JPWO2007049495A1 - 廃水処理装置及び廃水処理方法 - Google Patents

廃水処理装置及び廃水処理方法 Download PDF

Info

Publication number
JPWO2007049495A1
JPWO2007049495A1 JP2007542332A JP2007542332A JPWO2007049495A1 JP WO2007049495 A1 JPWO2007049495 A1 JP WO2007049495A1 JP 2007542332 A JP2007542332 A JP 2007542332A JP 2007542332 A JP2007542332 A JP 2007542332A JP WO2007049495 A1 JPWO2007049495 A1 JP WO2007049495A1
Authority
JP
Japan
Prior art keywords
tank
water
treatment
aeration
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007542332A
Other languages
English (en)
Inventor
建彦 奈良部
建彦 奈良部
Original Assignee
建彦 奈良部
建彦 奈良部
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 建彦 奈良部, 建彦 奈良部 filed Critical 建彦 奈良部
Publication of JPWO2007049495A1 publication Critical patent/JPWO2007049495A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Analytical Chemistry (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

処理槽11は流入された原水に対して微生物による第1の有機物分解処理を行う。曝気槽12は処理槽11と隔壁14によって区分され、処理槽11から流入された処理槽11の処理水に対して曝気処理及び微生物による第2の有機物分解処理を行う。上澄水返送機構は曝気槽12の処理水から汚泥、洗澱固形物及び浮上固形物を除去した上澄水を曝気槽から処理槽へ返送する。

Description

本発明は廃水処理装置及び廃水処理方法、たとえば、一般家庭等で発生する生活廃水、工場廃水等の廃水を生物学的に処理する廃水処理装置及び廃水処理方法に関する。
有機性廃水を処理する方法として微生物による生物学的廃水処理が広く知られている。また、この生物学的廃水処理は、好気性微生物による好気性廃水処理と嫌気性微生物による嫌気性廃水処理とに分類される。さらに、好気性廃水処理においては、好気性微生物を大量に保持(固定)する必要があり、その方法として活性汚泥法がある。
活性汚泥法を用いた第1の従来の廃水処理装置は、流入された原水に対して好気性微生物による有機物分解処理を行うと共に、曝気処理を行って活性汚泥を培養する処理/曝気槽と、処理/曝気槽からの混合液を上澄水及び沈澱汚泥に分離する沈澱槽と、沈澱槽の上澄水を殺菌して放流する殺菌槽とからなる。この場合、沈澱槽から処理/曝気槽へ沈澱汚泥の一部を活性汚泥として返送することにより大量の好気性微生物を反応/曝気槽に保持(固定)している。
しかしながら、上述の第1の従来の廃水処理装置においては、余剰沈澱汚泥が大量に発生するので、余剰沈澱汚泥の汚泥減容化作業が必要である。たとえば、バキュームカ等による定期的な引抜き作業が必要である。引抜かれた汚泥は、屎尿処理施設で脱水処理されたり、中間の汚泥減容化処理施設でさらに水分除去されたりする。最終的には、最終処分場に投棄されたり、他の物質と焼成されて煉瓦等に加工されたり、あるいは堆肥、メタンガス、水素ガスとして再利用される。
また、上述の第1の従来の廃水処理装置においては、上澄水は殺菌液と共に放流されるので、放流された殺菌液が化学的な環境汚染を引起す。
活性汚泥法を用いた第2の従来の廃水処理装置は、流入された原水に対して好気性微生物による有機物分解処理を行う処理槽と、処理槽から流入した処理液に対して曝気処理を行って活性汚泥を培養する曝気槽と、曝気槽から処理水を殺菌して放流する殺菌槽とからなる。この場合、曝気槽から処理槽へ処理水と共に沈澱汚泥の一部を活性汚泥として返送することにより大量の好気性微生物を処理槽に保持(固定)している(参照:特許文献1)。
このように、上述の第2の従来の廃水処理装置においては、処理槽と曝気槽とが別個となるものの、沈澱槽が存在しないので、装置が小型化できると共に、余剰沈澱汚泥を少なくできる。
特開2005−254065号公報
しかしながら、上述の第2の従来の廃水処理装置においても、余剰沈澱汚泥の汚泥減容化作業は依然として必要である。
また、上述の第2の従来の廃水処理装置においては、曝気槽から処理槽へ処理水と共に沈澱汚泥も返送されるので、有機物分解処理効率が低くなる。
さらに、上述の第2の従来の廃水処理装置においても、処理水は殺菌液と共に放流されるので、やはり放流された殺菌液が化学的な環境汚染を引起す。
従って、本発明の目的は、余剰沈澱汚泥の汚泥減容化作業を不要とした廃水処理装置及び廃水処理方法を提供することにある。
また、他の目的は、高い有機物分解処理効率の廃水処理装置及び廃水処理方法を提供することにある。
さらに、他の目的は、殺菌液を放流しないことにより環境に優しい廃水処理装置及び廃水処理方法を提供することにある。
上述の課題を達成するために本発明に係る廃水処理装置は、流入された原水に対して微生物による第1の有機物分解処理を行う処理槽と、この処理槽と隔壁によって区分され、処理槽から流入された処理槽の処理水に対して曝気処理及び微生物による第2の有機物分解処理を行う曝気槽と、この曝気槽の処理水から汚泥、洗澱固形物及び浮上固形物(スカム)を除去した上澄水を曝気槽から処理槽へ返送する上澄水返送機構とを具備する。これにより、処理槽に返送された微生物はエネルギー源である活性汚泥つまり栄養分がない飢餓状態となり、微生物は原水の有機物に対して高い有機物分解処理能力を発揮する。また、余剰沈澱汚泥も発生しない。
また、余剰沈澱汚泥が発生しないので、余剰沈澱汚泥の腐敗による臭気の問題がなく、従って、曝気槽の上部に開口を設ける。これにより、曝気処理によって蒸散された処理水の水分が曝気槽の開口から排出される。
さらに、処理水の水分は曝気槽の開口から蒸散排出されるので、有機物分解処理、曝気処理及び上澄水返送処理は外部へ放流水を流出させないクローズド方式にさせる。これにより、殺菌液の放流がなくなり、環境に優しくなる。
また、本発明に係る廃水処理方法は、原水を処理槽に流入させて微生物による有機物分解処理を行う工程と、有機物分解処理された処理水を曝気槽に流入させて曝気処理を行う工程と、曝気処理された処理水から汚泥、沈澱固形物及び浮上固形物を除去した上澄水を処理槽に返送する工程とを具備する。
本発明によれば、曝気処理された処理水の汚泥、沈澱固形物及び浮上固形物を含まない上澄水のみを曝気槽から処理槽へ戻すので、余剰沈澱汚泥をなくすことができ、従って、余剰沈澱汚泥の汚泥減容化作業を不要にできる。また、処理槽の微生物を飢餓的状態にするので、高い有機物分解処理効率が得られる。さらに、クローズド方式の採用により殺菌液の放流がないので、環境に優しくできる。
図1は本発明に係る廃水処理装置の第1の実施の形態を示す図である。図1の廃水処理装置は一般家庭の生活廃水等の廃水を含む原水を処理するためのものである。
図1において、浄化槽1Aは、微生物(好気性微生物、嫌気性微生物の両方)による有機物分解処理を行う処理槽11、処理槽11から流入された処理水に対して曝気処理及び微生物(主に、好気性微生物)による有機物分解処理を行う曝気槽12、及び曝気槽12
内の上部に設けられ、曝気処理された処理水から上澄水を分離する分離槽13よりなる。つまり、分離槽13は処理水から汚泥、沈澱固形物及び浮上固形物を除去して上澄水のみを蓄積する。尚、浄化槽1Aは縦断面図で示されている。
処理槽11と曝気槽12との間には上部に貫通孔が形成された隔壁14が設けられ、また、曝気槽12と分離槽13との間には上部に貫通孔が形成された隔壁15が設けられている。隔壁14の貫通孔の高さは隔壁15の貫通孔の高さより高くされている。従って、処理槽11で処理された処理水は隔壁14を越えて曝気槽12へ流入され、また、曝気槽12の上澄水は隔壁15を越えて曝気槽12へ流入される。
処理槽11上部には蓋111が設けられている。この場合、蓋111には開口がない。また、処理槽11には、処理槽11の有機物分解処理状態を検出する状態検出センサ112が設けられている。たとえば、状態検出センサ112は、好気性微生物による有機物分解処理により発生した炭酸ガス(CO)を検出する炭酸ガスセンサ、この炭酸ガスの濃度を検出する炭酸ガス濃度検出センサ、嫌気性微生物による有機物分解処理により発生したメタンガス(CH)を検出するメタンガスセンサ、このメタンガスの濃度を検出するメタンガス濃度センサ、あるいは原水中の溶存酸素量を検出する溶存酸素量センサである。尚、状態検出センサ112は曝気槽12に設けてもよい。さらに、隔壁14には、処理槽11の深い箇所の処理水が曝気槽12に流れ込むように管113が設けられている。尚、管113は隔壁14の貫通孔を通過している。
曝気槽12上部には蓋121が設けられており、この場合、蓋121には図2に示すごとく複数の開口121aが設けられている。また、曝気槽12の底部には、気泡上の空気を放出する曝気機構122が設けられている。この曝気機構122には、浄化槽1の外部に設けられたブロワ16から空気供給管16aを介して加圧空気が供給される。
曝気機構122は、好気性微生物による好気性廃水処理に用いると共に、本発明においては、クローズド方式の廃水処理装置の実現に寄与する。つまり、曝気機構122によって曝気槽12内に供給された空気と曝気槽12内の処理水との接触蒸散作用により、処理水の水分は蓋121の開口121aより排出される。この結果、浄化槽1Aの処理水を河川等の水環境中に放流する必要がなくなるので、クローズド方式の廃水処理装置を実現できる。また、一般家庭等でディスポーザ(粉砕機)で処理された廃水も放流することなく処理できる。
分離槽13には、上澄水返送機構としての水中ポンプ131及び返送管路132が設けられている。この返送管路132は分離槽13から処理槽11へ通じている。また、水位検出センサ133が設けられている。尚、水中ポンプ13は外部ポンプでもよい。また、処理槽11の返送管路132の先端部には散水装置132aが設けられている。これにより、処理槽11の処理水の上部の浮上固形物(スカム)を散逸させることができる。尚、この返送管路132は管113の貫通孔と異なる隔壁14の貫通孔を通過している。
制御ユニット17は状態検出センサ112及び水位検出センサ133の各出力信号に応じてブロワ16及び水中ポンプ131を制御するものであって、マイクロコンピュータによって構成されている。
図1の廃水処理装置には、原水源である洗濯機21、浴槽22、シンク23、トイレット24等が合流枡25及び流入管路26を介して処理槽11の上流側に連結されている。尚、洗濯機21、浴槽22、シンク23、トイレット24等は平面配置図で示されている。
図1の廃水処理装置においては、洗濯機21、浴槽22、シンク23、トイレット24等の原水源から処理槽11に流入された原水に対して微生物による有機物分解処理を行い、処理槽11の処理水に対して曝気槽12において曝気処理を行い、曝気処理された処理水の上澄水のみを曝気槽12から処理槽11に返送する。この結果、処理槽11において、微生物が必要とする栄養分(活性汚泥)が減少する一方、酸素が豊富な高溶存酸素状態(好気状態)となり、従って、処理槽11内の微生物の摂食活動が最も効率的な飢餓的状態となる。このような飢餓的状態の微生物は高い有機物分解処理能力を発揮することになる。
つまり、処理槽11においては、曝気された処理水の上澄水の供給により微生物の総量は減少しない。他方、処理槽11に流入される微生物の栄養分は原水中の有機物と従来の返送分の活性汚泥との和であるが、この返送活性汚泥がない分、処理槽11内の微生物の栄養分は著しく減少して微生物の総量に対して相対的に減少する。これにより、処理槽11内においては、微生物の栄養分の総量が微生物の総量に比較して減少するという不均衡状態となる。この不均衡状態を上述の飢餓的状態と呼ぶ。
尚、従来は、処理槽において、溶存酸素量の多い好気的状態を原水中の有機物に活性汚泥を加えた十分な飽食状態にしていた。この結果、微生物は比較的消化分解し易い栄養素のみを捕食する摂食行動をし、従って、比較的消化分解しにくい栄養素、微生物の死骸等は汚泥となり、余剰汚泥が著しく増大していた。このように、常に飽食状態にすることは浄化槽1Aにとって好ましいことではない。
処理槽11における原水中の有機物の総量と微生物の総量とが一定の関係を有するように、制御ユニット17は状態検出センサ112及び水位検出センサ133の各出力信号に応じて上澄水の返送量つまり水中ポンプ131及び曝気槽12の曝気処理を制御し、処理槽11における微生物を飢餓状態にする。状態検出センサ112が炭酸ガスセンサの場合には、制御ユニット17は図3に示すフローにより動作し、状態検出センサ112が炭酸ガス濃度センサの場合には、制御ユニット17は図4に示すフローにより動作し、状態検出センサ112がメタンガスセンサの場合には、制御ユニット17は図5に示すフローにより動作し、状態検出センサ112がメタンガス濃度センサの場合には、制御ユニット17は図6に示すフローにより動作し、状態検出センサ112が溶存酸素量センサの場合には、制御ユニット17は図7に示すフローにより動作する。尚、いずれのフローも所定時間毎に実行される。
図3では、ステップ301にて、水位検出センサ133の出力信号より分離槽13の上澄水の水位レベルが比較的小さい所定値Lを超えているか否かを判別する。この結果、上澄水の水位レベルが所定値Lを超えている場合に、ステップ302に進み、他方、上澄水の水位レベルが所定値L以下の場合には水中ポンプ131の空転防止のためにステップ305に進む。ステップ302では、炭酸ガスセンサの出力信号により、処理槽11内に炭酸ガスが存在するか否かを判別する。この結果、ステップ302にて炭酸ガスが存在すると判別された場合には、原水中の有機物の総量が大きいと判別してステップ303に進み、水中ポンプ131をオンにし、かつ、曝気処理用ブロワ16をオンもしくは連続(高作動)運転状態にする。これにより、好気性微生物による好気性廃水処理効率が上昇すると共に、処理水の蒸散量が増加する。他方、ステップ302にて炭酸ガスが存在しないと判別された場合には、原水中の好気性有機物の総量が小さいと判別してステップ304に進み、水中ポンプ131をオンにするが、曝気処理用ブロワ16をオフもしくは断続(低作動)運転状態にする。これにより嫌気性微生物による嫌気性廃水処理効率が上昇する。ステップ304では、水中ポンプ131をオフにし、かつ曝気処理用ブロワ16をオフもしくは断続(低作動)運転状態にする。この場合、処理水の蒸散は行われず、上澄水の水位の低下を抑止する。そして、ステップ306に図3のフローは終了する。
図4では、ステップ401にて、水位検出センサ133の出力より分離槽13の上澄水の水位レベルが所定値Lを超えているか否かを判別する。この結果、上澄水の水位レベルが所定値Lを超えている場合に、ステップ402に進み、他方、上澄水の水位レベルが所定値L以下の場合には水中ポンプ131の空転防止のためにステップ403に進む。ステップ402では、炭酸ガス濃度センサの出力信号に応じて水中ポンプ131のオンデューティ比及び曝気処理用ブロワ16のオンデューティ比を制御する。たとえば、炭酸ガス濃度センサの出力信号により検出された処理槽11内の炭酸ガス濃度が大きい場合には、原水中の好気性有機物の総量が大きいと判別して水中ポンプ131のオンデューティ比を大きくして上澄水の返送量を大きくし、かつ、曝気処理用ブロワ16のオンデューティ比を大きくする。これにより、好気性微生物による好気性廃水処理効率が上昇すると共に処理水の蒸散量が増加する。他方、炭酸ガス濃度センサの出力信号により検出された処理槽11内の炭酸ガス濃度が小さい場合には、原水中の好気性有機物の総量が小さいと判別して水中ポンプ131のオンデューティ比を小さくして上澄水の返送量を小さくし、かつ、曝気処理用ブロワ16のオンデューティ比を小さくする。これにより、好気性微生物による好気性廃水処理効率が低下すると共に処理水の蒸散量が減少する。ステップ403では、水中ポンプ131をオフにし、かつ曝気処理用ブロワ16をオフもしくは断続(低作動)運転状態にする。これにより嫌気性微生物による嫌気性廃水処理効率が上昇する。この場合、処理水の蒸散は行われず、上澄水の水位の低下を抑止する。そして、ステップ404に図4のフローは終了する。
尚、図3もしくは図4における炭酸ガスもしくはその濃度を検出しているのは、好気性微生物による好気性廃水処理をモニタするためであり、この結果、好気性微生物による好気性廃水処理を主に制御していることになる。
図5では、ステップ501にて、水位検出センサ133の出力信号より分離槽13の上澄水の水位レベルが所定値Lを超えているか否かを判別する。この結果、上澄水の水位レベルが所定値Lを超えている場合に、ステップ502に進み、他方、上澄水の水位レベルが所定値L以下の場合には水中ポンプ131の空転防止のためにステップ504に進む。ステップ502では、メタンガスセンサの出力信号により、処理槽11内にメタンガスが存在するか否かを判別する。この結果、ステップ502にてメタンガスが存在すると判別された場合には、原水中の嫌気性有機物の総量が大きいと判別してステップ503に進み、水中ポンプ131をオンにし、かつ、曝気処理用ブロワ16をオフもしくは断続(低作動)運転状態にする。これにより、嫌気性微生物による嫌気性廃水処理効率が上昇する。他方、ステップ502にてメタンガスが存在しないと判別された場合には、原水中の嫌気性有機物の総量が小さいと判別してステップ504に進み、水中ポンプ131をオンもしくは連続(高作動)運転状態 にし、かつ、曝気処理用ブロワ16をオンもしくは連続(高作動)運転状態にする。これにより、嫌気性微生物による嫌気性廃水処理効率が上昇すると共に処理水の蒸散が行われる。ステップ505では、水中ポンプ131をオフにし、かつ曝気処理用ブロワ16をオフもしくは断続(低作動)運転状態にする。この場合、処理水の蒸散は行われず、上澄水の水位の低下を抑止する。そして、ステップ506に図5のフローは終了する。
図6では、ステップ601にて、水位検出センサ133の出力より分離槽13の上澄水の水位レベルが所定値Lを超えているか否かを判別する。この結果、上澄水の水位レベルが所定値Lを超えている場合に、ステップ602に進み、他方、上澄水の水位レベルが所定値L以下の場合には水中ポンプ131の空転防止のためにステップ603に進む。ステップ602では、メタンガス濃度センサの出力信号に応じて水中ポンプ131のオンデューティ比及び曝気処理用ブロワ16のオンデューティ比を制御する。たとえば、メタンガス濃度センサの出力信号により検出された処理槽11内のメタンガス濃度が大きい
場合には、原水中の嫌気性有機物の総量が大きいと判別して水中ポンプ131のオンデューティ比を大きくして上澄水の返送量を大きくし、かつ、曝気処理用ブロワ16のオンデューティ比を小さくする。これにより、嫌気性微生物による嫌気性廃水処理効率が上昇すると共に処理水の蒸散量は減少する。他方、メタンガス濃度センサの出力信号により検出された処理槽11内のメタンガス濃度が小さい場合には、原水中の嫌気性有機物の総量が小さいと判別して水中ポンプ131のオンデューティ比を小さくして上澄水の返送量を小さくし、かつ、曝気処理用ブロワ16のオンデューティ比を大きくする。これにより、嫌気性微生物による嫌気性廃水処理効率が低下すると共に処理水の蒸散量は増加する。
ステップ603では、水中ポンプ131をオフにし、かつ曝気処理用ブロワ16をオフもしくは断続(低作動)運転状態にする。この場合、処理水の蒸散は行われず、上澄水の水位の低下を抑止する。そして、ステップ604に図6のフローは終了する。
尚、図5もしくは図6におけるメタンガスもしくはその濃度を検出しているのは、嫌気性微生物による嫌気性廃水処理をモニタするためであり、この結果、嫌気性微生物による嫌気性廃水処理を主に制御していることになる。
図7では、ステップ701にて、水位検出センサ133の出力信号より分離槽13の上澄水の水位レベルが所定値Lを超えているか否かを判別する。この結果、上澄水の水位レベルが所定値Lを超えている場合に、ステップ702に進み、他方、上澄水の水位レベルが所定値L以下の場合には水中ポンプ131の空転防止のためにステップ703に進む。ステップ702では、溶存酸素量センサの出力信号により検出された処理槽11内の溶存酸素量に応じて水中ポンプ131のオンデューティ比及び曝気処理用ブロワ16のオンデューティ比を制御する。たとえば、溶存酸素量が小さい場合には、水中ポンプ131のオンデューティ比を大きくして上澄水の返送量を大きくし、かつ、曝気処理用ブロワ16のオンデューティ比を大きくする。これにより好気性微生物による好気性廃水処理効率が上昇すると共に処理水の蒸散量は増加する。他方、溶存酸素量が大きい場合には、水中ポンプ131のオンデューティ比を小さくして上澄水の返送量を小さくし、かつ、曝気処理用ブロワ16のオンデューティ比を小さくする。これにより嫌気性微生物による嫌気性廃水処理効率が上昇すると共に処理水の蒸散量は減少する。つまり、処理槽11内の溶存酸素量が所定値となるようにフィードバック制御し、これにより、好気性微生物による好気性廃水処理及び嫌気性微生物による嫌気性廃棄物処理を交互に行う。他方、ステップ703では、水中ポンプ131をオフにし、かつ曝気処理用ブロワ16をオフもしくは断続(低作動)運転状態にする。この場合、処理水の蒸散は行われず、上澄水の水位の低下を抑止する。そして、ステップ704に図7のフローは終了する。
図8は本発明に係る廃水処理装置の第2の実施の形態を示す図である。図8においては、図1の浄化槽1Aの代りに、浄化槽1Bを設けてある。
図1においては、浄化槽1Aの内部に返送管路132が設けてあるが、図8においては、浄化槽1Bの外部に返送管路132’を設けてある。この返送管路132’はシンク23が連結された合流桝25に連結されている。これにより、流入管路26の一部も返送管路として作用する。図8においても、図1の廃水処理装置と同様に、制御ユニット17が状態検出センサ112及び水位検出センサ133の各出力信号に応じて水中ポンプ131及び曝気槽92の曝気処理を制御する。従って、図8の本発明の第2の実施の形態においては、図1の本発明の第1の実施の形態の効果に加えて、原水に加えて処理水が合流桝25及び流入管路26を流れるので、流入管路26の内壁に固形の油脂分等が付着するのを防止できるという効果を奏する。
図9は本発明に係る廃水処理装置の第3の実施の形態を示す図である。図9においては、図8の浄化槽1Bの代りに、浄化槽1Cを設けてある。
図8においては、分離槽13には水中ポンプ131及び水位検出センサ132を設けてあるが、図9の分離槽13’には水中ポンプ及び水位検出センサを設けていない。その代り、図9の返送管路132’を分離槽13’の隔壁15の貫通孔より低い場所に連結して返送管路132’の途中に上澄水貯留槽18を設け、図8の水中ポンプ131及び水位検出センサ132に対応する水中ポンプ181及び水位検出センサ182を設けてある。尚、水中ポンプ181は外部ポンプとすることもできる。また、上澄水貯留槽18の底部には、気泡状の空気を放出する曝気機構183が設けられ、この曝気機構183はブロワ16から空気供給管16bを介して加圧空気が供給される。さらに、上澄水貯留槽18の上部には蓋184が設けられており、この場合、蓋184には図10に示すごとく開口184aが設けられている。図9においても、図1の廃水処理装置と同様に、制御ユニット17が状態検出センサ112及び水位検出センサ182の各出力信号に応じて水中ポンプ183及び曝気槽12、上澄水貯留槽18の曝気処理をする。尚、上澄水貯留槽18は縦断面図で示されている。
図9に示す本発明の第3の実施の形態においても、図8に示す本発明の第2の実施の形態と同様の効果が期待できる。
図8、図9に示す廃水処理装置はクローズド方式であるが、図11の(A)、(B)に示すごとく、余剰処理水(上澄水)を放流することも可能である。すなわち、図8の浄化槽1Bの返送管路132’(図11の(A))もしくは図9の上澄水貯留槽18の返送管路132’(図11の(B))に切替弁31を設けて放流管路32を設ける。放流管路32には殺菌槽33及び水質監視センサ34が設けられ、水質監視センサ34の出力信号はモデムを通じて監視センタに送られるようにする。
図11の(A)、(B)における切替弁31は制御ユニット17によって制御される。たとえば、図13のフローに示すごとく、ステップ1301にて、水位検出センサ133(もしくは182)の出力信号により分離槽13(もしくは上澄水貯留槽18)の上澄水の水位レベルが比較的大きい所定値L(>L)を超えているか否かを判別する。この結果、上澄水の水位レベルが所定値Lを超えている場合にステップ1302に進み、切替弁31を放流管路32側に制御して放流制御を行う。他方、上澄水の水位レベルが所定値L以下の場合にはステップ1303に進み、切替弁31を原水用の流入管路側に制御してクローズド制御を行う。そして、ステップ1304にて図13のフローは終了する。
図8、図9の廃水処理装置は、図13に示すごとく、公共下水道の集中処理を行うコミュニティプラントあるいは終末処理施設と呼ばれる大型廃水処理装置に適用することができる。すなわち、図8の浄化槽1Bの返送管路132’(図13の(A))もしくは図8の浄化槽1Cの返送管路132’(図13の(B))に切替弁を設けずに放流管路32を分流する。図11と同様に、放流管路32には殺菌槽33及び水質監視センサ34が設けられ、水質監視センサ34の出力信号はモデムを通じて監視センタ(図示せず)に送るようにする。
他方、浄化槽1B(1C)の流入側には地下式原水貯留槽41を設け、返送管路132’を流量調整弁42を介して地下式原水貯留槽41へ戻す。地下式原水貯留槽41は揚水ポンプ(図示せず)を内蔵しており、これにより、原水及び処理水を地下式原水貯留槽41から浄化槽1B(1C)へ流入させる。この場合、浄化槽1B(もしくは上澄水貯留槽18)は水中ポンプ131(181)は不要にすることができ、これにより、処理水は自重で自然に返送管路132’及び放流管路32に流れる。このとき、流量調整弁42は処理水が必要以上に地下式原水貯留槽41に流れ込まないようにする。言い換えると、地下
式原水貯留槽41への処理水の流量の最大値は流量調整弁42によって定められており、上澄水の流量がその最大値を超えようとした場合に、その上澄水は放流管路32に流れ、放流されることになる。
図13において、地下式原水貯留槽41は浄化槽1B(1C)より低所に設けられている。この場合、もし地下式原水貯留槽41が地上に設けられているとすれば、浄化槽1B(1C)はそれよりも高所に設けられていればよい。
図11の各廃水処理装置は、図14に示すごとく、複数の原水排出施設(一般家庭も含む)51a、51b、51c、51dが共同して浄化槽1B(1C)を利用する場合にも適用できる。通常、原水排出施設51a、51b、51c、51dから浄化槽1B(1C)までの原水管路52a、52b、52c、52dは長さ数km〜数10kmであり、原水管路52a、52b、52c、52dの内壁に汚泥、沈澱固形物等が堆積したり、あるいは付着する。このような汚泥、沈澱固形物を効率的に除去するために、返送管路132’を返送管路53a、53b、53c、53dとして原水管路52a、52b、52c、52dの複数の箇所で返送する。尚、原水管路52a、52b、52c、52dの流通促進のために中継ポンプ54が適宜設けられている。
詳しくは、図15の(A)に示すごとく、返送管路53a、53b、53c、53dは原水管路52a(52b、52c、52d)に組込まれている。返送管路53a(53b、53c、53d)には所定間隔で吐出部(開口)61が設けられている。
さらに、図15の(B)に示すごとく、吐出部61には自走吐出部62を設けることもできる。この自走吐出部62は、吐出部61に一端が固定されたホース62a及び吐出ノズル62bにより構成されている。この吐出ノズル62bは原水管路52aの上流方向に対して斜めに配置されており、これにより、自走吐出部62は原水管路52a内を返送管路53aに沿って自走できるようになっている。つまり、自走吐出部62は返送管路53aから吐出された上澄水の反動力によりホース62aの長さ分だけ移動し、その後、ホース62aの巻取力によって元の位置に戻る。従って、自走吐出部62は所定距離だけ進退自走する。尚、各吐出ノズル62bの開口の開閉を個別的に電気的に制御し、特定の吐出ノズルに集中させて処理水を集中返送することもできる。
上述の発明の実施の形態では、活性汚泥方法だけでなく、散水ろ床方法、固定ろ床方法、接触ろ過方法等の生活廃水及び産業廃水の廃水処理装置として用いることができる。また、上述の曝気処理において、空気ではなく、一酸化窒素(NO)や二酸化炭素(CO)等を曝気処理に用いても構わない。このようなガスによる曝気処理でも、水中の微生物の生理機能を制御して延命や摂食行動等の機能を高めることが可能である。
上述の第1の従来の廃水処理装置においては、処理水の生物化学的酸素要求量BODは単独浄化槽で20〜80mg/l、合併浄化槽で5〜20mg/lであるのに対し、上述の本発明の実施の形態では、生物化学的酸素要求量BODは、いずれの浄化槽でも7mg/l以下であった。従って、本発明においては、生物化学的酸素要求量(BOD)、化学的酸素要求量(COD)の高価な分析器を用いたメンテナンスは不要となる。また、処理槽11及び曝気槽12のいずれにおいても、除去すべき過剰沈澱汚泥、スカムの発生はなかった。
尚、上述の発明の実施の形態では、空気ではなく、一酸化窒素ガス(NO)や二酸化炭素ガス(CO)等を用いてもよい。このようなガスによる曝気処理でも、水中の微生物の生理機能を制御して延命や摂食行動等の機能を高めることが可能である。
本発明に係る廃水処理装置の第1の実施の形態を示す図である。 図1の曝気槽の蓋の平面図である。 図1の制御ユニットの動作を示すフローチャートである。 図1の制御ユニットの動作を示すフローチャートである。 図1の制御ユニットの動作を示すフローチャートである。 図1の制御ユニットの動作を示すフローチャートである。 図1の制御ユニットの動作を示すフローチャートである。 本発明に係る廃水処理装置の第2の実施の形態を示す図である。 本発明に係る廃水処理装置の第3の実施の形態を示す図である。 図9の上澄水貯留槽の蓋の平面図である。 図8、図9の廃水処理装置の適用例を示す図である。 図11の制御ユニットの動作を示すフローチャートである。 図11の廃水処理装置の変更例を示す図である。 図11の廃水処理装置の他の変更例を示す図である。 図14の原水排出施設の近傍の拡大図である。
符号の説明
1A、1B、1C:浄化槽
11:処理槽
12:曝気槽
13:分離槽
14、15:隔壁
16:曝気処理用ブロワ
17:制御ユニット
18:上澄水貯留槽
21:洗濯機
22:浴槽
23:シンク
24:トイレット
31:切替弁
32:放流管路
33:殺菌槽
34:水質監視センサ
41:地下式原水貯留槽
42:流量調整弁
51a、51b、51c、51d:原水排出施設
52a、52b、52c、52d:原水管路
53a、53b、53c、53d:返送管路
54:中継ポンプ
61:吐出部
62:自走吐出部
上述の課題を達成するために本発明に係る廃水処理装置は、流入された原水に対して微生物による第1の有機物分解処理を行う処理槽と、この処理槽と隔壁によって区分され、処理槽から流入された処理槽の処理水に対して曝気処理及び微生物による第2の有機物分解処理を行う曝気槽と、この曝気槽の処理水から汚泥、殿固形物及び浮上固形物(スカム)を除去した上澄水を曝気槽から処理槽へ返送する上澄水返送機構とを具備する。これにより、処理槽に返送された微生物はエネルギー源である活性汚泥つまり栄養分がない飢餓状態となり、微生物は原水の有機物に対して高い有機物分解処理能力を発揮する。また、余剰沈澱汚泥も発生しない。
分離槽13には、上澄水返送機構としての水中ポンプ131及び返送管路132が設けられている。この返送管路132は分離槽13から処理槽11へ通じている。また、水位検出センサ133が設けられている。尚、水中ポンプ131は外部ポンプでもよい。また、処理槽11の返送管路132の先端部には散水装置132aが設けられている。これにより、処理槽11の処理水の上部の浮上固形物(スカム)を散逸させることができる。尚、この返送管路132は管113の貫通孔と異なる隔壁14の貫通孔を通過している。
図11の(A)、(B)における切替弁31は制御ユニット17によって制御される。たとえば、図12のフローに示すごとく、ステップ1201にて、水位検出センサ133(もしくは182)の出力信号により分離槽13(もしくは上澄水貯留槽18)の上澄水の水位レベルが比較的大きい所定値L(>L)を超えているか否かを判別する。この結果、上澄水の水位レベルが所定値Lを超えている場合にステップ1202に進み、切替弁31を放流管路32側に制御して放流制御を行う。他方、上澄水の水位レベルが所定値L以下の場合にはステップ1203に進み、切替弁31を原水用の流入管路側に制御してクローズド制御を行う。そして、ステップ1204にて図12のフローは終了する。

Claims (25)

  1. 流入された原水に対して微生物による第1の有機物分解処理を行う処理槽(11)と、
    該処理槽と第1の隔壁(14)によって区分され、前記処理槽から流入された前記処理槽の処理水に対して曝気処理及び微生物による第2の有機物分解処理を行う曝気槽(12)と、
    該曝気槽の処理水から汚泥、洗澱固形物及び浮上固形物を除去した上澄水を前記曝気槽から前記処理槽へ返送する上澄水返送機構と
    を具備する廃水処理装置。
  2. 前記上澄水返送機構が前記上澄水を前記処理槽に散水するための散水装置(132a)を具備する請求項1に記載の廃水処理装置。
  3. 前記曝気槽の上部に開口(121a)を設けた請求項1に記載の廃水処理装置。
  4. 前記有機物分解処理、前記曝気処理及び前記上澄水返送処理は外部へ放流水を流出させないクローズド方式による請求項2に記載の廃水処理装置。
  5. 前記上澄水返送機構が、
    前記曝気槽内の上部に第2の隔壁(15)によって区画され、前記曝気槽の処理水から前記上澄水を分離する分離槽(13)と、
    該分離槽に設けられたポンプ(131)と、
    前記分離槽と前記処理槽との間に連結され、前記ポンプにより前記上澄水を前記分離槽から前記処理槽へ返送する返送管路(132、132’)と
    を具備する請求項1に記載の廃水処理装置。
  6. 前記返送管路(132)が前記曝気槽の内部及び前記処理槽の内部に配置された請求項5に記載の廃水処理装置。
  7. 前記返送管路(132’)が前記曝気槽及び前記処理槽の外部に配置された請求項5に記載の廃水処理装置。
  8. 前記上澄水返送機構が、
    前記曝気槽内の上部に第2の隔壁(15)によって区画され、前記曝気槽の処理水から前記上澄水を分離する分離槽(13’)と、
    前記分離槽と前記処理槽との間に連結され、前記上澄水を前記分離槽から前記処理槽へ返送する返送管路(132’)と
    を具備し、
    前記廃水処理装置が、さらに、
    前記返送管路の途中に上澄水貯留槽(18)を具備し、該上澄水貯留槽の上部に開口(184a)及びポンプ(181)を設けた
    請求項7に記載の廃水処理装置。
  9. さらに、前記返送管路に連結された外部放流のため放流管路(32)を具備する請求項
    7に記載の廃水処理装置。
  10. さらに、前記返送管路と前記放流管路との分岐点に切替弁(31)を設けた請求項9に記載の廃水処理装置。
  11. さらに、前記原水と共に前記返送管路からの上澄水を貯留して前記処理槽へ送り込む原水貯留槽(41)を具備する請求項7に記載の廃水処理装置。
  12. 前記原水貯留槽が前記処理槽及び前記曝気槽より低い場所に設けられ、前記原水貯留槽が揚水ポンプを具備する請求項11に記載の廃水処理装置。
  13. 前記原水を前記処理槽へ流入させる原水管路(52a、52b、52c、52d)に前記返送管路を組込むことにより前記原水に前記上澄水を返送させる請求項7に記載の廃水処理装置。
  14. 前記返送管路に前記上澄水を前記原水管路に吐出させるための吐出部(61)を設けた請求項13に記載の廃水処理装置。
  15. 前記吐出部にホース(62a)及び吐出ノズル(62b)を有する自走吐出部を設けた請求項14に記載の廃水処理装置。
  16. 前記処理槽の有機物分解処理状態を検出する状態検出センサ(112)と、
    該状態検出センサの出力信号に応じて前記上澄水返送機構及び前記曝気処理の曝気槽の曝気処理を制御する制御ユニット(17)と
    を具備する請求項1に記載の廃水処理装置。
  17. 前記状態検出センサが炭酸ガスセンサである請求項16に記載の廃水処理装置。
  18. 前記状態検出センサが炭酸ガス濃度センサである請求項16に記載の廃水処理装置。
  19. 前記状態検出センサがメタンガスセンサである請求項16に記載の廃水処理装置。
  20. 前記状態検出センサがメタンガス濃度センサである請求項16に記載の廃水処理装置。
  21. 前記状態検出センサが溶存酸素量センサである請求項16に記載の廃水処理装置。
  22. 前記分離槽に流入された上澄水の水位を検出する水位検出センサ(133)と、
    該水位検出センサの出力信号に応じて前記上澄水返送機構及び前記曝気槽の曝気処理を制御する制御ユニット(17)と
    を具備する請求項5に記載の廃水処理装置。
  23. 前記上澄水貯留槽に流入された上澄水の水位を検出する水位検出センサ(182)と、
    該水位検出センサの出力信号に応じて前記上澄水返送機構及び前記曝気槽及び前記上澄水貯留槽の曝気処理を制御する制御ユニット(17)と
    を具備する請求項8に記載の廃水処理装置。
  24. 前記上澄水貯留槽に流入された上澄水の水位を検出する水位検出センサ(182)と、
    該水位検出センサの出力信号に応じて前記切替弁を制御する制御ユニット(17)と
    を具備する請求項10に記載の廃水処理装置。
  25. 原水を処理槽(11)に流入させて微生物による第1の有機物分解処理を行う工程と、
    該有機物分解処理された処理水を曝気槽(12)に流入させて曝気処理及び微生物による第2の有機物分解処理を行う工程と、
    曝気処理された処理水から汚泥、洗澱固形物及び浮上固形物を除去した上澄水を前記処理槽に返送する工程とを具備する廃水処理方法。
JP2007542332A 2005-10-29 2006-10-19 廃水処理装置及び廃水処理方法 Pending JPWO2007049495A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005315516 2005-10-29
JP2005315516 2005-10-29
PCT/JP2006/320816 WO2007049495A1 (ja) 2005-10-29 2006-10-19 廃水処理装置及び廃水処理方法

Publications (1)

Publication Number Publication Date
JPWO2007049495A1 true JPWO2007049495A1 (ja) 2009-04-30

Family

ID=37967607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007542332A Pending JPWO2007049495A1 (ja) 2005-10-29 2006-10-19 廃水処理装置及び廃水処理方法

Country Status (5)

Country Link
JP (1) JPWO2007049495A1 (ja)
KR (1) KR20080072685A (ja)
CN (1) CN101309869A (ja)
TW (1) TW200728213A (ja)
WO (1) WO2007049495A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5248979B2 (ja) * 2008-10-27 2013-07-31 株式会社ダイセル 人工透析排水の処理装置
EP3181905B1 (en) * 2015-12-16 2020-02-05 Xylem Europe GmbH A pump station arrangement and method for removing harmful fluids from wastewater
WO2017155124A1 (ja) 2016-03-11 2017-09-14 株式会社ほたる 水処理装置管理システムおよび家庭用水処理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386099U (ja) * 1989-12-20 1991-08-30
JP2724963B2 (ja) * 1994-03-10 1998-03-09 大栄産業株式会社 浄化槽
JPH1034177A (ja) * 1996-07-29 1998-02-10 Matsushita Electric Works Ltd 浄化槽

Also Published As

Publication number Publication date
TW200728213A (en) 2007-08-01
WO2007049495A1 (ja) 2007-05-03
KR20080072685A (ko) 2008-08-06
CN101309869A (zh) 2008-11-19

Similar Documents

Publication Publication Date Title
US10053384B2 (en) System and process for removing nitrogen compounds and odors from wastewater and wastewater treatment system
CN103449658B (zh) 一种污水处理方法
CN202898159U (zh) 一种污水处理装置
US7615156B2 (en) Device for in situ bioremediation of liquid waste
US20090065412A1 (en) Apparatus for waste water treatment
US4122013A (en) Sewage treatment system
KR20080101035A (ko) 오·폐수 고도 처리장치 및 처리방법
CN110183052A (zh) 一种粪污废水处理系统及方法
CN107827324B (zh) 一种城镇污水综合处理系统
JPWO2007049495A1 (ja) 廃水処理装置及び廃水処理方法
JP2006289153A (ja) 汚水浄化方法及び装置
CN111792798A (zh) 农村生活污水复合式生态净化系统
CN116477792A (zh) 一种一体化污水智能处理系统及工艺
KR100460942B1 (ko) 소화조와 연속 회분식 반응조를 이용한 하수처리방법 및장치
JP3640559B2 (ja) 生ゴミを含む合併汚水浄化槽
JP4444430B2 (ja) 単独処理浄化槽の合併処理化方法
KR200410464Y1 (ko) 오수 처리시스템
KR100249465B1 (ko) 오수, 분뇨 합병정화조의 싸이폰식 여과휠타조
CN116750930B (zh) 一种污水处理系统的处理方法
JP3239990B2 (ja) 有機排水浄化システム
JP2006289284A (ja) 合併浄化装置
Gogina et al. Modern technologies of wastewater treatment for low-capacity facilities
KR200361442Y1 (ko) 소화조와 연속 회분식 반응조를 이용한 하수처리장치
KR20020079620A (ko) 미생물활성기를 이용한 분뇨 및 폐수처리방법과 그 장치
CN113104955A (zh) 上流式厌氧消化-sbr污水处理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091014

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110301