number
JPWO2007086491A1
JPWO2007086491A1 JP2007556006A JP2007556006A JPWO2007086491A1 JP WO2007086491 A1 JPWO2007086491 A1 JP WO2007086491A1 JP 2007556006 A JP2007556006 A JP 2007556006A JP 2007556006 A JP2007556006 A JP 2007556006A JP WO2007086491 A1 JPWO2007086491 A1 JP WO2007086491A1
Authority
JP
Japan
Prior art keywords
water
fabric
fiber
fibers
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007556006A
Other languages
Japanese (ja)
Other versions
JP5102045B2 (en
Inventor
吉田 裕司
裕司 吉田
祥一 秋田
祥一 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Fibers Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2007556006A priority Critical patent/JP5102045B2/en
Publication of JPWO2007086491A1 publication Critical patent/JPWO2007086491A1/en
Application granted granted Critical
Publication of JP5102045B2 publication Critical patent/JP5102045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/16Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic System
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/023Fabric with at least two, predominantly unlinked, knitted or woven plies interlaced with each other at spaced locations or linked to a common internal co-extensive yarn system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3008Woven fabric has an elastic quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3976Including strand which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous composition, water solubility, heat shrinkability, etc.]

Abstract

本発明は衣服着用時快適で、かつ、発汗時にもべとつき感や蒸れ感のない布帛を提供するものである。本発明は、吸水時寸法変化率が2%以上である、セルロース繊維が含有されていることを特徴とするセルロース繊維混用布帛によって達成することができる。本発明の布帛は、スポーツウェア、インナー、アウターなどに適用すると、快適な着用感が得られる。The present invention provides a fabric that is comfortable when wearing clothes and does not feel sticky or damp when sweating. The present invention can be achieved by a cellulose fiber-mixed fabric characterized by containing cellulose fibers having a dimensional change rate of 2% or more at the time of water absorption. When the fabric of the present invention is applied to sportswear, inner, outer and the like, a comfortable wearing feeling can be obtained.

Description

本発明は特殊な吸水時に寸法変化する繊維が混用された布帛に関する。より詳細には、吸水時に寸法変化(吸水自己伸長または吸水自己収縮)するセルロース系繊維が混用された、着用発汗時に快適な布帛を提供するものである。   The present invention relates to a fabric in which fibers that change in size upon special water absorption are mixed. More specifically, the present invention provides a fabric that is comfortable when sweating and wearing, in which cellulosic fibers that undergo dimensional changes (water absorption self-extension or water absorption self-shrinkage) upon water absorption are mixed.

従来の衣服は、スポーツなどの運動により発汗した際には布帛が吸汗し、肌と布帛が密着して、いわゆるべとつき感や蒸れ感がある。これを防止するために種々の布帛が開発されているが、布帛構造のみでは吸汗時の快適性に限界がある。このべとつき感や蒸れ感を解消するために吸汗時(吸水時)に自己伸長する繊維を使用した布帛、衣服が提案されている。例えば、吸水時に自己伸長する繊維を使用して、吸水時に通気性を向上させる衣服(特許文献1、2、3参照)や、吸汗時に凹凸を発現させる(特許文献4、5参照)衣服などが提案されている。
確かにこれらの特許文献で提案されている衣服は、吸水自己伸長糸を使用していない衣服より発汗時快適である。しかし、これらの衣服に使用されている繊維は吸湿性や吸水性がほとんどなく、身体の不感蒸泄による水分は吸収しない。このため、発汗状態ではない着用時においても不快感が有り、さらに、発汗時にも吸汗性が無いためべとつき感や蒸れ感が残る衣服となる。また、通常のセルロース繊維を使用すれば吸湿性がよく、着用時では快適であることが知られている。しかし、運動などによる発汗時にはべとつき感や蒸れ感を覚えるため、吸水時には通気性が向上するなど、さらに、高機能布帛が望まれている。上述のように、着用時、発汗時共に快適となる繊維は現在見当たらない。
特開2005−163225号公報 特開2005−36374号公報 特開2005−23431号公報 特開2005−146496号公報 特開2006−112009号公報
In conventional garments, when sweating due to exercise such as sports, the fabric absorbs sweat, the skin and the fabric are in close contact, and there is a so-called stickiness or stuffiness. In order to prevent this, various fabrics have been developed. However, there is a limit to the comfort at the time of sweat absorption with only the fabric structure. In order to eliminate the feeling of stickiness and stuffiness, fabrics and clothes using fibers that self-extend during sweat absorption (at the time of water absorption) have been proposed. For example, a garment that improves air permeability when absorbing water (see Patent Documents 1, 2, and 3) using a fiber that self-extends during water absorption (see Patent Documents 4 and 5). Proposed.
Certainly, the garments proposed in these patent documents are more comfortable when sweating than garments that do not use water-absorbing self-extending yarns. However, the fibers used in these clothes have almost no hygroscopicity or water absorption, and do not absorb moisture due to insensitive digestion of the body. For this reason, there is a feeling of discomfort even when worn in a non-sweat state, and furthermore, since it does not absorb sweat even when sweating, it becomes a garment with a feeling of stickiness and stuffiness. Further, it is known that if ordinary cellulose fibers are used, the hygroscopicity is good and the clothes are comfortable when worn. However, since a feeling of stickiness or stuffiness is felt when sweating due to exercise or the like, a highly functional fabric is desired, such as improved air permeability when absorbing water. As mentioned above, there are currently no fibers that are comfortable when worn and when sweating.
JP 2005-163225 A JP 2005-36374 A JP 2005-23431 A JP 2005-146696 A JP 2006-112009 A

本発明は、着用時快適で、かつ、発汗時にもべとつき感や蒸れ感のない布帛を提供する事を目的とする。   An object of the present invention is to provide a fabric that is comfortable when worn and does not feel sticky or damp even when sweating.

本発明者は、目的を達成するため着用テストなどを含み鋭意検討した結果、吸水時に寸法変化を生じる画期的なセルロース繊維を使用した布帛により、課題が達成される事を見出した。   As a result of intensive studies including a wearing test in order to achieve the object, the present inventor has found that the problem is achieved by a fabric using an innovative cellulose fiber that causes a dimensional change upon water absorption.

すなわち本発明の目的は、下記のセルロース繊維混用布帛により達成される。
(1)吸水時寸法変化率が2%以上である、セルロース繊維が含有されていることを特徴とするセルロース繊維混用布帛。
(2)吸水伸長率が+3%以上の吸水自己伸長セルロース繊維が含有されていることを特徴とする(1)記載のセルロース繊維混用布帛。
(3)該セルロース繊維の含有率が10wt%以上である(2)記載のセルロース繊維混用布帛。
(4)吸水伸長率が+3%以上である吸水自己伸長セルロース繊維によるウェルトループ、および/またはタックループが2ループ以上連続して形成されている部分を有する丸編構造である(3)記載のセルロース繊維混用布帛。
(5)吸水伸長率が+3%以上である吸水自己伸長セルロース繊維はルーピングされ、かつ、1〜4針の振り組織であり、さらに吸水時の編地密度低下率が5〜40%であることを特徴とする経編構造である(3)記載のセルロース繊維混用布帛
(6)吸水自己伸長セルロース繊維が、アルカリ水溶液20g/L以上、20℃以上、5分以上浸漬処理されたことを特徴とする(4)または(5)記載のセルロース繊維混用布帛。
(7)吸水伸長率が−2%以下の吸水自己収縮セルロース繊維が含有されていることを特徴とする(1)記載のセルロース繊維混用布帛。
(8)分離部と非分離部とが繰り返し形成されている多層構造布帛であって、一方の外層、および/または、中間層には吸水伸長率が−2%以下である吸水自己収縮セルロース繊維が含有され、他方の外層は非吸水収縮繊維で構成され、コース方向の非分離部は非収縮繊維で構成されている(7)記載のセルロース繊維混用布帛。
(9)分離部と非分離部とが繰り返し形成されている立体構造布帛であって、該分離部を構成する一方の外層(C)には吸水伸長率が−2%以下である吸水自己収縮セルロース繊維が含有され、他方の外層(D)には非吸水収縮繊維が含有され、両外層のコース数が(C)>(D)である事を特徴とする(7)記載のセルロース繊維混用布帛。
(10)吸水自己収縮セルロース繊維の撚り係数が8200〜35000である事を特徴とする(7)記載のセルロース繊維混用布帛。
That is, the object of the present invention is achieved by the following cellulose fiber mixed fabric.
(1) A cellulose fiber-mixed fabric comprising cellulose fibers having a dimensional change rate of 2% or more upon water absorption.
(2) The cellulose fiber-mixed fabric according to (1), wherein water-absorbing self-extending cellulose fibers having a water absorption elongation rate of + 3% or more are contained.
(3) The cellulose fiber-mixed fabric according to (2), wherein the cellulose fiber content is 10 wt% or more.
(4) A circular knitted structure having a welt loop made of water-absorbing self-extending cellulose fibers having a water absorption elongation rate of + 3% or more and / or a portion in which a tuck loop is continuously formed by two or more loops. Cellulose fiber mixed fabric.
(5) The water-absorbing self-extending cellulose fiber having a water absorption elongation rate of + 3% or more is looped, and has a 1-4 needle swinging structure, and further has a knitted fabric density reduction rate of 5 to 40% at the time of water absorption. (6) The water-absorbing self-stretching cellulose fiber is immersed in an alkaline aqueous solution of 20 g / L or more, 20 ° C. or more, and 5 minutes or more. The fabric for mixing cellulose fibers according to (4) or (5).
(7) The cellulose fiber-mixed fabric according to (1), wherein water-absorbing self-shrinking cellulose fibers having a water absorption elongation rate of -2% or less are contained.
(8) A water-absorbing self-shrinking cellulose fiber having a multilayer structure fabric in which a separation part and a non-separation part are repeatedly formed, wherein one outer layer and / or intermediate layer has a water absorption elongation of -2% or less. The cellulose fiber-mixed fabric according to (7), wherein the other outer layer is composed of non-water-absorbing shrinkable fibers, and the non-separating portion in the course direction is composed of non-shrinkable fibers.
(9) A three-dimensionally structured fabric in which a separation part and a non-separation part are repeatedly formed, and one outer layer (C) constituting the separation part has a water absorption self-shrinkage with a water absorption elongation rate of -2% or less. Cellulose fibers are contained, the other outer layer (D) contains non-water-absorbing shrink fibers, and the number of courses of both outer layers is (C)> (D). Fabric.
(10) The cellulose fiber-mixed fabric according to (7), wherein the water-absorbing self-shrinkable cellulose fiber has a twist coefficient of 8200 to 35000.

本発明の繊維を使用すれば、着用時快適で発汗時にもべとつき感や蒸れ感のない布帛が製造可能である。特にこの布帛は、運動時に吸放湿性効果が大きく発揮でき、これまで提案されている特許文献1〜5に示されるような衣服と着用快適性に大きな差が生じる。さらに、吸水時(衣服着用場面においては吸汗時)にセルロース繊維が寸法変化し、特に吸放湿性を向上させることができるので、セルロース繊維使用の効果をより高めることができ、特に少量の水分量でもセルロース繊維の吸水寸法変化効果が得られる。このため、本発明の繊維を使用すれば着用時快適で発汗時にもべとつき感や蒸れ感のない衣服製造が可能である。本発明の繊維を使用して製造された布帛をスポーツウェア、インナー、アウターなどに適用すると、快適な着用感が得られる。   By using the fiber of the present invention, it is possible to produce a fabric that is comfortable when worn and does not feel sticky or damp when sweating. In particular, this fabric can exhibit a significant moisture absorption / release effect during exercise, resulting in a large difference in clothes and wearing comfort as disclosed in Patent Documents 1-5. In addition, the size of the cellulose fibers changes during water absorption (when sweating in clothes), and in particular, the moisture absorption and release can be improved. However, the effect of changing the water absorption dimension of cellulose fibers can be obtained. For this reason, if the fiber of the present invention is used, it is possible to produce a garment that is comfortable when worn and does not feel sticky or stuffy when sweating. When the fabric manufactured using the fiber of the present invention is applied to sportswear, inner, outer and the like, a comfortable wearing feeling can be obtained.

本発明のセルロース混用布帛における編成組織の例を示す図The figure which shows the example of the knitting structure in the cellulose mixed fabric of this invention 本発明のセルロース混用布帛における編成組織の例を示す図The figure which shows the example of the knitting structure in the cellulose mixed fabric of this invention 本発明のセルロース混用布帛における編成組織の例を示す図The figure which shows the example of the knitting structure in the cellulose mixed fabric of this invention 本発明のセルロース混用布帛における編成組織の例を示す図The figure which shows the example of the knitting structure in the cellulose mixed fabric of this invention 本発明のセルロース混用布帛における編成組織の例を示す図The figure which shows the example of the knitting structure in the cellulose mixed fabric of this invention 本発明のセルロース混用布帛における編成組織の例を示す図The figure which shows the example of the knitting structure in the cellulose mixed fabric of this invention 本発明のセルロース混用布帛における編成組織の例を示す図The figure which shows the example of the knitting structure in the cellulose mixed fabric of this invention 本発明のセルロース混用布帛における編成組織の例を示す図The figure which shows the example of the knitting structure in the cellulose mixed fabric of this invention 本発明のセルロース混用布帛における編成組織の例を示す図The figure which shows the example of the knitting structure in the cellulose mixed fabric of this invention 本発明のセルロース混用布帛における編成組織の例を示す図The figure which shows the example of the knitting structure in the cellulose mixed fabric of this invention 本発明のセルロース混用布帛における編成組織の例を示す図The figure which shows the example of the knitting structure in the cellulose mixed fabric of this invention 本発明のセルロース混用布帛における編成組織の例を示す図The figure which shows the example of the knitting structure in the cellulose mixed fabric of this invention 本発明のセルロース混用布帛における編成組織の例を示す図The figure which shows the example of the knitting structure in the cellulose mixed fabric of this invention 本発明のセルロース混用布帛における編成組織の例を示す図The figure which shows the example of the knitting structure in the cellulose mixed fabric of this invention 本発明のセルロース混用布帛における編成組織の例を示す図The figure which shows the example of the knitting structure in the cellulose mixed fabric of this invention 本発明のセルロース混用布帛における編成組織の例を示す図The figure which shows the example of the knitting structure in the cellulose mixed fabric of this invention

符号の説明Explanation of symbols

[1]〜[8] 編成順
[R] 部分的に設ける非分離部の組織
11 ダイアル針
12 シリンダー針
13 普通繊維
14 吸水時寸法変化率が2%以上であるセルロース繊維
21 分離部
22 非分離部
A 分離部を構成する一方の外層
B 分離部を構成する他方の外層
C 分離部を構成する一方の外層
D 分離部を構成する他方の外層
K ニットループ
T タックループ
W ウェルトループ
[1] to [8] Knitting order [R] Non-separation structure provided partially 11 Dial needle 12 Cylinder needle
13 Normal fiber 14 Cellulose fiber having a dimensional change rate of 2% or more upon water absorption 21 Separation part 22 Non-separation part A One outer layer constituting the separation part B Other outer layer constituting the separation part C One part constituting the separation part Outer layer D The other outer layer constituting the separation part K Knit loop T Tack loop W Welt loop

以下、本発明について詳細に説明する。
本発明におけるセルロース繊維とは、キュプラ、レーヨン、精製セルロース繊維、竹繊維、綿などであり、キュプラ、レーヨン等の再生セルロースが好適に使用される。また、編地とするためには、これらの長繊維、短繊維(紡績糸)を使用する。長繊維では11dt(デシテックス:以下同じ記号を使用)〜400dt、短繊維では160S(綿番手:以下同じ記号)〜10Sが使用される。また長繊維と短繊維を撚糸した双糸、3子糸、または長繊維と短繊維を引き揃えて構成することができ、それぞれ組織にあった太さとして使用できる。長繊維では40dtから170dt、短繊維では30S〜120S程度が扱いやすく好ましい。
Hereinafter, the present invention will be described in detail.
The cellulose fiber in the present invention includes cupra, rayon, purified cellulose fiber, bamboo fiber, cotton and the like, and regenerated cellulose such as cupra and rayon is preferably used. In order to obtain a knitted fabric, these long fibers and short fibers (spun yarn) are used. For long fibers, 11 dt (decitex: the same symbol is used hereinafter) to 400 dt, and for short fibers, 160 S (cotton count: hereinafter the same symbol) to 10 S are used. Further, it can be constituted by twisting a long fiber and a short fiber, a triple yarn, or a combination of a long fiber and a short fiber, and each can be used as a thickness suitable for the structure. For long fibers, 40 dt to 170 dt is preferable, and for short fibers, about 30 S to 120 S is easy to handle and is preferable.

本発明の布帛は、吸水時寸法変化率が2%以上のセルロース繊維が混用された布帛である。吸水時寸法変化率が2%以上のセルロース繊維としては、吸水自己伸長セルロース繊維と、吸水自己収縮セルロース繊維の2通り有る。本発明者等は、吸水自己伸長セルロース繊維および、吸水自己収縮セルロース繊維を好適に得る方法を見出し、それぞれの性能を最大限活用するための布帛構成を検討し、本発明に到達した。
吸水自己伸長セルロース繊維とは、吸水伸長率が+2%以上となるセルロース繊維であり、好ましくは、吸水伸長率+3%以上である。
吸水自己収縮セルロース繊維とは、吸水伸長率が−2%以下となるセルロース繊維を示す。
The fabric of the present invention is a fabric in which cellulose fibers having a dimensional change rate of 2% or more upon water absorption are mixed. There are two types of cellulose fibers having a dimensional change rate of 2% or more at the time of water absorption: water-absorbing self-extending cellulose fibers and water-absorbing self-shrinking cellulose fibers. The inventors of the present invention have found a method for suitably obtaining water-absorbing self-extending cellulose fibers and water-absorbing self-shrinking cellulose fibers, and studied fabric configurations for maximizing the respective performances, and have reached the present invention.
The water-absorbing self-extending cellulose fiber is a cellulose fiber having a water absorption elongation rate of + 2% or more, and preferably a water absorption elongation rate of + 3% or more.
The water-absorbing self-shrinking cellulose fiber refers to a cellulose fiber having a water absorption elongation rate of −2% or less.

なお、本発明において、吸水時寸法変化率が2%未満の繊維を普通繊維という。普通繊維としては、ポリエステル、ポリトリメチレンテレフタレート等のポリエステル系繊維、ポリアミド系繊維、ポリウレタン系繊維、後述するアルカリ処理や撚糸による吸水寸法変化性能が付与されていないセルロース系繊維、アセテート、ウールなど、任意の繊維の長繊維、あるいは短繊維が挙げられる。これらの断面形状は任意で、丸断面やW型断面などの異型糸であってもよい。
本発明において、吸水時寸法変化率は、以下の方法により求める。20℃、65%RHの環境で、0.05g/dt(デシテックス)の荷重下で繊維長(A)を測定し、次いで、繊維を水中に30秒浸す。次いで繊維を水中から取り出し、30秒後の繊維長(B)を0.05g/dtの荷重下で測定する。下記式(1)により吸水伸長率を求める。そして、下記式(2)の通り、得られた吸水伸長率の絶対値を吸水時寸法変化率とする。
In the present invention, fibers having a dimensional change rate of less than 2% during water absorption are referred to as ordinary fibers. Examples of ordinary fibers include polyester fibers such as polyester and polytrimethylene terephthalate, polyamide fibers, polyurethane fibers, cellulose fibers that are not given water absorption dimensional change performance due to alkali treatment or twisted yarn described later, acetate, wool, etc. The long fiber of arbitrary fibers, or a short fiber is mentioned. These cross-sectional shapes are arbitrary, and may be an irregular yarn such as a round cross-section or a W-shaped cross-section.
In the present invention, the dimensional change rate during water absorption is determined by the following method. The fiber length (A) is measured under a load of 0.05 g / dt (decitex) in an environment of 20 ° C. and 65% RH, and then the fiber is immersed in water for 30 seconds. Next, the fiber is taken out from the water, and the fiber length (B) after 30 seconds is measured under a load of 0.05 g / dt. A water absorption elongation rate is calculated | required by following formula (1). And as the following formula (2), let the absolute value of the obtained water absorption elongation rate be a dimensional change rate at the time of water absorption.

なお、布帛中の繊維の吸水時寸法変化率測定は、布帛中より繊維を抜き出して同条件で行う。この際、測定する繊維長は30cmとするが、布帛中から30cmの繊維を抜き出せない場合は抜き出した長さで測定する。この場合、正確な値を求めるため、測定試料数を適宜多くして測定する。さらに、吸水時寸法変化率が異なる複数の繊維をインターレースなどの流体混繊加工や撚糸等により複合した複合糸や、混紡糸、交撚糸の場合でも、布帛中より繊維を抜き出し、複合糸、混紡糸、交撚糸の状態で同条件にて吸水時寸法変化率を測定する。
吸水伸長率(%)=((B−A)/A)×100 (1)
吸水時寸法変化率(%)=吸水伸長率の絶対値 (2)
以下、吸水自己伸長セルロース繊維と、該繊維を用いた本発明の布帛の構成について説明する。
In addition, the dimensional change rate measurement at the time of water absorption of the fiber in the fabric is performed under the same conditions by extracting the fiber from the fabric. At this time, the fiber length to be measured is 30 cm, but when 30 cm fiber cannot be extracted from the fabric, the length is measured. In this case, in order to obtain an accurate value, the number of measurement samples is appropriately increased for measurement. Furthermore, even in the case of a composite yarn obtained by compounding a plurality of fibers having different dimensional change rates at the time of water absorption by interlacing fluid blending processing or twisted yarn, or mixed yarn or twisted yarn, the fiber is extracted from the fabric, and the composite yarn or blended yarn is extracted. Measure the rate of dimensional change at the time of water absorption under the same conditions in the state of yarn and twisted yarn.
Water absorption elongation (%) = ((B−A) / A) × 100 (1)
Dimensional change rate during water absorption (%) = Absolute value of water absorption elongation (2)
Hereinafter, the structure of the water-absorbing self-extending cellulose fiber and the fabric of the present invention using the fiber will be described.

本発明の吸水自己伸長セルロース繊維は、吸水伸長率が+2%以上であり、好ましくは+3%以上である。セルロース繊維を吸水自己伸長糸とするには、通常のセルロース繊維をアルカリ水溶液中で処理すればよい。セルロース繊維をアルカリ処理することは従来より知られており、例えばシルケット加工が最も一般的な処理方法である。しかし、本発明では、従来の常識を打ち破り、過酷なアルカリ処理を行うことにより吸水時に2%以上、好ましくは3%以上伸長するセルロース繊維の製造に成功した。
具体的には、セルロース繊維を、例えば水酸化ナトリウムを20g/L(リットル)以上含む水溶液中に20℃以上で、5分間以上浸漬処理することにより得られる。吸水伸長率の制御はこれら条件のコントロールにより可能である。例えばアルカリ濃度、温度、時間など、処理条件がゆるやかなほど吸水伸長率は小さくなるが、処理条件を厳しくしすぎてもある限度以上、例えば20%の吸水伸長率を有するセルロース繊維を得ることは困難である。アルカリ処理剤としては公知のものが使用でき、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の使用が可能である。
The water-absorbing self-extending cellulose fiber of the present invention has a water absorption elongation rate of + 2% or more, preferably + 3% or more. In order to use cellulose fibers as water-absorbing self-extending yarns, ordinary cellulose fibers may be treated in an alkaline aqueous solution. It has been conventionally known that a cellulose fiber is alkali-treated. For example, mercerization is the most common treatment method. However, in the present invention, the conventional common sense has been broken, and by carrying out a harsh alkali treatment, cellulose fibers have been successfully produced that extend by 2% or more, preferably 3% or more upon water absorption.
Specifically, it is obtained by immersing the cellulose fiber in an aqueous solution containing, for example, 20 g / L (liter) or more of sodium hydroxide at 20 ° C. or more for 5 minutes or more. The water absorption elongation rate can be controlled by controlling these conditions. For example, the milder the treatment conditions such as alkali concentration, temperature, time, etc., the smaller the water absorption elongation rate. However, even if the treatment conditions are too strict, it is possible to obtain a cellulose fiber having a water absorption elongation rate of 20% or more. Have difficulty. Known alkali treatment agents can be used. For example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide can be used.

アルカリ濃度としては20〜200g/L水溶液相当がより好ましい。処理温度、時間はそれぞれ20〜110℃で、5〜120分間処理することがより好ましい。この処理温度は処理時最高の温度であり、処理時間はアルカリ投入後、20℃を超えてから、最高温度に達し、最高温度で処理後20℃未満まで冷却するまでの時間を含んだ総時間で、これらの時間が5分以上あればよい。また、冷却水を排液後は、速やかに水洗、中和を行うのが望ましい。アルカリ処理の方法は、セルロース繊維の状態で行い、製編後に染色加工を行う方法、あるいは、アルカリ処理前のセルロース繊維を使用して布帛製造後にアルカリ処理を行い、引き続き染色加工を行う方法など任意であるが、布帛製造後に行う方法が容易である。   The alkali concentration is more preferably 20 to 200 g / L aqueous solution. The treatment temperature and time are each 20 to 110 ° C., and it is more preferred to treat for 5 to 120 minutes. This processing temperature is the highest temperature during processing, and the processing time is the total time including the time from reaching the maximum temperature after cooling to 20 ° C. after the alkali is added and cooling to below 20 ° C. after the processing at the maximum temperature. Thus, it is sufficient that these times are 5 minutes or more. In addition, it is desirable to immediately wash and neutralize the cooling water after draining it. The alkali treatment method may be performed in the state of cellulose fibers and dyeing after knitting, or the method of performing alkali treatment after fabric production using cellulose fibers before alkali treatment, and subsequent dyeing processing is arbitrary. However, the method performed after the manufacture of the fabric is easy.

また、酢酸、りんご酸などの強酸液中で浸漬処理を行っても、吸水自己伸長セルロース繊維が得られるが、前記条件のアルカリ処理に比べ吸水自己伸長セルロース繊維となる効果は若干小さくなる。
本発明のセルロース繊維混用布帛では、吸放湿性に特に優れたセルロース繊維を使用していることが着用快適性に大きく寄与し、これまで提案されている特許文献1〜5に示されるような布帛と、着用快適性に大きな差を生じる。すなわち、本発明のセルロース繊維混用布帛の大きな特徴である吸水自己伸長するセルロース繊維を用いることにより、吸水時(衣服着用場面においては吸汗時)にセルロース繊維が伸長し、放湿性を向上させることが可能で、セルロース繊維使用の効果をより高めることができる。
In addition, water-absorbing self-extending cellulose fibers can be obtained even by immersing in a strong acid solution such as acetic acid or malic acid, but the effect of forming water-absorbing self-extending cellulose fibers is slightly smaller than the alkali treatment under the above conditions.
In the cellulose fiber-mixed fabric of the present invention, the use of cellulose fibers particularly excellent in moisture absorption / release contributes greatly to wearing comfort, and the fabrics as shown in Patent Documents 1 to 5 proposed so far And a great difference in wearing comfort. That is, by using the cellulose fibers that are self-extending water absorption, which is a major feature of the cellulose fiber-mixed fabric of the present invention, the cellulose fibers are elongated at the time of water absorption (at the time of sweat absorption in the clothes wearing scene), and the moisture release property can be improved. It is possible and the effect of using cellulose fibers can be further enhanced.

吸水自己伸長セルロース繊維と、普通繊維とを混合する方法については、普通繊維と吸水自己伸長セルロース繊維とを編機、あるいは織機上で引き揃え等により交編、あるいは交織する方法、または、吸水自己伸長セルロース繊維と普通繊維とを交撚、複合仮撚、インターレースなどの複合糸として使用して布帛製造することで混合可能である。なお、複合糸とする場合には複合方法によっては吸水時に複合糸の伸長が顕著に得られない場合がある。これを避けるため、吸水自己伸長セルロース繊維より普通繊維との糸長差は、布帛を仕上げた状態で吸水自己伸長セルロース繊維の方を、0〜9%短くなるよう送り量(フィード率)を設計する。糸長差が9%より大きい場合には複合糸の強力が不足し、十分な布帛強度が得られない。また、吸水自己伸長セルロース繊維の方が長い場合は、見掛け上繊維が太くなり、吸放湿性が低下して本発明の目的が達成されなくなる事がある。   As for the method of mixing the water-absorbing self-extending cellulose fiber and the ordinary fiber, a method of knitting or interweaving the ordinary fiber and the water-absorbing self-extending cellulose fiber by aligning them on a knitting machine or a loom, or water absorbing self Mixing is possible by producing a fabric using stretched cellulose fibers and ordinary fibers as composite yarns such as cross twist, composite false twist, and interlace. In the case of a composite yarn, depending on the composite method, the composite yarn may not be remarkably elongated upon water absorption. In order to avoid this, the feed rate (feed rate) is designed so that the water-absorbing self-extending cellulose fiber is 0 to 9% shorter than the water-absorbing self-extending cellulose fiber in the yarn length difference from the normal fiber. To do. When the yarn length difference is larger than 9%, the composite yarn has insufficient strength, and sufficient fabric strength cannot be obtained. In addition, when the water-absorbing self-extending cellulose fiber is longer, the fiber is apparently thick, the moisture absorption / release property is lowered, and the object of the present invention may not be achieved.

さらに、複合糸において吸水自己伸長するセルロース繊維の混率は、布帛設計により得られる効果を加味して任意に設定可能である。吸水自己伸長するセルロース繊維を20〜80%の混率とするのが望ましい。
本発明の吸水自己伸長セルロース繊維を使用して編地、織布などの布帛を製造すれば、編物設計、織物設計により発汗時に快適である各種の機能を付与する事が可能である。例えば、発汗時に吸水した部分のセルロース系繊維が伸長して、布帛表面に布帛を構成する表面の繊維が浮き出てきて凸部を形成させる場合の組織の例として、ダブル丸編機を使用して、吸水自己伸長セルロース繊維を含有する一方の外層と普通繊維を含有する他方の外層とが部分的に分離している分離部と、非分離部とが、規則的、あるいは不規則的に繰り返されている構造とすれば、吸水自己伸長セルロース繊維が吸汗時に伸長して編地に凹凸が発現し、べとつき感が抑えられる衣服となる。
Furthermore, the mixing ratio of the cellulose fiber that absorbs water in the composite yarn can be arbitrarily set in consideration of the effect obtained by the fabric design. It is desirable that the cellulose fiber that absorbs water absorbs itself at a mixing ratio of 20 to 80%.
When fabrics such as knitted fabrics and woven fabrics are produced using the water-absorbing self-extending cellulose fibers of the present invention, various functions that are comfortable when sweating can be imparted by knitted fabric designs and fabric designs. For example, a double circular knitting machine is used as an example of a structure in which cellulosic fibers that absorb water during sweating stretch and fibers on the surface that make up the fabric come out on the fabric surface to form convex portions. The separation part in which one outer layer containing water-absorbing self-extending cellulose fibers and the other outer layer containing ordinary fibers are partially separated and the non-separation part are repeated regularly or irregularly. With this structure, the water-absorbing self-extending cellulose fiber is stretched during sweat absorption, and unevenness appears on the knitted fabric, so that the feeling of stickiness can be suppressed.

また、吸水自己伸長セルロース繊維が吸汗し、布帛を構成する編目や織糸が伸びて大きくなり、吸汗部分の密度が下がるように設計すれば、運動などの発汗時に蒸れ感を覚えない衣服製造が可能となる。この蒸れ感を覚えない衣服を製造する場合は、織物よりも編物の方が効果の高い衣服が得られる。例えば、フライス組織で、非吸水伸長繊維とセルロース系の繊維との構成を、1本交互や3本中に1本吸水自己伸長セルロース繊維を配置するなどの設計により製造可能である。これらのように、本発明において、吸水自己伸長セルロース繊維をシングル丸編機、ダブル丸編機、シングル経編機、ダブル経編機、織機などで効果的に設計することにより、運動などの発汗時に吸汗して布帛に凹凸を形成したり、吸水部分の布帛を構成する編目や織糸の密度を下げたりする事が可能となる。また、経編の場合、デンビー(1針振り)よりコード(2針振り)、コードよりもサテン(3針振り)など、シンカーループの浮きの長い部分を形成し、この部分に吸水自己伸長セルロース繊維を配置し、これらを1つの筬とする経編組織を選定すれば本発明の効果が好適に達成される。   Also, if the water-absorbing self-extending cellulose fiber absorbs sweat, the stitches and weaving yarns that make up the fabric grow and become large, and the density of the sweat-absorbing part decreases, it is possible to produce clothes that do not feel stuffy when sweating during exercise. It becomes possible. When manufacturing a garment that does not feel stuffy, a knitted fabric is more effective than a woven fabric. For example, in a milling structure, the structure of non-water-absorbing stretch fibers and cellulosic fibers can be manufactured by a design such as alternately arranging one or three water-absorbing self-stretch cellulose fibers in three. As described above, in the present invention, by effectively designing the water-absorbing self-extending cellulose fiber with a single circular knitting machine, a double circular knitting machine, a single warp knitting machine, a double warp knitting machine, a loom, etc., sweating such as exercise It is sometimes possible to absorb sweat and form irregularities in the fabric, or to reduce the density of the stitches and weaving yarns constituting the fabric of the water absorbing portion. In addition, in the case of warp knitting, a long sinker loop is formed, such as cord (2 stitch swing) from Denby (1 stitch swing) and satin (3 stitch swing) than the cord, and water absorbing self-extending cellulose is formed in this portion. The effects of the present invention can be suitably achieved by selecting a warp knitting structure in which fibers are arranged and using these as one ridge.

さらに、織物で製造する場合は、ツイル、サテンなど経糸、あるいは緯糸の浮きが長い組織や、2重織として表層、裏層を織布し、部分的にこれらの経方向、緯方向に数10本毎に連結部を設けて、吸水自己伸長セルロース繊維が吸汗時に伸長することにより布帛に凹凸を形成したり、吸汗部の密度が下がるように設計すればよい。これらの布帛において、吸水自己伸長率セルロース繊維が必ずしも表面に露出している必要はなく、例えば3層構造として中間層に吸水自己伸長セルロース繊維を配置して、吸汗時に中間層の吸水自己伸長セルロース繊維が伸長して外層の普通繊維を押し出して布帛に凹凸や、密度を下がるよう設計する事も可能である。   Furthermore, in the case of manufacturing with a woven fabric, a warp yarn such as twill and satin, or a structure in which the float of the weft yarn is long, or a surface layer and a back layer are woven as a double weave, and several tens in the warp direction and the weft direction. A connecting portion may be provided for each book, and the water-absorbing self-extending cellulose fibers may be designed to form irregularities on the fabric by stretching at the time of sweat absorption, or to reduce the density of the sweat-absorbing portion. In these fabrics, the water-absorbing self-extending cellulose fibers do not necessarily have to be exposed on the surface. For example, the water-absorbing self-extending cellulose fibers are arranged in the intermediate layer as a three-layer structure so It is also possible to design so that the fibers extend and extrude ordinary fibers in the outer layer to reduce the unevenness and density of the fabric.

このように、吸水自己伸長セルロース繊維を使用すれば、特に運動などの発汗時に快適な衣服製造が可能である。しかし吸水伸長率が+2%未満のセルロース繊維では布帛構造の変化が小さく、運動などの発汗時にも快適である衣服製造は出来ない。   As described above, if water-absorbing self-extending cellulose fibers are used, a comfortable garment can be produced particularly during sweating such as exercise. However, with cellulose fibers having a water absorption elongation rate of less than + 2%, the change in the fabric structure is small, and it is impossible to produce clothes that are comfortable even during sweating such as exercise.

本発明によるセルロース繊維混用布帛では、吸水伸長率が+2%以上、好ましくは+3%以上の吸水自己伸長セルロース繊維を10%以上含有することが好ましい。吸水自己伸長セルロース繊維の混率が10%未満の場合、吸水時にセルロース繊維が伸長しても蒸れ感を抑える効果は有効に発揮されない。より好ましい混率は15〜100%であり、吸水自己伸長セルロース繊維100%の編地が本発明の効果を最も発揮することができる。
しかし、綿、アクリル、ポリエステル、ナイロンなどの普通繊維と混合すれば風合い、強
度面等の懸念が解消され、各種衣料に展開可能となる。
The cellulose fiber-mixed fabric according to the present invention preferably contains 10% or more of water-absorbing self-extending cellulose fibers having a water absorption elongation rate of + 2% or more, preferably + 3% or more. When the mixing ratio of the water-absorbing self-extending cellulose fibers is less than 10%, even if the cellulose fibers are elongated at the time of water absorption, the effect of suppressing the stuffiness is not exhibited effectively. A more preferable mixing ratio is 15 to 100%, and a knitted fabric with 100% water-absorbing self-extending cellulose fibers can exhibit the effect of the present invention most.
However, if mixed with ordinary fibers such as cotton, acrylic, polyester, nylon, etc., concerns about texture, strength, etc. are eliminated, and it can be applied to various clothing.

また、吸水自己伸長セルロース繊維と、普通繊維との混合法については任意であるが、該セルロース繊維がコース方向、あるいはウェール方向に単独に構成されている様に配置すると効果が発揮できる。例えば、ニットのスムース組織の場合、2コース連続に吸水自己伸長セルロース繊維使いとし、コース方向のループは全て吸水自己伸長セルロース繊維として、隣接するコースは綿、アクリルなどの普通繊維使いとするなどにより本発明の効果がより発揮できる。フライス組織の様に、1コースでコース全てが1種の繊維使いとなるような組織の場合には、吸水自己伸長セルロース繊維を10%以上の混率となるよう任意に配置すれば本発明の効果は発揮できる。   Further, the mixing method of the water-absorbing self-extending cellulose fiber and the ordinary fiber is arbitrary, but the effect can be exerted when the cellulose fiber is arranged so as to be constituted alone in the course direction or the wale direction. For example, in the case of a knit smooth structure, water-absorbing self-extending cellulose fibers are used continuously for 2 courses, all the loops in the course direction are water-absorbing self-extending cellulose fibers, and adjacent courses are using ordinary fibers such as cotton and acrylic. The effect of this invention can be exhibited more. The effect of the present invention can be achieved by arbitrarily arranging the water-absorbing self-extending cellulose fibers so as to have a mixing ratio of 10% or more in the case of a structure in which one course uses one type of fiber in a course like a milling structure. Can demonstrate.

また、本発明のセルロース繊維混用布帛は、編地では吸水自己伸長セルロース繊維によるウェルトループ、および/またはタックループが、すくなくとも2ループ連続して形成されている部分を有していれば、特に高い効果を得ることができる。すなわち、該セルロース繊維によるウェルトループ、および/またはタックループが、一方の針床でコース方向(編地経方向)、もしくはウェール方向(編地緯方向)、または斜め方向に、少なくとも2ループ連続して形成されている部分を有している方が良い。
ここで、タックループ、ウェルトループとは、編地を構成するループの3要素である、ニットループ、タックループ、ウェルトループに含まれるループである。タックループとは針に糸は供給するが、ノックオーバーしない組織のことをいい、ウェルトループとは、針に糸を供給しない組織のことをいう。このタックループ、ウェルトループは編地中をほぼ直線状、または若干屈曲して存在している。ニットループのように大きく湾曲し、ニットループ下部に大きな屈曲点を持っているループ構造に比べ、吸水自己伸長セルロース繊維が吸水伸長した場合、湾曲が少なく屈曲点も無いことから伸び易いループ構造となっている。
The cellulose fiber-mixed fabric of the present invention is particularly high in a knitted fabric if the welt loop and / or tack loop formed by water-absorbing self-extending cellulose fibers has at least two loops formed continuously. An effect can be obtained. That is, at least two loops of the welt loops and / or tack loops of the cellulose fibers continue in the course direction (knitting fabric warp direction), the wale direction (knitting fabric weft direction), or the diagonal direction on one needle bed. It is better to have a part that is formed.
Here, the tack loop and the welt loop are loops included in the knit loop, the tack loop, and the welt loop, which are the three elements of the loop constituting the knitted fabric. A tack loop refers to a tissue that supplies a needle with a thread but does not knock over. A welt loop refers to a tissue that does not supply a thread to a needle. The tuck loop and the welt loop exist in the knitted fabric substantially linearly or slightly bent. Compared to a loop structure that curves greatly like a knit loop and has a large bending point at the bottom of the knit loop, when the water-absorbing self-extending cellulose fiber absorbs and expands, it has a loop structure that is easy to extend because it has little bending and no bending point. It has become.

従って、これらタックループ、またはウェルトループが編地の組織を構成されることにより、吸水時には編地密度、または充填率が低下して蒸れ感の無い編地とすることが可能となる。特に、ウェルトループ、および/またはタックループが、一方の針床でコース方向、もしくはウェール方向、または斜め方向に、少なくとも2ループ連続して形成されている部分を有していることにより、発汗時の蒸れ感減少効果が一層大きくなる。なお、ダブル丸編機の場合はダイアル、シリンダーの2つの針床を有しているが、ダイアル側のみ、あるいはシリンダー側のみの一方の針床組織について、コース方向、もしくはウェール方向、斜め方向に、少なくとも2ループ連続して形成されている部分を有している様設計すればよく、一方の針床のみの設計を考慮すればよい。シングル丸編機の場合は、シリンダーのみであるためダブル丸編機のような組織設計上の考慮は不要で、吸水自己伸長セルロース繊維によるウェルトループ、および/またはタックループが、すくなくとも2ループ連続して形成されている部分を有していればよい。   Therefore, these tuck loops or welt loops constitute the knitted fabric structure, so that the knitted fabric density or the filling rate is reduced at the time of water absorption, and a knitted fabric having no stuffiness can be obtained. In particular, when the welt loop and / or tack loop has a portion formed continuously in at least two loops in one course bed in the course direction, the wale direction, or the diagonal direction, The effect of reducing the feeling of stuffiness is further increased. In the case of a double circular knitting machine, it has two needle beds, dial and cylinder, but only one needle bed structure on the dial side or only on the cylinder side is in the course direction, the wale direction, or the diagonal direction. It suffices to design such that at least two loops are continuously formed, and only one needle bed needs to be considered. In the case of a single circular knitting machine, since there is only a cylinder, there is no need to consider the structure design as in the case of a double circular knitting machine. Welt loops and / or tack loops with water-absorbing self-extending cellulose fibers are at least two loops continuous. It suffices to have a portion that is formed.

また、タックループとウェルトループの組み合わせは任意とすることが出来、タックループの連続、もしくはウェルトループの連続、または、タックループとウェルトループの組み合わさった連続ループとすることができる。例えば、コース方向にウェルトループ、タックループとすることや、ウェール方向に、ウェルトループ、ウェルトループと2ウェール続ける、また、ウェール方向にウェルトループを2ウェール作り、そのコース方向にタックループを2ウェール続けるなど、任意な方法を行うことができる。また、ウェール方向にある長さニットループが連続する、いわゆる天竺組織の場合、天竺部分を2給糸に分けて編成し、2給糸で1コース完成する組織として、これを2回以上連続して行うことにより斜め方向に2ループが連続して形成され、発明の効果が発揮できる。   The combination of the tack loop and the welt loop may be arbitrary, and may be a continuous tuck loop, a continuous welt loop, or a continuous loop in which a tuck loop and a welt loop are combined. For example, welt loops and tack loops in the course direction, welt loops and welt loops continue for 2 wales in the wale direction, and welt loops are created in 2 wales in the wal direction and 2 wales in the course direction. Any method can be performed such as continuing. In addition, in the case of a so-called tengu structure in which the length knit loop in the wale direction is continuous, the tengu portion is divided into two yarns and knitted in two courses to complete one course. As a result, two loops are continuously formed in an oblique direction, and the effects of the invention can be exhibited.

これらについて図1〜6に例示するが、図1〜6に於いて、[1]、[2]、[3]は編み順及びコース方向を表し、実際はこの編み順を繰り返して布帛を編成する。緯列はウェール方向を表している。図では4ウェールのみ表示しているが、実際はこの組織の繰り返しとなる。また、Kはニット組織、Tはタック組織、Wはウェルト組織を表す。
図1、2は2コース連続してウェルトループ、またはタックループを編成する例、図3、4、5は斜め方向にウェルトループ、またはタックループが連続する例、図6はウェルトループとタックループが組み合わさった例を示す。なお、タックループ、あるいはウェルトループが連続していない場合は、本発明の効果は小さくなる。
These are illustrated in FIGS. 1 to 6. In FIGS. 1 to 6, [1], [2], and [3] represent the knitting order and the course direction, and the fabric is knitted by actually repeating this knitting order. . The latitude column represents the wale direction. Although only 4 wales are shown in the figure, this is actually a repetition of this organization. K represents a knit structure, T represents a tack structure, and W represents a welt structure.
1 and 2 are examples in which a welt loop or a tuck loop is knitted continuously for two courses, FIGS. 3, 4 and 5 are examples in which a welt loop or a tuck loop continues in an oblique direction, and FIG. 6 is a welt loop and a tuck loop. An example of the combination of Note that if the tack loop or the welt loop is not continuous, the effect of the present invention is reduced.

本発明のセルロース混用布帛が経編地の場合、組織によっては吸水自己伸長繊維の特徴を生かすことが困難な場合がある。本発明者らはこの現象を防止するために鋭意検討した結果、経編地設計方法により快適な経編地が製造可能な事を見出した。すなわち、吸水自己伸長するセルロース繊維を含有する編地において、該セルロース繊維がルーピングされ、かつ、1〜4針の振り組織である事により、本発明の目的を達成する事が可能になった。
ここでいうルーピングとは、ニードルループ(ニットループ)が形成されている構造である。ニードルループを形成しない挿入組織では、編地着用時の変型が戻らず、いわゆるワライ現象が生じ好ましくない。また、ルーピングと挿入を繰り返す構造の場合、挿入が1コースのみで連続していない場合は本発明ではルーピング組織としてみなし、ワライ現象は生じない。しかし、挿入が2コース以上連続する場合はワライが生じ易く好ましくない。また、振り組織とせず、10/01のような鎖編みに見られる同一ウェール内で編成する場合は、発明の効果は得られない。このような鎖編とする場合は、10/01/12/21の様に2コースに1回は振り組織を入れ、鎖編みが2コース以上連続しないように設計する。無論、2目編によるループもルーピングである。
When the cellulose-mixed fabric of the present invention is a warp knitted fabric, it may be difficult to take advantage of the characteristics of water-absorbing self-extending fibers depending on the structure. As a result of intensive studies to prevent this phenomenon, the present inventors have found that a comfortable warp knitted fabric can be produced by a warp knitted fabric design method. That is, in the knitted fabric containing the cellulose fiber which absorbs water and self-extends, the cellulose fiber is looped and has a swing structure of 1 to 4 needles, so that the object of the present invention can be achieved.
The looping here is a structure in which a needle loop (knitted loop) is formed. An insertion tissue that does not form a needle loop is not preferable because the deformation at the time of wearing the knitted fabric does not return, and a so-called wari phenomenon occurs. Further, in the case of a structure in which looping and insertion are repeated, if the insertion is not continuous for only one course, it is regarded as a looping structure in the present invention, and the Wallai phenomenon does not occur. However, when the insertion continues for two or more courses, cracking is likely to occur, which is not preferable. Further, when the knitting is not performed in the same wale as seen in chain knitting such as 10/01 without using the swing structure, the effect of the invention cannot be obtained. In the case of such a chain knitting, a swing structure is inserted once every two courses as in 10/01/12/21, and the chain knitting is designed not to be continuous for two or more courses. Of course, the loop of the second part is also looping.

さらに、吸水自己伸長セルロース繊維による経編組織の振りは、1〜4針である事が必要である。振りが多くなるほどセルロース繊維の吸水伸長による放湿性の効果が出やすくなるが、振りが5針以上になると経編地内のセルロース繊維の充填密度が高くなり過ぎ、吸水時に放湿性の効果が逆に低下する現象が生じる。従って、吸水伸長セルロース繊維の振りは、1〜4針となるよう経編設計する事が必要である。経編設計を例示すると、2枚筬のトリコットにて、バックには吸水自己伸長するセルロース繊維、フロントには普通繊維として、バックの組織を、10/12や、10/23、10/34、10/45等、また、10/12/10/34/32/34等振りがコースにより変化しているが全コースルーピングしている方法、あるいは、12/00、12/10/22/10/12/00等のように、ルーピングと挿入の繰り返しで、かつ、挿入は不連続とする方法等の組織とする事ができる。   Furthermore, the swinging of the warp knitted structure by the water-absorbing self-extending cellulose fibers needs to be 1 to 4 needles. As the number of swings increases, the moisture-releasing effect due to the water absorption elongation of the cellulose fibers is more likely to occur. However, when the swing exceeds 5 stitches, the packing density of the cellulose fibers in the warp knitted fabric becomes too high, and the moisture-releasing effect at the time of water absorption is reversed. A phenomenon of decreasing occurs. Therefore, it is necessary to design warp knitting so that the water-absorbing stretched cellulose fiber has 1 to 4 needles. As an example of warp knitting design, the back structure is 10/12, 10/23, 10/34, a cellulose fiber that self-extends water absorption on the back, and a normal fiber on the front, in a tricot of 2 sheets. 10/45 etc., 10/12/10/34/32/34 etc. The method of changing the course but changing the whole course, or 12/00, 12/10/22/10 / As in 1/00, etc., it is possible to make a structure such as a method of repeating insertion and discontinuation of looping and insertion.

また、本発明において吸水自己伸長セルロース繊維を含有している経編地の場合、経編地中からセルロース繊維を抜き出して、セルロース繊維の吸水伸長率(吸水時寸法変化率)を測定するのは、ハーフのようにバックの10/12組織の繊維を抜き出せる組織以外は困難な場合が多い。このため、本発明者は、吸水自己伸長率に替わる尺度を検討した結果、編地密度低下率を所定値内にする事により、着用地の快適性が得られることを見出した。
特に、少量の水分下による編地密度低下率と着用快適性に相関性が有り、編地重量の50%の水分量を編地に付与した場合、編地密度低下率を5〜40%とすることにより、衣服内外へ空気の移動が生じ易くなり、さらに、空気が移動することによりセルロース繊維の吸放湿性が十分に発揮され、衣服内は高湿度とならないことが分った。本発明の経編地の吸水時の編地密度低下率は5〜40%、好ましくは10〜30%である。編地密度低下率が5%未満の場合には、着用発汗時に蒸れ感等を感じ、不快なものとなり好ましくない。編地密度低下率が40%より大きい場合は、衣服形状が大きく変化し過ぎ着用感を損ね、さらに、見映えも悪くなり好ましくない。
In the case of a warp knitted fabric containing water-absorbing self-extending cellulose fibers in the present invention, the cellulose fibers are extracted from the warp knitted fabric, and the water absorption elongation rate (dimensional change rate during water absorption) of the cellulose fibers is measured. In many cases, it is difficult to make a structure other than a half, such as a half, that can extract the fibers of the back 10/12 structure. For this reason, the present inventor has found that the comfort of the wearing place can be obtained by making the knitted fabric density reduction rate within a predetermined value as a result of examining a scale that replaces the water absorption self-elongation rate.
In particular, there is a correlation between the knitted fabric density reduction rate under a small amount of moisture and the wearing comfort, and when a moisture content of 50% of the knitted fabric weight is given to the knitted fabric, the knitted fabric density reduction rate is 5 to 40%. As a result, it was found that air easily moves into and out of the clothes, and further, the moisture absorption and release properties of the cellulose fibers are sufficiently exhibited by the movement of the air, and the inside of the clothes does not become high humidity. The knitted fabric density decreasing rate at the time of water absorption of the warp knitted fabric of the present invention is 5 to 40%, preferably 10 to 30%. When the knitted fabric density reduction rate is less than 5%, it becomes uncomfortable because a feeling of stuffiness is felt during sweating. When the knitted fabric density reduction rate is greater than 40%, the shape of the clothes is greatly changed and the feeling of wearing is impaired, and the appearance is also deteriorated.

本発明のセルロース混用布帛である経編地は、吸水自己伸長セルロース繊維を、好ましくは10%以上含有する。吸水自己伸長セルロース繊維と、普通繊維とを混合する方法については、普通繊維と吸水自己伸長セルロース繊維とを別々のビームに整経して交編する方法、あるいは、吸水自己伸長セルロース繊維と普通繊維と交撚、複合仮撚、インターレースなどの複合糸として複合糸をビームに整経する方法がある。さらに、経編地の製造は、シングル、あるいはダブルのトリコット機、ラッセル機などの経編機により可能である。組織は1枚筬以上で製造される、デンビー、ハーフ、サテン、メッシュ調、経編地内部に連結糸を有する立体調編地など、任意の組織で行える。   The warp knitted fabric which is the cellulose mixed fabric of the present invention preferably contains 10% or more of water-absorbing self-extending cellulose fibers. About the method of mixing the water-absorbing self-extending cellulose fiber and the ordinary fiber, the method of warping and knitting the ordinary fiber and the water-absorbing self-extending cellulose fiber into separate beams, or the water-absorbing self-extending cellulose fiber and the ordinary fiber There is a method of warping the composite yarn into a beam as a composite yarn such as cross twist, composite false twist, and interlace. Furthermore, the warp knitted fabric can be manufactured by using a warp knitting machine such as a single or double tricot machine or a Russell machine. The structure can be made of an arbitrary structure such as a denby, half, satin, mesh, or three-dimensional knitted fabric having a connecting yarn inside the warp knitted fabric, which is manufactured by one or more sheets.

本発明の吸水自己伸張セルロース繊維を含有する布帛の染色加工方法は、通常の染色仕上げ工程が使用できる。使用する染色機としては、セルロース繊維を繊維状態でアルカリ処理する場合はチーズ染色機や綛染色機、アルカリ処理を布帛状態としての加工は液流染色機、ウインス染色機など任意の染色機を使用することができる。また、布帛をバッチ状でなく連続に処理することが可能な、例えばシルケットマシンなどの連続アルカリ処理機の使用も可能である。この場合は、処理条件を本発明の条件に設定すればよい。アルカリ処理後の布帛は、繊維素材に応じた染色条件による染色を行うのが好ましい。また、編地状態での加工は、生機を150〜190℃でピンテンター等によりプレセットを行い、その後精錬、アルカリ処理、染色、仕上げセットを行う工程や、生機を精錬し、150〜190℃でピンテンター等によりプレセットを行ってから染色し、仕上げセットを行う工程など、任意の工程で行える。仕上げセットは150〜190℃で行うが、この際、仕上げセット後に吸水伸長するセルロース繊維が皺になったり、突っ張ったりしないように仕上げればよい。また、仕上げセット前に布帛を乾燥して仕上げ密度を設定する方法が好ましい。さらに、仕上げ剤として、柔軟剤や吸水剤の付与を行う事も可能で、吸水剤の付与はより吸汗性が向上し好ましい。なお、吸水剤等の繊維樹脂付与は、染色中に付与することも可能である。   A normal dyeing finishing process can be used for the dyeing method of the cloth containing the water-absorbing self-stretching cellulose fiber of the present invention. The dyeing machine used is cheese dyeing machine or cocoon dyeing machine when cellulose fiber is alkali-treated in the fiber state, and any dyeing machine such as liquid dyeing machine or wins dyeing machine is used for processing with alkali treatment as fabric. can do. Moreover, it is also possible to use a continuous alkaline processing machine such as a mercerizing machine that can process the fabric continuously instead of in a batch. In this case, the processing conditions may be set to the conditions of the present invention. The fabric after the alkali treatment is preferably dyed under a dyeing condition corresponding to the fiber material. In addition, for processing in the knitted fabric state, the raw machine is pre-set at 150 to 190 ° C. with a pin tenter, etc., and then the process of refining, alkali treatment, dyeing and finishing set, and the raw machine is refined at 150 to 190 ° C. It can be carried out in an arbitrary process such as a process of dyeing and performing a finishing set after pre-setting with a pin tenter or the like. The finishing set is performed at 150 to 190 ° C. At this time, it is sufficient to finish so that the cellulose fibers that absorb and elongate after finishing are not wrinkled or stretched. Further, a method of setting the finishing density by drying the fabric before finishing setting is preferable. Further, it is possible to apply a softening agent or a water absorbing agent as a finishing agent, and the application of the water absorbing agent is preferable because it improves sweat absorption. In addition, fiber resin addition, such as a water absorbing agent, can also be provided during dyeing.

以下、吸水自己収縮セルロース繊維と、該繊維を用いた本発明の布帛の構成について説明する。
本発明による吸水自己収縮セルロース繊維は、吸水伸長率が−2%以下である。セルロース繊維を吸水伸長率−2%以下とするには、撚り係数を8200〜35000の撚糸とすることにより得られる。
該セルロース繊維を使用して、本発明の目的を達成するための布帛構造について着用テストなどを含み鋭意検討した結果、布帛を2〜3層の丸編地とし、2〜3層丸編地の一方の外層、あるいは中間層に運動等による発汗時に吸汗して収縮する繊維を用い、他方の外層に吸汗時収縮の小さい繊維を使用すれば、乾燥時は平坦であるが吸汗時は一方の外層の繊維が収縮し、他の外層部は収縮の小さい繊維であるため浮き出て凸部を形成し、吸汗後乾燥した際には平坦状態に戻るような構造となり、この凸部ができる側を肌側として衣服を縫製すれば発汗時にも快適であるとの結論が得られた。この機能を達成するために種々検討した結果、編地構造と素材の特定によりこの機能を達成できる事を見出した。
Hereinafter, the structure of the water-absorbing self-shrinking cellulose fiber and the fabric of the present invention using the fiber will be described.
The water-absorbing self-shrinking cellulose fiber according to the present invention has a water absorption elongation of −2% or less. In order to make the cellulose fiber have a water absorption elongation rate of -2% or less, it is obtained by setting the twist coefficient to 8200-35000.
As a result of intensive studies including a wearing test on the fabric structure for achieving the object of the present invention using the cellulose fiber, the fabric was made into a 2-3 knitted circular knitted fabric, If one outer layer or intermediate layer uses a fiber that absorbs and contracts when sweating due to exercise, etc., and the other outer layer uses a fiber that has low shrinkage when absorbing sweat, the outer layer is flat when dried but one layer when absorbing sweat Since the other fibers are contracted and the other outer layer is a fiber with small shrinkage, it protrudes to form a convex part and returns to a flat state when dried after sweat absorption. It was concluded that if clothes were sewn as a side, it would be comfortable even when sweating. As a result of various studies to achieve this function, it was found that this function can be achieved by specifying the knitted fabric structure and material.

すなわち本発明の効果を発現するために、分離部と非分離部とが繰り返し形成されている2層丸編地において、一方の外層は吸水自己収縮セルロース繊維を含有し、他方の外層は非吸水収縮繊維で構成され、コース方向の非分離部は非吸水収縮繊維で構成されている2層丸編地が好ましい。ここで、非吸水収縮繊維とは、吸水伸長率が−2%より大きい繊維のことであり、前述の普通繊維、吸水自己伸長繊維が挙げられる。このような丸編地の断面図を図7、図8に示す。
図7は乾燥時、図8は吸汗時の該丸編地断面模式図である。丸編地は分離部21と非分離部22とが繰り返し形成され、一方の外層(A)には吸水自己収縮セルロース繊維が含有され、他方の外層(B)は非吸水収縮繊維で構成されている。乾燥時(図7)は布帛表面は平坦であるが、吸汗時(図8)には(A)を構成する吸水自己収縮セルロース繊維が収縮し、分離部21における他方の外層(B)を構成する繊維が浮き出て凸部を構成する。
That is, in order to express the effect of the present invention, in the two-layer circular knitted fabric in which the separation part and the non-separation part are repeatedly formed, one outer layer contains water-absorbing self-shrinking cellulose fibers, and the other outer layer is non-water-absorbing. A two-layer circular knitted fabric composed of shrink fibers and the non-separation part in the course direction is preferably composed of non-water-absorbing shrink fibers. Here, the non-water-absorbing shrinkable fiber is a fiber having a water absorption elongation rate of greater than −2%, and examples thereof include the above-described normal fibers and water-absorbing self-extending fibers. Sectional views of such a circular knitted fabric are shown in FIGS.
FIG. 7 is a schematic cross-sectional view of the circular knitted fabric at the time of drying and FIG. 8 at the time of sweat absorption. In the circular knitted fabric, a separation part 21 and a non-separation part 22 are repeatedly formed, one outer layer (A) contains water-absorbing self-shrinking cellulose fibers, and the other outer layer (B) is composed of non-water-absorbing shrink fibers. Yes. When dried (FIG. 7), the surface of the fabric is flat, but when absorbing sweat (FIG. 8), the water-absorbing self-shrinking cellulose fibers constituting (A) shrink and constitute the other outer layer (B) in the separation part 21. The protruding fibers are raised to form the convex portion.

分離部と非分離部は、規則的、あるいは不規則的に繰り返されていれば良く、丸編機により製造できる種々の組織、構造が選択できる。なお、本構造の丸編地では、後述する別構造の立体構造編地とは異なり、両外層のコース比(A)/(B)の範囲は特に限定されないが、乾燥時に布帛表面を平坦に保つために、おおよそ(A)/(B)=1であることが好ましい。
さらに、本発明の効果を発現できる3層丸編地としては、分離部と非分離部とが繰り返し形成されている3層丸編地において、一方の外層、および/または、中間層に吸水自己収縮セルロース繊維を含有し、他方の外層は非吸水収縮繊維で構成され、コース方向の非分離部が非吸水収縮繊維で構成されている3層丸編地が好ましい。
The separation part and the non-separation part may be repeated regularly or irregularly, and various structures and structures that can be manufactured by a circular knitting machine can be selected. In the circular knitted fabric of this structure, the range of the course ratio (A) / (B) of both outer layers is not particularly limited, unlike a three-dimensional structured knitted fabric having a different structure described later, but the fabric surface is flattened during drying. In order to maintain, it is preferable that (A) / (B) = 1.
Furthermore, as the three-layer circular knitted fabric that can exhibit the effects of the present invention, in the three-layer circular knitted fabric in which the separation portion and the non-separation portion are repeatedly formed, one outer layer and / or intermediate layer absorbs water. A three-layer circular knitted fabric containing shrink cellulose fibers, the other outer layer being composed of non-water-absorbing shrink fibers, and the non-separating portion in the course direction being composed of non-water-absorbing shrink fibers is preferable.

本発明による2〜3層の多層丸編地の部分的に分離している分離部の形状については丸状、楕円状、方形状、菱形状、星型状などの面積をもった点状など任意で、配置についても市松状、右肩上がり、不規則状など任意である。分離部の大きさについては、小さ過ぎても、大き過ぎても発汗時の布帛凹凸効果が少なくなる。丸状、方形状などの面積をもった点状の場合は、長径、短径ともに2〜15mmとするのが好ましく、特に好ましくは3〜12mmである。ある巾を持った連続状の場合は、巾2〜15mmとするのが好ましく、特に好ましくは3〜12mmである。
吸汗時凸部が形成される分離部の総面積は、少なすぎても多すぎても発汗時にべとつき感がある。この為、吸汗時に凸部が形成される側の凸部個々の面積を足し合わせた総面積は、乾燥時に布帛表面の20〜90%とすることが好ましい。より好ましくは30〜80%、特に好ましくは35〜75%とすれば、発汗時にもべとつき感がなく快適な衣服となる。
As for the shape of the separation part that is partially separated in the multilayer circular knitted fabric of 2 to 3 layers according to the present invention, a dot shape having an area such as a round shape, an elliptical shape, a rectangular shape, a rhombus shape, a star shape, etc. Arbitrarily, the arrangement is also arbitrary, such as a checkered pattern, a rising shoulder, an irregular shape. As for the size of the separation portion, the fabric unevenness effect at the time of sweating is reduced if it is too small or too large. In the case of a dot shape having an area such as a round shape or a square shape, the major axis and the minor axis are both preferably 2 to 15 mm, particularly preferably 3 to 12 mm. In the case of a continuous shape having a certain width, the width is preferably 2 to 15 mm, particularly preferably 3 to 12 mm.
Even if the total area of the separation part where the convex part is formed during sweat absorption is too small or too large, there is a feeling of stickiness when sweating. For this reason, it is preferable that the total area obtained by adding the areas of the individual protrusions on the side where the protrusions are formed during sweat absorption is 20 to 90% of the fabric surface during drying. More preferably 30 to 80%, particularly preferably 35 to 75%, a comfortable garment having no stickiness when sweating is obtained.

本発明の2〜3層丸編地における分離部は上記のような任意の形状である。分離部を囲むように非分離部が形成され、分離部と非分離部とが繰り返し形成されている必要がある。
該丸編地の分離部と非分離部の構成例を図9に示す。ウェール方向(丸編地経方向)の非分離部は直線状に連続している必要は無いが、コース方向(丸編地緯方向)の非分離部は直線的に連続し、非収縮繊維で構成されているよう設計する。すなわち、ウェール方向の非分離部は吸水自己収縮セルロース繊維を含有しても良いが、コース方向の非分離部は非吸水収縮繊維のみで構成されている。ウェール方向の非分離部の巾については特に限定されない。コース方向の非分離部の巾については、狭すぎても、広すぎても発汗時のべとつき低減効果が小さくなるため、1〜15mmが好ましい。より好ましくは、2〜12mm、特に好ましくは、3〜10mmとすれば本発明の目的が十分達成でき、吸汗時のべとつきを抑えるとともに、さらに、高コストである撚り係数が8200〜35000であるセルロース繊維の混率を減らす事が可能で、丸編地のコストダウンも計れるようになる。なお、非分離部の巾は、コース方向で最小となっている非分離部の巾を測定する。
The separation part in the 2-3 layer circular knitted fabric of the present invention has an arbitrary shape as described above. The non-separation part needs to be formed so as to surround the separation part, and the separation part and the non-separation part need to be repeatedly formed.
FIG. 9 shows a configuration example of the separation part and the non-separation part of the circular knitted fabric. The non-separation part in the wale direction (circular knitted fabric warp direction) need not be linearly continuous, but the non-separation part in the course direction (circular knitted fabric weft direction) is linearly continuous and is made of non-shrinkable fibers. Design as configured. That is, the non-separating part in the wale direction may contain water-absorbing self-shrinking cellulose fibers, but the non-separating part in the course direction is composed of only non-water-absorbing shrink fibers. The width of the non-separating part in the wale direction is not particularly limited. About the width | variety of the non-separation part of a course direction, 1-15 mm is preferable since the stickiness reduction effect at the time of sweating will become small if it is too narrow or too wide. More preferably, if the thickness is 2 to 12 mm, particularly preferably 3 to 10 mm, the object of the present invention can be sufficiently achieved, the stickiness at the time of sweat absorption is suppressed, and furthermore, the high-cost twist coefficient is 8200 to 35000. It is possible to reduce the fiber mixing ratio and to reduce the cost of the circular knitted fabric. In addition, the width | variety of the non-separation part which measures the width | variety of the non-separation part minimum in a course direction is measured.

本発明による2層丸編地の具体的な製造法の例として、ダブル丸編機を使用する場合、一方の外層は天竺編み、他方の外層は数ウェール毎に表裏2層の連結部を有する天竺編みの編成とし、連結部はニット、あるいはタック組織とする方法がある。編成時に一方の外層に吸水自己収縮セルロース繊維を含有する構造とする。これらの組織中に部分的に両外層の連結部となる非分離部を設けるため、数コース毎に非吸水収縮繊維を使用してダブル丸編機の場合はダイアル、シリンダー共にニットして連結し非分離部とする必要がある。これにより、コース方向、ウェール方向に分離部と非分離部が繰り返し形成され、吸汗時に丸状、方形状などの面積をもった点状の凸部を形成する事が可能となる。   As an example of a specific method for producing a two-layer circular knitted fabric according to the present invention, when a double circular knitting machine is used, one outer layer has a knitted sheet and the other outer layer has two layers of front and back connecting portions every several wales. There is a method of knitting with a knitted sheet, and a knit or tuck structure at the connecting portion. At the time of knitting, one outer layer has a structure containing water-absorbing self-shrinking cellulose fibers. In order to provide a non-separation part that partially connects the outer layers in these structures, non-water-absorbing shrinkage fibers are used every few courses, and in the case of a double circular knitting machine, both the dial and cylinder are knit and connected. It is necessary to use a non-separating part. Thereby, the separation part and the non-separation part are repeatedly formed in the course direction and the wale direction, and it becomes possible to form a dot-like convex part having an area such as a round shape or a square shape during sweat absorption.

本発明による3層丸編地の具体的な製造法の例として、ダブル丸編機を使用する場合、表層と裏層は天竺編み、中間層はウェルトとし、数ウェール毎に3層を編成しているどれかの繊維、あるいは、全部の糸でダイアル、シリンダー共にニット、またはタックして連結する方法や、一方の外層の天竺編みをプレーティング編みにより外層と中間層を一体化し、もう一方の外層を天竺編みとし、これらを構成する任意の繊維によりニット、あるいはタックにて連結する方法等がある。また、中間層をウェルトとしてプレーティング編みとし、一方の外層と中間層に吸水自己収縮セルロース繊維を配置する方法もある。これらの丸編の場合、数コース毎に非吸水収縮繊維で数コース、ダイアル、シリンダー共にニットして連結すれば、コース方向、ウェール方向に非分離部が形成され、吸汗時に丸状、方形状などの面積をもった点状の凸部を形成する事が可能となる。   As an example of a specific method for producing a three-layer circular knitted fabric according to the present invention, when a double circular knitting machine is used, the top layer and the back layer are knitted in a tense, the intermediate layer is a welt, and three layers are knitted every several wales. One of the fibers, or all the yarns are dialed, knit or tucked together on the cylinder, or the outer layer and the intermediate layer are integrated by plating the outer layer of the outer layer and the other layer is integrated. There is a method in which the outer layer is made of woven fabric and knit or tucked together with arbitrary fibers constituting them. There is also a method in which the intermediate layer is plated with a welt and water-absorbing self-shrinking cellulose fibers are disposed on one outer layer and the intermediate layer. In the case of these circular knittings, if several courses, dials, and cylinders are knit and connected together with non-water-absorbing shrinkage fibers every few courses, non-separation parts are formed in the course direction and the wale direction, and round and square shapes are formed during sweat absorption. It is possible to form a dot-like convex portion having an area such as.

本発明による吸水自己収縮セルロース繊維は、撚り係数8200〜35000となるよう撚糸されている。セルロース繊維が撚り係数8200〜35000で撚糸されていることにより、吸汗時に収縮する機能が発揮できる。撚り係数が8200未満では本発明の目的とする機能が発揮できず好ましくない。撚り係数が35000より大きくなると、丸編地製造が困難になり、また高コストともなるため好ましくない。従って撚り係数は8200〜35000、好ましくは11000〜30000に設定すればよい。
本発明において、吸水自己収縮セルロース繊維は、多層丸編地全体の5重量%以上混用されていることが好ましい。5重量%未満では本発明の吸汗時に丸編地の凸部形成が僅かであり目的が達成されにくく好ましくない。また、50重量%より多い混率である場合も、丸編地全体の吸汗時収縮が大きくなり衣服サイズが変化してしまうため好ましくない。吸水自己収縮セルロース繊維の混合方法については任意であり、繊維の配置による方法、普通繊維との交撚糸とする方法などが行える。
The water-absorbing self-shrinking cellulose fiber according to the present invention is twisted so as to have a twist coefficient of 8200 to 35000. When the cellulose fiber is twisted with a twist coefficient of 8200 to 35000, the function of contracting during sweat absorption can be exhibited. If the twisting coefficient is less than 8200, the intended function of the present invention cannot be exhibited, which is not preferable. When the twist coefficient is larger than 35000, it is not preferable because it becomes difficult to produce a circular knitted fabric and the cost becomes high. Therefore, the twist coefficient may be set to 8200 to 35000, preferably 11000 to 30000.
In the present invention, the water-absorbing self-shrinking cellulose fibers are preferably mixed and used in an amount of 5% by weight or more of the entire multilayer circular knitted fabric. If it is less than 5% by weight, the formation of the convex portion of the circular knitted fabric is slight at the time of sweat absorption according to the present invention, and the object is hardly achieved, which is not preferable. A blending ratio of more than 50% by weight is also not preferable because shrinkage during sweat absorption of the entire circular knitted fabric becomes large and the clothes size changes. The mixing method of the water-absorbing self-shrinking cellulose fibers is arbitrary, and a method of arranging fibers, a method of forming a twisted yarn with ordinary fibers, and the like can be performed.

吸汗時凸部が形成される部分の総面積は、少なすぎても多すぎても発汗時べとつき感がある為、吸汗時に凸部が形成される側の凸部個々の面積を足し合わせた総面積は、乾燥時に布帛表面の20〜90%とすることが好ましい。より好ましくは30〜80%、特に好ましくは35〜75%とすれば、発汗時にもべとつき感がなく快適な衣服となる。
本発明における2〜3層の多層丸編地の編地密度は任意に設定できる。
本発明の2〜3層の丸編地の染色仕上げ方法は、通常の染色仕上げ工程が使用でき、使用する繊維素材に応じた染色条件とし、使用する染色機も液流染色機、ウインス染色機など任意である。また、吸水性を向上させるため吸水剤を付与するのが好ましく、染色仕上げ工程の例としては、生機を染色機に投入し、精練、染色を行った後、吸水処理等の仕上げ処理を兼ねて仕上げセットを行う方法、あるいは、ウェットリラックス処理、プレセット後染色を行い、仕上げ処理を兼ねたファイナルセットを行う方法など、任意の染色仕上げ工程で行うことができる。
The total area of the protrusions that are formed when sweating is too small or too much, and there is a feeling of stickiness when sweating, so the total area of the individual protrusions on the side where the protrusions are formed when sweating is added. The area is preferably 20 to 90% of the fabric surface during drying. More preferably 30 to 80%, particularly preferably 35 to 75%, a comfortable garment having no stickiness when sweating is obtained.
The knitted fabric density of the 2-layer multi-layer circular knitted fabric in the present invention can be arbitrarily set.
The method for dyeing and finishing the two- or three-layer circular knitted fabric of the present invention can use a normal dyeing finishing process, and the dyeing conditions according to the fiber material to be used are also used. Etc. are arbitrary. In addition, it is preferable to add a water-absorbing agent in order to improve water absorption. As an example of the dyeing finishing process, the raw machine is put into a dyeing machine, and after scouring and dyeing, it also serves as a finishing process such as a water absorption process. It can be performed in any dyeing finishing process, such as a method of performing a finishing set, or a method of performing a final set that also serves as a finishing process by performing wet relaxation processing, dyeing after pre-setting, and finishing processing.

上述の態様以外に、吸水自己収縮セルロース繊維を使用して、布帛を部分的に分離させて両外層間に空気層を有する立体構造布帛とする他の好ましい態様を、図10,11に示す。
図10は乾燥時、図11は吸汗時の該立体構造編地断面模式図である。編地は分離部21と非分離部22とが繰り返し形成され、一方の外層(C)には吸水自己収縮セルロース繊維が含有され、他方の外層(D)は非吸水収縮繊維で構成されている。前述の構成と異なるのは、乾燥時(図10)に布帛表面が凸部を有することである。これは、両外層のコース数が(C)>(D)であるように編成することによって得られる。乾燥時に布帛表面が凸部を有することにより、布帛の厚みが増し、空気層が存在するために暖かく、吸汗時(図11)には(C)を構成する吸水自己収縮セルロース繊維が収縮し、分離部21における凸部が小さくなり、布帛の厚みおよび空気層が減少するために放熱性が増す。吸汗後乾燥すれば再度凸部が復元して元の厚みに戻る。
In addition to the above-described embodiments, other preferred embodiments using a water-absorbing self-shrinking cellulose fiber to form a three-dimensional fabric having an air layer between both outer layers by partially separating the fabric are shown in FIGS.
FIG. 10 is a schematic cross-sectional view of the three-dimensional structure knitted fabric at the time of drying and FIG. 11 at the time of sweat absorption. In the knitted fabric, a separation part 21 and a non-separation part 22 are repeatedly formed, one outer layer (C) contains water-absorbing self-shrinking cellulose fibers, and the other outer layer (D) is composed of non-water-absorbing shrink fibers. . What is different from the above-described configuration is that the fabric surface has a convex portion during drying (FIG. 10). This is obtained by knitting so that the number of courses of both outer layers is (C)> (D). When the surface of the fabric has a convex portion at the time of drying, the thickness of the fabric is increased and the air layer is warm so that the water-absorbing self-shrinking cellulose fiber constituting (C) contracts during sweat absorption (FIG. 11), Since the convex part in the separation part 21 is reduced and the thickness of the fabric and the air layer are reduced, the heat dissipation is increased. If it dries after sweat absorption, the convex part is restored again and returns to its original thickness.

すなわち、汗をかかない状態では暖かく、発汗時には放熱が進み、余分な汗をかかないので運動機能が低下しにくく快適な布帛が得られる。
具体的には、分離部と非分離部が繰り返し形成されている立体構造布帛において、該分離部を構成する一方の外層(C)が吸水自己収縮セルロース繊維を含有し、他方の外層(D)が非吸水収縮繊維を含有し、両外層のコース数が(C)>(D)であることを特徴とする立体構造丸編地により、本発明の目的は達成可能である。さらに、本発明の立体構造布帛は、見かけ上分離部を構成する一方の外層(C)が浮き出て凸部を形成している構造であり、さらに、該分離部と両外層が連結された非分離部とが、規則的、あるいは不規則的に繰り返されている構造である。これらの構造は、丸編機により製造できる種々の組織、構造から選択でき、吸汗時には吸水自己収縮セルロース繊維を含有する外層が収縮して密度が少なくなり、凸部が小さくなる(布帛の厚みが薄くなる)ような組織とすればよい。
That is, it is warm when not sweating, and heat dissipation proceeds when sweating, and since excess sweat is not sweated, a comfortable fabric is obtained in which the exercise function is not easily lowered.
Specifically, in the three-dimensional structure fabric in which the separation part and the non-separation part are repeatedly formed, one outer layer (C) constituting the separation part contains water-absorbing self-shrinking cellulose fibers and the other outer layer (D) The object of the present invention can be achieved by a three-dimensionally structured circular knitted fabric characterized in that contains non-water-absorbing shrinkable fibers and the number of courses of both outer layers is (C)> (D). Furthermore, the three-dimensionally structured fabric of the present invention has a structure in which one outer layer (C) that apparently constitutes the separation portion is raised to form a convex portion, and the separation portion and both outer layers are connected to each other. The separation part is a structure that is repeated regularly or irregularly. These structures can be selected from various structures and structures that can be produced by a circular knitting machine. When sweat is absorbed, the outer layer containing the water-absorbing self-shrinking cellulose fibers shrinks, the density decreases, and the convex portion decreases (the thickness of the fabric decreases). (It will be thinner).

このような立体構造布帛において、部分的に分離している分離部の形状については丸状以外に、楕円状、方形状、菱形状、星型状などの面積をもった点状など任意で、配置についても市松状、右肩上がり、不規則状など任意である。分離部の大きさについては、小さ過ぎても、大き過ぎても吸汗時の凸部減少効果が少なくなる。丸状、方形状などの面積をもった点状の場合は、長径、短径ともに2〜15mmとするのが好ましく、特に好ましくは3〜12mmである。ある巾を持った連続状の場合は、巾2〜15mmとするのが好ましく、特に好ましくは3〜12mmである。
また、立体構造布帛中に占める分離部の総面積は、少なすぎれば発汗時厚み減少効果が少ないため、丸編地表面の20%以上とすることが好ましい。より好ましくは30%以上、特に好ましくは40%以上とすれば、発汗時の厚み減少効果が大きく、放熱量が増えて発汗抑制効果が期待できる快適な衣服となる。
In such a three-dimensional structure fabric, as for the shape of the separation part that is partially separated, in addition to a round shape, an elliptical shape, a rectangular shape, a rhombus shape, a dot shape with an area such as a star shape, etc. are optional, Arrangement is also arbitrary, such as checkered pattern, rising right, irregular shape. If the size of the separation portion is too small or too large, the convex portion reducing effect during sweat absorption is reduced. In the case of a dot shape having an area such as a round shape or a square shape, the major axis and the minor axis are both preferably 2 to 15 mm, particularly preferably 3 to 12 mm. In the case of a continuous shape having a certain width, the width is preferably 2 to 15 mm, particularly preferably 3 to 12 mm.
Moreover, since the total area of the separation part which occupies in the three-dimensionally structured fabric is too small, the effect of reducing the thickness during sweating is small. Therefore, the total area is preferably 20% or more of the circular knitted fabric surface. If it is more preferably 30% or more, particularly preferably 40% or more, the comfortable clothing can be expected to have a great effect of reducing the thickness during sweating and an increase in the amount of heat release, thereby suppressing the sweating.

本発明の立体構造布帛における分離部は、上記のような任意の形状である。分離部を囲むように非分離部が形成され、分離部と非分離部とが繰り返し形成されている必要がある。この非分離部については、分離部に含まれるいずれかの繊維単独で構成されるか、またはこれらの交編しても良く、分離部とは異なる糸で構成されていても良い。例えば、ウェール方向の非分離部が吸水自己収縮セルロース繊維を含有し、コース方向の非分離部は非吸水収縮繊維のみで構成することができる。編成組織は、スムース、フライスなど、丸編機のシリンダーとダイアルの両針床を使用して編成される組織であれば任意の組織が使用できる。また、非分離部については、非吸水収縮繊維を多く含有するほうが、立体構造布帛としてセルロース繊維の混率が減らせ、コスト面や堅牢度面で優位な編地となる。   The separation part in the three-dimensionally structured fabric of the present invention has an arbitrary shape as described above. The non-separation part needs to be formed so as to surround the separation part, and the separation part and the non-separation part need to be repeatedly formed. About this non-separation part, it may be constituted by any one of the fibers contained in the separation part, or may be knitted together, or may be constituted by a yarn different from the separation part. For example, the non-separating part in the wale direction can contain water-absorbing self-shrinking cellulose fibers, and the non-separating part in the course direction can be composed only of non-water-absorbing shrink fibers. As the knitting structure, any structure can be used as long as the structure is knitted using both the cylinder bed and the dial needle bed of the circular knitting machine, such as smooth and milling machines. Moreover, about a non-separation part, the one containing many non-water-absorbing shrinkable fibers can reduce the mixing rate of a cellulose fiber as a three-dimensionally structured fabric, and becomes a knitted fabric superior in cost and fastness.

本発明の立体構造布帛において、(C)と(D)のコース数の比については、(C)/(D)が、1.1〜5.0であれば好ましく、より好ましくは、2.0〜4.0である。コース数の比が1.1以上であれば、吸汗しない通常時の状態で凸部が発現しやすく、また吸汗時凸部の厚み減少による効果が十分発揮できる。また、コースの比が5.0以下であれば通常時の凸部が美しく形成されやすく、また、吸汗時の凸部減少効果も明瞭であり、さらに、生産性の面でも好ましい。なお、分離部の外層のコース数がウェール間で一定ではない場合は、コース数が最も多いウェールをコース数とする。さらに、コース数は、ニットループのみを測定し、タックループや、ウェルトループはコース数としてカウントしない。ただしこれらは両外層のニットループの大きさがほぼ同じ場合に適用され、両外層のニットループの大きさが異なる場合には、両外層とも同じニットループの大きさに換算して計算する。例えば、一方の外層(C)のニットループの大きさが他方の外層(D)の半分の大きさであった場合、(C)×2を計算上の(C)として扱う。なお、ニットループの大きさは、分離部を構成する編み込み長により求める。   In the three-dimensionally structured fabric of the present invention, the ratio of the number of courses of (C) and (D) is preferably (C) / (D) of 1.1 to 5.0, more preferably 2. 0 to 4.0. If the ratio of the number of courses is 1.1 or more, the convex portion is likely to appear in a normal state where no sweat is absorbed, and the effect of reducing the thickness of the convex portion during sweat absorption can be sufficiently exhibited. Further, when the ratio of the course is 5.0 or less, the normal convex portions are easily formed beautifully, and the convex portion reducing effect at the time of sweat absorption is clear, which is also preferable in terms of productivity. In addition, when the number of courses of the outer layer of the separation part is not constant between wales, the wales with the largest number of courses are set as the number of courses. Furthermore, the number of courses is measured only for the knit loop, and the tack loop and the welt loop are not counted as the number of courses. However, these are applied when the sizes of the knit loops of both outer layers are substantially the same. When the sizes of the knit loops of both outer layers are different, the calculation is performed by converting both the outer layers into the same knit loop size. For example, when the size of the knit loop of one outer layer (C) is half the size of the other outer layer (D), (C) × 2 is treated as (C) in the calculation. Note that the size of the knit loop is determined by the knitting length constituting the separation portion.

本発明の立体構造布帛において、分離部を構成する一方の外層(C)には吸水自己収縮セルロース繊維を含有していればよく、非吸水収縮繊維と交編としても良い。交編方法としては、吸水自己収縮セルロース繊維と非吸水収縮繊維とを交互に編成する方法や、非吸水収縮繊維との添え糸編みとする方法などが使用でき、吸水自己収縮セルロース繊維は、15重量%以上の混率とすることが好ましい。15重量%未満では、吸汗時に凸部の厚み現象が少なく好ましくない。特に好ましくは20重量%以上の混率とする。
また、分離部を構成するもう一方の外層(D)には、主として非吸水収縮繊維から構成されているが、吸水自己収縮セルロース繊維を少量含有することも可能である。吸水自己収縮セルロース繊維の混率は5重量%未満とするのが好ましく、5重量%以上の混率である場合は吸汗時に凸部減少効果が小さくなり好ましくない。全て非吸水収縮繊維のみで構成されることが好ましい。
In the three-dimensionally structured fabric of the present invention, the one outer layer (C) constituting the separation part may contain water-absorbing self-shrinking cellulose fibers, and may be knitted with non-water-absorbing shrinkable fibers. As the knitting method, a method of alternately knitting water-absorbing self-shrinking cellulose fibers and non-water-absorbing shrink fibers, a method of knitting yarn with non-water-absorbing shrink fibers, and the like can be used. The mixing ratio is preferably at least wt%. If it is less than 15% by weight, the thickness phenomenon of the convex part is less preferred at the time of sweat absorption. Particularly preferably, the mixing ratio is 20% by weight or more.
Further, the other outer layer (D) constituting the separation part is mainly composed of non-water-absorbing shrinkable fibers, but may contain a small amount of water-absorbing self-shrinking cellulose fibers. The mixing ratio of the water-absorbing self-shrinking cellulose fibers is preferably less than 5% by weight, and a mixing ratio of 5% by weight or more is not preferable because the effect of reducing convex portions is reduced during sweat absorption. It is preferable that all are comprised only with a non-water-absorbing shrinkable fiber.

さらに、撚り係数8200〜35000のセルロース繊維の立体構造布帛全体に占める混率については、5〜50重量%であることが好ましく、10〜30重量%の混率とするのがより好ましい。5重量%未満では本発明の吸汗時に丸編地の凸部減少が僅かであり、50重量%より多くなると、立体構造布帛全体の吸汗時収縮が大きくなり衣服サイズが変化してしまうため好ましくない。撚り係数8200〜35000のセルロース繊維の混合方法については任意であり、繊維の配置による方法、非収縮糸との複合糸とする方法などが行える。
本発明において立体構造布帛の製造は、丸編機にて製造可能であり、丸編地密度についても任意に設定できる。
Furthermore, it is preferable that it is 5 to 50 weight% about the mixing rate which occupies for the whole three-dimensional fabric of the cellulose fiber of the twist coefficient 8200-35000, and it is more preferable to set it as the mixing rate of 10 to 30 weight%. If the amount is less than 5% by weight, the convex portion of the circular knitted fabric is slightly reduced at the time of sweat absorption of the present invention, and if it exceeds 50% by weight, the shrinkage at the time of sweat absorption of the whole three-dimensional fabric increases and the clothes size changes, which is not preferable. . A method for mixing cellulose fibers having a twist coefficient of 8200 to 35000 is arbitrary, and a method based on fiber arrangement, a method for forming a composite yarn with a non-shrinkable yarn, and the like can be performed.
In the present invention, the three-dimensionally structured fabric can be manufactured by a circular knitting machine, and the circular knitted fabric density can be arbitrarily set.

本発明による立体構造布帛の具体的な製造法の例として、ダブル丸編機を使用し、部分的にシリンダーの天竺部に吸水自己収縮セルロース繊維を使用し、また、シリンダーの分離部のコース数はダイアルのコース数より多くなる組織とする。この際、吸水自己収縮セルロース繊維を単独で使用する事や、ポリエステル、ナイロン等の普通繊維との添え糸編も可能である。さらに、分離部と分離部の間には非分離部が必要である。非分離部を設けることにより、コース方向、ウェール方向に分離部と非分離部が繰り返し形成され、立体構造布帛に面積をもった点状の凸部を形成する事が可能となり、吸汗時には凸部の厚みが減少して放熱効果を高めることができる。   As an example of a specific method for producing a three-dimensionally structured fabric according to the present invention, a double circular knitting machine is used, water-absorbing self-shrinking cellulose fibers are partially used in the top part of the cylinder, and the number of courses in the separation part of the cylinder is also used. The organization will be more than the number of dial courses. At this time, water-absorbing self-shrinking cellulose fibers can be used alone, or spliced yarns with ordinary fibers such as polyester and nylon can be used. Furthermore, a non-separation part is required between the separation part and the separation part. By providing the non-separating part, the separating part and the non-separating part are repeatedly formed in the course direction and the wale direction, and it becomes possible to form a dot-like convex part having an area on the three-dimensionally structured fabric. Therefore, the heat dissipation effect can be enhanced.

本発明の立体構造布帛の染色仕上げには、通常の染色仕上げ工程が使用できる。使用する繊維素材に応じた染色条件とし、使用する染色機も液流染色機、ウインス染色機など任意である。また、吸水性を向上させるために吸水剤を付与するのが好ましい。染色仕上げ工程の例としては、生機を染色機に投入し、精練、染色を行った後、吸水処理等の仕上げ処理を兼ねて仕上げセットを行う方法、あるいは、ウェットリラックス処理、プレセット後染色を行い、仕上げ処理を兼ねた仕上げセットを行う方法など、任意の染色仕上げ工程を行うことができるが、仕上げセットで巾や長さの設定に注意が必要で、吸水自己収縮セルロース繊維を含有する外層が形成している凸部を維持するように仕上げる必要がある。   A normal dyeing finishing process can be used for the dyeing finish of the three-dimensional fabric of the present invention. The dyeing conditions are set according to the fiber material to be used, and the dyeing machine to be used is arbitrary such as a liquid dyeing machine or a wins dyeing machine. Moreover, it is preferable to provide a water absorbing agent in order to improve water absorption. Examples of dyeing finishing processes include putting the raw machine into the dyeing machine, performing scouring and dyeing, and then performing a finishing set that also serves as a finishing treatment such as water absorption treatment, or wet relaxation treatment, dyeing after presetting Any dyeing finishing process can be performed, such as a method of performing a finishing set that also serves as a finishing treatment, but care must be taken in setting the width and length in the finishing set, and the outer layer contains water-absorbing self-shrinking cellulose fibers It is necessary to finish so as to maintain the convex portion formed by the.

以下、実施例により本発明を詳述する。無論、本発明はこれに限定されるものではない。
なお、実施例における評価は以下の方法により測定した。
(1)着用快適性
実施例による布帛で運動シャツを縫製し、発汗するまで運動して、着用快適性を10名の被験者で官能評価し、その平均値を着用快適性とした。
実際に問題ないのは下記2以上である。
5 : 発汗しても衣服のべとつき感や、蒸れ感がなく極めて快適
4 : 発汗時、べとつき感、蒸れ感を覚えない
3 : 発汗時、僅かに衣服がややべとつくが快適である
2 : 発汗時、べとつき感、蒸れ感を若干覚える
1 : 発汗時、かなりべとつき、蒸れ感も甚だしく不快である
(2)撚り係数
セルロース繊維の撚り係数を下記により求めた。
撚り係数=(繊度)0.5×撚り数 (単位:撚り数/m)
Hereinafter, the present invention will be described in detail by way of examples. Of course, the present invention is not limited to this.
The evaluation in the examples was measured by the following method.
(1) Wearing comfort An exercise shirt was sewed with the fabric according to the example and exercised until sweating, and the wearing comfort was subjected to sensory evaluation with 10 subjects, and the average value was defined as the wearing comfort.
There are actually two or more of the following.
5: Even if sweating, the clothes do not feel sticky or stuffy and extremely comfortable. 4: When sweating, do not feel sticky, stuffy. 3: When sweating, the clothes are slightly sticky but comfortable. 2: When sweating , I feel a little sticky feeling and stuffy feeling 1: When I sweat, I feel quite sticky and stuffy feeling is very uncomfortable. (2) Twist factor The twist factor of the cellulose fiber was determined by the following.
Twisting coefficient = (fineness) 0.5 × twisting number (unit: twisting number / m)

(3)丸編地製造性
丸編地製造時、撚糸したセルロース繊維の製編性を評価した。
ルート生産可能なのは下記3以上であり、数値が高いほど好ましい。
5 : 問題なく丸編地が製造できる。
4 : ビリなどがやや発生するが、合格反が製造できる。
3 : 僅かに糸切れ等の問題発生したが、合格反が製造できる。
2 : 糸切れ等発生、丸編地が製造できるが不合格反となる。
1 : ビリ発生、糸切れ等により丸編地製造困難。
(4)編地密度低下率
20℃、65%RHの環境下で、サンプルの乾燥時の密度(コース/インチ×ウェール/インチ)(E)を測定する。次いで、経編地重量の50%の水分をサンプルに吸水させて吸水時の密度(コース/インチ×ウェール/インチ)(F)を測定し、下記(2)式により編地密度低下率を求める。また、(F)<(E)で密度が増加する場合は、−(マイナス)で示す。
編地密度低下率(%)=((F−E)/E)×100 (2)
(3) Circular knitted fabric manufacturability During the production of the circular knitted fabric, the knitting property of the twisted cellulose fibers was evaluated.
The following three or more can be route-produced, and the higher the numerical value, the better.
5: Circular knitted fabric can be manufactured without problems.
4: Slight warp and the like occur, but an acceptable product can be produced.
3: A problem such as a slight thread breakage occurred, but a passing material can be produced.
2: Occurrence of thread breakage or the like, and a circular knitted fabric can be manufactured, but it is a rejected reaction.
1: Difficult to manufacture a circular knitted fabric due to the occurrence of warpage, yarn breakage, etc.
(4) Rate of decrease in knitted fabric density Under an environment of 20 ° C. and 65% RH, the density (course / inch × wale / inch) (E) when the sample is dried is measured. Next, 50% of the weight of the warp knitted fabric is absorbed by the sample, the density at the time of water absorption (course / inch × wale / inch) (F) is measured, and the knitted fabric density reduction rate is obtained by the following equation (2). . Further, when the density increases when (F) <(E), it is indicated by-(minus).
Rate of decrease in knitted fabric density (%) = ((FE) / E) × 100 (2)

(5)乾燥時凸部形成性
実施例で得られた立体構造布帛で、乾燥状態における外層の凸部形成性を外観評価した。
下記2以上であれば凸部が形成されており、数値が高いほど厚い凸部となっている。
5 : 凸部がくっきり飛び出している。
4 : かなりはっきり凸部が形成されている
3 : 凸部形成がすぐ判別できる
2 : 凸部がやや形成されている
1 : 凸部形成されず、ほとんど平坦
(5) Convex part forming property at the time of drying With the three-dimensional structure fabric obtained in the example, the appearance evaluation of the convex part forming property of the outer layer in the dry state was evaluated.
If it is 2 or more below, a convex portion is formed, and the higher the numerical value, the thicker the convex portion.
5: Convex part protrudes clearly.
4: The convex part is formed fairly clearly. 3: The convex part formation can be immediately identified. 2: The convex part is formed a little. 1: The convex part is not formed and is almost flat.

(6)吸汗時凸部の厚み減少性
実施例で得られた立体構造布帛を100重量%吸水させ、吸水時の外層の凸部の厚み減少性を外観評価した。
下記2以上であれば凸部の厚み減少性が認められ、数値が高いほど大きく減少しており本発明の効果が認められる。
5 : 編地はほぼ平坦状になっている
4 : 凸部の厚み減少が大きく、僅かに凸部が残っている程度である
3 : 凸部の厚みが減少しているのが判別できる
2 : 凸部の厚みはやや減少するが、はっきり判らない
1 : 凸部の厚み減少がほとんど判らない
[実施例1]
28ゲージの丸編機を使用してフライス組織を編成するに際し、普通繊維とセルロース繊維とが交互になるよう配置して編成した。この編成において、普通繊維として84dt/36fのポリエステル繊維の2ヒーター仮撚り加工糸を、セルロース繊維としてキュプラ繊維84dt/45fを用いた。この場合、使用したキュプラ繊維はアルカリ未処理の通常のキュプラ繊維である。
(6) Thickness reduction of the convex part during sweat absorption
The three-dimensional fabric obtained in the example was absorbed by 100% by weight, and the appearance reduction of the thickness reduction of the convex portion of the outer layer at the time of water absorption was evaluated.
If it is 2 or more below, the thickness reducing property of the convex portion is recognized, and the higher the numerical value, the larger the decrease, and the effect of the present invention is recognized.
5: The knitted fabric is almost flat. 4: The thickness of the convex part is greatly reduced, and the convex part remains slightly. 3: The thickness of the convex part is reduced. 2: Although the thickness of the convex portion is slightly reduced, it is not clearly understood 1: The thickness reduction of the convex portion is hardly understood [Example 1]
When a milling structure was knitted using a 28 gauge circular knitting machine, ordinary fibers and cellulose fibers were alternately arranged and knitted. In this knitting, 84 dt / 36 f polyester fiber 2-heater false twisted yarn was used as normal fiber, and cupra fiber 84 dt / 45 f was used as cellulose fiber. In this case, the used cupra fiber is a normal cupra fiber not treated with alkali.

編成した生機を液流染色機に投入し、80℃20分間精練し、排水後、水酸化ナトリウム60g/Lの濃度で30℃20分間アルカリ処理した。次いで、130℃でエステル側のみ染色を行った。染色上がりの編地は凹凸状となっているため、ショートループドライヤーを使用して乾燥後、ピンテンターにて編地のしわが取れる程度に伸長して170℃60秒にて仕上げセットを行った。なお、この染色時、浴中に吸水剤を付与して染色した。
得られた編地のキュプラ繊維を抜き出し、吸水伸長率を測定したところ+5.8%であった。また、得られた編地の運動発汗時の快適性着用試験を行った。着用試験の結果を表1に示す。
The knitted raw machine was put into a liquid dyeing machine, scoured at 80 ° C. for 20 minutes, drained, and then subjected to alkali treatment at a concentration of 60 g / L of sodium hydroxide at 30 ° C. for 20 minutes. Subsequently, only the ester side was dye | stained at 130 degreeC. Since the dyed knitted fabric is uneven, it was dried using a short loop dryer, then stretched to the extent that wrinkles of the knitted fabric could be removed with a pin tenter, and finished at 170 ° C. for 60 seconds. In addition, at the time of this dyeing | staining, the water absorbing agent was provided in the bath and dye | stained.
The cupra fiber of the resulting knitted fabric was extracted and the water absorption elongation was measured and found to be + 5.8%. Moreover, the comfort wearing test at the time of exercise | movement sweating of the obtained knitted fabric was done. The results of the wearing test are shown in Table 1.

[実施例2〜8]
実施例1において、アルカリ処理条件、及び、セルロース系繊維の種類を変更し、吸水伸長率の異なるセルロース系の繊維を製造した。この繊維を使用した編地の着用快適性を評価し、結果を表1に示す。
[Examples 2 to 8]
In Example 1, the alkali treatment conditions and the type of cellulosic fiber were changed to produce cellulosic fibers having different water absorption elongation rates. The wearing comfort of the knitted fabric using this fiber was evaluated, and the results are shown in Table 1.

[実施例9]
経糸に普通繊維のポリエステル繊維56dt/24f原糸を、緯糸に普通繊維のポリエステル繊維56dt/24f原糸とレーヨン繊維67dt/24fとを2本交互に打ち込んで3/1のサテン組織を織布した。
製織した生機を液流染色機に投入し、80℃20分間精練し、排水後、水酸化カリウム50g/Lの濃度で50℃25分間アルカリ処理した。次いで、130℃でエステル側のみ染色を行った。染色上がりの織地は凹凸状となっているため、ショートループドライヤーを使用して乾燥後、ピンテンターにて編地のしわが取れる程度に伸長して180℃60秒にて仕上げセットを行った。なお、この仕上げセット時に吸水剤を付与した。
得られた織地のレーヨン繊維を抜き出し、吸水伸長率を測定したところ+9.3%であった。
また、得られた織地の運動発汗時の快適性着用試験を行った。着用試験の結果を表1に示す。
[Example 9]
A normal polyester fiber 56dt / 24f original yarn was used as the warp, and a normal polyester fiber 56dt / 24f original yarn and two rayon fibers 67dt / 24f were alternately driven into the weft to woven a 3/1 satin structure. .
The woven green machine was put into a liquid flow dyeing machine, scoured at 80 ° C. for 20 minutes, drained, and then subjected to alkali treatment at a concentration of 50 g / L of potassium hydroxide at 50 ° C. for 25 minutes. Subsequently, only the ester side was dye | stained at 130 degreeC. Since the dyed woven fabric is uneven, it was dried using a short loop dryer, then stretched to the extent that wrinkles of the knitted fabric could be removed with a pin tenter, and finished at 180 ° C. for 60 seconds. In addition, the water absorbing agent was given at the time of this finishing set.
When the rayon fiber of the obtained woven fabric was extracted and the water absorption elongation was measured, it was + 9.3%.
Moreover, the comfortable wearing test at the time of exercise | movement sweating of the obtained fabric was done. The results of the wearing test are shown in Table 1.

[実施例10]
22ゲージの丸編機によりキュプラ紡績糸1/64Nm(毛番手)を使用してスムース組織を編成した。使用したキュプラ紡績糸はアルカリ未処理の通常のキュプラ紡績糸で、編成した生機を液流染色機に投入し、80℃20分間精練し、排水後、水酸化ナトリウム60g/Lの濃度で30℃20分間アルカリ処理した。次いで、キュプラ紡績糸を反応染料により染色を行った。ショートループドライヤーを使用して乾燥後、ピンテンターにて編地のしわが取れる程度に伸長して170℃60秒にて仕上げセットを行った。なお、この仕上げセット時に吸水剤を付与した。
得られた編地のキュプラ紡績糸を抜き出し、吸水伸長率を測定したところ+4.7%であった。
また、得られた編地の運動発汗時の快適性着用試験を行った。着用試験の結果を表1に示す。
[Example 10]
A smooth structure was knitted using cupra spun yarn 1/64 Nm (hair count) with a 22 gauge circular knitting machine. The cupra spun yarn used is a normal cupra spun yarn not treated with alkali. The knitted raw machine is put into a liquid dyeing machine, scoured at 80 ° C. for 20 minutes, drained, and 30 ° C. at a concentration of sodium hydroxide of 60 g / L. Treated with alkali for 20 minutes. Next, the cupra spun yarn was dyed with reactive dye. After drying using a short loop dryer, the knitted fabric was stretched with a pin tenter to the extent that wrinkles could be removed, and finished at 170 ° C. for 60 seconds. In addition, the water absorbing agent was given at the time of this finishing set.
The cupra spun yarn of the obtained knitted fabric was extracted and the water absorption elongation rate was measured and found to be + 4.7%.
Moreover, the comfort wearing test at the time of exercise | movement sweating of the obtained knitted fabric was done. The results of the wearing test are shown in Table 1.

[実施例11]
キュプラ繊維56dt/30fとポリエステルW型断面糸56dt/30fとを、仮撚り加工前に阿波スピンドル社製インターレースノズルMK−2にて80個/mの交絡を入れた後に、TMTマシナリー社製マッハ33Hニップベルトタイプ仮撚り機にて加工速度300m/分、第1ヒーター温度200℃、ツイスターベルト角95°、延伸倍率0.984倍の条件で1ヒーター仮撚にて複合糸を試作した。この複合糸の捲縮伸長率は12.1%であった。この複合糸と普通繊維84dt/36fのポリエステル繊維の2ヒーター仮撚り加工糸を28ゲージの丸編機を使用して交互になるよう配置して編成したフライス編地を下記条件にて染色仕上げ加工を行った。その布帛から複合糸を抜き出し吸水伸長率を測定したところ+5.3%であった。
[Example 11]
The cupra fiber 56dt / 30f and the polyester W-shaped cross-section yarn 56dt / 30f were entangled at 80 pieces / m with an interlace nozzle MK-2 made by Awa Spindle before false twisting, and then Mach 33H made by TMT Machinery. A composite yarn was prototyped by one heater false twist under conditions of a processing speed of 300 m / min, a first heater temperature of 200 ° C., a twister belt angle of 95 °, and a draw ratio of 0.984 times using a nip belt type false twister. The crimp elongation of this composite yarn was 12.1%. A milling knitted fabric knitted by laying this composite yarn and two-fiber false twisted yarn of polyester fiber of ordinary fiber 84dt / 36f alternately using a 28 gauge circular knitting machine is dyed and finished under the following conditions. Went. The composite yarn was extracted from the fabric, and the water absorption elongation was measured and found to be + 5.3%.

編成した生機を液流染色機に投入し、80℃20分間精練し、排水後、水酸化ナトリウム60g/Lの濃度で30℃×20分間アルカリ処理した。次いで、130℃でエステル側のみ染色を行った。染色上がりの編地は凹凸状となっているため、ショートループドライヤーを使用して乾燥後、ピンテンターにて編地のしわが取れる程度に伸長して170℃60秒にて仕上げセットを行った。
得られた編地の運動発汗時の快適性着用試験を行った。着用試験の結果を表1に示す。
[実施例12]
ナイロン66高配向未延伸糸70dt/34fを、TMTマシナリー社製ATF−21ディスクフリクションタイプ仮撚り機にて加工速度400m/分、第1ヒーター温度200℃、ウレタンディスク枚数5枚、延伸倍率1.260倍の条件で仮撚り加工した。得られた1ヒーター仮撚糸とキュプラ繊維56dt/30fとを仮撚り後、ヘバライン社製インターレースノズルP−142にて80個/mの交絡を入れて複合糸とした。この複合糸の捲縮伸長率は71.8%であった。この複合糸と普通繊維84dt/36fのポリエステル繊維の2ヒーター仮撚り加工糸を28ゲージの丸編機を使用して交互になるよう配置して編成したフライス編地を下記条件にて染色仕上げ加工を行った得られた布帛から複合糸を抜き出し吸水伸長率を測定したところ、+4.6%であった。
The knitted raw machine was put into a liquid dyeing machine, scoured at 80 ° C. for 20 minutes, drained, and then alkali-treated at a concentration of 60 g / L of sodium hydroxide at 30 ° C. for 20 minutes. Subsequently, only the ester side was dye | stained at 130 degreeC. Since the dyed knitted fabric is uneven, it was dried using a short loop dryer, then stretched to the extent that wrinkles of the knitted fabric could be removed with a pin tenter, and finished at 170 ° C. for 60 seconds.
A comfortable wearing test of the obtained knitted fabric during exercise sweating was performed. The results of the wearing test are shown in Table 1.
[Example 12]
Nylon 66 highly oriented unstretched yarn 70 dt / 34f was processed with an ATF-21 disk friction type false twister manufactured by TMT Machinery Co., Ltd. at a processing speed of 400 m / min, first heater temperature 200 ° C., 5 urethane disks, draw ratio 1. False twisting was performed under the condition of 260 times. The obtained 1 heater false twisted yarn and cupra fiber 56dt / 30f were false twisted, and then entangled at 80 pieces / m with an interlace nozzle P-142 manufactured by Hebaline Co., to obtain a composite yarn. The crimp elongation of this composite yarn was 71.8%. A milling knitted fabric knitted by laying this composite yarn and two-fiber false twisted yarn of polyester fiber of ordinary fiber 84dt / 36f alternately using a 28 gauge circular knitting machine is dyed and finished under the following conditions. When the composite yarn was extracted from the resulting fabric and the water absorption elongation rate was measured, it was + 4.6%.

編成した生機を液流染色機に投入し、80℃20分間精練し、排水後、水酸化ナトリウム50g/Lの濃度で40℃20分間アルカリ処理した。次いで、98℃でナイロン側のみ染色を行った。染色上がりの編地は凹凸状となっているため、ショートループドライヤーを使用して乾燥後、ピンテンターにて編地のしわが取れる程度に伸長して170℃60秒にて仕上げセットを行った。
得られた編地の運動発汗時の快適性着用試験を行った。着用試験の結果を表1に示す。
[実施例13]
28ゲージのシングル丸編機を使用して図12の組織を編成するに際し、1に普通繊維、2にセルロース繊維となるよう配置し、1を3コース編成後、2を3コース編成した。この編成において、普通繊維として167dt/fポリエステル繊維の2ヒーター仮撚り加工糸を、セルロース繊維としてキュプラ繊維84dt/45fを用いた。この場合、使用したキュプラ繊維はアルカリ未処理の通常のキュプラ繊維である。
The knitted raw machine was put into a liquid dyeing machine, scoured at 80 ° C. for 20 minutes, drained, and then subjected to alkali treatment at a concentration of 50 g / L of sodium hydroxide at 40 ° C. for 20 minutes. Subsequently, only the nylon side was dye | stained at 98 degreeC. Since the dyed knitted fabric is uneven, it was dried using a short loop dryer, then stretched to the extent that wrinkles of the knitted fabric could be removed with a pin tenter, and finished at 170 ° C. for 60 seconds.
A comfortable wearing test of the obtained knitted fabric during exercise sweating was performed. The results of the wearing test are shown in Table 1.
[Example 13]
When the structure of FIG. 12 was knitted using a 28-gauge single circular knitting machine, 1 was arranged to be ordinary fibers, 2 was cellulose fibers, 1 was knitted for 3 courses, and 2 was knitted for 3 courses. In this knitting, a two-heater false twisted yarn of 167 dt / f polyester fiber was used as normal fiber, and cupra fiber 84 dt / 45 f was used as cellulose fiber. In this case, the used cupra fiber is a normal cupra fiber not treated with alkali.

編成した生機を液流染色機に投入し、80℃20分間精練し、排水後、水酸化ナトリウム50g/Lの濃度で30℃20分間アルカリ処理した。次いで、130℃でエステル側のみ染色を行った。染色上がりの編地は凹凸状となっているため、ショートループドライヤーを使用して乾燥後、ピンテンターにて編地のしわが取れる程度に伸長して170℃60秒の条件で仕上げセットを行った。なお、液流染色内で染色と同時に吸水剤を付与した。得られた編地はウェルトループがコース方向に連続して形成された構造であった。
得られた編地のキュプラ繊維を抜き出し、吸水伸長率を測定したところ+5.7%であった。
得られた編地を使用してTシャツを縫製して着用試験を行った。着用結果を表2に示す。
The knitted raw machine was put into a liquid dyeing machine, scoured at 80 ° C. for 20 minutes, drained, and then subjected to alkali treatment at a concentration of 50 g / L of sodium hydroxide at 30 ° C. for 20 minutes. Subsequently, only the ester side was dye | stained at 130 degreeC. Since the dyed knitted fabric is uneven, after drying using a short loop dryer, the knitted fabric was stretched to the extent that wrinkles of the knitted fabric could be removed with a pin tenter, and finish setting was performed at 170 ° C. for 60 seconds. . A water-absorbing agent was applied simultaneously with the dyeing in the liquid dyeing. The obtained knitted fabric had a structure in which a welt loop was continuously formed in the course direction.
The cupra fiber of the resulting knitted fabric was extracted and the water absorption elongation was measured and found to be + 5.7%.
Using the obtained knitted fabric, a T-shirt was sewn and a wearing test was performed. Table 2 shows the wearing results.

[実施例14〜17]
実施例13において、ポリエステル加工糸の太さ、あるいは、編成時の糸配列を変えてセルロース繊維の混率を変え、さらに、セルロース繊維のウェルトループ連続数を変更して編地を試作した。得られた編地の着用快適性を評価し、結果を表2に示す。
[実施例18]
22ゲージのダブル丸編機を使用して図13の組織を編成するに際し、1に普通繊維、2、3にセルロース繊維を含有する複合糸となるよう配置し、1〜2を4回繰り返し編成後、1、3を4回繰り返し編成し、これを繰り返す方法で編地とした。この編成において、普通繊維として84dt/72fのポリエステル繊維の2ヒーター仮撚り加工糸を、セルロース繊維を含有する複合糸としてアルカリ未処理の通常のキュプラ繊維56dt/30fと、ポリエステルW型断面糸56dt/30fを用いて180℃の条件で同時に仮撚りした複合糸とを使用して生機を編成した。編成した生機を液流染色機に投入し、80℃20分間精練し、排水後、水酸化ナトリウム50g/Lの濃度で30℃20分間アルカリ処理した。次いで、130℃でエステル側のみ染色を行った。染色上がりの編地は凹凸状となっているため、ショートループドライヤーを使用して乾燥後、ピンテンターにて編地のしわが取れる程度に伸長して170℃60秒の条件で仕上げセットを行った。なお、液流染色内で染色と同時に吸水剤を付与した。得られた編地はタックループがコース方向に連続して形成された構造であった。
得られた編地のキュプラ繊維を抜き出し、吸水伸長率を測定したところ+5.7%であった。
得られた編地を使用してTシャツを縫製して着用試験を行い、着用結果を表2に示す。
[Examples 14 to 17]
In Example 13, the thickness of the polyester processed yarn or the yarn arrangement at the time of knitting was changed to change the mixing ratio of cellulose fibers, and the number of continuous welt loops of cellulose fibers was changed to produce a knitted fabric. The wearing comfort of the obtained knitted fabric was evaluated, and the results are shown in Table 2.
[Example 18]
When the structure of FIG. 13 is knitted using a 22 gauge double circular knitting machine, it is arranged so that it becomes a composite yarn containing 1 ordinary fiber, 2 and cellulose fiber, and 1 to 2 is knitted repeatedly. Thereafter, 1 and 3 were repeatedly knitted four times, and this was repeated to obtain a knitted fabric. In this knitting, a 2-heater false twisted yarn of 84 dt / 72f polyester fiber as normal fiber, an alkali-untreated normal cupra fiber 56 dt / 30 f as a composite yarn containing cellulose fiber, and a polyester W-shaped cross-section yarn 56 dt / A raw machine was knitted using a composite yarn that was simultaneously twisted at 180 ° C. using 30f. The knitted raw machine was put into a liquid dyeing machine, scoured at 80 ° C. for 20 minutes, drained, and then subjected to alkali treatment at a concentration of 50 g / L of sodium hydroxide at 30 ° C. for 20 minutes. Subsequently, only the ester side was dye | stained at 130 degreeC. Since the dyed knitted fabric is uneven, after drying using a short loop dryer, the knitted fabric was stretched to the extent that wrinkles of the knitted fabric could be removed with a pin tenter, and finish setting was performed at 170 ° C. for 60 seconds. . A water-absorbing agent was applied simultaneously with the dyeing in the liquid dyeing. The obtained knitted fabric had a structure in which tack loops were continuously formed in the course direction.
The cupra fiber of the resulting knitted fabric was extracted and the water absorption elongation was measured and found to be + 5.7%.
The obtained knitted fabric is used to sew a T-shirt and a wearing test is performed. The wearing results are shown in Table 2.

[実施例19]
28ゲージのシングルトリコット編機を使用してハーフ組織を編成するに際し、フロントに普通繊維としてポリエステル56dt/30fのW型断面糸、バックにセルロース繊維としてキュプラ繊維56dt/30fを配置し、全ての針に糸を配列するall-inの糸通しにて編成した。この場合、使用したキュプラ繊維はアルカリ未処理の通常のキュプラ繊維である。
[Example 19]
When knitting a half structure using a 28-gauge single tricot knitting machine, a W-shaped cross section yarn of polyester 56dt / 30f is used as a normal fiber on the front, and cupra fiber 56dt / 30f is used as a cellulose fiber on the back. Knitted with an all-in threader to arrange the yarns. In this case, the used cupra fiber is a normal cupra fiber not treated with alkali.

編成した生機を液流染色機に投入し、80℃、20分間精練し、排水後、濃度50g/Lの水酸化ナトリウム水溶液中で30℃、20分間アルカリ処理した。次いで、ポリエステル繊維、およびキュプラ繊維の染色を行った。染色上がりの編地は凹凸状となっているため、ショートループドライヤーを使用して乾燥後、ピンテンターにて編地のしわが取れる程度に伸長して170℃、60秒の条件で仕上げセットを行った。なお、液流染色中に染色と同時に吸水剤を付与した。
得られた経編地の編地密度低下率を測定したところ、17.8%であり、得られた編地のキュプラ繊維を抜き出し、吸水伸長率を測定したところ+5.8%であった。
また、得られた編地を使用してTシャツを縫製して着用試験を行った。着用結果を表3に示す。
The knitted raw machine was put into a liquid flow dyeing machine, scoured at 80 ° C. for 20 minutes, drained, and alkali-treated in an aqueous solution of sodium hydroxide having a concentration of 50 g / L at 30 ° C. for 20 minutes. Next, the polyester fiber and the cupra fiber were dyed. Since the dyed knitted fabric is uneven, after drying using a short loop dryer, the knitted fabric is stretched to the extent that wrinkles of the knitted fabric can be removed with a pin tenter, and finish setting is performed at 170 ° C for 60 seconds. It was. In addition, the water-absorbing agent was applied simultaneously with dyeing during liquid flow dyeing.
When the knitted fabric density reduction rate of the obtained warp knitted fabric was measured, it was 17.8%, and when the cupra fibers of the obtained knitted fabric were extracted and the water absorption elongation rate was measured, it was + 5.8%.
The obtained knitted fabric was used to sew a T-shirt to conduct a wearing test. Table 3 shows the wearing results.

[実施例20〜22]
実施例19において、組織を変更してセルロース繊維の振り量、混率、ルーピングの変更を行い、経編地を製造した。これらを使用した編地の着用快適性を評価した。結果を表3に示す。
[実施例23]
28ゲージの丸編機を使用して図14の組織を編成した。1には普通繊維として84dt/36fのポリエステル繊維の2ヒーター仮撚り加工糸を、2には撚り係数18000のキュプラ繊維84dt/45fを用いた。1〜2を10回繰り返した後、図9、Rの非分離部の組織を非収縮糸である56dt/24fのポリエステル繊維の2ヒーター仮撚り加工糸を用いて、仕上がり巾で4mmとなるように編成した。
[Examples 20 to 22]
In Example 19, the structure was changed to change the shaking amount, the mixing ratio, and the looping of the cellulose fibers to produce a warp knitted fabric. The wearing comfort of the knitted fabric using these was evaluated. The results are shown in Table 3.
[Example 23]
The organization of FIG. 14 was knitted using a 28 gauge circular knitting machine. For 1, 84 heater / twisted yarn of polyester fiber of 84 dt / 36 f was used as normal fiber, and for cup 2, cupra fiber 84 dt / 45 f of 18,000 twist coefficient was used. After repeating 1 to 2 10 times, the texture of the non-separated part in FIG. 9 is made to be 4 mm in the finished width by using 2-heater false twisted yarn of 56 dt / 24f polyester fiber which is a non-shrinkable yarn. Organized.

編成した生機を液流染色機に投入し、80℃20分間精練し、その後130℃でエステル側のみ染色を行った。染色上がりの生地は巾が入り編地は凹凸状となっているため、ピンテンターにて凸部が伸びるまで170℃60秒にて巾出しセットを行った。
得られた編地にてTシャツタイプを縫製し、運動発汗時の快適性の着用試験を行った。
着用試験の結果を表4に示す。
[実施例24〜27、比較例2]
実施例23において、表4に示す撚り係数を変えたセルロース繊維を用いて編地製造を行い、また、非分離部の巾を変えて製造し、これらの評価を行った。結果を表4に示す。
The knitted raw machine was put into a liquid dyeing machine, refined at 80 ° C. for 20 minutes, and then dyed only on the ester side at 130 ° C. Since the fabric after dyeing has a width and the knitted fabric has an uneven shape, it was drawn out at 170 ° C. for 60 seconds until the convex portion was extended by a pin tenter.
A T-shirt type was sewn on the obtained knitted fabric, and a wearing test for comfort during exercise sweating was performed.
Table 4 shows the results of the wearing test.
[Examples 24-27, Comparative Example 2]
In Example 23, the knitted fabric was manufactured using cellulose fibers having different twist coefficients shown in Table 4, and manufactured by changing the width of the non-separation part, and these were evaluated. The results are shown in Table 4.

[実施例28]
28ゲージの丸編機により図15に示す組織を編成した。1には普通繊維として84dt/36fのポリエステル繊維の2ヒーター仮撚り加工糸を用い、天竺組織の主とし、部分的にシリンダー側とタック組織で連結させた。2には普通繊維として56dt/24fのポリエステル繊維の2ヒーター仮撚り加工糸と、撚り係数18000のキュプラ繊維84dt/45fとの添え糸編みを用いた。1〜2を10回繰り返した後、図10、非分離部Rを、普通繊維として56dt/24fのポリエステル繊維の2ヒーター仮撚り加工糸を使用しフライス組織にて仕上げ巾で5mmとなるように編成した。
[Example 28]
The structure shown in FIG. 15 was knitted by a 28 gauge circular knitting machine. In No. 1, a two-heater false twisted yarn of 84 dt / 36 f polyester fiber was used as a normal fiber, which was mainly connected to the cylinder side and a tack structure mainly as a tentacle structure. For No. 2, a spliced yarn of 2-heater false twisted yarn of 56 dt / 24f polyester fiber as ordinary fiber and cupra fiber 84 dt / 45f having a twist coefficient of 18000 was used. After repeating 1 to 2 10 times, the non-separation part R is made to be 5 mm in the finished width in a milling structure using 2-heater false twisted yarn of polyester fiber of 56 dt / 24f as ordinary fiber. Organized.

編成した生機を液流染色機に投入し、80℃20分間精練し、その後130℃でエステル側のみ染色を行った。染色上がりの生地は巾が入り編地は凹凸状となっているため、ピンテンターにて凹凸が伸びるまで170℃60秒にて巾出しセットを行った。
得られた編地にてTシャツタイプを縫製し、運動発汗時の快適性の着用試験を行った。
着用試験の結果を表4に示す。
[実施例29]
28ゲージの丸編機を使用して図16の組織を編成し、[1]、[2][4][5][6][8]には普通繊維として84dt/36fのポリエステル繊維2ヒーター仮撚り加工糸を、[3]、[7]には撚り係数25000のキュプラ繊維56dt/30fと、普通繊維である56dt/24fのポリエステル繊維の2ヒーター仮撚り加工糸を用いた。これらを添え糸編みで編地表面が56dt/24fのポリエステル繊維となるよう調整し、[1]〜[4]を4回繰り返した後、[5]〜[8]を4回繰り返し編成した。分離部を構成する[3][4][7][8]により(C)部の凸部を形成し、一方の外層(D)部は[1][2][5][6]により形成し、コース数比(C)/(D)が2.0倍になるよう編成した。
The knitted raw machine was put into a liquid dyeing machine, refined at 80 ° C. for 20 minutes, and then dyed only on the ester side at 130 ° C. Since the fabric after dyeing has a width and the knitted fabric has an uneven shape, it was set out at 170 ° C. for 60 seconds until the unevenness was extended by a pin tenter.
A T-shirt type was sewn on the obtained knitted fabric, and a wearing test for comfort during exercise sweating was performed.
Table 4 shows the results of the wearing test.
[Example 29]
The structure of FIG. 16 was knitted using a 28 gauge circular knitting machine, and [1], [2] [4] [5] [6] [8] had a polyester fiber 2 heater of 84 dt / 36 f as ordinary fibers. For the [3] and [7], two-heater false twisted yarn of cupra fiber 56dt / 30f with a twist coefficient of 25000 and polyester fiber of 56dt / 24f, which is a normal fiber, was used as the false twisted yarn. These were knitted with splicing and adjusted so that the surface of the knitted fabric became 56 dt / 24f polyester fiber, and after repeating [1] to [4] four times, [5] to [8] were knitted four times. [3] [4] [7] [8] constituting the separation part forms the convex part of (C) part, and one outer layer (D) part is [1] [2] [5] [6] Formed and knitted so that the ratio of the number of courses (C) / (D) was 2.0 times.

編成した生機を液流染色機に投入し、80℃20分間精練し、その後130℃でエステル側のみ染色を行った。また、染色時に同時に吸水加工剤も投入し、編地に吸水性付与を行いつつ染色を進めた。染色上がりの生地は巾が入り、編地は凹凸状となっているため、ショートループドライヤーで乾燥し、ピンテンターにて乾燥時の巾より10%巾出しして170℃60秒にてセットを行った。
得られた編地は、シリンダー側で編成した外層部(C)に凸部が発現し、吸汗により凸部の厚みが減少する立体構造丸編地が得られた。
立体構造丸編地の性能試験結果を表5に示す。
The knitted raw machine was put into a liquid dyeing machine, refined at 80 ° C. for 20 minutes, and then dyed only on the ester side at 130 ° C. At the same time as dyeing, a water-absorbing agent was also introduced, and dyeing proceeded while imparting water absorption to the knitted fabric. Since the dyed fabric has a width and the knitted fabric has an uneven shape, it is dried with a short loop dryer, 10% wider than the dried width with a pin tenter, and set at 170 ° C for 60 seconds. It was.
In the obtained knitted fabric, a convex structure was developed in the outer layer part (C) knitted on the cylinder side, and a three-dimensional structure circular knitted fabric in which the thickness of the convex part was reduced by sweat absorption was obtained.
Table 5 shows the performance test results of the three-dimensional structure circular knitted fabric.

[実施例30〜34]
実施例29において、[3][4][7][8]の編成数によって両外層のコース数の比(C)/(D)を変えて製造し、これらの評価を行った。結果を表5に示す。
[Examples 30 to 34]
In Example 29, it manufactured by changing ratio (C) / (D) of the number of courses of both outer layers according to the number of knitting [3] [4] [7] [8], and evaluated these. The results are shown in Table 5.

Figure 2007086491
Figure 2007086491

Figure 2007086491
Figure 2007086491

Figure 2007086491
Figure 2007086491

Figure 2007086491
Figure 2007086491

Figure 2007086491
Figure 2007086491

本発明による繊維を使用して布帛を製造すれば、着用時快適で、かつ、発汗時にもべとつき感や蒸れ感のない衣服の製造が可能であり、スポーツウェア、インナー、アウターなどの衣服において快適な着用感が得られる。   If the fabric according to the present invention is used to produce a fabric, it is possible to produce clothes that are comfortable when worn and that do not feel sticky or stuffy when sweating, and are comfortable in clothes such as sportswear, inner wear, and outer wear. A comfortable wearing feeling is obtained.

Claims (10)

吸水時寸法変化率が2%以上である、セルロース繊維が含有されていることを特徴とするセルロース繊維混用布帛。   A cellulose fiber-mixed fabric comprising cellulose fibers having a dimensional change rate of 2% or more at the time of water absorption. 吸水伸長率が+3%以上の吸水自己伸長セルロース繊維が含有されていることを特徴とする請求項1記載のセルロース繊維混用布帛。   The cellulose fiber-mixed fabric according to claim 1, wherein water-absorbing self-extending cellulose fibers having a water absorption elongation rate of + 3% or more are contained. 該セルロース繊維の含有率が10wt%以上である請求項2に記載のセルロース繊維混用布帛。   The cellulose fiber-mixed fabric according to claim 2, wherein the cellulose fiber content is 10 wt% or more. 吸水伸長率が+3%以上である吸水自己伸長セルロース繊維によるウェルトループ、および/またはタックループが2ループ以上連続して形成されている部分を有する丸編構造である請求項3記載のセルロース繊維混用布帛。   The mixed use of cellulose fibers according to claim 3, which has a weft loop of water-absorbing self-extending cellulose fibers having a water absorption elongation rate of + 3% or more and / or a circular knitted structure having a portion in which a tuck loop is continuously formed by two or more loops. Fabric. 吸水伸長率が+3%以上である吸水自己伸長セルロース繊維はルーピングされ、かつ、1〜4針の振り組織であり、さらに吸水時の編地密度低下率が5〜40%であることを特徴とする経編構造である請求項3記載のセルロース繊維混用布帛。   The water-absorbing self-extending cellulose fiber having a water absorption elongation rate of + 3% or more is looped and has a 1 to 4 needle swing structure, and further has a knitted fabric density reduction rate of 5 to 40% at the time of water absorption. The fabric for mixing cellulose fibers according to claim 3, which has a warp knitting structure. 吸水自己伸長セルロース繊維が、アルカリ水溶液20g/L以上、20℃以上、5分以上浸漬処理されたことを特徴とする請求項4または5記載のセルロース繊維混用布帛。   The cellulose fiber-mixed fabric according to claim 4 or 5, wherein the water-absorbing self-extending cellulose fiber is immersed in an alkaline aqueous solution of 20 g / L or more, 20 ° C or more, and 5 minutes or more. 吸水伸長率が−2%以下の吸水自己収縮セルロース繊維が含有されていることを特徴とする請求項1記載のセルロース繊維混用布帛。   The water-absorbing self-shrinking cellulose fiber having a water absorption elongation rate of -2% or less is contained. 分離部と非分離部とが繰り返し形成されている多層構造布帛であって、一方の外層、および/または、中間層には吸水伸長率が−2%以下である吸水自己収縮セルロース繊維が含有され、他方の外層は非吸水収縮繊維で構成され、コース方向の非分離部は非収縮繊維で構成されている事を特徴とする請求項7記載のセルロース繊維混用布帛。   A multi-layered fabric in which a separation part and a non-separation part are repeatedly formed, and one outer layer and / or intermediate layer contains water-absorbing self-shrinking cellulose fibers having a water absorption elongation of -2% or less. The other outer layer is composed of non-water-absorbing shrinkable fibers, and the non-separating portion in the course direction is composed of non-shrinkable fibers. 分離部と非分離部とが繰り返し形成されている立体構造布帛であって、該分離部を構成する一方の外層(C)には吸水伸長率が−2%以下である吸水自己収縮セルロース繊維が含有され、他方の外層(D)には非吸水収縮繊維が含有され、両外層のコース数が(C)>(D)である事を特徴とする請求項7記載のセルロース繊維混用布帛。   A three-dimensionally structured fabric in which a separation part and a non-separation part are repeatedly formed, and one outer layer (C) constituting the separation part has a water-absorbing self-shrinking cellulose fiber having a water absorption elongation of -2% or less. 8. The cellulose fiber-mixed fabric according to claim 7, wherein the other outer layer (D) contains non-water-absorbing shrinkable fibers, and the number of courses of both outer layers is (C)> (D). 吸水自己収縮セルロース繊維の撚り係数が8200〜35000である事を特徴とする請求項7記載のセルロース繊維混用布帛。   The cellulose fiber-mixed fabric according to claim 7, wherein the water-absorbing self-shrinkable cellulose fiber has a twist coefficient of 8200 to 35000.
JP2007556006A 2006-01-26 2007-01-26 Cellulose fiber mixed fabric Active JP5102045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007556006A JP5102045B2 (en) 2006-01-26 2007-01-26 Cellulose fiber mixed fabric

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2006017415 2006-01-26
JP2006017415 2006-01-26
JP2006025532 2006-02-02
JP2006025532 2006-02-02
JP2006025531 2006-02-02
JP2006025531 2006-02-02
JP2006133736 2006-05-12
JP2006133736 2006-05-12
JP2007556006A JP5102045B2 (en) 2006-01-26 2007-01-26 Cellulose fiber mixed fabric
PCT/JP2007/051227 WO2007086491A1 (en) 2006-01-26 2007-01-26 Cellulose fiber blended fabric

Publications (2)

Publication Number Publication Date
JPWO2007086491A1 true JPWO2007086491A1 (en) 2009-06-25
JP5102045B2 JP5102045B2 (en) 2012-12-19

Family

ID=38309277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007556006A Active JP5102045B2 (en) 2006-01-26 2007-01-26 Cellulose fiber mixed fabric

Country Status (7)

Country Link
US (1) US20090117799A1 (en)
EP (1) EP1978150B1 (en)
JP (1) JP5102045B2 (en)
KR (1) KR101061144B1 (en)
CN (1) CN101374991B (en)
HK (1) HK1125423A1 (en)
WO (1) WO2007086491A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277837B2 (en) 2006-01-11 2012-10-02 Entegrion, Inc. Hemostatic textile
JP4842065B2 (en) * 2006-09-19 2011-12-21 旭化成せんい株式会社 3D structure circular knitted fabric
JP5101871B2 (en) * 2006-12-01 2012-12-19 旭化成せんい株式会社 Knitted fabric
JP5101870B2 (en) * 2006-12-01 2012-12-19 旭化成せんい株式会社 Warp knitted fabric
JP4997016B2 (en) * 2007-08-03 2012-08-08 旭化成せんい株式会社 Circular knitted fabric
DK2774756T3 (en) * 2011-11-01 2020-09-21 W L Gore & Ass G K Laminated cloth
EP3283676B1 (en) * 2015-04-16 2021-12-01 NIKE Innovate C.V. Article of footwear incorporating a knitted component having floated yarn portions and a method of making same
JP6144794B2 (en) * 2015-05-25 2017-06-07 株式会社東和コーポレーション Gloves substrate and gloves
EP3358056B1 (en) * 2015-09-28 2019-09-18 Asahi Kasei Kabushiki Kaisha Multilayer-structure circular knit fabric
US10973268B2 (en) * 2016-08-25 2021-04-13 Nike, Inc. Garment with zoned insulation and variable air permeability
CN107541845A (en) * 2017-10-13 2018-01-05 江苏美恒纺织实业有限公司 A kind of fabric and its manufacture method
CN107604510A (en) * 2017-10-13 2018-01-19 江苏美恒纺织实业有限公司 One kind is breathed freely and uvioresistant fabrics and its manufacture method
CN107557960A (en) * 2017-10-13 2018-01-09 江苏美恒纺织实业有限公司 A kind of ventilation and perspiration function fabric and its manufacture method
CN107740217A (en) * 2017-10-13 2018-02-27 江苏美恒纺织实业有限公司 A kind of multifunctional fabric and its manufacture method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054411B2 (en) * 1981-04-27 1985-11-29 花王株式会社 twine
US4418524A (en) * 1980-06-19 1983-12-06 Kao Soap Co., Ltd. Twisted yarn and twisted bundle of yarns
JPH05247852A (en) * 1991-02-21 1993-09-24 Soko Seiren Kk Lightly napped finishing of woven fabric of cellulosic fiber
FI924408A0 (en) * 1992-09-30 1992-09-30 Novasso Oy MODIFIED VISKOSFIBRER OCH FOERFARANDE FOER DESS FRAMSTAELLNING.
JPH08291461A (en) * 1995-02-23 1996-11-05 Asahi Chem Ind Co Ltd Cellulosic fiber and treatment of fabric comprising the same with alkali
JP2822174B2 (en) * 1996-03-01 1998-11-11 オーミケンシ株式会社 Method for producing chitin chitosan fiber and structure
JPH1025643A (en) * 1996-07-09 1998-01-27 Asahi Chem Ind Co Ltd Cloth having multi-layered structure
ATE298814T1 (en) * 1998-01-08 2005-07-15 Asahi Chemical Ind METHOD FOR TREATING KULLIERWARE
JP2000045155A (en) * 1998-05-27 2000-02-15 Asahi Chem Ind Co Ltd Knitted fabric
JPH11350358A (en) * 1998-06-12 1999-12-21 Asahi Chem Ind Co Ltd Processing of man-made cellulose fiber
JP2004036012A (en) * 2002-07-01 2004-02-05 Toray Ind Inc Water absorbing knitted fabric
JP4193064B2 (en) * 2002-12-12 2008-12-10 日清紡績株式会社 Polyurethane elastic fiber mixed knitted fabric and method for producing the same
US7842628B2 (en) * 2003-06-23 2010-11-30 Teijin Fibers Limited Woven or knitted fabric containing two different yarns and clothing comprising the same
JP2005163225A (en) * 2003-12-03 2005-06-23 Teijin Fibers Ltd Knitted fabric and fiber product improved in air permeability when wetted
JP3834018B2 (en) * 2003-06-30 2006-10-18 三菱レイヨン株式会社 Reversible breathable fabric
CA2539780A1 (en) * 2003-10-22 2005-04-28 Teijin Fibers Limited Stretchable composite fabric and clothing product therefrom
JP2005154949A (en) * 2003-11-26 2005-06-16 Toray Ind Inc Functional knitted fabric and knitted fabric product using the same
JP2006009204A (en) * 2004-06-28 2006-01-12 Toho Tenax Co Ltd Method for producing cellulose-based fibrous cloth
JP2006112009A (en) * 2004-10-15 2006-04-27 Teijin Fibers Ltd Woven or knit fabric developing unevenness by wetting, method for producing the same and textile product

Also Published As

Publication number Publication date
EP1978150B1 (en) 2017-06-21
CN101374991B (en) 2013-04-03
CN101374991A (en) 2009-02-25
US20090117799A1 (en) 2009-05-07
KR20080078730A (en) 2008-08-27
WO2007086491A1 (en) 2007-08-02
EP1978150A1 (en) 2008-10-08
JP5102045B2 (en) 2012-12-19
EP1978150A4 (en) 2011-05-04
HK1125423A1 (en) 2009-08-07
KR101061144B1 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP5102045B2 (en) Cellulose fiber mixed fabric
JP6636689B2 (en) Stretchable woven fabric and manufacturing method thereof
CN106435916A (en) Water-soluble vinylon untwisted yarn or soft twist yarn multi-layer fabric and weaving method thereof
CN109790661B (en) Warp knitting fabric
JP5101871B2 (en) Knitted fabric
CN109137241A (en) A kind of knitting summer quilt of sense of touch Shu Rou and preparation method thereof
JP6745680B2 (en) Multi-layered single circular knitted fabric
JP6302609B1 (en) Business suit knitted fabric
JP2010285705A (en) Double-layered circular knit
JP5214131B2 (en) Water-absorbing stretch composite yarn and fabric
JP7198817B2 (en) circular knitted fabric
JP4459377B2 (en) Tubular knitted fabric
JP4799999B2 (en) 3-layer fabric
JP6431637B1 (en) Knitted fabric for outer clothing having a pattern
JP4997016B2 (en) Circular knitted fabric
JP6085799B2 (en) Woven knitted fabric including paper yarn and method for producing the same
JP4800043B2 (en) 3D knitted fabric
JP5101870B2 (en) Warp knitted fabric
JP4799998B2 (en) 2-layer fabric
JP5214132B2 (en) Composite yarn and fabric
JP4842065B2 (en) 3D structure circular knitted fabric
JP2022131455A (en) Multilayer structure single circular knitted fabric
JP2002020954A (en) Knit fabric having three dimensional structure
JP2022119638A (en) Run prevented single knit fabric
JP2021188157A (en) Composite textured yarn, and woven or knitted fabric including composite textured yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120903

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5102045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350