JPH0415489A - Working medium for heat pipe - Google Patents

Working medium for heat pipe

Info

Publication number
JPH0415489A
JPH0415489A JP11872790A JP11872790A JPH0415489A JP H0415489 A JPH0415489 A JP H0415489A JP 11872790 A JP11872790 A JP 11872790A JP 11872790 A JP11872790 A JP 11872790A JP H0415489 A JPH0415489 A JP H0415489A
Authority
JP
Japan
Prior art keywords
heat
solvent
magnetic fluid
boiling point
low boiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11872790A
Other languages
Japanese (ja)
Inventor
Katsuto Nakatsuka
勝人 中塚
Takao Yamauchi
隆夫 山内
Kazuya Shimizu
和也 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP11872790A priority Critical patent/JPH0415489A/en
Publication of JPH0415489A publication Critical patent/JPH0415489A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F23/00Features relating to the use of intermediate heat-exchange materials, e.g. selection of compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To reduce a heat loss and provide a fast transferring of high amount of heating calorie by a method wherein working medium to be applied in a heat pipe is a magnetic fluid dispersed into mixed solvent containing mineral oil system and/or synthetic oil system solvent and solvent of low boiling point having ferromagnetic fine particles. CONSTITUTION:Magnetic fluid 11 is enclosed in a closed circuit 31 for a heat pipe to which a magnet 2 is adjacent. A solar heat heating device receives a solar heat R at a heat absorbing panel 4 acting as a heat receiving part so as to supply a heating calorie to the fluid 11 in the closed circuit. Solvent of low boiling point in the fluid 11 evaporates in the heat pipe, condenses at a heat radiation part 5 and is liquified so as to discharge an evaporation latent heat. This heating calorie can be recovered and utilized as hot air. In this case, the working medium has a low heat loss by using the magnetic fluid containing solvent of low boiling point with a high evaporating latent heat, and can transfer a large amount of heat, so that it is possible to increase a moving amount of heating calorie per unit time.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、優れたエネルギー変換システム、特に熱交換
システムを提供するものであり、詳しくは、ヒートパイ
プの作動媒体として蒸発潜熱の高い低佛点溶剤を含有す
る磁性流体を使用することを特徴とするヒートパイプを
利用した熱交換方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides an excellent energy conversion system, particularly a heat exchange system. The present invention relates to a heat exchange method using a heat pipe, which uses a magnetic fluid containing a point solvent.

〈従来の技術〉 磁性流体は、粒子径およそ10r+mはどの非常に微細
な強磁性体の粒子な有機溶媒または水に安定分散させた
ものてあり、重力場や通常の遠心場あるいは磁場の中に
おいても粒子の凝集沈降か起こることがなく、液体自身
が強磁性を有しているような挙動を示すものである。
<Prior art> Magnetic fluid is made up of very fine ferromagnetic particles with a particle size of approximately 10r+m that are stably dispersed in an organic solvent or water, and cannot be used in a gravitational field, a normal centrifugal field, or a magnetic field. Also, particles do not coagulate or settle, and the liquid itself behaves as if it were ferromagnetic.

」−記した磁性流体の製造方法としては、例えば湿式合
成されたマクネタイト等の強磁性金属酸化物の氷懸濁液
にオレイン酸等の不飽和脂肪酸の塩基性塩を添加し、強
磁性金属酸化物の微粒子に不飽和脂肪酸イオンを吸着さ
せて凝集させ、この凝集物を油類に分散させることによ
って油ベースの磁性流体とする方法(特公昭53−17
118号公報)、同様に得られた凝集物を水中におき、
炭化水素鎖の炭素数か9以上の陰イオン型あるいは非イ
オン型界面活性剤を加えて水ベースの磁性流体とする方
法(特公昭54−40069号公報)などが知られてい
る。
” - As a method for producing the magnetic fluid described above, for example, a basic salt of an unsaturated fatty acid such as oleic acid is added to an ice suspension of a wet-synthesized ferromagnetic metal oxide such as manetite, and the ferromagnetic metal oxide is A method of making an oil-based magnetic fluid by adsorbing and aggregating unsaturated fatty acid ions on fine particles of substances and dispersing the agglomerates in oil (Japanese Patent Publication No. 53-17
No. 118), the aggregate obtained in the same manner was placed in water,
A method is known in which a water-based magnetic fluid is prepared by adding an anionic or nonionic surfactant having 9 or more carbon atoms in the hydrocarbon chain (Japanese Patent Publication No. 40069/1983).

上記したような磁性流体の製造方法は、完成度の高いも
のとして供されており、得られた磁性流体は、既に回転
軸のシール、比重差選別、各種タンバー、加速度センサ
ー、傾斜センサー等にまて応用分野か拡大されている。
The above-mentioned method for manufacturing magnetic fluid is provided as a highly complete method, and the obtained magnetic fluid has already been used for seals on rotating shafts, specific gravity selection, various tambours, acceleration sensors, tilt sensors, etc. The field of application has been expanded.

一方、強磁性流体微粒子の分散液である磁性流体には、
固有のキュリー温度以下では温度の上昇と共に、磁化か
低下する性質かある。この性質を利用したものとして、
熱エネルギーから運動エネルギーへの変換システムか提
案されている。これは、例えば温度差のある閉流路に磁
場を印加しておくと、流路内の磁性流体か非平衡力を受
けて自発的に循環するようなシステムである。このエネ
ルギー変換システムの原理を示す第1図において、まず
冷たい磁性流体のある部分Aを出発点とすると、Aの磁
性流体は磁石の磁場に引かれ、磁性流体ベルヌイ方程式
にしたかって圧力か上昇する。次に磁性流体か磁場内に
ある部分Bか加熱されると、Bの磁性流体の磁化は減少
し、圧力はAより小さくなる。この磁場内ての圧力の差
か流体を矢印の方向に動かず。
On the other hand, magnetic fluid, which is a dispersion of fine ferromagnetic fluid particles, has
Below the specific Curie temperature, magnetization tends to decrease as the temperature rises. Taking advantage of this property,
A system for converting thermal energy into kinetic energy has been proposed. This is a system in which, for example, when a magnetic field is applied to a closed flow path with a temperature difference, the magnetic fluid within the flow path spontaneously circulates due to the nonequilibrium force. In Figure 1, which shows the principle of this energy conversion system, when we start from a part A with a cold magnetic fluid, the magnetic fluid at A is attracted by the magnetic field of the magnet, and the pressure increases according to the magnetic fluid Bernoulli equation. . When the ferrofluid or part B, which is within the magnetic field, is then heated, the magnetization of the ferrofluid at B decreases and the pressure becomes less than that at A. Due to the difference in pressure within this magnetic field, the fluid does not move in the direction of the arrow.

このエネルギー変換システムにおいて、磁性流体を駆動
する力は、温度差のある2点、A、Bにおける磁性流体
の磁化変化率に比例することか明らかにされているが、
このようなシステムは、一般に磁性流体そのものの耐熱
性の関係」−1室温付近て使用されるため、磁性流体の
室温付近における磁化の温度依存性か大きいことか必要
である。
In this energy conversion system, it has been clarified that the force that drives the magnetic fluid is proportional to the rate of change in magnetization of the magnetic fluid at two points A and B, where there is a temperature difference.
Such a system is generally used near room temperature due to the heat resistance of the magnetic fluid itself, so it is necessary that the temperature dependence of the magnetization of the magnetic fluid near room temperature is large.

前記したような製造方法から得られるようなマクネタイ
トを磁性粉末とする磁性流体は、このエネルギー変換シ
ステムに対しては磁化の温度依存性か低過ぎるために使
用することかてきない。
A magnetic fluid containing manetite as a magnetic powder obtained by the above-mentioned manufacturing method cannot be used for this energy conversion system because the temperature dependence of magnetization is too low.

そこで、このようなエネルギー変換システムに使用する
ことかできるような磁化変化率の大きいフェライトとし
ては、特開平1−165104号公報に提案されたマン
ガン−亜鉛(Mn−Zn)系フェライトを磁性粉末とす
る磁性流体かある。
Therefore, as a ferrite with a large rate of change in magnetization that can be used in such an energy conversion system, manganese-zinc (Mn-Zn) based ferrite proposed in JP-A-1-165104 has been proposed as a magnetic powder. There are magnetic fluids that do this.

〈発明か解決しようとする課題〉 しかしなから、従来の400°C以−にのキュリー点を
もつマタネタイ1〜あるいはMn−Zn系フェライトを
磁性粉末とする磁性流体は、磁化の温度依存性か十分て
なく、例えば第2図にマクネタイ1〜を分散させたケロ
シンヘースの磁性流体の磁化と温度の関係を示す曲線(
以下、熱磁曲線という)、第3図に上記磁性流体からマ
クネタイ1へ粉末のみを分離して測定した熱磁曲線を示
したが、これらから明らかなようにマクネタイト粉末の
0°Cと100°Cにおける4 x 105A#nの磁
場中の磁化変化率Δσは、僅か0.03Tに過ぎない。
<Invention or Problem to be Solved> However, the conventional magnetic fluids that have a Curie point of 400°C or higher or Mn-Zn ferrite as magnetic powder have a temperature dependence of magnetization. For example, Fig. 2 shows a curve (
Fig. 3 shows the thermomagnetic curve measured by separating only the powder from the magnetic fluid into Macnetite 1, and as is clear from these, it is clear that the temperature of the manetite powder at 0°C and 100° The magnetization change rate Δσ in a magnetic field of 4×105A#n in C is only 0.03T.

また、」−記したマクネタイ1へを分散したケロシンヘ
ースの磁性流体の磁化の温度依存性は、3.2X 10
5Δ/■の磁界を作用させ、0〜100°Cの範囲て、
3 x 10 ’T10Cに過ぎないのである。
Furthermore, the temperature dependence of the magnetization of the kerosene hese magnetic fluid dispersed in the Macnetai 1 described in "-" is 3.2X 10
Apply a magnetic field of 5Δ/■ in the range of 0 to 100°C,
It is only 3 x 10'T10C.

さらに、Mn−Zn系フェライトを粒径10nm程度の
微粒子とし、該微粒子を磁性粉末として磁性流体を作製
した場合、前記と同様な条件(3,2x 105A/m
の磁界、0〜100°Cの温度範囲)における磁化の温
度依存性は、約1 x ]0−’T/’Cに過ぎないも
のてあった。
Furthermore, when Mn-Zn ferrite is made into fine particles with a particle size of about 10 nm and the fine particles are used as magnetic powder to produce a magnetic fluid, the same conditions as above (3.2 x 105 A/m
The temperature dependence of magnetization in a magnetic field of 0 to 100° C. was only about 1 x ]0-'T/'C.

従って、従来の磁性流体では前記したようなエネルギー
変換システムに利用することかできないため、室温付近
において極めて大きな磁化の温度依存性を有し、なお且
つ磁化の絶対値も大きい磁性流体、所謂感温磁性流体か
強く要望されているが、現在のところ、高性能な感温磁
性流体は見い出されていない。
Therefore, since conventional magnetic fluids cannot be used in energy conversion systems such as those described above, magnetic fluids that have an extremely large temperature dependence of magnetization near room temperature and a large absolute value of magnetization, so-called temperature-sensitive fluids, are used. Although there is a strong demand for magnetic fluid, no high-performance temperature-sensitive magnetic fluid has been found so far.

〈課題を解決するための手段〉 本発明は上記に鑑み提案されたもので、受熱部及び放熱
部、磁石を配置したヒートパイプに使用する作動媒体が
、強磁性微粒子を鉱油系溶媒及び/又は合成油系溶媒と
低沸点溶媒とからなる混合溶媒に分散してなる磁性流体
であることを特徴とするヒートパイプ用作動媒体に関す
るものである。
<Means for Solving the Problems> The present invention has been proposed in view of the above, and the working medium used in the heat receiving section, the heat dissipating section, and the heat pipe in which the magnets are disposed contains ferromagnetic fine particles in a mineral oil-based solvent and/or The present invention relates to a working medium for a heat pipe, characterized in that it is a magnetic fluid dispersed in a mixed solvent consisting of a synthetic oil-based solvent and a low boiling point solvent.

本発明は、」−記したようにヒートパイプの作動媒体と
して使用する磁性流体において、蒸発潜熱か大きく、情
意の低い溶媒を分散溶媒とすることを特徴とするもので
ある。
As mentioned above, the present invention is characterized in that in a magnetic fluid used as a working medium of a heat pipe, a dispersion solvent is a solvent with a high latent heat of vaporization and low sensitivity.

」−記した本発明に使用する強磁性微粒子は、湿式法或
いは乾式法、或いはその他の方法によって得られる何れ
の強磁性微粒子をも使用することかできる。
As the ferromagnetic fine particles used in the present invention described above, any ferromagnetic fine particles obtained by a wet method, a dry method, or other methods can be used.

また、本発明に使用される分散溶媒は、鉱油系溶媒及び
/又は合成油系溶媒と、低沸点溶媒とからなる混合溶媒
てあり、鉱油系溶媒、合成油系溶媒は、通常の油ベース
の磁性流体に使用される分散溶媒てあり、高磁性微粒子
を安定に分散することのてきる溶媒であればいかなるも
のても使用することかてきる。
Further, the dispersion solvent used in the present invention is a mixed solvent consisting of a mineral oil solvent and/or a synthetic oil solvent and a low boiling point solvent, and the mineral oil solvent and the synthetic oil solvent are ordinary oil-based solvents. The dispersion solvent used in the magnetic fluid is any solvent that can stably disperse highly magnetic fine particles.

」−記した本発明に使用される低沸点溶媒は、蒸’1I
PPi熱か大きく、洟点か低い溶媒であるが、使用する
ピー1〜パイプの温度条件に応して選定されるものであ
る。例えば、沸点か常温以下の低沸点溶媒としては、ノ
ルマルブタン、フルオロジクロルメタン、フルオロトリ
クロルメタン、塩化エチル、臭化メチル、テトラメチル
シリコン等かあり、′$1点か常温から70°C程度ま
ての低沸点溶媒としては、ノルマルペンタン、2−ペン
テン、インヘキサン、ノルマルヘキサン、塩化メチレン
、塩化エチリデン、塩化ビニリデン、1.2−ジクロル
エチレン、塩化イソプロピル、塩化アリル、クロロフォ
ルム、臭化エチル、1〜リクロロフロオロエタン等かあ
り、佛点か709Cから100’C程度までの低沸点溶
媒としては、ノルマルペンタン、シクロヘキサン、メチ
ルシクロヘキサン、ベンゼン、四塩化炭素、塩化エチレ
ン、1,1.1−トリクロルエタン、トリクロルエチレ
ン、1,2−ジクロルプロパン、塩化メチル、ヘキサメ
チルジシロキサン等かある。
”-The low boiling point solvent used in the present invention is vaporized '1I
PPi is a solvent with high heat and low temperature, which is selected depending on the temperature conditions of the pipes used. For example, low boiling point solvents with a boiling point below room temperature include n-butane, fluorodichloromethane, fluorotrichloromethane, ethyl chloride, methyl bromide, and tetramethyl silicone. Examples of low boiling point solvents include normal pentane, 2-pentene, inhexane, normal hexane, methylene chloride, ethylidene chloride, vinylidene chloride, 1,2-dichloroethylene, isopropyl chloride, allyl chloride, chloroform, ethyl bromide, ~lichlorofluoroethane, etc., and low boiling point solvents from the Buddha point of 709C to about 100'C include n-pentane, cyclohexane, methylcyclohexane, benzene, carbon tetrachloride, ethylene chloride, 1,1.1- Examples include trichloroethane, trichloroethylene, 1,2-dichloropropane, methyl chloride, and hexamethyldisiloxane.

上記した低沸点溶剤のうち、特に効果的な溶剤としては
、常温以下の梱1点を有するものでは塩化エチル、臭化
メチル、沸点か常温から70’Cのものでは2−ペンテ
ン、臭化エチル、肩点か7o〜100°Cのものてはベ
ンセン、ヘキサメチルジシロキサンか挙げられる。
Among the above-mentioned low boiling point solvents, particularly effective solvents include ethyl chloride and methyl bromide for those with a boiling point below room temperature, and 2-pentene and ethyl bromide for those with a boiling point of between room temperature and 70'C. Examples of those with a temperature of 7°C to 100°C include benzene and hexamethyldisiloxane.

上記した各低沸点溶剤は、通常の磁性流体の分散溶媒と
して使用される鉱油系溶媒や合成油系溶媒、例えばケロ
シン、アイコシルナフタレン、ポリ−α−オレフィンな
どとはソいかなる割合においても十分に溶解し合う性質
を有するものであり、さらには、その低沸点溶剤単独で
も表面処理された高磁性微粒子を安定に分散することか
てきるものである。
Each of the above-mentioned low-boiling point solvents is sufficiently different from mineral oil-based solvents and synthetic oil-based solvents used as dispersion solvents for ordinary magnetic fluids, such as kerosene, icosylnaphthalene, and poly-α-olefin, in any proportion. They have the property of dissolving each other, and furthermore, the surface-treated highly magnetic fine particles can be stably dispersed even with the low boiling point solvent alone.

本発明における低沸点溶剤の作用を第1図により説明す
ると、ヒートパイプ中の磁性流体は、閉回路中の受熱部
Bにおいて外部より熱を受け、磁性流体の分散溶媒のう
ちの低沸点溶剤か蒸発し、蒸発した低沸点溶剤は放熱部
Cにおいて放熱して凝縮し、磁性流体の分散溶媒に戻る
。すなわち、受熱部Bにおいて受けた熱量は、低沸点溶
剤を器かして蒸発潜熱として放熱部Cまて移動し、気化
した低沸点溶剤か凝集して潜熱を放出するので、熱量を
効率良く移動して回収・利用することができるのである
The effect of the low boiling point solvent in the present invention will be explained with reference to FIG. The evaporated low boiling point solvent radiates heat in the heat radiating section C, condenses, and returns to the dispersion solvent of the magnetic fluid. In other words, the amount of heat received in the heat receiving section B is transferred to the heat dissipating section C as latent heat of vaporization through the low boiling point solvent, and the vaporized low boiling point solvent condenses and releases the latent heat, so the amount of heat is transferred efficiently. It can then be collected and used.

したかって、本発明における低沸点溶剤は、蒸気圧か小
さく、蒸発潜熱か大きく、しかも、蒸発時、或いは凝縮
時、或いは蒸発と凝縮との繰り返しにおいて、磁性流体
の安定性(強磁性微粒子の分散安定性)を損なうことか
ないものであることか必要とされる。
Therefore, the low boiling point solvent used in the present invention has a low vapor pressure, a high latent heat of vaporization, and has a high stability of magnetic fluid (dispersion of ferromagnetic particles) during evaporation, condensation, or repeated evaporation and condensation. (Stability) is required.

尚、磁性流体中の分散溶媒の割合は、一般に、40〜7
0%程度であるが、本発明における磁性流体の分散溶媒
中に含有される低沸点溶剤の割合は、30〜50%か良
好である。低沸点溶剤の割合か30%以下であると熱の
移動量か低下し、50%以」−になると蒸発と凝縮との
繰り返しにおいて磁性流体の安定性か損なわれることか
ある。
Incidentally, the proportion of the dispersion solvent in the magnetic fluid is generally 40 to 7.
However, the proportion of the low boiling point solvent contained in the dispersion solvent of the magnetic fluid in the present invention is preferably 30 to 50%. If the proportion of the low boiling point solvent is less than 30%, the amount of heat transferred decreases, and if it exceeds 50%, the stability of the magnetic fluid may be impaired during repeated evaporation and condensation.

」−記したような磁性流体をピー1〜パイプの作動媒体
とし、該ヒートパイプに臨むように受熱部、放熱部、磁
石を配置することにより構成される熱交換システムは、
極めて多種の分野及び用途に利用することかてきるもの
であり、例えば、常温以下の沸点を有する低沸点溶剤を
使用する熱交換システムの利用例としては、道路表面の
積雪の融解、トンネル排水管の凍結の防止などを挙げる
ことかてき、また、常温から70 ’C程度まての沸点
を有する低沸点溶剤を使用する熱交換システムの利用例
としては、冷暖房用受熱パネル、モーター等の回転体の
冷却などを挙げることかでき、さらには、70〜100
°Cの沸点を有する低沸点溶剤を使用する熱交換システ
ムの利用例としては、ボイラの排熱の回収、工業炉のエ
アヒーター等を挙げることかてきる。
- A heat exchange system configured by using a magnetic fluid as described above as the working medium of the P1 pipe and arranging a heat receiving part, a heat radiating part, and a magnet so as to face the heat pipe,
It can be used in a wide variety of fields and applications. For example, heat exchange systems that use low boiling point solvents with a boiling point below room temperature are used to melt snow on road surfaces, tunnel drainage pipes, etc. In addition, examples of the use of heat exchange systems that use low boiling point solvents with boiling points ranging from room temperature to about 70'C include heat receiving panels for air conditioning and heating, rotating bodies such as motors, etc. cooling, and furthermore, 70 to 100
Examples of uses of heat exchange systems using low boiling point solvents having a boiling point of .degree. C. include recovery of waste heat from boilers, air heaters for industrial furnaces, and the like.

」−記したように、本発明の作動媒体は、使用する用途
に応した温度範囲から選定される低沸点溶剤を使用する
ものてあり、該低酬点溶剤を含有する磁性流体をヒート
パイプの作動流体として使用することにより、熱損失か
少なく、効率良く熱量を移動することかできるものであ
る。
- As mentioned above, the working fluid of the present invention uses a low boiling point solvent selected from a temperature range suitable for the intended use, and the magnetic fluid containing the low boiling point solvent is used in a heat pipe. By using it as a working fluid, heat loss can be reduced and heat can be transferred efficiently.

〈実施例〉 実施例1 以下の配合の磁性流体1.を作製し、第4図に示すよう
な磁石2か臨むヒートバイブの閉回路3゜に封入した。
<Example> Example 1 Magnetic fluid with the following composition 1. was prepared and sealed in a closed circuit 3° of a heat vibrator facing the magnet 2 as shown in FIG.

図示した太陽熱暖房器は、太陽熱エネルギーRを受熱部
である吸熱パネル4に受け、閉回路32中の磁性流体1
.に熱量を供給する。
The illustrated solar heater receives solar thermal energy R through a heat absorption panel 4 which is a heat receiving section, and receives magnetic fluid 1 in a closed circuit 32.
.. supplies heat to.

熱量を供給された磁性流体1、中の低沸点溶剤である2
−ペンテンは、ヒートパイプ中で蒸発し、フィンなどを
設けて表面積を大きくして形成される放熱器5において
凝集・液化し、蒸発潜熱を放出する。放出された熱量は
、ファン6により温風として回収・利用することかてき
る。
A magnetic fluid 1 supplied with heat, a low boiling point solvent 2
- Pentene evaporates in the heat pipe, condenses and liquefies in the heat radiator 5, which is formed by providing fins or the like to increase the surface area, and releases latent heat of vaporization. The released heat can be recovered and used as hot air by the fan 6.

(磁性流体11の配合) 強磁性粒子:湿式法て得られる50〜200人の粒径な
有するオレイン酸て表面処理 されたMn−Zn系フェライト40 wt%溶剤(1)
:アイコシルナフタリン   40 wt%溶剤(2)
[低沸点溶剤1 :2−ペンテン20 wt%尚、」二
部した磁性流体11の製造方法は、一般の磁性流体の製
法に準じてアイコシルナフタリンベースの磁性流体を作
製した後、これに上記割合になるように2−ペンテンを
加え、ホモジナイザーて均一に混合して作製するもので
ある。
(Composition of magnetic fluid 11) Ferromagnetic particles: Mn-Zn ferrite surface-treated with oleic acid having a particle size of 50 to 200 obtained by wet method 40 wt% solvent (1)
: Icosylnaphthalene 40 wt% solvent (2)
[Low boiling point solvent 1: 2-pentene 20 wt%] The method for manufacturing the two-part magnetic fluid 11 is to prepare an icosylnaphthalene-based magnetic fluid according to a general manufacturing method for magnetic fluid, and then add the above-mentioned method to the manufacturing method. It is prepared by adding 2-pentene in the same proportions and mixing uniformly with a homogenizer.

図示した太陽熱暖房器の室内暖房効率は、従来の磁性流
体を使用した場合の1.8倍であった。
The room heating efficiency of the illustrated solar heater was 1.8 times higher than that using conventional magnetic fluid.

実施例2 以下の配合の磁性流体12を作製し、第5図に示ずよう
な磁石2が臨むビー1〜パイプの閉回路32に封入した
。図示した融雪システムのヒートパイプは、地中に縦方
向に埋設し、ヒー1へパイプの」二部を地表面7に接近
させ、下部を地中深くに位置させた構成であるから、地
熱を受熱部である閉回路32の下部に受け、閉回路32
中の磁性流体1□に熱量を供給する。熱量を供給された
磁性流体12中の低沸点溶剤であるフルオロジクロルメ
タンは、ヒー1へパイプ中で蒸発し、放熱部である閉回
路3□の」一部において凝集・液化し、蒸発潜熱を放出
する。放出された熱量は、地表面7へ伝熱され、積雪を
融解することかてきる。
Example 2 A magnetic fluid 12 having the following composition was prepared and sealed in a closed circuit 32 from the pipe 1 to the pipe facing the magnet 2 as shown in FIG. The heat pipe of the illustrated snow melting system is buried vertically in the ground, with the second part of the pipe to heat 1 close to the ground surface 7, and the lower part located deep underground. The closed circuit 32 is received at the lower part of the closed circuit 32 which is a heat receiving part.
Heat is supplied to the magnetic fluid 1□ inside. Fluorodichloromethane, a low boiling point solvent in the magnetic fluid 12 supplied with heat, evaporates in the pipe to the heater 1, condenses and liquefies in a part of the closed circuit 3, which is the heat dissipation part, and releases latent heat of vaporization. do. The released heat is transferred to the ground surface 7 and melts the snow.

(磁性流体12の配合) 強磁性粒子:湿式法て得られる50〜200人の粒径を
有するオレイン酸て表面処理 されたMn−Zn系フェライト45 wt%溶剤(1)
:ケロシン        40 wt%溶剤(2)[
低佛点溶斉J]  : フルオロジクロルメタン  1
5  wt%尚、−J二部した磁性流体12の製造方法
は、一般の磁性流体の製法に準じてケロシンベースの磁
性流体を作製した後、これに上記割合になるようにフル
オロジクロルメタンを加え、オートクレーフ中で均一に
混合して作製するものである。
(Composition of magnetic fluid 12) Ferromagnetic particles: Mn-Zn ferrite surface-treated with oleic acid having a particle size of 50 to 200 particles obtained by wet method 45 wt% solvent (1)
: Kerosene 40 wt% solvent (2) [
Low Buddha point dissolution temperature J]: Fluorodichloromethane 1
5 wt% The method for manufacturing the magnetic fluid 12 containing two parts of -J is to prepare a kerosene-based magnetic fluid according to the manufacturing method of general magnetic fluids, and then add fluorodichloromethane to the above ratio. It is produced by uniformly mixing in an autoclave.

図示した地表面の融雪効率は、従来の磁性流体を使用し
た場合の1.5倍てあった。
The snow melting efficiency on the ground surface shown in the figure was 1.5 times higher than when using conventional magnetic fluid.

実施例3 以下の配合の磁性流体13を作製し、第6図に示ずよう
な磁石2が臨むヒートパイプの閉回路33に封入した。
Example 3 A magnetic fluid 13 having the following composition was prepared and sealed in a closed circuit 33 of a heat pipe facing a magnet 2 as shown in FIG.

図示した排熱回収式暖房器は、排熱を排ガス流路を設け
た受熱部8に受け、閉回路33中の磁性流体13に熱量
を供給する。熱量を供給された磁性流体13中の低沸点
溶剤であるヘキサメチルジシロキサンは、ヒートパイプ
中て蒸発し、フィンなどを設けて表面積を大きくして形
成される放熱器5において凝集・液化し、蒸発潜熱を放
出する。放出された熱量は、ファン6により温風として
回収・利用することかてきる。
The illustrated exhaust heat recovery type heater receives exhaust heat in a heat receiving section 8 provided with an exhaust gas flow path, and supplies the amount of heat to the magnetic fluid 13 in the closed circuit 33. Hexamethyldisiloxane, which is a low boiling point solvent in the magnetic fluid 13 supplied with heat, evaporates in the heat pipe, condenses and liquefies in the radiator 5 formed by increasing the surface area by providing fins, etc. Releases latent heat of vaporization. The released heat can be recovered and used as hot air by the fan 6.

(磁性流体13の配合) 強磁性粒子:湿式法て得られる50〜200人の粒径を
有するオレイン酸で表面処理 されたMn−Zn系フェライト 40 wt%溶剤(1
):α−オレフィン     45 wt%溶剤(2)
[低沸点溶剤1  : ヘキサメチルジシロキサン 1
5  wt%尚、−上記した磁性流体13の製造方法は
、一般の磁性流体の製法に準してα−オレフィンベース
の磁性流体を作製した後、これに」−記割合になるよう
にヘキサメチルジシロキサンを加え、ホモジナイザーて
均一に混合して作製するものである。
(Composition of magnetic fluid 13) Ferromagnetic particles: Mn-Zn ferrite surface-treated with oleic acid having a particle size of 50 to 200 particles obtained by wet method 40 wt% solvent (1
): α-olefin 45 wt% solvent (2)
[Low boiling point solvent 1: Hexamethyldisiloxane 1
5 wt% Furthermore, in the manufacturing method of the magnetic fluid 13 described above, an α-olefin-based magnetic fluid is prepared according to the manufacturing method of a general magnetic fluid, and then hexamethyl is added to the magnetic fluid at the proportions shown in the figure. It is made by adding disiloxane and mixing it uniformly using a homogenizer.

図示しだ捕熱回収式暖房器の熱交換効率は、従来の磁性
流体を使用した場合の2倍てあった。
The heat exchange efficiency of the heat capture and recovery heater shown in the figure was twice that of a conventional magnetic fluid.

〈発明の効果〉 以」二説明したように、本発明の作動媒体は、蒸発潜熱
の高い低沸点溶剤を含有する磁性流体をヒートパイプの
作動流体として使用することにより、従来の磁性流体を
作動媒体として使用する場合に比べ、熱損失か少なく、
迅速に且つ多量の熱量を移動することかてきるのて、単
位時間当りの移動熱量を増大することかできる。
<Effects of the Invention> As explained below, the working fluid of the present invention is capable of operating a conventional magnetic fluid by using a magnetic fluid containing a low boiling point solvent with a high latent heat of vaporization as the working fluid of a heat pipe. Less heat loss than when used as a medium
By quickly transferring a large amount of heat, it is possible to increase the amount of heat transferred per unit time.

また、本発明の作動媒体は、用途に適応する温度範囲よ
り、使用する低沸点溶剤を選定して熱交換システムを作
製することかてきるので、極めて多種の分野および用途
に適用することかできるものである。
Furthermore, the working medium of the present invention can be applied to a wide variety of fields and uses, since it is possible to create a heat exchange system by selecting a low boiling point solvent to be used based on the temperature range suitable for the application. It is something.

さらに、本発明は、特殊な装置を必要とすることなく、
簡易な構成であるため、設計および設置か極めて容易で
ある。
Furthermore, the present invention does not require special equipment;
Since it has a simple configuration, it is extremely easy to design and install.

したかって、本発明は、極めて実用性の高いエネルギー
変換システムを提供するものてあり、種々の応用および
発展を期待することがてきるものである。
Therefore, the present invention provides an extremely practical energy conversion system, and can be expected to have various applications and developments.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図は磁性流
体を使用するエネルギー変換システムの原理を示す概念
図、第2図はマグネタイトを分散させたケロシンベース
の磁性流体の熱磁曲線、第3図はマクネタイト粉末の熱
磁曲線、第4図は本発明を利用した太陽熱暖房器の概略
説明図、第5図は本発明を利用した融雪システムの概略
説明図、第6図は本発明を利用した排熱回収式暖房器の
概略説明図である。 温!(0c)
The drawings show one embodiment of the present invention; Fig. 1 is a conceptual diagram showing the principle of an energy conversion system using a magnetic fluid, and Fig. 2 is a thermomagnetic curve of a kerosene-based magnetic fluid in which magnetite is dispersed. , Fig. 3 is a thermomagnetic curve of manetite powder, Fig. 4 is a schematic explanatory diagram of a solar heater using the present invention, Fig. 5 is a schematic explanatory diagram of a snow melting system using the present invention, and Fig. 6 is a schematic explanatory diagram of a solar heater using the present invention. FIG. 1 is a schematic explanatory diagram of an exhaust heat recovery type heater using the invention. Warm! (0c)

Claims (1)

【特許請求の範囲】[Claims] 受熱部及び放熱部、磁石を配置したヒートパイプに使用
する作動媒体が、強磁性微粒子を鉱油系溶媒及び/又は
合成油系溶媒と低沸点溶媒とからなる混合溶媒に分散し
てなる磁性流体であることを特徴とするヒートパイプ用
作動媒体。
The working medium used in the heat receiving section, the heat dissipating section, and the heat pipe in which the magnets are arranged is a magnetic fluid made by dispersing ferromagnetic fine particles in a mixed solvent consisting of a mineral oil-based solvent and/or a synthetic oil-based solvent and a low boiling point solvent. A working medium for a heat pipe, characterized in that:
JP11872790A 1990-05-10 1990-05-10 Working medium for heat pipe Pending JPH0415489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11872790A JPH0415489A (en) 1990-05-10 1990-05-10 Working medium for heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11872790A JPH0415489A (en) 1990-05-10 1990-05-10 Working medium for heat pipe

Publications (1)

Publication Number Publication Date
JPH0415489A true JPH0415489A (en) 1992-01-20

Family

ID=14743587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11872790A Pending JPH0415489A (en) 1990-05-10 1990-05-10 Working medium for heat pipe

Country Status (1)

Country Link
JP (1) JPH0415489A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240467A (en) * 2002-02-15 2003-08-27 Showa Denko Kk Magnetic fluid drive device
WO2006059622A1 (en) * 2004-12-03 2006-06-08 Da Vinci Co., Ltd. Magnetic convection heat circulation pump
JP2014134335A (en) * 2013-01-09 2014-07-24 Kri Inc Magnetic fluid drive device, heat transport device using the same, and power generation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240467A (en) * 2002-02-15 2003-08-27 Showa Denko Kk Magnetic fluid drive device
WO2006059622A1 (en) * 2004-12-03 2006-06-08 Da Vinci Co., Ltd. Magnetic convection heat circulation pump
JPWO2006059622A1 (en) * 2004-12-03 2008-06-05 株式会社ダ・ビンチ Magnetic convection heat circulation pump
US20080264068A1 (en) * 2004-12-03 2008-10-30 Shinichi Nakasuka Magnetic Convection Heat Circulation Pump
JP4507207B2 (en) * 2004-12-03 2010-07-21 株式会社ダ・ビンチ Magnetic convection heat circulation pump
JP2014134335A (en) * 2013-01-09 2014-07-24 Kri Inc Magnetic fluid drive device, heat transport device using the same, and power generation device

Similar Documents

Publication Publication Date Title
US7481063B2 (en) Method and device for the generation of cold and heat by magneto-calorific effect
Shi et al. Magneto-responsive thermal switch for remote-controlled locomotion and heat transfer based on magnetic nanofluid
US20170198948A1 (en) Air conditiioning device having at least one heat pipe, in particular thermosiphon
Elarem et al. Experimental investigations on thermophysical properties of nano-enhanced phase change materials for thermal energy storage applications
Dey et al. A review on the application of the nanofluids
US20130062555A1 (en) Nanofluids and a method of making nanofluids for ground source heat pumps and other applications
CN2919141Y (en) Temperature regulating device based on semiconductor refrigeration technology and thermal superconduction technology
Kanti et al. Stability and thermophysical properties of fly ash nanofluid for heat transfer applications
Huang et al. An integrated cooling system for hybrid electric vehicle motors: Design and simulation
JPWO2006059623A1 (en) Forced convection heat transfer device
JPH0415489A (en) Working medium for heat pipe
Rashidi et al. Applications of nanofluids in thermal energy transport
US20140197354A1 (en) Method of making nanaofluids for ground souce heat pumps and other applications
Wang et al. Analytical model for capillary evaporation limitation in thin porous layers
Paroutoglou et al. A PCM based cooling system for office buildings: a state of the art review
Gao et al. Application of nanofluids in heat pipes
Veerasamy et al. Performance of heat pipe with nanorefrigerant in electronic cooling applications
Vasiliev et al. Vapordynamic thermosyphon–heat transfer two-phase device for wide applications
Rosensweig Refrigeration aspects of magnetic particle suspensions
JPH0814779A (en) Heat pipe
Rajesh et al. Optimum heat pipe design: A nonlinear programming approach
Sabir et al. Experimental study of capillary-assisted water evaporators for vapour-absorption systems
Abbas et al. Nanofluids for enhanced performance of building thermal energy systems
KR20050017632A (en) Heat Pipe using Nano Fluid as working fluid
Tiwatane et al. Experimental Study of Waste Heat Recovery Using Heat Pipe Heat Exchanger with Hybrid Nano fluid: A Review