JPWO2006059622A1 - Magnetic convection heat circulation pump - Google Patents

Magnetic convection heat circulation pump Download PDF

Info

Publication number
JPWO2006059622A1
JPWO2006059622A1 JP2006547961A JP2006547961A JPWO2006059622A1 JP WO2006059622 A1 JPWO2006059622 A1 JP WO2006059622A1 JP 2006547961 A JP2006547961 A JP 2006547961A JP 2006547961 A JP2006547961 A JP 2006547961A JP WO2006059622 A1 JPWO2006059622 A1 JP WO2006059622A1
Authority
JP
Japan
Prior art keywords
magnetic
heat
circulation
flow path
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006547961A
Other languages
Japanese (ja)
Other versions
JP4507207B2 (en
Inventor
中須賀 真一
真一 中須賀
佐原 宏典
宏典 佐原
謙治 東
謙治 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Da Vinci Co Ltd
Original Assignee
University of Tokyo NUC
Da Vinci Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Da Vinci Co Ltd filed Critical University of Tokyo NUC
Publication of JPWO2006059622A1 publication Critical patent/JPWO2006059622A1/en
Application granted granted Critical
Publication of JP4507207B2 publication Critical patent/JP4507207B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F23/00Features relating to the use of intermediate heat-exchange materials, e.g. selection of compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans

Abstract

A magnetic convection heat circulation pump, wherein magnets are disposed inside a magnetic field flow passage for passing a magnetic fluid therein or on a part of the inner wall surface of a circulation flow passage in a magnetic pump thermally joined to a heat receiving part. The magnetic fluid is driven since a magnetic force is directly applied to the magnetic fluid and a large temperature gradient is produced between the heat receiving part and the magnetic pump due to a difference between a heat quantity transferred from the heat receiving part indirectly to the magnetic pump and the heat quantity of the magnetic fluid led into the magnetic pump.

Description

本発明は、熱エネルギーを移送する素子に関し、特に、磁場の磁束密度と磁性体の飽和磁化の温度特性を利用した磁性対流熱循環ポンプに関する。 The present invention relates to an element that transfers thermal energy, and more particularly to a magnetic convection heat circulation pump that utilizes the temperature characteristics of the magnetic flux density of a magnetic field and the saturation magnetization of a magnetic material.

熱を移送する素子の中で、磁場における磁性流体の飽和磁化の温度依存性に起因する磁性対流を利用した熱の移送素子は古くより考案されてきたが、磁性体の微粉末化や磁性体をコートする界面活性剤の塗布精度などに起因する磁性体の分散媒中における不均一な分布や大きな残留磁化が磁性対流を阻害し製品化を妨げてきた。 Among heat transfer elements, heat transfer elements that utilize magnetic convection due to the temperature dependence of the saturation magnetization of a magnetic fluid in a magnetic field have been devised for a long time. The non-uniform distribution of the magnetic substance in the dispersion medium and the large remanent magnetization caused by the coating accuracy of the surface-active agent that has been used to prevent magnetic convection have hindered commercialization.

近年では、上述された問題に対する解決策も試みられ、例えば、特開平10−231814号公報や特開平3−102804号公報に開示されているように、ガス等の常磁性体や残留磁化の非常に小さい磁性流体などの移送手段として、磁場近辺にヒーター等を配置して飽和磁化の温度依存性を利用した装置が開発されている。 In recent years, solutions to the above-mentioned problems have been attempted, and, for example, as disclosed in JP-A-10-231814 and JP-A-3-102804, paramagnetic substances such as gas and remanent magnetization are extremely As a means for transporting a very small magnetic fluid, a device has been developed in which a heater or the like is arranged in the vicinity of a magnetic field to utilize the temperature dependence of saturation magnetization.

しかし、ヒーターなどの熱入力部を構成した場合は移送する素材そのものの温度が上昇してしまう為に使用用途が限られる上に、放熱などを目的とした熱移送では逆に大きな損失を生じることになり、使用に適さないなどの問題があった。 However, when a heat input part such as a heater is configured, the temperature of the material to be transferred rises, so the usage is limited, and conversely a large loss occurs in heat transfer for the purpose of heat dissipation. There was a problem that it was not suitable for use.

更には、電磁石を所定間隔に並べて順次磁場を移動させる方法なども開示されているが、電磁石の制御や電気配線などが必要となり、装置は複雑で高価な物となる。 Further, a method of arranging electromagnets at predetermined intervals and sequentially moving a magnetic field has been disclosed, but control of the electromagnets and electric wiring are required, and the apparatus becomes complicated and expensive.

そこで本発明は、電気的な駆動源を使わずに、磁場の磁束密度と磁性体の飽和磁化の温度特性を利用して、磁場中における磁性流体の温度勾配を大きく取り、飽和磁化値の差を生じさせることにより効率よく動力に変換できる磁性対流熱循環ポンプを提供することを目的とする。 Therefore, the present invention takes advantage of the magnetic flux density of the magnetic field and the temperature characteristic of the saturation magnetization of the magnetic material without using an electric drive source to obtain a large temperature gradient of the magnetic fluid in the magnetic field to obtain a difference in saturation magnetization value. It is an object of the present invention to provide a magnetic convection heat circulation pump that can efficiently convert power by generating heat.

前記目的を達成する為に、本発明は、受熱部を通過する循環流路内又は循環流路の一部を形成するように磁石を配置することで、磁力が直接的に作用し、前記磁石が作り出す磁場における磁性流体の飽和磁化の温度依存性により、受熱部からの熱入力による温度勾配が継続的な磁性流体の磁性対流を引き起こすことを利用した磁性対流熱循環ポンプを提供する。 In order to achieve the above-mentioned object, according to the present invention, by arranging the magnet so as to form a part of the circulation flow passage that passes through the heat receiving portion, the magnetic force directly acts, and the magnet (EN) A magnetic convection heat circulation pump that utilizes the fact that the temperature dependence of the saturation magnetization of a magnetic fluid in the magnetic field produced by the magnetic field causes a continuous magnetic convection of the magnetic fluid due to the heat input from the heat receiving part.

本発明の磁性対流熱循環ポンプは受熱部の熱入力が作動源となり、磁性流体が磁場により磁性対流を起して受熱部と放熱部とを循環する構成で、構造が非常に簡単であり、しかも受熱部と放熱部の温度差がある限り動作は継続し、更に温度差が広がれば循環速度が速くなり多くの熱量を容易に運ぶことができる等の利点がある。 In the magnetic convection heat circulation pump of the present invention, the heat input of the heat receiving portion serves as an operation source, and the magnetic fluid causes magnetic convection by the magnetic field to circulate between the heat receiving portion and the heat radiating portion, and has a very simple structure. Moreover, the operation is continued as long as there is a temperature difference between the heat receiving portion and the heat radiating portion, and if the temperature difference is further widened, the circulation speed is increased and a large amount of heat can be easily carried.

循環流路内に磁石を配置した場合の磁性対流熱循環ポンプを示す概要図である。It is a schematic diagram showing a magnetic convection heat circulation pump when a magnet is arranged in the circulation flow path. 磁石の配置を例示した概要図である。It is a schematic diagram which illustrated arrangement|positioning of a magnet. 循環流路内に磁石を配置した場合の磁性対流熱循環ポンプを示す概要図である。It is a schematic diagram showing a magnetic convection heat circulation pump when a magnet is arranged in the circulation flow path. 磁石をハの字形に配置した場合の概要図である。It is a schematic diagram when magnets are arranged in a V shape. 磁石と磁性体とをコの字形に配置した場合の概要図である。It is a schematic diagram at the time of arranging a magnet and a magnetic body in a U shape. 循環流路内に磁石を配置した場合の磁性対流熱循環ポンプを示す概要図である。It is a schematic diagram showing a magnetic convection heat circulation pump when a magnet is arranged in the circulation flow path. 循環流路内に磁石を配置した場合の磁性対流熱循環ポンプを示す概要図である。It is a schematic diagram showing a magnetic convection heat circulation pump when a magnet is arranged in the circulation flow path. 循環流路の内壁面の一部に磁石を配置した場合の磁性対流熱循環ポンプを示す概要図である。It is a schematic diagram which shows a magnetic convection heat circulation pump when a magnet is arrange|positioned at a part of inner wall surface of a circulation flow path. 循環流路の内壁面の一部に磁石を配置した場合の磁性対流熱循環ポンプを示す概要図である。It is a schematic diagram which shows a magnetic convection heat circulation pump when a magnet is arrange|positioned at a part of inner wall surface of a circulation flow path. ポンプ部の肉厚を薄くした磁性対流熱循環ポンプを一部透視した斜視図である。It is the perspective view which partially penetrated the magnetic convection heat circulation pump which thinned the thickness of the pump part. ヨークに固定した場合の磁石の配置を示す概要図である。It is a schematic diagram showing arrangement of a magnet when being fixed to a yoke.

発明の実施の形態Embodiment of the invention

本発明では、磁性流体の磁場流路内又は流路の内壁面の一部にニッケルメッキ等で表面処理をした磁石を配置し、更に前記磁石若しくは循環流路の内壁面の一部又は全部を前記磁性流体の磁性体をコーティングしている界面活性剤のイオン特性と同種の界面活性剤でコーティングすることにより、前記磁性流体に直接的に磁場が作用する上に、流路抵抗をも軽減する構成とした。 In the present invention, a magnet whose surface is treated by nickel plating or the like is arranged in a part of an inner wall surface of the magnetic field of the magnetic fluid or the inner wall surface of the passage, and further, a part or all of the inner wall surface of the magnet or the circulation passage is By coating with a surfactant of the same type as the ionic characteristics of the surfactant coating the magnetic substance of the magnetic fluid, the magnetic field directly acts on the magnetic fluid and the channel resistance is also reduced. It was composed.

また、磁性体には飽和磁化の温度依存性が高いマンガンと亜鉛と酸化鉄との合金を採用し、その合金の平均粒径を約10nm、好ましくは6nm、更に好ましくは1nmとすることにより、残留磁化を極小に抑えた効率の良い磁性対流熱循環ポンプを実現した。 Further, by adopting an alloy of manganese, zinc and iron oxide, which has a high temperature dependence of saturation magnetization, as the magnetic material, and making the average particle size of the alloy about 10 nm, preferably 6 nm, more preferably 1 nm, We have realized an efficient magnetic convection heat circulation pump with minimal residual magnetization.

更には、受熱部とマグネチックポンプは熱伝導率の異なる素材で形成し、相互に磁場流路を共有する構成を採用した。 Further, the heat receiving part and the magnetic pump are made of materials having different thermal conductivities, and the magnetic field flow paths are shared by each other.

本発明による磁性対流熱循環ポンプの1実施例を、図1から図6を参照して以下に説明する。 One embodiment of the magnetic convection heat circulation pump according to the present invention will be described below with reference to FIGS. 1 to 6.

図1では、受熱部(1)と放熱部(2)とを循環する循環流路(3)が配置されており、循環流路(3)内に伸長方向と平行に磁石N極(4)とS極(5)を配置した例を示している。循環流路(3)には磁性流体が充填されており、受熱部(1)に熱入力があると、受熱部(1)の磁性流体の温度が上昇し、受熱部(1)と放熱部(2)に保持された磁性流体との間に温度勾配が生じ、磁化力の低下した受熱部(1)側の磁性流体が放熱部(2)側の磁性流体に押し出されることにより、磁性対流が生じて熱を伝達する例を示した。 In FIG. 1, a circulation channel (3) that circulates the heat receiving section (1) and the heat radiating section (2) is arranged, and the magnet N pole (4) is arranged in the circulation channel (3) in parallel with the extension direction. And an S pole (5) are arranged. The circulation flow path (3) is filled with magnetic fluid, and when heat is input to the heat receiving part (1), the temperature of the magnetic fluid in the heat receiving part (1) rises, and the heat receiving part (1) and the heat radiating part A temperature gradient is generated between the magnetic fluid held in (2) and the magnetic fluid on the heat receiving portion (1) side having a reduced magnetizing force is pushed out to the magnetic fluid on the heat radiating portion (2) side, thereby causing magnetic convection. An example has been shown in which heat is generated by heat transfer.

このような循環を生じる構成では、磁石の磁力が直接的に磁性流体に伝わるので効率が良い上に、電子機器などの放熱に利用しても漏れ磁束による影響が著しく軽減される。 In such a configuration that causes the circulation, the magnetic force of the magnet is directly transmitted to the magnetic fluid, so that the efficiency is high and the influence of the leakage magnetic flux is remarkably reduced even when the magnetic force is used for heat dissipation of an electronic device or the like.

本発明の磁性流体は、磁性を有する粒体を磁性体として、適当な分散媒に分散したものであれば用いることができる。磁性を有する粒体は、好ましくは30nm未満、更に好ましくは1nmから10nmの平均粒径を有する粉体として用いられる。 The magnetic fluid of the present invention can be used as long as it has magnetic particles as a magnetic material and is dispersed in an appropriate dispersion medium. The magnetic particles are preferably used as a powder having an average particle size of less than 30 nm, more preferably 1 nm to 10 nm.

本発明に用いる磁性体は温度依存性の高い合金が好ましく、二価遷移金属と酸化鉄の合金が特に好ましい。 The magnetic material used in the present invention is preferably an alloy having high temperature dependence, and particularly preferably an alloy of a divalent transition metal and iron oxide.

また、磁性体は界面活性剤で被覆(コーティング)されていることが好ましい。被覆に用いる界面活性剤は、陽イオン界面活性剤、陰イオン界面活性剤といったイオン特性を有する界面活性剤を用いることが好ましい。これら界面活性剤の反発力により、磁性体は分散媒中に均一に分布する構成とした。その結果、残留磁化を小さくして大幅に流路抵抗を軽減することができる。 Further, the magnetic substance is preferably coated with a surfactant. As the surfactant used for coating, it is preferable to use a surfactant having ionic characteristics such as a cationic surfactant and an anionic surfactant. Due to the repulsive force of these surfactants, the magnetic substance is uniformly distributed in the dispersion medium. As a result, the residual magnetization can be reduced and the flow path resistance can be significantly reduced.

更に好ましくは、循環流路又は前記循環流路に配置される磁石の磁性流体と接する面の一部若しくは全部を、磁性体をコーティングしている界面活性剤のイオン特性と同種の界面活性剤でコーティングすることにより、残留磁化の影響を更に小さくし、更に流路抵抗を軽減することが可能となる。 More preferably, a part or all of the surface of the circulation channel or the magnet arranged in the circulation channel, which is in contact with the magnetic fluid, is made of a surfactant having the same ionic characteristics as that of the surfactant coating the magnetic material. By coating, the influence of remanent magnetization can be further reduced, and the flow path resistance can be further reduced.

更に、温度依存性の高い合金を磁性体として採用したことにより、飽和磁化値の温度による大きな変化が磁場において大きな動力となり、磁性対流のポンプとしての効率を大幅に向上せしめた。本実施例ではマンガンと亜鉛と酸化鉄との合金(1/2Zn1/2MnFe)を用いたが、本発明で使用できる磁性体はこれに限定されるものではなく、磁性体の飽和磁化の温度依存性が1/2Zn1/2MnFeと同等か若しくは強磁性を示し、より大きな温度依存性を有する二価遷移金属と酸化鉄の合金等が好ましい。Furthermore, by adopting an alloy with a high temperature dependence as the magnetic material, a large change in the saturation magnetization value with temperature becomes a large force in the magnetic field, and the efficiency as a magnetic convection pump is greatly improved. Although an alloy of manganese, zinc, and iron oxide (1/2Zn1/2MnFe 2 O 4 ) was used in this example, the magnetic material usable in the present invention is not limited to this, and the saturation magnetization of the magnetic material is used. It is preferable to use an alloy of a divalent transition metal and iron oxide, which has the same temperature dependency as 1/2Zn1/2MnFe 2 O 4 or exhibits ferromagnetism and has a larger temperature dependency.

また、本発明の磁性流体として磁性イオン液体を用いることも出来る。磁性イオン液体は典型的な磁性陰イオンの塩化鉄酸イオンと陽イオンの1ブチル3メチルイミダゾリウムなどを組み合わせることが好ましい。 A magnetic ionic liquid can also be used as the magnetic fluid of the present invention. The magnetic ionic liquid is preferably a combination of a typical magnetic anion such as ferric chloride ion and a cation such as 1-butyl-3-methylimidazolium.

図2から図4は、実施例1〜3の磁石の配置について示した。図2は、受熱部側に磁力の強い磁石(4)(5)を配置し、放熱側には磁力の弱い磁石2(4b)(5b)を配置して磁場の勾配をつけた例を示した。図3では、循環流路内に磁石が対峙する形で配置した例を示した。図4では、更に循環流路(3)内の磁石が受熱部(1)側で狭くなるようにハの字型に配置した例を示した。このようにして磁場の強いところを受熱部側に作ることにより、温度が低く磁化力の強い磁性体が磁場の強いところに移動しやすい構成とした。 2 to 4 show the arrangement of the magnets of Examples 1 to 3. FIG. 2 shows an example in which magnets (4) and (5) having a strong magnetic force are arranged on the heat receiving part side and magnets 2 (4b) and (5b) having a weak magnetic force are arranged on the heat radiating side to give a gradient of the magnetic field. It was In FIG. 3, an example is shown in which the magnets are arranged so as to face each other in the circulation channel. FIG. 4 shows an example in which the magnets in the circulation channel (3) are arranged in a V shape so that the magnets are narrower on the heat receiving portion (1) side. In this way, the magnetic field having a strong magnetic field is formed on the heat receiving portion side, so that the magnetic body having a low temperature and a strong magnetizing force is easily moved to the strong magnetic field.

図5では、強磁性体(10)が、例えば鉄などをコの字型に成型して、対峙する面に磁石を配置して磁気回路を構成した磁石の例を示した。この構成では漏れ磁束が非常に小さく、対峙する磁石N極(4)と磁石S極(5)の間の磁力が強くなる。 FIG. 5 shows an example of the ferromagnetic body (10) in which, for example, iron or the like is molded into a U-shape and the magnets are arranged on the facing surfaces to form a magnetic circuit. In this structure, the leakage magnetic flux is very small, and the magnetic force between the magnet N pole (4) and the magnet S pole (5) facing each other becomes strong.

更に、図6では、複数の循環路を構成して、図1に示した構成よりも少ない磁性流体の量で効率よく循環する磁性熱ポンプの構成を示した。図6によれば、磁場流路(6)は第1流路(7)の循環流路内の受熱部(1)に配置された磁石(4)(5)の磁力線に沿うように形成されているが、第2流路(8)、第3流路(9)の経路内に配置してもよく、また、磁石(4)(5)の両側の磁束に沿うように磁場流路(6)を形成しても良い。 Further, FIG. 6 shows the configuration of a magnetic heat pump that has a plurality of circulation paths and efficiently circulates with a smaller amount of magnetic fluid than the configuration shown in FIG. According to FIG. 6, the magnetic field flow path (6) is formed along the magnetic field lines of the magnets (4) (5) arranged in the heat receiving part (1) in the circulation flow path of the first flow path (7). However, they may be arranged in the paths of the second flow path (8) and the third flow path (9), and the magnetic field flow path (that is along the magnetic flux on both sides of the magnets (4) and (5) ( 6) may be formed.

実施例2は、図7を参照して説明する。受熱部(1)と放熱部(2)は、循環流路(3)で接続された構成を採用した。受熱部(1)と放熱部(2)は、循環流路(3)の構成材をフレキシブルパイプや樹脂パイプなど柔軟性に富んだもので構成すると、直線的な配置に限られず任意の位置に配置することが可能となる。 Example 2 will be described with reference to FIG. 7. The heat receiving part (1) and the heat radiating part (2) are connected by a circulation flow path (3). When the heat receiving part (1) and the heat radiating part (2) are made of flexible material such as flexible pipe or resin pipe as the constituent material of the circulation flow path (3), they are not limited to the linear arrangement but can be arranged at arbitrary positions. It becomes possible to arrange.

実施例3は、図8を参照して説明する。磁性対流熱循環ポンプは、受熱部(1)と放熱部(2)を接続する配管(12)内にリング状の磁石(4a)(5a)を配置した構成とした。このような構成を採用すれば、受熱部(1)放熱部(2)が一つの共用部品で済むほかに、接合部(11)が磁力による接合で液漏れすることなく簡単に脱着することが実現でき、磁性流体の充填等においても簡便である。 The third embodiment will be described with reference to FIG. The magnetic convection heat circulation pump has a configuration in which ring-shaped magnets (4a) and (5a) are arranged in a pipe (12) connecting the heat receiving part (1) and the heat radiating part (2). If such a configuration is adopted, not only the heat receiving part (1) and the heat radiating part (2) need to be one common part, but also the joint part (11) can be easily attached/detached without liquid leakage due to the magnetic force. It can be realized and it is easy to fill the magnetic fluid.

上述された各実施例において配置される磁石の固定方法は特に限定されるものではなく、ガイド溝などへの嵌め合わせにより移動可能に固定する方法や、接着などにより固着して固定する方法等であっても良い。 The method of fixing the magnets arranged in each of the above-described embodiments is not particularly limited, and may be a method of movably fixing by fitting into a guide groove or the like, a method of fixing by fixing by adhesion or the like. It may be.

同様に受熱部(1)や放熱部(2)の構成材は、銅やアルミニウム、グラファイト等の熱伝導率の高い素材を使用することが好ましく、更に透磁率の低い素材であることがより好ましい。 Similarly, the heat receiving part (1) and the heat radiating part (2) are preferably made of a material having a high thermal conductivity such as copper, aluminum or graphite, and more preferably a material having a low magnetic permeability. ..

実施例4は、図9〜11を参照して以下に説明する。なお、本実施例では、磁場流路(6)と磁石(13)とで構成された部分をマグネチックポンプ(14)と呼んでいる。その実施例として図9では、磁性流体の逆流を防ぐ為に受熱部(1)側の磁場流路(6)の端部の幅を段階的に狭くなるように構成し、磁場流路(6)を共有するように異なる熱伝導率を有する素材で構成された受熱部(1)とマグネチックポンプ(14)とが熱的に接続された磁性対流熱循環ポンプを示した。そして、その磁場流路(6)内には、磁石(13)が設置されて一体に形成されている。 Example 4 will be described below with reference to FIGS. In this embodiment, the portion constituted by the magnetic field flow path (6) and the magnet (13) is called a magnetic pump (14). As an example thereof, in FIG. 9, the width of the end portion of the magnetic field flow path (6) on the heat receiving portion (1) side is gradually reduced in order to prevent backflow of the magnetic fluid. The magnetic convection heat circulation pump in which the heat receiving portion (1) and the magnetic pump (14), which are made of materials having different thermal conductivities so as to share the same), are thermally connected is shown. A magnet (13) is installed and integrally formed in the magnetic field flow path (6).

また、受熱部(1)の磁場流路(6)と循環流路(3)はフッ素系の樹脂、例えばPFAなどで構成された接続用循環流路(3)を介して放熱部(2)と接続されており、受熱部(1)に熱入力があると、磁場流路(6)の一部は直接的に熱入力される。しかしながら、マグネチックポンプ(14)には熱は間接的に伝わる上に、受熱部と比較して熱伝導率が小さな素材で構成されているため、受熱部(1)と比較して伝わる熱量は小さく、その結果、磁場流路(6)内に大きな温度勾配が生じて、温度の高くなり飽和磁化値が低くなった磁性流体が温度の低い飽和磁化値の大きな磁性流体に押しやられることにより循環が開始される。例えば、このような循環を引き起こすためには、アルミニウムと樹脂素材のような熱伝導率の差があればよい。そして、磁性流体の循環が始まると、生じた圧力により、マグネチックポンプ(14)内に熱入力されていない磁性流体が放熱部(2)側より流れ込むため、更に温度差が大きくなり、この結果、循環スピードが速くなり、より多くの熱を移送することができる。 Further, the magnetic field flow path (6) and the circulation flow path (3) of the heat receiving section (1) are radiated through the connection circulation flow path (3) made of a fluorine resin such as PFA. When there is heat input to the heat receiving part (1), part of the magnetic field flow path (6) is directly input with heat. However, since the heat is indirectly transmitted to the magnetic pump (14) and is made of a material whose thermal conductivity is smaller than that of the heat receiving portion, the amount of heat transmitted compared to the heat receiving portion (1) is It is small, and as a result, a large temperature gradient is generated in the magnetic field flow path (6), and the magnetic fluid having a high temperature and a low saturation magnetization value is urged by the magnetic fluid having a low saturation magnetization value to circulate. Is started. For example, in order to cause such circulation, it suffices that there is a difference in thermal conductivity between aluminum and a resin material. Then, when the circulation of the magnetic fluid starts, the generated pressure causes the magnetic fluid that has not been heat input into the magnetic pump (14) to flow from the heat radiating portion (2) side, resulting in a larger temperature difference. , The circulation speed becomes faster, and more heat can be transferred.

本実施例では磁石(13)の着磁方向は特に示していないが、幅方向でも長手方向でも何れでも良い。例えば、長手方向に着磁した磁石を使用した場合の温度差の生じる場所は、熱入力が大きいときにはマグネチックポンプ(14)の放熱部(2)からの磁場の強いところへ移動し、熱入力が小さいときには磁場の弱い磁石(13)中央部近傍へ移動することから、適宜用途に合った磁石(13)を採用しても発熱体の温度を一定に保つような構成を実現できる。 In this embodiment, the magnetizing direction of the magnet (13) is not particularly shown, but it may be either the width direction or the longitudinal direction. For example, where a temperature difference occurs when a magnet magnetized in the longitudinal direction is used, when the heat input is large, it moves to a place where the magnetic field from the heat dissipation part (2) of the magnetic pump (14) is strong and the heat input When the value is small, the magnet moves to the vicinity of the central portion of the magnet (13) having a weak magnetic field. Therefore, even if the magnet (13) suitable for the application is adopted, it is possible to realize a configuration in which the temperature of the heating element is kept constant.

また、図示しないが、流路のせん断応力の軽減や磁性流体の凝集を防ぐために、循環流路の磁性流体が接する面の一部若しくは全部は、例えば旭硝子社製の撥油性と撥水性を有する製品名サイトップのような撥油性を有するコーティング材でコートするか、若しくは磁性流体のイオン特性と同種の界面活性剤、すなわち、磁性流体がカチオン系の界面活性剤でコートされている場合は、これと同じカチオン系の界面活性剤でコートするのが好ましい。 Although not shown, part or all of the surface of the circulation channel in contact with the magnetic fluid has, for example, oil repellency and water repellency manufactured by Asahi Glass Co., Ltd. in order to reduce shear stress in the channel and prevent aggregation of the magnetic fluid. Product name Cytop coated with an oil-repellent coating material, or a surfactant of the same type as the ionic properties of the magnetic fluid, that is, if the magnetic fluid is coated with a cationic surfactant, It is preferable to coat with the same cationic surfactant.

本実施例では、磁場流路(6)を受熱部(1)とマグネチックポンプ(14)とで共有する例を示したが、受熱部(1)とマグネチックポンプ(14)を熱伝導率の良い金属などで熱的に接続しても良く、その場合は磁場流路(6)を共有しなくとも良い。 In the present embodiment, an example in which the magnetic field flow path (6) is shared by the heat receiving part (1) and the magnetic pump (14) is shown, but the heat receiving part (1) and the magnetic pump (14) have thermal conductivity. It may be thermally connected with a good metal or the like, and in that case, the magnetic field flow path (6) may not be shared.

更に、図10では、受熱部(1)とマグネチックポンプ(14)とが同じ熱伝導率を有する素材で構成された場合の構成を示した。受熱部(1)からの熱入力に対して、マグネチックポンプ(14)を形成している素材の厚みを受熱部(1)よりも薄くすることにより、熱伝達率が小さくなり、熱伝導率の異なる素材を採用した場合と同様の効果を得ることができる。 Further, FIG. 10 shows a configuration in which the heat receiving portion (1) and the magnetic pump (14) are made of materials having the same thermal conductivity. By making the thickness of the material forming the magnetic pump (14) thinner than that of the heat receiving part (1) with respect to the heat input from the heat receiving part (1), the heat transfer coefficient becomes small and the heat conductivity becomes high. It is possible to obtain the same effect as when different materials are used.

また、図11では、磁気回路を構成した1例を示した。磁石(13)はN極とS極が対峙するように配置され、ヨーク(15)により固定されている。このように構成すると非常に強い磁場を得ることができるのみならず、磁場流路(6)はN極とS極が対峙する面の間に位置するようになるため、流体の流動を妨げる障害が無くなり、ポンプの性能が向上する。更には、マグネチックヒートポンプからの漏れ磁束を著しく軽減することが可能となる。 Further, FIG. 11 shows an example in which a magnetic circuit is configured. The magnet (13) is arranged so that the N pole and the S pole face each other, and is fixed by the yoke (15). With this structure, not only a very strong magnetic field can be obtained, but also the magnetic field flow path (6) is located between the surfaces where the N pole and the S pole face each other, which is an obstacle to the fluid flow. Is eliminated and the pump performance is improved. Furthermore, it becomes possible to remarkably reduce the leakage magnetic flux from the magnetic heat pump.

本発明によれば、本発明のマグネチックヒートポンプは単位面積あたりの熱移送能力が大きく、また、受熱部と放熱部をフレキシブルな樹脂パイプで接続することにより自由な配置が可能であり、更にはポンプ部の構成を非常に小さくすることができる。このため、電子機器の小型化が進み、電子部品の消費電力密度が高くなることから、狭い空間から熱をなるべく外気に触れるところに移送して放熱する必要性があるCPUなどの電子部品、レーザーダイオードなどの光学素子の熱移送及び放熱用途に利用できる。 According to the present invention, the magnetic heat pump of the present invention has a large heat transfer capacity per unit area, and can be freely arranged by connecting the heat receiving portion and the heat radiating portion with a flexible resin pipe. The configuration of the pump unit can be made very small. For this reason, electronic devices are becoming smaller, and the power consumption density of electronic components is increasing. Therefore, it is necessary to transfer heat from a narrow space to a place in contact with the outside air as much as possible, and to radiate heat. It can be used for heat transfer and heat dissipation of optical elements such as diodes.

また、本発明によれば、本発明のマグネチックヒートポンプは電気を使用しないため、無人の施設などの加熱防止対策や、寒冷地における太陽熱の室内への導入用途、排熱を再利用する際の熱移送など多様な用途へ適用できる。 Further, according to the present invention, since the magnetic heat pump of the present invention does not use electricity, heating prevention measures for unmanned facilities and the like, introduction of solar heat into the room in cold regions, and reuse of exhaust heat It can be applied to various purposes such as heat transfer.

更に、本発明によれば、本発明のマグネチックヒートポンプに使用される磁性流体は揮発性に乏しいため、宇宙などの過酷な条件下でも熱移送が可能であり、宇宙ステーションなどの太陽熱回収手段や人工衛星内の熱移送手段としても利用できる。 Furthermore, according to the present invention, since the magnetic fluid used in the magnetic heat pump of the present invention is poor in volatility, it is possible to transfer heat even under severe conditions such as space, and solar heat recovery means such as a space station or It can also be used as a heat transfer means in an artificial satellite.

Claims (10)

受熱部、放熱部、前記受熱部と前記放熱部とを循環する循環流路を有する熱循環ポンプであって、前記循環流路内又は循環流路の内壁面の一部に磁石を配置した構造を有し、循環作動液として磁性流体を用いたことを特徴とする磁性対流熱循環ポンプ。   A heat circulation pump having a heat receiving part, a heat radiating part, and a circulation flow path for circulating the heat receiving part and the heat radiating part, wherein a magnet is arranged in the circulation flow path or a part of an inner wall surface of the circulation flow path. And a magnetic convection heat circulation pump characterized by using a magnetic fluid as a circulating fluid. 受熱部と、
前記受熱部と熱的に接続されたマグネチックポンプと、
放熱部と、そして
前記受熱部及びマグネチックポンプ、放熱部を流体連通に接続する循環流路を有する熱循環ポンプであって、
前記マグネチックポンプの循環流路は、前記循環流路内に永久磁石を配置するか、または前記永久磁石で循環流路の内壁面の一部を形成することにより磁場流路の一部を形成した構造であり、前記循環流路内を流れる循環作動液として磁性流体を用いたことを特徴とする磁性対流熱循環ポンプ。
Heat receiving part,
A magnetic pump thermally connected to the heat receiving part,
A heat circulating pump having a heat radiating portion, and the heat receiving portion, a magnetic pump, and a circulation flow path connecting the heat radiating portion in fluid communication,
The circulation channel of the magnetic pump forms a part of the magnetic field channel by disposing a permanent magnet in the circulation channel or by forming a part of the inner wall surface of the circulation channel with the permanent magnet. A magnetic convection heat circulation pump having the above-mentioned structure, wherein a magnetic fluid is used as a circulating working fluid flowing in the circulation flow path.
前記循環流路は、管路により構成されていることを特徴とする請求項1又は2に記載の磁性対流熱循環ポンプ。   The magnetic convection heat circulation pump according to claim 1 or 2, wherein the circulation flow path is configured by a pipe line. 前記磁性流体の磁性体は、平均粒径が30nm未満であり、二価遷移金属と酸化鉄の合金であることを特徴とする請求項1又は2に記載の磁性対流熱循環ポンプ。   The magnetic convection heat circulation pump according to claim 1 or 2, wherein the magnetic substance of the magnetic fluid has an average particle size of less than 30 nm and is an alloy of a divalent transition metal and iron oxide. 前記磁性流体は、磁性を有するイオン液体若しくは磁性陰イオンと陽イオンからなる磁性イオン液体であることを特徴とする請求項1又は2に記載の磁性対流熱循環ポンプ。   The magnetic convection heat circulation pump according to claim 1 or 2, wherein the magnetic fluid is an ionic liquid having magnetism or a magnetic ionic liquid composed of magnetic anions and cations. 前記磁石は、前記受熱部と放熱部を着脱自在に接続するように配置されていることを特徴とする請求項1又は2に記載の磁性対流熱循環ポンプ。   The magnetic convection heat circulation pump according to claim 1 or 2, wherein the magnet is arranged so as to detachably connect the heat receiving portion and the heat radiating portion. 前記受熱部及びマグネチックポンプは、磁場流路を共有していることを特徴とする請求項2に記載の磁性対流熱循環ポンプ。   The magnetic convection heat circulation pump according to claim 2, wherein the heat receiving unit and the magnetic pump share a magnetic field flow path. 前記受熱部及びマグネチックポンプは、互いに異なる熱伝導率を有する素材で構成されていることを特徴とする請求項2に記載の磁性対流熱循環ポンプ。   The magnetic convection heat circulation pump according to claim 2, wherein the heat receiving part and the magnetic pump are made of materials having different thermal conductivities. 前記循環流路又は前記循環流路に配置される磁石の磁性流体と接する面の一部若しくは全部は、前記磁性流体の磁性体をコーティングしている界面活性剤のイオン特性と同種の界面活性剤でコーティングされていることを特徴とする請求項1又は2に記載の磁性対流熱循環ポンプ。   A part or all of the surface of the circulation flow path or the magnet disposed in the circulation flow path, which is in contact with the magnetic fluid, has the same ionic characteristics as the ionic characteristics of the surfactant coating the magnetic substance of the magnetic fluid. The magnetic convection heat circulation pump according to claim 1 or 2, which is coated with. 前記循環流路又は前記循環流路に配置される磁石の磁性流体と接する面の一部若しくは全部は、撥油性を有するコーティング材でコーティングされていることを特徴とする請求項1又は2に記載の磁性対流熱循環ポンプ。   The part or all of the surface of the circulation passage or the magnet arranged in the circulation passage which is in contact with the magnetic fluid is coated with an oil-repellent coating material. Magnetic convection heat circulation pump.
JP2006547961A 2004-12-03 2005-11-30 Magnetic convection heat circulation pump Expired - Fee Related JP4507207B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004350757 2004-12-03
JP2004350757 2004-12-03
PCT/JP2005/021956 WO2006059622A1 (en) 2004-12-03 2005-11-30 Magnetic convection heat circulation pump

Publications (2)

Publication Number Publication Date
JPWO2006059622A1 true JPWO2006059622A1 (en) 2008-06-05
JP4507207B2 JP4507207B2 (en) 2010-07-21

Family

ID=36565056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006547961A Expired - Fee Related JP4507207B2 (en) 2004-12-03 2005-11-30 Magnetic convection heat circulation pump

Country Status (5)

Country Link
US (1) US20080264068A1 (en)
EP (1) EP1832828B1 (en)
JP (1) JP4507207B2 (en)
AT (1) ATE523747T1 (en)
WO (1) WO2006059622A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20040420A1 (en) * 2004-07-07 2004-10-07 Type S R L METAL CUTTING AND FORMING MACHINE
ITBO20050481A1 (en) 2005-07-19 2007-01-20 Silicon Biosystems S R L METHOD AND APPARATUS FOR THE HANDLING AND / OR IDENTIFICATION OF PARTICLES
ITBO20050643A1 (en) * 2005-10-24 2007-04-25 Si Bio S R L METHOD AND APPARATUS FOR HANDLING PARTICLES IN CONDUCTIVE SOLUTIONS
ITBO20050646A1 (en) * 2005-10-26 2007-04-27 Silicon Biosystem S R L METHOD AND APPARATUS FOR CHARACTERIZATION AND COUNTING OF PARTICLES
ITTO20060226A1 (en) 2006-03-27 2007-09-28 Silicon Biosystem S P A METHOD AND APPARATUS FOR PROCESSING AND OR ANALYSIS AND OR SELECTION OF PARTICLES, IN PARTICULAR BIOLOGICAL PARTICLES
ITTO20070771A1 (en) 2007-10-29 2009-04-30 Silicon Biosystems Spa METHOD AND APPARATUS FOR IDENTIFICATION AND HANDLING OF PARTICLES
US10895575B2 (en) 2008-11-04 2021-01-19 Menarini Silicon Biosystems S.P.A. Method for identification, selection and analysis of tumour cells
IT1391619B1 (en) 2008-11-04 2012-01-11 Silicon Biosystems Spa METHOD FOR THE IDENTIFICATION, SELECTION AND ANALYSIS OF TUMOR CELLS
DE102008058799B4 (en) * 2008-11-24 2012-04-26 Siemens Aktiengesellschaft Method for operating a multi-stage compressor
CA2782123C (en) 2009-03-17 2017-05-02 Silicon Biosystems S.P.A. Microfluidic device for isolation of cells
IT1403518B1 (en) 2010-12-22 2013-10-31 Silicon Biosystems Spa MICROFLUID DEVICE FOR PARTICLE HANDLING
CN102128437B (en) * 2011-02-07 2012-10-03 林智勇 LED (light-emitting diode) magnetic fluid radiating device
CN102128436B (en) * 2011-02-07 2012-07-04 林智勇 Magnetic fluid LED radiating device
US8503494B2 (en) 2011-04-05 2013-08-06 Microsoft Corporation Thermal management system
ITTO20110990A1 (en) 2011-10-28 2013-04-29 Silicon Biosystems Spa METHOD AND APPARATUS FOR OPTICAL ANALYSIS OF LOW TEMPERATURE PARTICLES
ITBO20110766A1 (en) 2011-12-28 2013-06-29 Silicon Biosystems Spa DEVICES, EQUIPMENT, KITS AND METHOD FOR THE TREATMENT OF A BIOLOGICAL SAMPLE
US20150267966A1 (en) * 2014-03-18 2015-09-24 Metal Industries Research & Development Centre Adaptable heat exchanger and fabrication method thereof
US20190214173A1 (en) * 2016-08-04 2019-07-11 Nanyang Technological University An apparatus for transferring heat from a heat source to a heat sink
JP6517768B2 (en) * 2016-10-07 2019-05-22 トヨタ自動車株式会社 Magnetic fluid driving device and magnetic fluid driving method
JP7205970B2 (en) * 2018-12-27 2023-01-17 川崎重工業株式会社 Heat transport system and transportation
JP2022088691A (en) * 2019-04-12 2022-06-15 パナソニックIpマネジメント株式会社 Magnetic fluid drive device and heat transport system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415489A (en) * 1990-05-10 1992-01-20 Katsuto Nakatsuka Working medium for heat pipe
JP3078605U (en) * 2000-12-27 2001-07-10 敬之 住友 Pipe fitting and faucet-mounted shower device
JP2003240467A (en) * 2002-02-15 2003-08-27 Showa Denko Kk Magnetic fluid drive device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3051988A (en) * 1957-02-09 1962-09-04 Baermann Max Material with permanent magnetic properties
US4078392A (en) * 1976-12-29 1978-03-14 Borg-Warner Corporation Direct contact heat transfer system using magnetic fluids
JPS61143690A (en) * 1984-12-17 1986-07-01 Sumitomo Electric Ind Ltd Heat pipe
US5603983A (en) * 1986-03-24 1997-02-18 Ensci Inc Process for the production of conductive and magnetic transitin metal oxide coated three dimensional substrates
FR2660919B2 (en) * 1989-10-13 1995-07-28 Mercier Dominique METHOD AND DEVICE FOR MAGNETIC TREATMENT OF FLUID.
JPH0378605U (en) * 1989-12-05 1991-08-09
US4970866A (en) * 1989-12-07 1990-11-20 Sundstrand Corporation Magneto caloric system
US5381664A (en) * 1990-09-28 1995-01-17 The United States Of America, As Represented By The Secretary Of Commerce Nanocomposite material for magnetic refrigeration and superparamagnetic systems using the same
US5357756A (en) * 1993-09-23 1994-10-25 Martin Marietta Energy Systems, Inc. Bipolar pulse field for magnetic refrigeration
US5441102A (en) * 1994-01-26 1995-08-15 Sun Microsystems, Inc. Heat exchanger for electronic equipment
US5444983A (en) * 1994-02-28 1995-08-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Magnetic heat pump flow director
US5705018A (en) * 1995-12-13 1998-01-06 Hartley; Frank T. Micromachined peristaltic pump
US5763951A (en) * 1996-07-22 1998-06-09 Northrop Grumman Corporation Non-mechanical magnetic pump for liquid cooling
JPH11183066A (en) * 1997-12-24 1999-07-06 Toshiba Corp Heat pipe apparatus for heat transport
JP2003006833A (en) * 2001-06-26 2003-01-10 Fuji Photo Film Co Ltd Magnetic tape
US7074175B2 (en) * 2001-07-25 2006-07-11 Erik Schroeder Handy Thermotherapy via targeted delivery of nanoscale magnetic particles
JP2004274942A (en) * 2003-03-11 2004-09-30 Ind Technol Res Inst Device and method for magnetic-current power generation and cooling
US7423874B2 (en) * 2005-09-06 2008-09-09 Sun Microsystems, Inc. Magneto-hydrodynamic heat sink

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415489A (en) * 1990-05-10 1992-01-20 Katsuto Nakatsuka Working medium for heat pipe
JP3078605U (en) * 2000-12-27 2001-07-10 敬之 住友 Pipe fitting and faucet-mounted shower device
JP2003240467A (en) * 2002-02-15 2003-08-27 Showa Denko Kk Magnetic fluid drive device

Also Published As

Publication number Publication date
WO2006059622A1 (en) 2006-06-08
EP1832828A4 (en) 2010-08-04
US20080264068A1 (en) 2008-10-30
EP1832828B1 (en) 2011-09-07
ATE523747T1 (en) 2011-09-15
JP4507207B2 (en) 2010-07-21
EP1832828A1 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
JP4507207B2 (en) Magnetic convection heat circulation pump
RU2604572C2 (en) Electronic device with cooling via distributor with liquid metal
US7764499B2 (en) Electromagnetically-actuated micropump for liquid metal alloy
US20170074554A1 (en) Thermo-Magnetic Cooling System and Electronic Apparatus
US20090019859A1 (en) Magnetic Refrigerator
US9534592B2 (en) Actuator, micropump, and electronic equipment
CN105578850B (en) The magnetic fluid microchannel heat control system of microsatellite unit
JP6172945B2 (en) MAGNETIC FLUID DRIVE DEVICE, HEAT TRANSPORT DEVICE AND POWER GENERATION DEVICE USING THE SAME
CN106376223A (en) Liquid-cooling heat radiation system and electronic equipment
US20100124022A1 (en) Thermoelectric cooling apparatus and method for cooling an integrated circuit
Wilcoxon et al. A compliant thermal spreader with internal liquid metal cooling channels
CN101764498B (en) Electromagnetic pump with built-in slide block and for driving liquid metals
CN103208904B (en) A kind of liquid metal electromagnetic pump
JP6113439B2 (en) MAGNETIC FLUID DRIVE DEVICE, HEAT TRANSPORT DEVICE AND POWER GENERATION DEVICE USING THE SAME
WO2020208888A1 (en) Magnetic fluid drive device and heat transport system
CN113923950A (en) Device and method for cooling high-heat-flux-density device by using magnetic field and micro-channel
JP2001077571A (en) Cooling apparatus
US3116693A (en) Thermoelectric pump
JP2005072216A (en) Liquid-cooled system and electronic equipment using the same
CN113009752A (en) Magnetomotive flexible circulating heat dissipation system and heat dissipation device
JP7362454B2 (en) equipment, heat transport equipment, and electronic equipment
WO2009106074A1 (en) An electromagnetic pump
JP7012404B1 (en) Cooling device for electronic components
CN219181921U (en) Heat dissipation system and electric equipment
CN219068715U (en) Device for cooling large heat flux device by using magnetic field

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4507207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees