WO2006059622A1 - Magnetic convection heat circulation pump - Google Patents

Magnetic convection heat circulation pump Download PDF

Info

Publication number
WO2006059622A1
WO2006059622A1 PCT/JP2005/021956 JP2005021956W WO2006059622A1 WO 2006059622 A1 WO2006059622 A1 WO 2006059622A1 JP 2005021956 W JP2005021956 W JP 2005021956W WO 2006059622 A1 WO2006059622 A1 WO 2006059622A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
heat
circulation
pump
fluid
Prior art date
Application number
PCT/JP2005/021956
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Nakasuga
Hironori Sahara
Kenji Higashi
Original Assignee
Da Vinci Co., Ltd.
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Da Vinci Co., Ltd., The University Of Tokyo filed Critical Da Vinci Co., Ltd.
Priority to JP2006547961A priority Critical patent/JP4507207B2/en
Priority to AT05811624T priority patent/ATE523747T1/en
Priority to US11/792,100 priority patent/US20080264068A1/en
Priority to EP05811624A priority patent/EP1832828B1/en
Publication of WO2006059622A1 publication Critical patent/WO2006059622A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F23/00Features relating to the use of intermediate heat-exchange materials, e.g. selection of compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans

Definitions

  • the present invention relates to an element that transfers thermal energy, and more particularly, to a magnetic convection heat circulation pump that utilizes the magnetic flux density of a magnetic field and the temperature characteristics of a saturated magnetic field of a magnetic material.
  • heat transfer elements using magnetic convection due to the temperature dependence of the saturation magnetization of a magnetic fluid in a magnetic field have been devised for a long time.
  • the non-uniform distribution of the magnetic substance in the dispersion medium and the large remanent magnetism due to the coating accuracy of the surfactant that coats the magnetic substance and the like have hindered magnetic convection and hindered commercialization.
  • the present invention takes a large temperature gradient of the magnetic fluid in the magnetic field by using the magnetic flux density of the magnetic field and the temperature characteristics of the saturation magnetization of the magnetic material without using an electric drive source, and saturates.
  • An object of the present invention is to provide a magnetic convection heat circulation pump capable of efficiently converting to power by causing a difference in magnetic value.
  • magnetic force acts directly by arranging a magnet so as to form a part of a circulation flow path or a circulation flow path that passes through a heat receiving portion.
  • the magnet Provided is a magnetic convection heat circulation pump that takes advantage of the temperature dependence of the saturation magnetization of a magnetic fluid in the magnetic field produced by the temperature gradient caused by the heat input from the heat receiving section, causing continuous magnetic convection of the magnetic fluid.
  • the magnetic convection heat circulation pump of the present invention has a structure that is very structured in that the heat input of the heat receiving portion serves as an operating source, and magnetic fluid causes magnetic convection by the magnetic field to circulate between the heat receiving portion and the heat radiating portion.
  • the operation is continued as long as there is a temperature difference between the heat receiving part and the heat radiating part, and if the temperature difference further widens, the circulation speed increases and a large amount of heat can be easily carried.
  • FIG. 1 is a schematic diagram showing a magnetic convection heat circulation pump when a magnet is arranged in a circulation flow path.
  • FIG. 2 is a schematic view illustrating the arrangement of magnets.
  • FIG. 3 is a schematic diagram showing a magnetic convection heat circulation pump when a magnet is arranged in a circulation channel.
  • FIG. 4 is a schematic diagram when magnets are arranged in a square shape.
  • FIG. 5 is a schematic diagram when a magnet and a magnetic body are arranged in a U-shape.
  • FIG. 6 is a schematic diagram showing a magnetic convection heat circulation pump when a magnet is arranged in a circulation channel.
  • FIG. 7 is a schematic diagram showing a magnetic convection heat circulation pump when a magnet is arranged in a circulation channel.
  • FIG. 8 is a schematic diagram showing a magnetic convection heat circulation pump when a magnet is arranged on a part of the inner wall surface of the circulation channel.
  • FIG. 9 is a schematic diagram showing a magnetic convection heat circulation pump when a magnet is arranged on a part of the inner wall surface of the circulation channel.
  • FIG. 10 is a perspective view partially seen through a magnetic convection heat circulation pump with a thin pump section.
  • FIG. 11 is a schematic diagram showing the arrangement of magnets when fixed to a yoke.
  • nickel plating or the like is formed in the magnetic field flow path of the magnetic fluid or a part of the inner wall surface of the flow path.
  • a surface-treated magnet is disposed, and a part or all of the inner wall surface of the magnet or the circulation channel is coated with a surfactant of the same type as that of the surfactant coated with the magnetic substance of the magnetic fluid.
  • a magnetic field acts directly on the magnetic fluid, and the flow path resistance is also reduced.
  • the magnetic material an alloy of manganese, zinc, and iron oxide with high saturation magnetism temperature dependence is adopted, and the average particle size of the alloy is about 10 nm, preferably 6 nm, and more preferably.
  • the heat receiving section and the magnetic pump are formed of materials having different thermal conductivities, and a configuration is adopted in which the magnetic field flow paths are mutually shared.
  • a circulation channel (3) that circulates between the heat receiving unit (1) and the heat dissipation unit (2) is arranged, and the magnet N pole is disposed in the circulation channel (3) in parallel with the extending direction.
  • An example in which (4) and S pole (5) are arranged is shown below.
  • the circulation channel (3) is filled with magnetic fluid, and if there is heat input to the heat receiving part (1), the temperature of the magnetic fluid in the heat receiving part (1) rises, and the heat receiving part (1) and the heat radiating part A temperature gradient occurs between the magnetic fluid held in (2) and the magnetic fluid on the heat receiving part (1) side where the magnetic reluctance is reduced is pushed out by the magnetic fluid on the heat radiating part (2) side, An example of magnetic convection causing heat transfer
  • the ferrofluid of the present invention can be used as long as it has a magnetic particle as a magnetic material and is dispersed in an appropriate dispersion medium.
  • the magnetic particles are preferably used as a powder having an average particle size of less than 30 nm, more preferably 1 nm to lOnm.
  • the magnetic substance used in the present invention is particularly preferably an alloy of a divalent transition metal and iron oxide, which is preferably an alloy having a high temperature dependency.
  • the magnetic material is preferably coated (coated) with a surfactant.
  • the surfactant used for coating is preferably a surfactant having an ionic characteristic such as a cationic surfactant or an anionic surfactant. Due to the repulsive force of these surfactants, the magnetic material was uniformly distributed in the dispersion medium. As a result, the residual magnetization can be reduced and the flow path resistance can be greatly reduced.
  • a part of or all of the surface that contacts the magnetic fluid of the circulation channel or the magnet disposed in the circulation channel has the same kind as the ionic characteristics of the surfactant obtained by coating the magnetic material.
  • the temperature dependence of the saturation magnetism of the magnetic material is the same as or younger than lZ2ZnlZ2MnFeO
  • a magnetic ionic liquid can also be used as the magnetic fluid of the present invention.
  • the magnetic ionic liquid is preferably a combination of the typical magnetic anion salt salt of iron and ferric ion and the cation 1-butyl 3-methylimidazole.
  • FIGS. 2 to 4 show the arrangement of the magnets of Examples 1 to 3.
  • Figure 2 shows an example in which a strong magnetic field magnet (4) (5) is placed on the heat-receiving side and a weak magnetic field magnet 2 (4b) (5b) is placed on the heat dissipation side to create a magnetic field gradient.
  • Fig. 3 shows an example in which magnets are arranged in the circulation channel so as to face each other.
  • FIG. 4 shows an example in which the magnets in the circulation channel (3) are arranged in a square shape so that the magnets are narrower on the heat receiving part (1) side. In this way, by creating a strong magnetic field on the heat-receiving part side, the magnetic material having a low temperature and a strong magnetic repulsive force can easily move to a strong magnetic field.
  • FIG. 5 shows an example of a magnet in which a ferromagnetic circuit (10) force, for example, iron or the like is formed into a U-shape and magnets are arranged on opposite surfaces to constitute a magnetic circuit.
  • a ferromagnetic circuit (10) force for example, iron or the like
  • the leakage flux is very
  • FIG. 6 shows a configuration of a magnetic heat pump that forms a plurality of circulation paths and efficiently circulates with a smaller amount of magnetic fluid than the configuration shown in FIG.
  • the magnetic field channel (6) is formed along the magnetic field lines of the magnets (4) and (5) arranged in the heat receiving part (1) in the circulation channel of the first channel (7).
  • it may be arranged in the path of the second channel (8) and the third channel (9), and the magnetic field channel along the magnetic flux on both sides of the magnet (4) (5). (6) may be formed.
  • Example 2 will be described with reference to FIG.
  • the heat receiving part (1) and the heat radiating part (2) are connected by a circulation channel (3). If the heat receiving part (1) and the heat radiating part (2) are made of a flexible material such as a flexible pipe or a resin pipe as the constituent material of the circulation flow path (3), the heat receiving part (1) and the heat radiating part (2) are not limited to a straight arrangement, but are optional. It becomes possible to arrange
  • the magnetic convection heat circulation pump has a configuration in which ring-shaped magnets (4a) and (5a) are arranged in the pipe (12) connecting the heat receiving part (1) and the heat radiating part (2). If such a configuration is adopted, the heat receiving part (1) and the heat radiating part (2) need only be one common part, and the joining part (11) can be easily detached without leakage due to magnetic joining. This is also easy to use when filling magnetic fluid.
  • the method of fixing the magnets arranged in each of the above-described embodiments is not particularly limited.
  • the magnet is fixed so as to be movable by fitting into a guide groove or the like, or fixed and fixed by adhesion or the like. It may be a method to do so.
  • materials with high thermal conductivity such as copper, aluminum, and graphite, as materials for the heat receiving portion (1) and the heat radiating portion (2). More preferably.
  • Example 4 will be described below with reference to Figs.
  • the part constituted by the magnetic field flow path (6) and the magnet (13) is called a magnetic pump (14).
  • a magnetic pump 14
  • FIG. 9 in order to prevent the backflow of the magnetic fluid, the width of the end of the magnetic flow path (6) on the heat receiving part (1) side is gradually reduced, and the magnetic flow path (6 Different heat transfer to share)
  • a magnetic convection heat circulation pump is shown in which a heat receiving part (1) made of a material with conductivity and a magnetic pump (14) are thermally connected.
  • a magnet (13) is installed and formed integrally.
  • the magnetic field flow path (6) and the circulation flow path (3) of the heat receiving part (1) dissipate heat through the connection circulation flow path (3) made of fluorine-based resin, such as PFA.
  • a part of the magnetic field channel (6) is directly input with heat.
  • heat is indirectly transmitted to the magnetic pump (14) and is made of a material having a smaller thermal conductivity than the heat receiving part. Therefore, compared to the heat receiving part (1).
  • the amount of heat transferred is small, resulting in a large temperature gradient in the magnetic field flow path (6), and the magnetic fluid with a high temperature and a low saturation magnetic field value has a high saturation magnetic field value with a low temperature.
  • Circulation is started by being pushed by the magnetic fluid.
  • the magnetic fluid that is not heat input into the magnetic pump (14) flows from the heat radiating section (2) due to the generated pressure, and the temperature difference further increases. As a result, the circulation speed is increased and more heat can be transferred.
  • the magnetizing direction of the magnet (13) is not particularly shown, but it may be either the width direction or the longitudinal direction.
  • the place where the temperature difference occurs is moved to a place where the magnetic field from the heat radiating part (2) of the magnetic pump (14) is strong when the heat input is large.
  • the magnet moves to the vicinity of the center of the magnet (13) having a weak magnetic field, so that a configuration that keeps the temperature of the heating element constant can be realized even if a magnet (13) suitable for the application is used.
  • a part or all of the surface of the circulation flow path in contact with the magnetic fluid may be oil repellent and repellent made by Asahi Glass Co., Ltd., for example. Coat with an oil-repellent coating material such as Cytop, the product name that has aqueous properties, or the same kind of surfactant as the ionic characteristics of magnetic fluid, that is, magnetic fluid is coated with a force thione-based surfactant. In this case, it is preferable to coat with the same cationic surfactant.
  • the magnetic field flow path (6) is shared by the heat receiving section (1) and the magnetic pump (14).
  • the heat receiving part (1) and the magnetic pump (14) have good thermal conductivity! If it is possible to connect them thermally with metal, etc., the magnetic flow path (6) can be shared. good.
  • FIG. 10 shows a configuration in the case where the heat receiving portion (1) and the magnetic pump (14) are made of a material having the same thermal conductivity.
  • FIG. 11 shows an example in which a magnetic circuit is configured.
  • the magnet (13) is arranged so that the north and south poles face each other, and is fixed by a yoke (15).
  • the magnetic field flow path (6) is located between the faces where the N and S poles face each other. The obstruction is obstructed and the pump performance is improved. Furthermore, it is possible to significantly reduce the leakage flux from the magnetic heat pump.
  • the magnetic heat pump of the present invention has a large heat transfer capability per unit area, and can be freely arranged by connecting the heat receiving section and the heat radiating section with a flexible resin pipe. Furthermore, the configuration of the pump unit can be made very small. For this reason, electronic devices are becoming more compact and the power consumption density of electronic components increases. Therefore, it is necessary to transfer heat from a small space to a place where it comes into contact with the outside air to dissipate heat. It can be used for heat transfer and heat dissipation of optical elements such as parts and laser diodes.
  • the magnetic heat pump of the present invention since the magnetic heat pump of the present invention does not use electricity, the heat prevention measures for unmanned facilities, the use of solar heat indoors in cold regions, It can be applied to various uses such as heat transfer during reuse.
  • the magnetic fluid used in the magnetic heat pump of the present invention has low volatility, so that heat transfer is possible even under harsh conditions such as in space, such as in space stations. It can also be used as solar heat recovery means or heat transfer means in an artificial satellite.

Abstract

A magnetic convection heat circulation pump, wherein magnets are disposed inside a magnetic filed flow passage for passing a magnetic fluid therein or on a part of the inner wall surface of a circulation flow passage in a magnetic pump thermally joined to a heat receiving part. The magnetic fluid is driven since a magnetic force is directly applied to the magnetic fluid and a large temperature gradient is produced between the heat receiving part and the magnetic pump due to a difference between a heat quantity transferred from the heat receiving part indirectly to the magnetic pump and the heat quantity of the magnetic fluid led into the magnetic pump.

Description

明 細 書  Specification
磁性対流熱循環ポンプ  Magnetic convection heat circulation pump
技術分野  Technical field
[0001] 本発明は、熱エネルギーを移送する素子に関し、特に、磁場の磁束密度と磁性体の 飽和磁ィ匕の温度特性を利用した磁性対流熱循環ポンプに関する。  TECHNICAL FIELD [0001] The present invention relates to an element that transfers thermal energy, and more particularly, to a magnetic convection heat circulation pump that utilizes the magnetic flux density of a magnetic field and the temperature characteristics of a saturated magnetic field of a magnetic material.
背景技術  Background art
[0002] 熱を移送する素子の中で、磁場における磁性流体の飽和磁化の温度依存性に起因 する磁性対流を利用した熱の移送素子は古くより考案されてきたが、磁性体の微粉 末化や磁性体をコートする界面活性剤の塗布精度などに起因する磁性体の分散媒 中における不均一な分布や大きな残留磁ィ匕が磁性対流を阻害し製品化を妨げてき た。  [0002] Among heat transfer elements, heat transfer elements using magnetic convection due to the temperature dependence of the saturation magnetization of a magnetic fluid in a magnetic field have been devised for a long time. In addition, the non-uniform distribution of the magnetic substance in the dispersion medium and the large remanent magnetism due to the coating accuracy of the surfactant that coats the magnetic substance and the like have hindered magnetic convection and hindered commercialization.
[0003] 近年では、上述された問題に対する解決策も試みられ、例えば、特開平 10— 2318 14号公報ゃ特開平 3— 102804号公報に開示されているように、ガス等の常磁性体 や残留磁ィ匕の非常に小さい磁性流体などの移送手段として、磁場近辺にヒーター等 を配置して飽和磁ィ匕の温度依存性を利用した装置が開発されている。  [0003] In recent years, solutions to the above-described problems have also been attempted. For example, as disclosed in JP-A-10-231814 and JP-A-3-102804, paramagnetic substances such as gas, As a means for transferring a magnetic fluid or the like having a very small remanent magnetic field, an apparatus utilizing a temperature dependency of a saturated magnetic field by arranging a heater in the vicinity of a magnetic field has been developed.
[0004] しかし、ヒーターなどの熱入力部を構成した場合は移送する素材そのものの温度が 上昇してしまう為に使用用途が限られる上に、放熱などを目的とした熱移送では逆に 大きな損失を生じることになり、使用に適さないなどの問題があった。  [0004] However, when a heat input unit such as a heater is configured, the temperature of the material itself to be transferred rises, so the usage is limited. There was a problem that it was not suitable for use.
[0005] 更には、電磁石を所定間隔に並べて順次磁場を移動させる方法なども開示されてい るが、電磁石の制御や電気配線などが必要となり、装置は複雑で高価な物となる。 発明の開示  [0005] Furthermore, a method of arranging the electromagnets at predetermined intervals and sequentially moving the magnetic field is disclosed, but the control of the electromagnets and electrical wiring are required, and the apparatus becomes complicated and expensive. Disclosure of the invention
[0006] そこで本発明は、電気的な駆動源を使わずに、磁場の磁束密度と磁性体の飽和磁 化の温度特性を利用して、磁場中における磁性流体の温度勾配を大きく取り、飽和 磁ィ匕値の差を生じさせることにより効率よく動力に変換できる磁性対流熱循環ポンプ を提供することを目的とする。  [0006] Therefore, the present invention takes a large temperature gradient of the magnetic fluid in the magnetic field by using the magnetic flux density of the magnetic field and the temperature characteristics of the saturation magnetization of the magnetic material without using an electric drive source, and saturates. An object of the present invention is to provide a magnetic convection heat circulation pump capable of efficiently converting to power by causing a difference in magnetic value.
[0007] 前記目的を達成する為に、本発明は、受熱部を通過する循環流路内又は循環流路 の一部を形成するように磁石を配置することで、磁力が直接的に作用し、前記磁石が 作り出す磁場における磁性流体の飽和磁化の温度依存性により、受熱部からの熱入 力による温度勾配が継続的な磁性流体の磁性対流を引き起こすことを利用した磁性 対流熱循環ポンプを提供する。 [0007] In order to achieve the above-mentioned object, according to the present invention, magnetic force acts directly by arranging a magnet so as to form a part of a circulation flow path or a circulation flow path that passes through a heat receiving portion. The magnet Provided is a magnetic convection heat circulation pump that takes advantage of the temperature dependence of the saturation magnetization of a magnetic fluid in the magnetic field produced by the temperature gradient caused by the heat input from the heat receiving section, causing continuous magnetic convection of the magnetic fluid.
[0008] 本発明の磁性対流熱循環ポンプは受熱部の熱入力が作動源となり、磁性流体が磁 場により磁性対流を起して受熱部と放熱部とを循環する構成で、構造が非常に簡単 であり、し力も受熱部と放熱部の温度差がある限り動作は継続し、更に温度差が広が れば循環速度が速くなり多くの熱量を容易に運ぶことができる等の利点がある。 図面の簡単な説明  [0008] The magnetic convection heat circulation pump of the present invention has a structure that is very structured in that the heat input of the heat receiving portion serves as an operating source, and magnetic fluid causes magnetic convection by the magnetic field to circulate between the heat receiving portion and the heat radiating portion. The operation is continued as long as there is a temperature difference between the heat receiving part and the heat radiating part, and if the temperature difference further widens, the circulation speed increases and a large amount of heat can be easily carried. . Brief Description of Drawings
[0009] [図 1]循環流路内に磁石を配置した場合の磁性対流熱循環ポンプを示す概要図で ある。  FIG. 1 is a schematic diagram showing a magnetic convection heat circulation pump when a magnet is arranged in a circulation flow path.
[図 2]磁石の配置を例示した概要図である。  FIG. 2 is a schematic view illustrating the arrangement of magnets.
[図 3]循環流路内に磁石を配置した場合の磁性対流熱循環ポンプを示す概要図で ある。  FIG. 3 is a schematic diagram showing a magnetic convection heat circulation pump when a magnet is arranged in a circulation channel.
[図 4]磁石をノ、の字形に配置した場合の概要図である。  FIG. 4 is a schematic diagram when magnets are arranged in a square shape.
[図 5]磁石と磁性体とをコの字形に配置した場合の概要図である。  FIG. 5 is a schematic diagram when a magnet and a magnetic body are arranged in a U-shape.
[図 6]循環流路内に磁石を配置した場合の磁性対流熱循環ポンプを示す概要図で ある。  FIG. 6 is a schematic diagram showing a magnetic convection heat circulation pump when a magnet is arranged in a circulation channel.
[図 7]循環流路内に磁石を配置した場合の磁性対流熱循環ポンプを示す概要図で ある。  FIG. 7 is a schematic diagram showing a magnetic convection heat circulation pump when a magnet is arranged in a circulation channel.
[図 8]循環流路の内壁面の一部に磁石を配置した場合の磁性対流熱循環ポンプを 示す概要図である。  FIG. 8 is a schematic diagram showing a magnetic convection heat circulation pump when a magnet is arranged on a part of the inner wall surface of the circulation channel.
[図 9]循環流路の内壁面の一部に磁石を配置した場合の磁性対流熱循環ポンプを 示す概要図である。  FIG. 9 is a schematic diagram showing a magnetic convection heat circulation pump when a magnet is arranged on a part of the inner wall surface of the circulation channel.
[図 10]ポンプ部の肉厚を薄くした磁性対流熱循環ポンプを一部透視した斜視図であ る。  FIG. 10 is a perspective view partially seen through a magnetic convection heat circulation pump with a thin pump section.
[図 11]ヨークに固定した場合の磁石の配置を示す概要図である。  FIG. 11 is a schematic diagram showing the arrangement of magnets when fixed to a yoke.
発明の実施の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明では、磁性流体の磁場流路内又は流路の内壁面の一部にニッケルメツキ等 で表面処理をした磁石を配置し、更に前記磁石若しくは循環流路の内壁面の一部 又は全部を前記磁性流体の磁性体をコーティングしている界面活性剤のイオン特性 と同種の界面活性剤でコ一ティングすることにより、前記磁性流体に直接的に磁場が 作用する上に、流路抵抗をも軽減する構成とした。 [0010] In the present invention, nickel plating or the like is formed in the magnetic field flow path of the magnetic fluid or a part of the inner wall surface of the flow path. A surface-treated magnet is disposed, and a part or all of the inner wall surface of the magnet or the circulation channel is coated with a surfactant of the same type as that of the surfactant coated with the magnetic substance of the magnetic fluid. By coating, a magnetic field acts directly on the magnetic fluid, and the flow path resistance is also reduced.
[0011] また、磁性体には飽和磁ィ匕の温度依存性が高いマンガンと亜鉛と酸ィ匕鉄との合金を 採用し、その合金の平均粒径を約 10nm、好ましくは 6nm、更に好ましくは lnmとす ることにより、残留磁ィヒを極小に抑えた効率の良い磁性対流熱循環ポンプを実現し た。  [0011] Further, as the magnetic material, an alloy of manganese, zinc, and iron oxide with high saturation magnetism temperature dependence is adopted, and the average particle size of the alloy is about 10 nm, preferably 6 nm, and more preferably. By using lnm, we realized an efficient magnetic convection heat circulation pump with minimal residual magnetism.
[0012] 更には、受熱部とマグネチックポンプは熱伝導率の異なる素材で形成し、相互に磁 場流路を共有する構成を採用した。  [0012] Furthermore, the heat receiving section and the magnetic pump are formed of materials having different thermal conductivities, and a configuration is adopted in which the magnetic field flow paths are mutually shared.
実施例 1  Example 1
[0013] 本発明による磁性対流熱循環ポンプの 1実施例を、図 1から図 6を参照して以下に説 明する。  [0013] One embodiment of a magnetic convection heat circulation pump according to the present invention will be described below with reference to Figs.
[0014] 図 1では、受熱部(1)と放熱部(2)とを循環する循環流路(3)が配置されており、循 環流路(3)内に伸長方向と平行に磁石 N極 (4)と S極(5)を配置した例を示して 、る 。循環流路(3)には磁性流体が充填されており、受熱部(1)に熱入力があると、受熱 部(1)の磁性流体の温度が上昇し、受熱部(1)と放熱部(2)に保持された磁性流体 との間に温度勾配が生じ、磁ィ匕力の低下した受熱部(1)側の磁性流体が放熱部(2) 側の磁性流体に押し出されることにより、磁性対流が生じて熱を伝達する例を示した  [0014] In FIG. 1, a circulation channel (3) that circulates between the heat receiving unit (1) and the heat dissipation unit (2) is arranged, and the magnet N pole is disposed in the circulation channel (3) in parallel with the extending direction. An example in which (4) and S pole (5) are arranged is shown below. The circulation channel (3) is filled with magnetic fluid, and if there is heat input to the heat receiving part (1), the temperature of the magnetic fluid in the heat receiving part (1) rises, and the heat receiving part (1) and the heat radiating part A temperature gradient occurs between the magnetic fluid held in (2) and the magnetic fluid on the heat receiving part (1) side where the magnetic reluctance is reduced is pushed out by the magnetic fluid on the heat radiating part (2) side, An example of magnetic convection causing heat transfer
[0015] このような循環を生じる構成では、磁石の磁力が直接的に磁性流体に伝わるので効 率が良い上に、電子機器などの放熱に利用しても漏れ磁束による影響が著しく軽減 される。 [0015] In such a configuration that causes circulation, the magnetic force of the magnet is directly transmitted to the magnetic fluid, so that the efficiency is good, and even if it is used for heat dissipation of an electronic device or the like, the influence of the leakage magnetic flux is remarkably reduced. .
[0016] 本発明の磁性流体は、磁性を有する粒体を磁性体として、適当な分散媒に分散した ものであれば用いることができる。磁性を有する粒体は、好ましくは 30nm未満、更に 好ましくは lnmから lOnmの平均粒径を有する粉体として用いられる。  [0016] The ferrofluid of the present invention can be used as long as it has a magnetic particle as a magnetic material and is dispersed in an appropriate dispersion medium. The magnetic particles are preferably used as a powder having an average particle size of less than 30 nm, more preferably 1 nm to lOnm.
[0017] 本発明に用いる磁性体は温度依存性の高い合金が好ましぐ二価遷移金属と酸ィ匕 鉄の合金が特に好ましい。 [0018] また、磁性体は界面活性剤で被覆 (コーティング)されて ヽることが好まし ヽ。被覆に 用いる界面活性剤は、陽イオン界面活性剤、陰イオン界面活性剤といったイオン特 性を有する界面活性剤を用いることが好ま 、。これら界面活性剤の反発力により、 磁性体は分散媒中に均一に分布する構成とした。その結果、残留磁化を小さくして 大幅に流路抵抗を軽減することができる。 [0017] The magnetic substance used in the present invention is particularly preferably an alloy of a divalent transition metal and iron oxide, which is preferably an alloy having a high temperature dependency. [0018] The magnetic material is preferably coated (coated) with a surfactant. The surfactant used for coating is preferably a surfactant having an ionic characteristic such as a cationic surfactant or an anionic surfactant. Due to the repulsive force of these surfactants, the magnetic material was uniformly distributed in the dispersion medium. As a result, the residual magnetization can be reduced and the flow path resistance can be greatly reduced.
[0019] 更に好ましくは、循環流路又は前記循環流路に配置される磁石の磁性流体と接する 面の一部若しくは全部を、磁性体をコーティングして ヽる界面活性剤のイオン特性と 同種の界面活性剤でコーティングすることにより、残留磁ィ匕の影響を更に小さくし、更 に流路抵抗を軽減することが可能となる。  [0019] More preferably, a part of or all of the surface that contacts the magnetic fluid of the circulation channel or the magnet disposed in the circulation channel has the same kind as the ionic characteristics of the surfactant obtained by coating the magnetic material. By coating with a surfactant, the influence of residual magnetism can be further reduced, and the flow resistance can be further reduced.
[0020] 更に、温度依存性の高い合金を磁性体として採用したことにより、飽和磁化値の温度 による大きな変化が磁場において大きな動力となり、磁性対流のポンプとしての効率 を大幅に向上せしめた。本実施例ではマンガンと亜鉛と酸ィ匕鉄との合金(lZ2Znl /2MnFe O )を用いた力 本発明で使用できる磁性体はこれに限定されるもので  [0020] Furthermore, by adopting a highly temperature-dependent alloy as a magnetic material, a large change in the saturation magnetization value due to temperature becomes a large power in the magnetic field, and the efficiency as a pump for magnetic convection is greatly improved. In this example, a force using an alloy of manganese, zinc and iron oxide (lZ2Znl / 2MnFe 2 O 3) is not limited to this.
2 4  twenty four
はなぐ磁性体の飽和磁ィ匕の温度依存性が lZ2ZnlZ2MnFe Oと同等か若しく  The temperature dependence of the saturation magnetism of the magnetic material is the same as or younger than lZ2ZnlZ2MnFeO
2 4  twenty four
は強磁性を示し、より大きな温度依存性を有する二価遷移金属と酸化鉄の合金等が 好ましい。  Is preferably an alloy of a divalent transition metal and iron oxide, which exhibits ferromagnetism and has a greater temperature dependence.
[0021] また、本発明の磁性流体として磁性イオン液体を用いることも出来る。磁性イオン液 体は典型的な磁性陰イオンの塩ィ匕鉄酸イオンと陽イオンの 1ブチル 3メチルイミダゾリ ゥムなどを組み合わせることが好ま U、。  [0021] A magnetic ionic liquid can also be used as the magnetic fluid of the present invention. The magnetic ionic liquid is preferably a combination of the typical magnetic anion salt salt of iron and ferric ion and the cation 1-butyl 3-methylimidazole.
[0022] 図 2から図 4は、実施例 1〜3の磁石の配置について示した。図 2は、受熱部側に磁 力の強い磁石 (4) (5)を配置し、放熱側には磁力の弱い磁石 2 (4b) (5b)を配置して 磁場の勾配をつけた例を示した。図 3では、循環流路内に磁石が対畤する形で配置 した例を示した。図 4では、更に循環流路(3)内の磁石が受熱部(1)側で狭くなるよう にハの字型に配置した例を示した。このようにして磁場の強 、ところを受熱部側に作 ることにより、温度が低く磁ィ匕力の強い磁性体が磁場の強いところに移動しやすい構 成とした。  FIGS. 2 to 4 show the arrangement of the magnets of Examples 1 to 3. Figure 2 shows an example in which a strong magnetic field magnet (4) (5) is placed on the heat-receiving side and a weak magnetic field magnet 2 (4b) (5b) is placed on the heat dissipation side to create a magnetic field gradient. Indicated. Fig. 3 shows an example in which magnets are arranged in the circulation channel so as to face each other. FIG. 4 shows an example in which the magnets in the circulation channel (3) are arranged in a square shape so that the magnets are narrower on the heat receiving part (1) side. In this way, by creating a strong magnetic field on the heat-receiving part side, the magnetic material having a low temperature and a strong magnetic repulsive force can easily move to a strong magnetic field.
[0023] 図 5では、強磁性体(10)力 例えば鉄などをコの字型に成型して、対畤する面に磁 石を配置して磁気回路を構成した磁石の例を示した。この構成では漏れ磁束が非常 に小さぐ対畤する磁石 N極 (4)と磁石 S極(5)の間の磁力が強くなる。 FIG. 5 shows an example of a magnet in which a ferromagnetic circuit (10) force, for example, iron or the like is formed into a U-shape and magnets are arranged on opposite surfaces to constitute a magnetic circuit. With this configuration, the leakage flux is very The magnetic force between the N pole (4) and the magnet S pole (5), which are opposed to each other, becomes stronger.
[0024] 更に、図 6では、複数の循環路を構成して、図 1に示した構成よりも少ない磁性流体 の量で効率よく循環する磁性熱ポンプの構成を示した。図 6によれば、磁場流路(6) は第 1流路(7)の循環流路内の受熱部(1)に配置された磁石 (4) (5)の磁力線に沿 うように形成されているが、第 2流路 (8)、第 3流路(9)の経路内に配置してもよぐま た、磁石 (4) (5)の両側の磁束に沿うように磁場流路(6)を形成しても良い。 Further, FIG. 6 shows a configuration of a magnetic heat pump that forms a plurality of circulation paths and efficiently circulates with a smaller amount of magnetic fluid than the configuration shown in FIG. According to Fig. 6, the magnetic field channel (6) is formed along the magnetic field lines of the magnets (4) and (5) arranged in the heat receiving part (1) in the circulation channel of the first channel (7). However, it may be arranged in the path of the second channel (8) and the third channel (9), and the magnetic field channel along the magnetic flux on both sides of the magnet (4) (5). (6) may be formed.
実施例 2  Example 2
[0025] 実施例 2は、図 7を参照して説明する。受熱部(1)と放熱部(2)は、循環流路(3)で 接続された構成を採用した。受熱部(1)と放熱部 (2)は、循環流路 (3)の構成材をフ レキシブルパイプゃ榭脂パイプなど柔軟性に富んだもので構成すると、直線的な配 置に限られず任意の位置に配置することが可能となる。  Example 2 will be described with reference to FIG. The heat receiving part (1) and the heat radiating part (2) are connected by a circulation channel (3). If the heat receiving part (1) and the heat radiating part (2) are made of a flexible material such as a flexible pipe or a resin pipe as the constituent material of the circulation flow path (3), the heat receiving part (1) and the heat radiating part (2) are not limited to a straight arrangement, but are optional. It becomes possible to arrange | position in the position of.
実施例 3  Example 3
[0026] 実施例 3は、図 8を参照して説明する。磁性対流熱循環ポンプは、受熱部(1)と放熱 部(2)を接続する配管(12)内にリング状の磁石 (4a) (5a)を配置した構成とした。こ のような構成を採用すれば、受熱部(1)放熱部(2)がーつの共用部品で済むほかに 、接合部(11)が磁力による接合で液漏れすることなく簡単に脱着することが実現で き、磁性流体の充填等においても簡便である。  Example 3 will be described with reference to FIG. The magnetic convection heat circulation pump has a configuration in which ring-shaped magnets (4a) and (5a) are arranged in the pipe (12) connecting the heat receiving part (1) and the heat radiating part (2). If such a configuration is adopted, the heat receiving part (1) and the heat radiating part (2) need only be one common part, and the joining part (11) can be easily detached without leakage due to magnetic joining. This is also easy to use when filling magnetic fluid.
[0027] 上述された各実施例において配置される磁石の固定方法は特に限定されるもので はなぐガイド溝などへの嵌め合わせにより移動可能に固定する方法や、接着などに より固着して固定する方法等であっても良 、。  [0027] The method of fixing the magnets arranged in each of the above-described embodiments is not particularly limited. The magnet is fixed so as to be movable by fitting into a guide groove or the like, or fixed and fixed by adhesion or the like. It may be a method to do so.
[0028] 同様に受熱部(1)や放熱部(2)の構成材は、銅やアルミニウム、グラフアイト等の熱 伝導率の高い素材を使用することが好ましぐ更に透磁率の低い素材であることがよ り好ましい。  [0028] Similarly, it is preferable to use materials with high thermal conductivity, such as copper, aluminum, and graphite, as materials for the heat receiving portion (1) and the heat radiating portion (2). More preferably.
実施例 4  Example 4
[0029] 実施例 4は、図 9〜11を参照して以下に説明する。なお、本実施例では、磁場流路( 6)と磁石(13)とで構成された部分をマグネチックポンプ(14)と呼んで 、る。その実 施例として図 9では、磁性流体の逆流を防ぐ為に受熱部(1)側の磁場流路 (6)の端 部の幅を段階的に狭くなるように構成し、磁場流路 (6)を共有するように異なる熱伝 導率を有する素材で構成された受熱部(1)とマグネチックポンプ(14)とが熱的に接 続された磁性対流熱循環ポンプを示した。そして、その磁場流路(6)内には、磁石( 13)が設置されて一体に形成されている。 [0029] Example 4 will be described below with reference to Figs. In the present embodiment, the part constituted by the magnetic field flow path (6) and the magnet (13) is called a magnetic pump (14). As an example, in FIG. 9, in order to prevent the backflow of the magnetic fluid, the width of the end of the magnetic flow path (6) on the heat receiving part (1) side is gradually reduced, and the magnetic flow path (6 Different heat transfer to share) A magnetic convection heat circulation pump is shown in which a heat receiving part (1) made of a material with conductivity and a magnetic pump (14) are thermally connected. In the magnetic field channel (6), a magnet (13) is installed and formed integrally.
[0030] また、受熱部(1)の磁場流路(6)と循環流路(3)はフッ素系の榭脂、例えば PFAなど で構成された接続用循環流路 (3)を介して放熱部 (2)と接続されており、受熱部(1) に熱入力があると、磁場流路(6)の一部は直接的に熱入力される。し力しながら、マ グネチックポンプ(14)には熱は間接的に伝わる上に、受熱部と比較して熱伝導率が 小さな素材で構成されているため、受熱部(1)と比較して伝わる熱量は小さぐその 結果、磁場流路 (6)内に大きな温度勾配が生じて、温度の高くなり飽和磁ィ匕値が低く なった磁性流体が温度の低い飽和磁ィ匕値の大きな磁性流体に押しやられることによ り循環が開始される。例えば、このような循環を引き起こすためには、アルミニウムと榭 脂素材のような熱伝導率の差があればよい。そして、磁性流体の循環が始まると、生 じた圧力により、マグネチックポンプ(14)内に熱入力されていない磁性流体が放熱 部(2)側より流れ込むため、更に温度差が大きくなり、この結果、循環スピードが速く なり、より多くの熱を移送することができる。  [0030] In addition, the magnetic field flow path (6) and the circulation flow path (3) of the heat receiving part (1) dissipate heat through the connection circulation flow path (3) made of fluorine-based resin, such as PFA. When the heat receiving part (1) is connected to the part (2) and there is heat input, a part of the magnetic field channel (6) is directly input with heat. However, heat is indirectly transmitted to the magnetic pump (14) and is made of a material having a smaller thermal conductivity than the heat receiving part. Therefore, compared to the heat receiving part (1). As a result, the amount of heat transferred is small, resulting in a large temperature gradient in the magnetic field flow path (6), and the magnetic fluid with a high temperature and a low saturation magnetic field value has a high saturation magnetic field value with a low temperature. Circulation is started by being pushed by the magnetic fluid. For example, in order to cause such a circulation, it is sufficient that there is a difference in thermal conductivity between aluminum and a resin material. When the circulation of the magnetic fluid begins, the magnetic fluid that is not heat input into the magnetic pump (14) flows from the heat radiating section (2) due to the generated pressure, and the temperature difference further increases. As a result, the circulation speed is increased and more heat can be transferred.
[0031] 本実施例では磁石(13)の着磁方向は特に示していないが、幅方向でも長手方向で も何れでも良い。例えば、長手方向に着磁した磁石を使用した場合の温度差の生じ る場所は、熱入力が大きいときにはマグネチックポンプ(14)の放熱部(2)からの磁場 の強いところへ移動し、熱入力が小さいときには磁場の弱い磁石(13)中央部近傍へ 移動することから、適宜用途に合った磁石(13)を採用しても発熱体の温度を一定に 保つような構成を実現できる。  [0031] In this embodiment, the magnetizing direction of the magnet (13) is not particularly shown, but it may be either the width direction or the longitudinal direction. For example, when a magnet magnetized in the longitudinal direction is used, the place where the temperature difference occurs is moved to a place where the magnetic field from the heat radiating part (2) of the magnetic pump (14) is strong when the heat input is large. When the input is small, the magnet moves to the vicinity of the center of the magnet (13) having a weak magnetic field, so that a configuration that keeps the temperature of the heating element constant can be realized even if a magnet (13) suitable for the application is used.
[0032] また、図示しないが、流路のせん断応力の軽減や磁性流体の凝集を防ぐために、循 環流路の磁性流体が接する面の一部若しくは全部は、例えば旭硝子社製の撥油性 と撥水性を有する製品名サイトップのような撥油性を有するコーティング材でコートす るか、若しくは磁性流体のイオン特性と同種の界面活性剤、すなわち、磁性流体が力 チオン系の界面活性剤でコートされている場合は、これと同じカチオン系の界面活性 剤でコートするのが好ましい。  [0032] Although not shown, in order to reduce the shear stress of the flow path and prevent aggregation of the magnetic fluid, a part or all of the surface of the circulation flow path in contact with the magnetic fluid may be oil repellent and repellent made by Asahi Glass Co., Ltd., for example. Coat with an oil-repellent coating material such as Cytop, the product name that has aqueous properties, or the same kind of surfactant as the ionic characteristics of magnetic fluid, that is, magnetic fluid is coated with a force thione-based surfactant. In this case, it is preferable to coat with the same cationic surfactant.
[0033] 本実施例では、磁場流路(6)を受熱部(1)とマグネチックポンプ(14)とで共有する例 を示した力 受熱部(1)とマグネチックポンプ(14)を熱伝導率の良!、金属などで熱 的に接続しても良ぐその場合は磁場流路 (6)を共有しなくとも良い。 [0033] In this embodiment, the magnetic field flow path (6) is shared by the heat receiving section (1) and the magnetic pump (14). The heat receiving part (1) and the magnetic pump (14) have good thermal conductivity! If it is possible to connect them thermally with metal, etc., the magnetic flow path (6) can be shared. good.
[0034] 更に、図 10では、受熱部(1)とマグネチックポンプ(14)とが同じ熱伝導率を有する 素材で構成された場合の構成を示した。受熱部(1)からの熱入力に対して、マグネ チックポンプ(14)を形成している素材の厚みを受熱部(1)よりも薄くすることにより、 熱伝達率が小さくなり、熱伝導率の異なる素材を採用した場合と同様の効果を得るこ とがでさる。 [0034] Further, FIG. 10 shows a configuration in the case where the heat receiving portion (1) and the magnetic pump (14) are made of a material having the same thermal conductivity. By making the thickness of the material forming the magnetic pump (14) thinner than the heat receiving part (1) for the heat input from the heat receiving part (1), the heat transfer coefficient is reduced and the thermal conductivity is reduced. The same effects as when using different materials can be obtained.
[0035] また、図 11では、磁気回路を構成した 1例を示した。磁石(13)は N極と S極が対畤す るように配置され、ヨーク(15)により固定されている。このように構成すると非常に強 い磁場を得ることができるのみならず、磁場流路(6)は N極と S極が対畤する面の間 に位置するようになるため、流体の流動を妨げる障害が無くなり、ポンプの性能が向 上する。更には、マグネチックヒートポンプからの漏れ磁束を著しく軽減することが可 能となる。  FIG. 11 shows an example in which a magnetic circuit is configured. The magnet (13) is arranged so that the north and south poles face each other, and is fixed by a yoke (15). With this configuration, not only can a very strong magnetic field be obtained, but also the magnetic field flow path (6) is located between the faces where the N and S poles face each other. The obstruction is obstructed and the pump performance is improved. Furthermore, it is possible to significantly reduce the leakage flux from the magnetic heat pump.
[0036] 本発明によれば、本発明のマグネチックヒートポンプは単位面積あたりの熱移送能力 が大きぐまた、受熱部と放熱部をフレキシブルな榭脂パイプで接続することにより自 由な配置が可能であり、更にはポンプ部の構成を非常に小さくすることができる。この ため、電子機器の小型化が進み、電子部品の消費電力密度が高くなることから、狭 い空間から熱をなるベく外気に触れるところに移送して放熱する必要性がある CPU などの電子部品、レーザーダイオードなどの光学素子の熱移送及び放熱用途に利 用できる。  [0036] According to the present invention, the magnetic heat pump of the present invention has a large heat transfer capability per unit area, and can be freely arranged by connecting the heat receiving section and the heat radiating section with a flexible resin pipe. Furthermore, the configuration of the pump unit can be made very small. For this reason, electronic devices are becoming more compact and the power consumption density of electronic components increases. Therefore, it is necessary to transfer heat from a small space to a place where it comes into contact with the outside air to dissipate heat. It can be used for heat transfer and heat dissipation of optical elements such as parts and laser diodes.
[0037] また、本発明によれば、本発明のマグネチックヒートポンプは電気を使用しな ヽため、 無人の施設などの加熱防止対策や、寒冷地における太陽熱の室内への導入用途、 排熱を再利用する際の熱移送など多様な用途へ適用できる。  [0037] Further, according to the present invention, since the magnetic heat pump of the present invention does not use electricity, the heat prevention measures for unmanned facilities, the use of solar heat indoors in cold regions, It can be applied to various uses such as heat transfer during reuse.
産業上の利用可能性  Industrial applicability
[0038] 更に、本発明によれば、本発明のマグネチックヒートポンプに使用される磁性流体は 揮発性に乏しいため、宇宙などの過酷な条件下でも熱移送が可能であり、宇宙ステ ーシヨンなどの太陽熱回収手段や人工衛星内の熱移送手段としても利用できる。 [0038] Further, according to the present invention, the magnetic fluid used in the magnetic heat pump of the present invention has low volatility, so that heat transfer is possible even under harsh conditions such as in space, such as in space stations. It can also be used as solar heat recovery means or heat transfer means in an artificial satellite.

Claims

請求の範囲 The scope of the claims
[1] 受熱部、放熱部、前記受熱部と前記放熱部とを循環する循環流路を有する熱循環 ポンプであって、前記循環流路内又は循環流路の内壁面の一部に磁石を配置した 構造を有し、循環作動液として磁性流体を用いたことを特徴とする磁性対流熱循環 ポンプ。  [1] A heat circulation pump having a heat receiving section, a heat radiating section, and a circulation channel that circulates between the heat receiving section and the heat radiating section, wherein a magnet is provided in the circulation channel or a part of an inner wall surface of the circulation channel. A magnetic convection heat circulation pump having an arranged structure and using a magnetic fluid as a circulating working fluid.
[2] 受熱部と、  [2] heat receiving part;
前記受熱部と熱的に接続されたマグネチックポンプと、  A magnetic pump thermally connected to the heat receiving unit;
放熱部と、そして  Heat dissipation part, and
前記受熱部及びマグネチックポンプ、放熱部を流体連通に接続する循環流路を有 する熱循環ポンプであって、  A heat circulation pump having a circulation passage for connecting the heat receiving portion and the magnetic pump and the heat radiating portion in fluid communication,
前記マグネチックポンプの循環流路は、前記循環流路内に永久磁石を配置するか、 または前記永久磁石で循環流路の内壁面の一部を形成することにより磁場流路の 一部を形成した構造であり、前記循環流路内を流れる循環作動液として磁性流体を 用いたことを特徴とする磁性対流熱循環ポンプ。  The magnetic pump circulation channel forms a part of the magnetic field channel by arranging a permanent magnet in the circulation channel or by forming a part of the inner wall surface of the circulation channel with the permanent magnet. A magnetic convection heat circulation pump having a structure as described above, wherein a magnetic fluid is used as a circulation working fluid flowing in the circulation flow path.
[3] 前記循環流路は、管路により構成されていることを特徴とする請求項 1又は 2に記 載の磁性対流熱循環ポンプ。 [3] The magnetic convection heat circulation pump according to claim 1 or 2, wherein the circulation flow path is constituted by a pipe line.
[4] 前記磁性流体の磁性体は、平均粒径が 30nm未満であり、二価遷移金属と酸化鉄 の合金であることを特徴とする請求項 1又は 2に記載の磁性対流熱循環ポンプ。 4. The magnetic convection heat circulation pump according to claim 1 or 2, wherein the magnetic substance of the magnetic fluid has an average particle size of less than 30 nm and is an alloy of a divalent transition metal and iron oxide.
[5] 前記磁性流体は、磁性を有するイオン液体若しくは磁性陰イオンと陽イオン力ゝらな る磁性イオン液体であることを特徴とする請求項 1又は 2に記載の磁性対流熱循環ポ ンプ。 5. The magnetic convection heat circulation pump according to claim 1 or 2, wherein the magnetic fluid is a magnetic ionic liquid or a magnetic ionic liquid that has a cation force with a magnetic anion.
[6] 前記磁石は、前記受熱部と放熱部を着脱自在に接続するように配置されて 、ること を特徴とする請求項 1又は 2に記載の磁性対流熱循環ポンプ。  6. The magnetic convection heat circulation pump according to claim 1 or 2, wherein the magnet is disposed so as to detachably connect the heat receiving portion and the heat radiating portion.
[7] 前記受熱部及びマグネチックポンプは、磁場流路を共有していることを特徴とする 請求項 2に記載の磁性対流熱循環ポンプ。  7. The magnetic convection heat circulation pump according to claim 2, wherein the heat receiving part and the magnetic pump share a magnetic field flow path.
[8] 前記受熱部及びマグネチックポンプは、互いに異なる熱伝導率を有する素材で構 成されていることを特徴とする請求項 2に記載の磁性対流熱循環ポンプ。  8. The magnetic convection heat circulation pump according to claim 2, wherein the heat receiving part and the magnetic pump are made of materials having different thermal conductivities.
[9] 前記循環流路又は前記循環流路に配置される磁石の磁性流体と接する面の一部 若しくは全部は、前記磁性流体の磁性体をコーティングして 、る界面活性剤のイオン 特性と同種の界面活性剤でコーティングされていることを特徴とする請求項 1又は 2 に記載の磁性対流熱循環ポンプ。 [9] A part of the surface in contact with the magnetic fluid of the circulation channel or the magnet disposed in the circulation channel The magnetic convection heat circulation according to claim 1 or 2, wherein the magnetic convection thermal circulation according to claim 1 or 2 is coated with a surfactant of the same type as that of the surfactant coated with a magnetic substance of the magnetic fluid. pump.
前記循環流路又は前記循環流路に配置される磁石の磁性流体と接する面の一部 若しくは全部は、撥油性を有するコーティング材でコーティングされて ヽることを特徴 とする請求項 1又は 2に記載の磁性対流熱循環ポンプ。  3. A part or all of the circulation channel or a surface of the magnet disposed in the circulation channel in contact with the magnetic fluid is coated with a coating material having oil repellency. Magnetic convection heat circulation pump as described.
PCT/JP2005/021956 2004-12-03 2005-11-30 Magnetic convection heat circulation pump WO2006059622A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006547961A JP4507207B2 (en) 2004-12-03 2005-11-30 Magnetic convection heat circulation pump
AT05811624T ATE523747T1 (en) 2004-12-03 2005-11-30 HEAT CIRCULATION PUMP WITH MAGNETIC CONVECTION
US11/792,100 US20080264068A1 (en) 2004-12-03 2005-11-30 Magnetic Convection Heat Circulation Pump
EP05811624A EP1832828B1 (en) 2004-12-03 2005-11-30 Magnetic convection heat circulation pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-350757 2004-12-03
JP2004350757 2004-12-03

Publications (1)

Publication Number Publication Date
WO2006059622A1 true WO2006059622A1 (en) 2006-06-08

Family

ID=36565056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021956 WO2006059622A1 (en) 2004-12-03 2005-11-30 Magnetic convection heat circulation pump

Country Status (5)

Country Link
US (1) US20080264068A1 (en)
EP (1) EP1832828B1 (en)
JP (1) JP4507207B2 (en)
AT (1) ATE523747T1 (en)
WO (1) WO2006059622A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576557B (en) * 2014-03-18 2017-04-01 財團法人金屬工業研究發展中心 Adaptable heat exchanger and fabrication method thereof
WO2020208888A1 (en) * 2019-04-12 2020-10-15 パナソニックIpマネジメント株式会社 Magnetic fluid drive device and heat transport system

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20040420A1 (en) * 2004-07-07 2004-10-07 Type S R L METAL CUTTING AND FORMING MACHINE
ITBO20050481A1 (en) 2005-07-19 2007-01-20 Silicon Biosystems S R L METHOD AND APPARATUS FOR THE HANDLING AND / OR IDENTIFICATION OF PARTICLES
ITBO20050643A1 (en) * 2005-10-24 2007-04-25 Si Bio S R L METHOD AND APPARATUS FOR HANDLING PARTICLES IN CONDUCTIVE SOLUTIONS
ITBO20050646A1 (en) * 2005-10-26 2007-04-27 Silicon Biosystem S R L METHOD AND APPARATUS FOR CHARACTERIZATION AND COUNTING OF PARTICLES
ITTO20060226A1 (en) 2006-03-27 2007-09-28 Silicon Biosystem S P A METHOD AND APPARATUS FOR PROCESSING AND OR ANALYSIS AND OR SELECTION OF PARTICLES, IN PARTICULAR BIOLOGICAL PARTICLES
ITTO20070771A1 (en) 2007-10-29 2009-04-30 Silicon Biosystems Spa METHOD AND APPARATUS FOR IDENTIFICATION AND HANDLING OF PARTICLES
US10895575B2 (en) 2008-11-04 2021-01-19 Menarini Silicon Biosystems S.P.A. Method for identification, selection and analysis of tumour cells
IT1391619B1 (en) 2008-11-04 2012-01-11 Silicon Biosystems Spa METHOD FOR THE IDENTIFICATION, SELECTION AND ANALYSIS OF TUMOR CELLS
DE102008058799B4 (en) * 2008-11-24 2012-04-26 Siemens Aktiengesellschaft Method for operating a multi-stage compressor
ES2672366T3 (en) 2009-03-17 2018-06-14 Menarini Silicon Biosystems S.P.A. Microfluidic device for cell isolation
IT1403518B1 (en) 2010-12-22 2013-10-31 Silicon Biosystems Spa MICROFLUID DEVICE FOR PARTICLE HANDLING
CN102128436B (en) * 2011-02-07 2012-07-04 林智勇 Magnetic fluid LED radiating device
CN102128437B (en) * 2011-02-07 2012-10-03 林智勇 LED (light-emitting diode) magnetic fluid radiating device
US8503494B2 (en) 2011-04-05 2013-08-06 Microsoft Corporation Thermal management system
ITTO20110990A1 (en) 2011-10-28 2013-04-29 Silicon Biosystems Spa METHOD AND APPARATUS FOR OPTICAL ANALYSIS OF LOW TEMPERATURE PARTICLES
ITBO20110766A1 (en) 2011-12-28 2013-06-29 Silicon Biosystems Spa DEVICES, EQUIPMENT, KITS AND METHOD FOR THE TREATMENT OF A BIOLOGICAL SAMPLE
US20190214173A1 (en) * 2016-08-04 2019-07-11 Nanyang Technological University An apparatus for transferring heat from a heat source to a heat sink
JP6517768B2 (en) * 2016-10-07 2019-05-22 トヨタ自動車株式会社 Magnetic fluid driving device and magnetic fluid driving method
JP7205970B2 (en) * 2018-12-27 2023-01-17 川崎重工業株式会社 Heat transport system and transportation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415489A (en) * 1990-05-10 1992-01-20 Katsuto Nakatsuka Working medium for heat pipe
JPH11183066A (en) * 1997-12-24 1999-07-06 Toshiba Corp Heat pipe apparatus for heat transport
JP3078605U (en) * 2000-12-27 2001-07-10 敬之 住友 Pipe fitting and faucet-mounted shower device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3051988A (en) * 1957-02-09 1962-09-04 Baermann Max Material with permanent magnetic properties
US4078392A (en) * 1976-12-29 1978-03-14 Borg-Warner Corporation Direct contact heat transfer system using magnetic fluids
JPS61143690A (en) * 1984-12-17 1986-07-01 Sumitomo Electric Ind Ltd Heat pipe
US5603983A (en) * 1986-03-24 1997-02-18 Ensci Inc Process for the production of conductive and magnetic transitin metal oxide coated three dimensional substrates
FR2660919B2 (en) * 1989-10-13 1995-07-28 Mercier Dominique METHOD AND DEVICE FOR MAGNETIC TREATMENT OF FLUID.
JPH0378605U (en) * 1989-12-05 1991-08-09
US4970866A (en) * 1989-12-07 1990-11-20 Sundstrand Corporation Magneto caloric system
US5381664A (en) * 1990-09-28 1995-01-17 The United States Of America, As Represented By The Secretary Of Commerce Nanocomposite material for magnetic refrigeration and superparamagnetic systems using the same
US5357756A (en) * 1993-09-23 1994-10-25 Martin Marietta Energy Systems, Inc. Bipolar pulse field for magnetic refrigeration
US5441102A (en) * 1994-01-26 1995-08-15 Sun Microsystems, Inc. Heat exchanger for electronic equipment
US5444983A (en) * 1994-02-28 1995-08-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Magnetic heat pump flow director
US5705018A (en) * 1995-12-13 1998-01-06 Hartley; Frank T. Micromachined peristaltic pump
US5763951A (en) * 1996-07-22 1998-06-09 Northrop Grumman Corporation Non-mechanical magnetic pump for liquid cooling
JP2003006833A (en) * 2001-06-26 2003-01-10 Fuji Photo Film Co Ltd Magnetic tape
US7074175B2 (en) * 2001-07-25 2006-07-11 Erik Schroeder Handy Thermotherapy via targeted delivery of nanoscale magnetic particles
JP2003240467A (en) * 2002-02-15 2003-08-27 Showa Denko Kk Magnetic fluid drive device
JP2004274942A (en) * 2003-03-11 2004-09-30 Ind Technol Res Inst Device and method for magnetic-current power generation and cooling
US7423874B2 (en) * 2005-09-06 2008-09-09 Sun Microsystems, Inc. Magneto-hydrodynamic heat sink

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415489A (en) * 1990-05-10 1992-01-20 Katsuto Nakatsuka Working medium for heat pipe
JPH11183066A (en) * 1997-12-24 1999-07-06 Toshiba Corp Heat pipe apparatus for heat transport
JP3078605U (en) * 2000-12-27 2001-07-10 敬之 住友 Pipe fitting and faucet-mounted shower device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576557B (en) * 2014-03-18 2017-04-01 財團法人金屬工業研究發展中心 Adaptable heat exchanger and fabrication method thereof
WO2020208888A1 (en) * 2019-04-12 2020-10-15 パナソニックIpマネジメント株式会社 Magnetic fluid drive device and heat transport system

Also Published As

Publication number Publication date
EP1832828A1 (en) 2007-09-12
JP4507207B2 (en) 2010-07-21
US20080264068A1 (en) 2008-10-30
EP1832828B1 (en) 2011-09-07
JPWO2006059622A1 (en) 2008-06-05
EP1832828A4 (en) 2010-08-04
ATE523747T1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
WO2006059622A1 (en) Magnetic convection heat circulation pump
US7764499B2 (en) Electromagnetically-actuated micropump for liquid metal alloy
US9534592B2 (en) Actuator, micropump, and electronic equipment
US7104313B2 (en) Apparatus for using fluid laden with nanoparticles for application in electronic cooling
US9554487B2 (en) Microchannel heat transfer with liquid metals
US20060278373A1 (en) Microchannel cooling device with magnetocaloric pumping
CN105578850B (en) The magnetic fluid microchannel heat control system of microsatellite unit
JP4336902B2 (en) Forced convection heat transfer device
JP2014134335A (en) Magnetic fluid drive device, heat transport device using the same, and power generation device
US20100124022A1 (en) Thermoelectric cooling apparatus and method for cooling an integrated circuit
US11056413B2 (en) Combined inductor and heat transfer device
JP2008220003A (en) Linear motor
CN103208904B (en) A kind of liquid metal electromagnetic pump
JP2004282987A (en) Fluid drive unit and heat transport system
WO2020208888A1 (en) Magnetic fluid drive device and heat transport system
CN113923950A (en) Device and method for cooling high-heat-flux-density device by using magnetic field and micro-channel
WO2009106074A1 (en) An electromagnetic pump
JP7362454B2 (en) equipment, heat transport equipment, and electronic equipment
CN219181921U (en) Heat dissipation system and electric equipment
CN101453860A (en) Thermal conduction device, thermal conduction pipe and thermal conduction method
US20230059441A1 (en) Magnetic fluid drive device and heat transport system
JP7012404B1 (en) Cooling device for electronic components
CN219068715U (en) Device for cooling large heat flux device by using magnetic field
JP2009114894A (en) Linear electromagnetic pump and heat exchanger
CN114501937B (en) Magnetic fluid self-circulation heat dissipation system based on marangoni effect

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006547961

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11792100

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005811624

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005811624

Country of ref document: EP